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The notion of width of a module was introduced by M.-P. Brameret
and some properties of it were shown in the paper [1]. Moreover M. Wich-
man obtained some results on this subject in the case of modules over a
commutative ring in [4]. On the other hand H. Fitting studied the deter-
minantal ideals of a finitely generated module over a commutative ring for
the first time in [2] and several authors used this notion for the study of
modules. In particular it was shown by T. Matsuoka in [ 3] that some pro-
perties of the torsion submodule of a module have a close connection with
Fitting’s determinantal ideals.

The aim of this note is to show relations between these two notions.
For this purpose we give the notion of weak width of a module over a com-
mutative ring which is more fitting for us than that of width of a module,
and elementary properties of it are shown. Next we define the width ideals
of a module and show that these ideals are natural modifications of Fitting’s
determinantal ideals for a not necessarily finitely generated module.
Moreover it is shown that the weak width of a module over an integral
domain has a close connection with width ideals or Fitting’s determinantal
ideals of the module. Lastly we shall give a generalization of the results on
the torsion submodule of a module in [ 3].

Throughout this paper all rings will be commutative with unit and all
modules will be unitary.

§1. Weak width of a module

Let R be a commutative ring with unit and U the set of regular ele-
ments of RY. Let M be an R-module. Then we understand by the weak
width W/ (R, M) of M over R the smallest integer n such that for any set
{x1, - 2441 Of n+1 elements of M, we have a soluution ax;= ;ajxj for

J
some i, a in U and a; in R. In other words W/(R, M) is the width W (Ry,
My) of My over Ry in the sence of [1]. If W/(R, M)=n, there exists a set
{x1, ---, 2,y of n elements of M such that ax; is not contained in é'ij for
J 1
any i and any o in U. We call a system with the above property a set of

1) An element of a ring R is called regular, if it is not a zero-divisor of R. If an ideal of R contains
a regular element of R, it is called a regular ideal.
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weak width determiners of M over R. The following proposition is a direct
consequence of the definition of weak width and Proposition 1.1 in [4].

Prorosition 1.1.  Let M be an R-module.
(1) W' (R, M)=0 1f and only if M is a torison R-module.
(2) For any submodule N of M, W/ (R,N) << W'(R, M).
8) If N s a homomorphic image of M,

W'(R, M)>>W'(R, N).

(4) Assume that W' (R, M)=n<oo and let N be a finitely generated sub-
module of M with a system {x1, .--, x,} of generators. Then there exists an
element a in U such that a N is contained in a submodule of N generated
by at most n elements among the elements xy, ..., x,_1 and x,.

B) If W/(R, M)<oo, there exists a finite R-submodule N of M such that
W'(R, M)=W'(R, N).

(6) Let N be a submodule of M. I1f W'(R, M)=m and there exists a regular
element a in R such that aM C N, then W/'(R, N)=m.

Prorosition 1.2. Let M be an R-module and N a submodvle of M. If
W' (R, Ny=n and W'(R, M/N)=1, then W' (R, M) n+1.

Proor. Since W'(R, M) (resp. W(R, N) or W/(R, N) is equal to the
W'(R, M/N)) (resp. W(Ry, My) or W(Ry, My/Ny)), this follows immediately
from proposition 1.2 of [4]]. q.e.d.

CoroLLARY 1.3. Let M be an R-module and M, the torsion submodule of
M. Then W(R, M)=W'(R, M/M,).

Proor. By (3) of proposion 1.1, W'(R, M/M,) <W'(R, M.). Conversely,
by (1) of proposition 1.1 and proposition 1.2, W(R, M) <<W'(R, M)+ W'(R,
M/N)=W'(R, M/M,). q.e.d.

Lemma 1.4. Assume that W'(R, R)=1 and let a be an ideal generated by
n elements a1, ---, a, of R. If a is a regular ideal, one of them is contained
in the set U of units of R.

Proor. This is easily seen from (4) of proposition 1.1.

Lemma 1.5. Let M be an R-module of the weak width W/ (R, M)=n and
{x1, -, 2.} @ set of weak width determiners of M over R. Then the annihi-
lator Amm (x;) of x; is zero for any i. Moreover if R is an integral domain,
the submodule f} Rx; 1s a free module with a free basis {x1, ---, x,}.

i=1

This is easily seen from the definition of a set of weak width deter-
miners.
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§2. Width ideals of a module.

Let M be an R-module and S, the set of the elements a in R such that
aM is contained in the submedule f Rx; of M generated n by elements x,,
i=1

.., x,. Then we denote by W,(M) the ideal of R generated by S, for a non-
negative interger n and call it the n-th width ideal of M over R. The
elements of S, will be called the generators of W,(M). From the definition
of W,(M), we see easily the following.

ProrositioN 2.1.  Let M be an R-module.
(1) Wn(M) C Wn+1(M)'
(2) If N s a submodule of M, W,(M)_ W,(M/N).

Let M be a finite R-module, and denote by F,(M) the n-th Fitting ideal
of M over R®. Now we give some relations between Fitting ideals and
width ideals.

ProrosiTion 2.2. Let M be a finite R-module. Then, for any n,
F,(M) CW.(M)CNF,(M).

Proor. If n=0, since (Adnn(M))*C Fy(M < Ann(M) for some m, the
proof is easily seen. Now we assume n>1 and let {x}={x,, ---, x,} be a
system of generators of M. Let A=(a;)(i=1, ..., m,j=1,..., m—n) be a
matrix such that 4 /x,\ =0, and let a be the minor det (a;)(i, j=1,2, ...,

)
m—n) of A. Then we can easily see that aM is contained in the submodule

N= ﬁ Rx; of M. From this we see that F,(M) is contained in W,(M).

j=m+n—1
Conversely let a be a generator of #,(M). From the definition there
exist n elements x,, ..., x, in M such that «M is contained in the submodule

foi of M. Let {yi, -, ¥m %1, -, 5,5 be a system of generator of M.
i=1

Then we have relations

ayj+j:ﬁla,~jx,.:0 (i=1, ..., m).

Put 4= ( q/,'”\ ; ~*~'\. Since 4 annihilates {x}, a™ is a generator of
ml Qaij
g |
n( 0 0

2) As to the definition and basic results of Fitting ideals of a module, see the papers [2] and [3].
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F,(M). This implies W,(M)CNF,(M) q.e.d.

We shall say that an R-module M is of type (W,) if the (n—1)-th width
ideal W,_.(M) of M is zero and the n-th width ideal W,(M) of M is regular.

ProposiTion 2.3. Let M be a finite R-module.
Q) If Misof type (W,), the Mn is of type (F,).
(2) If R s a reduced ring® and M is of type (F,), then M is of type (W,).

Proor. This is a direct consequence of the definitions of types (W)
and (F,) and of proposition 2.2. q.e.d.

Next we show that the weak width of a module has a close connection
with width ideals of the module and the additivity of the weak widths of
modules over an integral domain holds. For this purpose we give the follow-
ing;

Lemma 24. Assume that the weak width W/'(R, R) of R is one, and let M

be an R-module of type (W,) for some n>1. Then there exists an element x
of M such that M/Rx 1is of type (W, 1) and that Ann(x)=0.

Proor. By lemma 1.4, there exists a regular element g in R such that
gMC 3 Rax; for some xy, -, x, in M. Since W,_.(M) is zero, Ann(x;)=(0)
i=1

for any i=1, ..., n. Put M'=M/Rx;, Then we can easily show that M is
of type (W,_1). q.e.d.

Remark. If R is an integral domain, W'(R, R)=1.

ProrosiTioN 2.5.  Assume that the weak width W' (R, R) of R is one. If
M is an R-module of type (W,), then W (R, M)=n.

Proor. We show our assertion by an induction on n. If n=0, M=
M, Hence we have W/'(R, M)=0 by (1) of proposition 1.1. Now we as-
sume that »>0 and M is of type (W,). By Lemma 1.4, there exists a
regular generator a of W,(M). Therefore we may assume that aM is con-

tained in the submodule ZnIij of M(x;€ M, j=1,...,n). By lemma 24,
i=1

there exists an element y in M such that M/Ry is of type (W,_,) and
Ann(y)=0. From the induction hypothesis, W'(R, M/Ry)=n—1. Since
R=~Ry, we have W'(R, Ry)=W'(R, R)=1. By Proposition 1.2, W'(R,
MY<W'(R, Ry)+ W' (R, M/Ry)=n. Since W, (M)=(0), the system {x,
..., x,} is a set of weak width determiners of M. Hence we have W'(R, M)
=n and have W/'(R, M)=n. q.e.d.

3) Arring R is called reduced when R has no nilpotent elements except zero.
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CoroLLARY 2.6. Let R be an integral domain and M an R-module. Then
the following conditions are equivalent :
(1) Mis of type (W,).
(2) The weak width W'(R, M) of M is n and aM 1is contained in a
finitely generated submodule of M for an element a in U. Moreover if

M 1is finitely generated, these conditions are equivalent to the following.
8) M is of type (F,).

Proor. In order to prove the first half, it is sufficient to show that (2)
means (1). Since aM is contained in finitely generated submodule of M,
there exists an integer s such that W,(M) is not zero and hence there exists
an integer ¢ such that 0=W, (M) = W,(M). Since R is an integral domain,
W.(M) must be a regular ideal and hence M is of type (W;). By Proposition
2.5, n is equal to . The latter half is immediately seen from Proposition 2.3.

q.e.d.

Example. Let K and L be two fields and R the direct product of K and L.
Then we have W/(R, R)=2, but R is of type (W,). This means that we
cannot exclude the assumption W’/(R, R)=1 in Proposition 2.5.

Let M be an R-module generated by m elements xy, ..., x,, of M and F a
free R-module with a free basis {e;, ---, e,}. Denoting by ¢ the R-
homomorphism of F onto M such that ¢(e;)=«; for any i, let N be the kernel
of ¢.

Lemma 2.7. Let M, F and N be as above, If R is an integral domain,
then M is of type (W,) if and only if N is of type (W,,_.).

Proor. We assume that M is of type (W,). By (4) of proposition 1.1,
there exists a non-zero element a in R such that, aM C an Rx; by exchanging
the order of x,, ..., x, if necessary. Since W,,_l(M):(IO), the system {x,,

..., x,} 18 a set of weak width determiners of M. Put ax,,;= f}a]-.,-x,- (j=
i=1
1, .., m—n,a; €R) and put a;=ae,.;— Tzaj,,-ei. Then a;€ N for j=1, ...,
i=1
m—n. If yeaN, there exists r'= %b,-e,- in N such that y=ay’. Since
i=1

7' € N, }m] b;x;=0. Then we have the following relation
i=1

"Z(bfaJr 2 busja;.i)xi=0.
=1 1<5<

<j<m-n

Since {1, -, x,} is lineary independent over R, bja+ 2, b, a;;=0 for
1<j<m-n
i=1,...,n. Thus, r=ar'=2(bia+ Db, jaj)ei+ Dby jo;= 3 buyja. This
1 J J

1<j<m-n
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implies aNC 2.Ra;. Since {ay, .-, @n_,} is linearly independent over R.
7

N'=3 Ra; is of type (W,_,). Then N is also of type (W,._,). q.e.d.
7

TueoreM 2.8. Let R be an integral domain and let the sequence

0 L M2, N 0

of R-modules be exact. Then the weak width of M is the sum of those of N
and L.

Proor. Put W'(R,N)=n, W/(R, M)=m and W'(R, L)=1, Let {¢(z,),
ooy #(2n)} (resp. {y1, ---, ymy) be a set of weak width determiners of N (resp.
M), where z; is in M. By (5) of proposition 1.1, there exists a finite R-
submodule L, of L such that W' (R, Ly)=W'(R, L). Put My=Lo+Ry,+---+
Ryn+Rz1+ -+ Rz,, Nv=¢(M;) and Li=LNM,. Then we have the next
exact sequence

0—'—>L1-“)M1—L)N1“—)0.
By Corollary 2.6, M, (resp. N,) is of type (W,,) (resp. of type (W,)). Since
M, is a finite R-module of type (W,), there exists a non-zero element a in R
such that aM, is contained in the submodule f Ru; of M, genarated dy m
i=1

elements u; in M;. As W,_:(M))=(0), {u1, ---, unt is a set of weak width
determiners. By Lemma 1.5 M'=} Ru; is a free module with free basis

J
{uy, -y uny. Now put N'=¢(M") and L'=LNM'. Then we have the follow-
ing exact sequence

0 r Mt N’ 0.

Since aN; (resp. aL;) is contained in N’ (resp. L'), N') (resp. L') is of type
(W,) (resp. of type (W1)) by (6) of Proposition 1.1 and Corollary 2.6, and
hence m=1I1+n by Lemma 2.7. q.e.d.

CoroLLARY 2.9. Let R, M, N and L be the same as in proposition 2.5.
1) If Mis of type (W), then N is of type (W,) if and only if L is of type
(Wnn).
(2) If N (resp. L) is of type (W,) (resp. (W1)), then M is of type (W, 1).
This is a direct cousequence of proposition 2.8.

CoroLLARY 2.10. Let a sequence

0 M, M, . M, M, 0

be an exact sequence of R-modules. If M; is of type (W,,),i=0,1, ..., n,
then 33 (—1)im;=0.
i=0
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§3. Torsion submodules

Tueorem 3.1.  Assume that the weak width W'(R, R) of R is one. and let
M be an R-module of type (W1). Then there exist a regular ideal a of R and
an R-homomorphism ¢ on M into a can be defined such that the next sequence

0 M, M-t sa 0
18 exact.

Proor. By Lemma 1.4, there exists an element a in U such that aM is
contained in the submodule Rx, of M for some x, in M.

Since Ann(M)=0, Ann(xy)=0. Therefore there exists an isomorphism
f on Rx, onto R such that f(bx,)=5 for any b in R. Now we put ¢=f-¢,
where ¢, is an R-homomorphism on M into Rx such that ¢,(y)=ay for any
yin M. Then ¢ is an R-homomorphism on M into R. Let {x;}ic; be a sys-
tem of generators of M and c; the elements of R such that ax;=c;x,(G € I,
i; € R). If we write x,= ;Ia;c;, we have a= Z[aici since ax,= Zl(aic,-)xo.

i i€ i€
On the other hand, ¢(x,)=a and hence a=¢(M) is a regular ideal of R.

Now if x is contained in M,, there exists a regular element ¢ in R such
that cx=0. Since ax=¢(x)x,, we have cd(x)xo=cax=0. This means
c-d(x)=0 and hence ¢(x)=0. Therefore » is contained in the kernel of ¢.
Conversely if x is in the kernel of ¢, ax=0-x,=0. Since a is a regular
element, x is in M;. Therefore M, is the kernel of ¢. g.e.d.

Prorosition 8.2. Let R be a nmoetherian ring such that Krull dimension
of R is one and that the weak width W'(R, R) is one. If M is an R-module
of type (W), then the following conditions are equivalent:

(1) The module M is the direct sum of its torsion submodule and a free
module of rank one (resp. a projective module).

(2) The module Homg(M, R) is a free module of rank one (resp. a protective
module).

This is a direct consequence of prop. 3.1. and prop. 2 and 3 in [ 3]

Remark If R is an integral domain and M is a finite R-module then
Theorem 3 in [37] is obtained from prop. 3.2.

Lemma 8.3. Let S be a multiplicatively closed subset of R and M a finite
R-module. Then the n-th Fitting ideal F,(Ms) of the Rs-module Ms 1is
F,(M)s. In particular if M s of type (F,), so 1s Ms.

This is easily seen by a routine calculation and hence we omit the proof.

Proposition 3.4. Let M be a finite R-module. Then the following con-
ditions are equivalent :
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(a) M is a projective module of rank n.
(b) M is of type (F,) and the n-th Fitting ideal F,(M) of M 1is the unit ideal.

Proor. This is easily seen by Lemma 3.3 and Theorem 1 in [3].

Prorosition 3.5. Let M be an R-module. If W,(M)=R and W,_.(M)=
(0), then M is a finite projective module of ramk n. Moreover if R is a
reduced ring and 1f M is a finite projective modvle of rank n, then W,(M)=R
and W,_1(M)=(0).

Proor. Assume that W,(M)=R and W,_.(M)=(0). Then there exists
a set {ay, -, a;} of generators of W, M) such that e,y + - +a;,=1 for
some a; in R. Therefore there exist ¢-n elements x{" in M(i=1, ..., ¢, j=
1,2, ..., n) such that a,MC inY) and hence we see that M= Zt] Zn]Rxg-“.

ji=1 i=1 j=1

This means that M is a finite R-module. Then, by Proposition 2.8 and Pro-
position 3.4, M is a projective module of rank n. The converse is also a
direct consequence of Prop. 2.3 and Proposition 3.4. q.e.d.

LemmaA 3.6. Let M be a finite R-module. Then the following conditions
are equivalent :
(1) M s of type (F,).
(2) M/M, is of type (Fy).

Proor. First we note that F,(M)C F,(M/M;) and aF (M/M,) _ F,(M) for
some regular element a in R. In fact if {x,, .-, x,} is a system of gen-
erators of M, {z,, ..., %,} is that of M/M,, where %; is the class of x; modulo
M,. If Mis of type (F,), F,_.(M)=0 and F,(M) is a regular ideal. Therefore
F,(M/M) is also regular and oF,_,(M/M;)=0 for some regular element a of
R from the above assertion. This means F,_,(M/M,)=0 and hence M/M, is
of type (F,). For the converse we can give a proof similarly but we omit
the detail. q.e.d.

ProrosiTion 8.7. Let M be a finite R-module. Then M is of type (F,)
and F,(M/M,)=R, if and only if M 1is a direct sum of the torsion submodule
M, and a finite projective module of rank n.

This is easily seen from Lemma 3.6 and Proposition 3.4.

Remark 1. If R is a reduced ring in Proposition 3.7, we may replace F,
by W, by Proposition 2.3.

Remark 2. Tt 1s well known that if R is a semi-local ring or a principal
ideal domain, a projective R-module of rank n is a free module. Therefore
we may replace “projective” by “free” in Propositions 3.4 and 3.7.

Example. Let K pe a field and a the ideal of the polynomial ring K[ X, Y]



of two variables X and Y generated by X? and Y?2.
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Put R=K[X, Y |/a and

let x and y be the classes of X and Y in R respectively. Let F be a free

R-module with a free basis {ey, e:}.

Then we see that (xy)F is contained in

R(xe1+ ye;), and hence the first width ideal #;(R) of R contains a non-zero

element xy. This means that R is not of type (W>).

Therefore the condi-

tion that R is reduced is necessary in (2) of Proposition 2.3 and in Proposi-
tion 3.5.

[11]
[2]
(3]
[4]
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