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§1. Introduction

Let p(a) be the i-th (integral) Pontrjagin class of a real stable vector bundle
a over a finite CW-complex X, and let ! be the Grothendieck y-operation in KO-
theory. Let k be a positive integer. Consider the two conditions: p,(«)=0
and y2%(a) =0.

M. F. Atiyah has shown the following result in [3, §6] using the Chern
character.

THEOREM 1.1. (M. F. Atiyah) Suppose that H*(X; Z) is free. Then, for
any real stable vector bundle o over X and for any positive integer k,

P2K(@) =0=> p(a) = 0.

For integers n>0 and g>1, we denote by L"(q)(=S2"*1/Z,)) the (2n+1)-
dimensional standard lens space mod q and by RP*(=S"/Z,) the real projective
n-space. The purpose of this note is to prove the following

THEOREM 1.2. (i) Assume that q is an odd integer>1. Let o be any
real stable vector bundle over L*(q) and k be any positive integer. Then

P24(@) =0=> p(a) =0,

while the converse does not hold in general.
(ii) The same is true for RP".

There are examples of vector bundles for which the equality y2¥(a) =0 does
not imply the equality p,(a)=0. Let CP" (=S27*1/S!) be the complex projective
n-space, and D(m, n) be the Dold manifold of dimension m+2n obtained from
Smx CP" by identifying (x, z) with (—x, Z), where (x, z) e S"x CP".

THEOREM 1.3. Assume that n=2" and m=2° (r>s>1). Let 1o=7—
(m+2n) be the stable class of the tangent bundle t of D(m, n), and put k=
n/2+mf4. Then y?¥(—1,)=0 for any i=k, but p(—1,)#0.

Let 5 be the canonical complex line bundle over L*(g). In §2, we calculate
the Pontrjagin class of a real stable vector bundle a=r);%"la,n*—1), where
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a; (i=1,2,...,q9—1) are integers and r denotes the real restriction. In §3,
following M. F. Atiyah [3], we recall the y-operations in KO-theory and compute
y{a) for the stable class «. In §4, we apply the results of §2 and § 3 to the proof

of Theorem 1.2. The proof is mainly based on the structure of I?O(L"(q)) inves-

tigated by T. Kawaguchi and M. Sugawara [8], and that of I?O(RP") investigated
by J.F. Adams [1]. In §5, we recall the cohomology structure of D(m, n)
according to A. Dold [4], M. Fujii [5] and J. J. Ucci [12]. We prove Theorem

1.3 in §6 using the results in §5 and the results on I?O(D(m, n)) (cf. M. Fujii
and T. Yasui [6] and J. J. Ucci [12]). In the final section, § 7, we consider the
problem of immersing L"*(q) in CP™.

The author wishes to express his sincere thanks to Professor M. Sugawara
for valuable advice.

§2. Pontrjagin classes
According to N. Mahammed [11, Lemma 3.3], the following is known.
(2.1) The K-ring K(L™(q)) is a quotient ring

Z[n)/ <=1, n1—1>,

where Z[n] is the polynomial ring generated by n and <a, b> is its ideal
generated by a and b.

Let r: K(X)»KO(X), ¢c: KO(X)-»K(X) and t: K(X)-»K(X) denote the
real restriction, the complexification and the conjugation, respectively. Then

2.2) rc=2,cr=1+4t (cf. [1, Lemma 3.9]).

Let x be the first Chern class of n. Notice that H*(L"(q); Z) =Z, is
generated by x and that x"*! =0.

LEMMA 2.3. Let d be any integer. The total Pontrjagin class p=7},;p;
of the real 2-plane bundle rn¢ over L*(q) is given by p(rn4)=1+d?x2.

Proor. Denote by C=3],c; the total Chern class. Then p(rn?)=(—1)cy;
(crn®)=(—Dic, (1 + ) =(—1)ic,;(n* +n~%) by the definition and (2.2). But
CmA+nH=C(n*)C(n~ %) =1 +dx)(1 —dx)=1—d?x2, as desired. q.e.d.

PROPOSITION 2.4. Suppose q is odd>1. The total Pontrjagin class of a
real stable bundle a=rYi=ta(n'—1) (a;€Z) is given by p(a)=Y.IM21A()x?!,
where

2.5) AD =T it e =T (4201
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Proor. Since g is odd, H*(L"(q); Z) has no 2-torsion. Hence, by Lemma
2.3,

p(@) = ITizip(rmt)ae =TT (1 +i2x2)e
Z[]r:/_Z]( ) 2“x2](

—1(Q; \:2 ;
= Rl {z:,.ﬁ.‘.ﬂ-,_‘:,n;;;( j;)ﬂu} X2, g.e.d.

§3. y-operations

Following M. F. Atiyah [3, §2], we recall the y-operations in KO-theory.
Let A': KO(X)—KO(X) be the exterior power operation and 4,: KO(X)— A(X) be
the homomorphism with A,(a) =22 A4 a)t* for a € KO(X), where A(X) denotes
the multiplicative group of formal power series in ¢t with coefficients in KO(X)
and constant term 1. The homomorphism y,: KO(X)— A(X) is defined by y,=
A1 1> and the operation yi: KO(X)—KO(X) is given by y(a) =220y (o)t

The following is due to [7, Lemma (4.8)].

(3.1) For the real 2-plane bundle rn* over L"(q),
Y (rn—=2) =1+ —2)t—(rn? —2)t2.

Let P%: KO(X)—»KO(X) (resp. ¥Pi: K(X)-K(X)) denote the real (resp.
complex) Adams operation.

ProposITION 3.2. Let q be an integer>1, and a; (i=1, 2,..., q—1) be in-
tegers. Denote by o=n—1 the stable class of n. Then, for an element o=
rytan'—1), we obtain

7@ = B oo ml () @) e} 2!

ST RS0} R e

(ro)'(t—12)".
Proor. Using (3.1), we have

y@) = T (3t = 2))2t = TTE (14 (P = 2) (e —12))
2254 )orn'=2) =125

= Zz{Z;l+...+jq_,=zH?=‘x‘ <31-::>(”1i—2)j'}(1—t2)' .



428 Teiichi KoBAYAsHI

On the other hand,
mi—-2 =r¥in-2 by [1, Theorem 5.1, (iii)]
= Yirn—2 = Ykro by [2, Lemma A2]

= D=1 %(’ - D(ra)‘ by [9, (4.2)].

Thus we get the desired equalities. q.e.d.

§4. Proof of Theorem 1.2

For the proof of the first part of Theorem 1.2, we make use of the following
results of T. Kawaguchi and M. Sugawara [8, Theorem 1.1, Propositions 2.6
and 2.11]. Let L3(q) be the 2n-skeleton of L*(q).

THEOREM 4.1. (T. Kawaguchi and M. Sugawara) (i) Let q be an odd

integer>1. Then the ring I?b(L'{,(q)) is generated by ro, the element (ro)tn/21
is of order q, and (ro)?/21+1 =,
(ii) Let p be an odd prime and r=1. Then the order of the element (ro)}

of I?O(L"(p’)) is equal to prtt=2d/(e=1] for 1 <i<[n/2].

Also we need the results of J. F. Adams [1, Theorem 7.4]. Let ¢ be the ca-
nonical line bundle over RP” and let A=¢—1.

THEOREM 4.2. (J. F. Adams) I?b(RP") is a cyclic group of order 2%
generated by A, where ¢(n) is defined as the number of integers s with 0<s<n
and s=0,1,2 or 4 mod 8. The multiplicative structure is determined by
A2==2), A¢(W+1=(Q,

ProoF oF THEOREM 1.2. (i) As is well-known [11],
KO(L"(g)) = KO(L}(g)) + KO(5*"+1), KO(L3(q)) = rR(L"(9)) ,
K’\é(S““)=Zz if n=0 mod4, =0 if n#0 mod4.

Thus we can write a=a'+ where a’eK’\é(Ls(q)) and ﬂeIfé(S““). It is

easy to see that y(B)e K’\é(S““) for i>0. Hence yi(a')y/(B)=0 for i>0 and
Jj>0, because yi(a’) (i>0) is zero or of odd order and yi(B) (i >0) is zero or of order
2. Consequently, we obtain

7M@) =y WB) =1+ Xi5 oy (@) + ¥ (B .
Thus y¥(a)=0 implies y*(a’)=0. Since p(a)=p(a')p(B)=p(e’), we may assume
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that a =o' € KO(LA(q)) =rR(L"(q)).

Let n be the canonical complex line bundle over L"(q). By (2.1) we can write
a=r)i-ta(ni—1), a;eZ. Since x"*1 =0, we may assume that n>1 and that
k=[n/2]. By Proposition 3.2 and Theorem 4.1, (i) we have

VR0 = (= DFAKro) + S b (r)!

for some coefficients b; (j=k+1, k+2,..., [n/2]) (cf. (2.5)). Suppose that
y24(a)=0. Multiplying (ro)l"/21-* on both sides of the equality, we obtain A(k)
(ro)"/21=0, and so A(k)=0 modgq, by Theorem 4.1, (i). Therefore p,(a)=0
by Proposition 2.4.

In order to study the converse, assume that g is equal to the power p"(r>0)

of an odd prime p (>1) and consider an element a=r(a(n—1))eI’(VO(L"(q)),
acZ. Then, by Proposition 3.2 and Theorem 4.1, (i),

2 = YIn23 _1)i( @ i i
y4(@) = Zw=0($) (5 Loy oo
Now, put n=prtt —1, a=p"*! and k=(p"*!—p)/2. Then

(2);&‘ 0 modp™*!,=0 modp",

(?)so mod p*! for i=k+1, k+2,...,n/2.

Thus, by Theorem 4.1, (ii), we have y2¥(a)#0. On the other hand, clearly,
p{@)=0 for any i=k, by Proposition 2.4.

(ii) Let o be any real stable vector bundle over RP". According to Theorem
4.2, o=al for some aeZ. Then

7o) = (144 = Do §

by [3, §2]. Therefore, by Theorem 4.2, y2¥(a) = —22k~1 <2ak>’1’ and hence the
equality y2*(a) =0 implies that

22"‘1<gk> =0 mod 2¢(m .

If 4k<n+ 1, then 2k— 1< ¢(n), and so (gk>zo mod 2. Then p(e)=(—1)cs

(ca)=<;k)x2" =0, where x is the generator of H2(RP"; Z)=Z,. If4k=n+1,

it is obvious that p,(x) =0.
We obtain an example, for which the converse does not hold, by setting
n=2"—1,a=2"and k=23 (r>3). q.e.d.
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§5. Dold manifold D(m, n)

We recall the cohomology of the Dold manifold D(m, n) according to A.
Dold [4, Satz 1] and M. Fujii [5, Proposition (1.6)].

Let (ci, d/) be the (i+2j)-dimensional cohomology class of D(m, n) which
is dual to the homology class determined by the (i +2j)-cell (C¢, D7) (cf. [4] or [5]).
For the simplicity, we use the same notation for the integral class and its mod 2
reduction.

THEOREM 5.1. (M. Fujii) H*(D(m, n); Z) is a direct sum of a free abelian
group generated by elements (c°, d?J) and (c™, d?i*%) (¢=0 for odd m, e=1
for even m), and a torsion group generated by elements (c?i, d2J) and (c?*~1,
d2i+1) of order 2, where i=1, 2,...,[m/2], and j=0, 1,..., [n/2].

Let (¢!, d'J) be the corresponding cohomology class for D(m’, n’) where
m'Em and n'<n. If h: D(m', n')>D(m, n) is the standard inclusion, then
it holds that h*(c}, d/)=(c't, d'J).

THEOREM 5.2. (A. Dold) H*(D(m, n); Z,)=2Z,[c, d]/(c™*!, d**!), where
c=(c, d®) e HY(D(m, n); Z,) and d=(c°, d')e H*(D(m, n); Z,).

Let ¢’ and d' be the corresponding cohomology classes for D(m', n') where
m'<m and n'<n. If h: D(m’, n')>D(m, n) is the standard inclusion, then
it holds that h*(c'd’)=c''d".

Let n: D(m, n)— RP™ be the natural projection. Then = is the projection of -
the fibre bundle with fibore CP*. Let i: CP"—D(m, n) be the inclusion of the
fibre in the total spec. The following results are due to [12, Proposition (1.4)].

THEOREM 5.3. (J.J. Ucci) (i) Let &, =n'¢ be the real line bundle over
D(m, n) induced by © from the canonical line bundle & over RP™. Then the total
Stiefel-Whitney class w=;w; is given by w(é,)=1+ec.

(ii) There exists a real 2-plane bundle p, over D(m, n) such thati'y, =ru
and w(u,)=1+c+d, where ru is the real restriction of the complex line bundle
over CP".

Let ¢ denote the complexification and C =] ;c; denote the total Chern class.

LeMMA 54. (i) C(c¢) =1+¢c? (m=2),
(i) Clepy) =1+c*—d?> (m22,n22),
where €2 =(c?, d°)e H*(D(m, n); Z) and d?=(c°, d*) e H*(D(m, n); Z).

PrROOF. As (i) is obtained immediately from Theorem 5.3, (i), we only give
a proof of (ii). Notice that
w(rep,) = wp,) =w(pu,)? =(1+c+d)? =1+¢?+d?,
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by (2.2) and Theorem 5.3, (ii). Hence the mod2 reduction of c,(cy) is €¢? and
that of c¢,(cu,) is d?. Since the mod 2 reduction H2(D(m, n); Z)—H?*(D(m, n);
Z,) is isomorphic, we have C(cu,)=1+c?+1d?, where | is some odd integer.
On the other hand, by (2.2) and Theorem 5.3, (ii), i*C(cu,)=C(i'cy) =C(ci'u,)
=C(crp)=C(u)C(F)=(1+2z)(1—z)=1—z2, where z is the generator of H2(CP";
Z). Since i*d? =22, we have |=—1, as desired. q.e.d.

§6. Proof of Theorem 1.3

LeEMMA 6.1. Let m and n be positive integers such that
[m/2] = <'1n) =0 mod2 for any i with 0<i<[m/2], and

<n+ [n/2]n+ [m/2]><[n/2[]n:~/giﬂ/2]) £0 mod 2.

Put k=[n/2]+[m[4]). Then p(—10)#0, where 1o=1t—(m+2n) is the stable
class of the tangent bundle © of D(m, n).

Proofr. According to [S, Theorem (2.8)] or [12, Theorem (1.5)]
—To=—m(&, —1)—(m+1) (n, —2).
Therefore, by Lemma 5.4,
C(—=cto) = C(—mcé)C(—(n+Depy) =0 +e?) (1 +c2—-d?) " 1.

Now, (1+c?)"=1, by the assumption, since ¢? is of order 2 and (¢?)Im/21+1 =0,
While,

(+e2 =) = D=0 (" T Zheo(§ Jerr (=)

i
The coefficient of the monomial (¢2)i™/21(d2)t»/21 in this expansion is

m +[n/2]+ 2 2]+ 2
o ) (M5

and this is odd by the assumption. Thus p(—1¢)=(—1)kc(—c19)#0, as
desired. q.e.d.

We need the following results on the structure of I’(\'O(D(m, n)) (cf. [12,
Theorem (2.8)] and [6, Theorems 5 and 6]).

THEOREM 6.2.(J. J. Ucci, M. Fujii and T. Yasui) Set &, —1=v and u,—

&,—1=y. Then I?O(D(m, n)) contains a summand isomorphic to

Zysom+Z+-+2Z ([n/2]-copies)
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generated by v, y, y%,..., yI"/2] with the relations: v? = —2v, v¢m+1 =0, vy =0,
yni21+1+e =0, where ¢=0 if n#1 mod4, e=1 if n=1 mod 4.

LEMMA 6.3. Let m and n be positive ‘integers with 2[n/2]+ 1= ¢(m).
Then y{(—1,)=0 for any i22[n/2]+2+ 2¢, where ¢ is as in Theorem 6.2.

Proof. According to J. J. Ucci [12, p. 289]
P(—70)= i2i“<m+in+l>v+ Lj=tiry21%i 7 5

where «;; are non-zero integers. If i>2[n/2]+2+2¢, we see, by the assumption
and Theorem 6.2, 2i-1p=0 and y/=0 for any j=[(i+1)/2]. Thus yi(—1,)=0.
v q.e.d.

Proor oF THEOREM 1.3. Let n=2" and m=2% (r>s>1), and put k=n/2
+m/4. Then p(—14)#0 by Lemma 6.1, and y2i(—1,)=0 for any i=k by
Lemma 6.3. q.e.d.

§7. Immersions of lens spaces in complex projective spaces

The results of §2 and § 3 can be used to study the problem of finding a condi-
tion that a map of L"(q) in some manifold is homotopic to a differentiable immer-
sion. In [10], we have been concerned with immersions and embeddings of
L*(q) in L"(q).

In this section we consider the immersions of L"(q) in CP". For a given
integer d, a continuous map f: L"(q)— CP™ is said to have degree d(written deg ( f)),
if f*z = dx for the distinguished generators ze H*(CP™; Z) and xe H*(L"(q); Z).
If n<m, the homotopy classes of maps of L"(q) in CP™ are in one-to-one cor-
respondence with H2(L"(q); Z)=Z,. Thus the homotopy class of a map f:
L*(g)—CP™, n<m, is determined by deg(f)eZ,.

In a way similar to [10, (2.3)], we have

ProposITION 7.1. Suppose q is odd>1. If m=n+[n/2]+1, any map of
L*(q) in CP™ is homotopic to an immersion.

Let u and n be the canonical complex line bundles over CP™ and L"(g) re-
spectively. The following is evident.
(7.2) Let f: L"(q)—>CP™ be a map with degree d. Then f'u=nd.

THEOREM 7.3. Suppose q is odd>1. Let n and m be integers such that
m=<n+[n/2]. Ifa map f: L"(q)—CP™ with degree d is homotopic to an immer-
sion, then
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2ivj=1(— 1)i<n;!-i><m}- 1>(Tf¢r0')j(ro)" =0
for any lZm—n.

PrROOF. Let g be an immersion which is homotopic to f. Then g is of
degree d. As g has the maximal rank 2n+1, we must have m—n>0. Let v be
the normal bundle of g. Then v+1t(L"(q))=g't(CP™), where ©(M) denotes the
tangent bundle of M. Since ©(L*(q))+1=(n+ 1)rn by [7, (4.6)] and g'(z=(CP™)
+2)=g'(m+Dru)=(m+Drg'u=(m+1)rp? by (7.2), we obtain v+1+(n+1)ry
=(m+rp?. Let a=v—(2m—2n—1) be the stable class of v. Then

a=—(n+1)(rn—2)+(m+1)(rn’-2)

and g-dima<2m—2n—1. Taking account of the fact that yi(a)=0 for i>g-
dima [3, Proposition (2.3)], we find the result from Proposition 3.2. q.e.d.

COROLLARY 7.4. Let p be an odd prime>1. Set
m = n+max {l <[n/2] ‘(n-;—l) #0 modpr+[(n—21)/(p-'l)]} .

If a map f: L"(p")— CP™ has degree 0, then f is not homotopic to an immersion.
Proor. This follows from Theorems 4.1 and 7.3. q.e.d.

Since the existence of an immersion L"(q)— CP™ with degree 0 is equivalent
to the existence of an immersion of L"(q) in Euclidean 2m-space, Corollary 7.4
has already been obtained by T. Kawaguchi and M. Sugawara [8, Corollary 3.6].

COROLLARY 7.5. Suppose q is odd>1. Let n and m be integers with
m=n+[n/2]. Then a map f: L"(q) - CP™ with degree +1 is not homotopic
to an immersion.

Proofr. If fis homotopic to an immersion, we have (ml_”> (ro)!=0 for

any I=m—n, since WY§! is the identity (cf. [1, Theorem 5.1, (vii)]). Thus
(ro)* " =0, which contradicts to the fact that (ro) # 0 for 0<i<[n/2] (cf. Theorem
4.1, (i)). g.e.d.
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