HirosHIMA MATH. J.
5 (1975), 447-460

3-Primary p-Family in Stable Homotopy

Shichiré6 OkA and Hirosi Topa
(Received May 19, 1975)

§1. Introduction

Let p be an odd prime. L. Smith [9] discovered, for each p=5, an infinite
family {f,} in the stable homotopy groups G, of spheres. The construction of
this family is assured by the existence of the stable complex V(2) for p considered
in [9], [15].

The case p=3 is quite different from the case p=5 [16, § 6], e.g., V(2) does
not exist [15, Th. 1.2] and so the construction of g, for general ¢ is not known;
it is, however, known from the results on G, ([6], [7, Th. B], [11]) that B,, t<6
except for =4, exist and that 8, can not be defined.

Let B be a stable mapping cone S° Uz e!! of f,€G,, of order 3, and j: S°>B
be an inclusion. The purpose of this paper is to construct non-trivial elements
B.em ¢ (B) of order 3 for all t=>2 such that jB,=p, if B, € G, exists. We shall
also construct non-trivial elements p,€ g, 19(B), t=1, corresponding to the
elements p, ; € G, of [8, Th. A].

For the simplicity, we shall denote by M and V the spectra V(0) and V(1)
for p=3in [15]. In stable notations, M=S° U ;e! and V=M U ,CZ*M, and we
have the cofiberings S°—>M-%,S! and M-,V ,55M,. Put VB=VAB.
Its Brown-Peterson homology is given by the direct sum:

BP,(VB) = BP,(V)+Z2!'!BP,(V) = BP,/(3,v,)+X''BP,/(3,v,),

where BP,=mn(BP)=Z3[v,,v,,...], degv;=2(3"—1) [2][3]. Let [Bi,]: Z1°M
—V and [n,$]: Z!1V—>M be the elements having V<l-%—) and 2‘5(V(2)/ V(%))
as their mapping cones [16, § 6].

THEOREM 1.1. There exists a stable map
B: £1¢VB — VB
such that
(a) P induces the multiplication by v, on each factor of BP(VB),

and hence BP/(3,v,,v,)+2''BP,/(3,v,,v,) is realizable as the BP homology
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of the mapping cone of B. Moreover, such a B is unique by the equalities

(b) Bl Alp)=[Bi\1A1p, (ny Ag)B=[m,f1A1p.

The theorem, together with some additional properties, will be proved in § 3.
It is known that BP,/(3, v,,v,) can not be realizable. We also notice that there
are distinct spaces realizing BP,/(3, v,, v,)+X''BP,/(3,v,,v,). Roughly speak-
ing, the element B corresponds to B A1y for p=5, and (a) asserts that V(2) AB
exists (not uniquely) even if V(2) does not.

DEFINITION 1.2. We define B,en,5,_6(B), t=1, by the following composi-
tion (B, =0):

Si6t _Ji  sie6rg LiiNls yi6tyyp B pgrmiile yép

D. C. Johnson and R. Zahler ([4], [18]) obtained, for any prime p=3, an
infinite family in Ext3-* (BP*, BP*), the E,-term of the Adams-Novikov spectral
sequence, corresponding to the f-family when p=5. Our family {B,} (except
t=1) corresponds to their family in Ext for p=3, and we shall prove in §4 the
non-triviality of B, by Zahler’s method [18].

THEOREM 1.3. For t22, B, is non-zero element of order 3.

For t<6, we shall see in §5 that B,=jp,, t#4, and kB,#0, where k: B—»S!!
is the collapsing map. This suggests a definition of f’s in G, for p=3: for t=2
such that kB,=0, B,€ G ¢,_¢ is given by jB,=p,.

We shall also consider a similar construction corresponding to the elements
p’sof [8]. Put W=M U ,.CZ8M and WB= W A B, whose BP homology is BP/(3,
v})+Z11BP,/(3, v}).

THEOREM 1.4. There exists a stable map
p: Z*3WB — WB

inducing the multiplication by v3, i.e., the mapping cone of p realizes BP,/(3,
U%’ U%)+211BP*(3, U%, Ug)'

Let us denote the cofibering for Wby M 2, W =2, 39M,

DEeFINITION 1.5. Define p,emug,_1o(B) by the following composition
(t=1):

S48t J Y48t i2iAlp Y48ty ;t WBMz/\ln yiop .
TueoreMm 1.6. 5,#0 and Bs, € {p,, 3, «,} for t=1.

(1.4) and (1.6) will be proved in § § 3-4.
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In contrast with (1.4), we obtain the following non-realizing result.
THEOREM 1.7. BP,/(3,v2,v3) can not be realized.

In §5 we shall proved (1.7) and the non-realizability of BP,/(3,v,,v}) for
small t. In Appendix, we shall discuss a similar consideration for the 5-primary
y-family, and show that BP,/(5,v,,v,, v3)+Z3°BP,/(5,v,, v,,v;) can be reali-
zable. :

§2. Some additional results on the algebra 7. (V)

For any (finite) stable complexes (CW-spectra) X and Y, we shall denote by
(X ; Y) the additive group consisting of all homotopy classes of stable maps
ZkX Y, and set m(X)=m(S%; X), L (X)=m(X; X) and o (X)=3 o (X).
The composition of maps induces a product on &7 ,(X), and & 4(X) forms a graded
ring; 1y € & o(X) being the unit.

A space (spectrum) X is called a Z;-space (-spectrum) if 1y is of order 3, or
& 4(X) is an algebra over Z; [16, Lemma 1.2]. We introduced in [16, §2]
the operations 0: m(X; Y)-m.(X; Y) and Ay: o (M)—> o, (X) and discussed
their properties. In particular, M and V are (non-associative) Z;-spaces [16,
§6], and we shall use the same notations as in [16] for the generators of o (M)
and &, (V):

0 =inesl _(M), aeL, (M) the attaching class of V,

Buy = mBi] = [mflis e o1 (M), Bz = [niB1 [Bir] €t 3o(M)
o, =imed _s(V), 6g=i0n,e_¢gV),

o"eZ,(V) the associator of V,

B = W(3Buyd) = By Ay, [BSo] = [Biy1om, e 1o(V),

(86,1 = [Biy]my, [0:8] = is[m,fleoty4(V).

The following relation is the mod 3 version of the last equality in [16, Th.
4.2].

Lemma 2.1, Ay(B(1)0)=[Bd,]1—[,8].

Proor. By [16, Cor. 2.5,(3.7),(2.8) and Th. 6.4], Ay(B(1)0)i;=i;Ay(B1,0)
= ilﬁ(l)'—‘ —[6,B)i; and nllv(ﬁ(l)é)"—‘m[ﬁad- Since lv(ﬂ(l)‘s) e (V)=
{[Bd4,]1, [6,41} [16, Th. 6.11], we have the desired result. g.e.d.

Since 6 is derivative [16, Th. 2.2], it follows immediately from [16, Th. 6.4]
that
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(2.2) 0[Bd,] = a"[Bdo].

By [16,(6.1) and Lemma 6.5], we have 0[J,]1=06[Bd,]1—04,(B1,0)=0[pd,]
+a"Ay(6B1)9), and hence

(2.3 006,81 = «"[Bdo]+B'a".

THEOREM 2.4. In o ,,(V)={[6,81[Bd,1, B'a"[Bdy], B'B'o"}, the following
relations hold:

() [B6,1> = —[6,81[B6,1—PB'«"[Bdo],
() [0,81* = —[6,81[BS,1—PB'«"[BSo]—B'B'a".
Proor. By [16, Th. 2.4 (iii)] with £=p,,0, we have

(%) ([B6,1—[0:81)y = (—1)*es7y([Bd,1—[8,81)+ B'6(»)
for any ye «4(V). By using (2.2)«(2.3), the desired relations follow from (%)
for y=[B6,1, [,8]. qg.e.d.

In the same way as above, we also obtain the following relations.
2.4y () [Po,10Bi,1= —[6,1[Bi] mod Imp;,
() [m,p1[6,f1= —[m,p1[B6,] mod Imp™*.

An additive basis of & ,(V) for deg<27 is given by [16, Th. 6.11]. We shall
compute & ,,(V).

THEOREM 2.5. The homomorphisms i%: of,7(V)>n,,(M;V) and myy:
& ,(V)-7,,(V; M) are isomorphic. Define [6,82] and [B?6,] by i%[6,B2]
=[6,81[Bi,] and nx[p*6,1=[n,B1[B5,], and put [B6,]1=[Pi,1[n,p]. Then,
& ,,(V) has a basis {[$?8,],[B6,8]} and there hold the relations [5,82]
= —[p?6,] and lv(ﬁ(2)5)=[3251]-

Proor. N. Yamamoto [17] computed the algebra «,(M) for deg<32,
cf. [16,(6.4)], and the obstruction to compute «;,(M) was the composition
o,B3 in G35. The triviality of this composition [13] leads to the result &7 5,(M)
={a8}.

From the results on (M), k=27, 28, 31, 32, we obtain m;,(M;V)=0
and m,,(V; M)=0. We have proved in [16, Prop. 6.9] that n;,(M; V)=0, and
dually we can prove 7m,¢(V; M)=0. Therefore i¥ and =, in the theorem are
isomorphic by the exact sequences:

n3(M; V) — M27(V)L'>7T27(M; V) — n3,(M; V),
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Ta9(V s M) — o7 55(V) 225 15,(V; M) — m6(V; M).

From the results on &,(M), in particular the relation 6ad(f)0)>=p%)
=mn,[B6,B1i; [16, Th.6.4.()], we see that mn,;(M;V)={i;B,,=[6,81[Bi],
[B6,B]i\} and my,(V; M)={Bsyn,=[nB1[B6,], n,[BS,$]}. Hence,

o 22(V) = {[B?8,], [B6:B1}={[6,8], [B5,B1} .

We put /lV(ﬂ(z)a):x[ﬂzéd +y[B6:B]. Then, [0.81[Bd,]1= ilﬂ(Z)nl
=- iIAM(ﬁ(Z)(S)nl =51'1V(ﬁ(2)5)=x[51.3] [B,1+y[6,]*> and x=1, y=0, since
[6,81[Bd,] and [6,B]* are linearly independent by (2.4). Next put A,(B,)90)

=x'[0,8?1+y'[B6,].  Then,  [6,1[Bd,]1=—2y(B2)0)0,=—x"[8,B]1[Bé,]
—-y'[B6,]*> and x'=-—1, y’=0 by (2.4). Thus, we obtain [$26;]1=2,(B2)0)
= —[6,B2] as desired. g.e.d.

§3. Constructing elements

Let us denote the cofibering for B by
(3.1) Sio b1, g0 J,p_k,gtt,

We write XB, By, jx and ky for the smash products X AB, 1A By, 1xAj and
1x A k, respectively, and we have the cofibering

3.1, Floy Bx, x Jx, B kx ,yi1yx,
It is clear that {8, = ¢ for any £en(X; Y), i.e.,
3.2) B% = Bys: m(X;Y) — my10(X; Y).

Consider the element B, Algz=fpe o o(B). By [12,Lemma 3.5], f; Aly
=k*j,(¢*) for some a* € G,,. Since G,;*Z;=0 [11], we obtain

(3.3) BiAlp=0 in o o(B).

From (3.2)-(3.3), it follows that B%: m(X; YB)> 7, 1o(X; YB) and Byy:
n(XB; Y)-m,,,1o(XB; Y) are trivial for any X and Y. Hence the following
short exact sequences are obtained:

(34) 0—> m,(X;YB) 5, 7 (XB; YB) 2% n(X; YB) —> 0 ;
(3.4)* 0 —> m(XB;Y) x5, m(XB; YB) *x*, 1, (XB; Y) —> 0.

We shall treat the case X, Y=M or V. Then, Bx=2Ax(6f)0) [16, Th.2.4.
(iv)], and so

(3.5) By = Byo+dBuy, By =5
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LEMMA 3.6. () m,{(MB;VB) has a Z;-basis
{LBis] A 1p, jy[6:B1[Biy Ik = —jy[BO,1[Bis1kn} -
(i) m,,(VB; MB) has a Zy-basis
{[m1B1 A 15, julmiB11BS Iky = —jmlm,B1[6,B1ky} .

Proor. From =n(M;V)=0, k=5,6, and w,,(M;V)={[Bi,]1} [16, Prop.
6.9], it follows that n,s(M; VB)={j,[Bi,1}. Also m,,(M;VB)={j,[6,61[Bi]
=—j,[p6,]1[Pi;]1} by using (2.4)" (i). Then, from (3.4) for X=M, Y=V, (i)
follows.

(i) follows from similar calculations using the following results on m,
=m(V; M): mo=mn,;=0, ny,={[n,f1}, ny,={[n,B1o"}, myy={[n,f1B’} and m;,
={[n,B1[B,1, [n,f1[6,51}. g.e.d.

The Brown-Peterson homology for M and V is given by ([9], cf. [4], [18])
BP(M) = BP,/(3), BPy(V) = BP4/(3,v,),

where BP,=mn,(BP)=Zg)[v,v,,...], the polynomial ring over the integers
localized at 3, v;€ BP,3:_4y [2] and (xy,..., x,) denotes the ideal generated by
X1s.s X, Applying BP,( ) to (3.1), (3.1),; and (3.1),, we get

3.7) (i) BP.(B) = BP,+Z''BP,,
(i) BP.(MB) = BP,/(3)+Z!1BP,/(3),
(iii) BP4(VB) = BPy/(3,v,)+2"'BP,/(3,v,),

where an n-fold suspension Z"M of a graded module M =(M,) is given by (£"M);
=M,_,, in particular BP,(2"X)=2"BP.(X).
Now we shall prove Theorem 1.1.

Proor oF (1.1). The construction of B starts from the stable map [Bi,]:
216 M —V having V( 1%) as its mapping cone [16, p.239]. This coincides with

¥ of L. Smith [9, 2nd line on p. 824] up to sign, and induces the multiplication
by v,. There is a relation [16, Th. 6.7]

[BiJo = B'(B'i; +6,[$d,19).

Since V=C, and VB=Cy by (3.1), and (3.5), this relation gives an element
Bo: Z16V—VB such that i, =j,[fi,] and ky,fo=p'0,+06,[Bdy]. Since o ,¢V)
=0 and «5(V)nKerpi={p0;+3:[Bdo1}, Bo is unique and generates m,¢(V;
VB). By (3.4) for X=Y=V, there is j such that fj, = f,, and so by (2.5)
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(3.8) o o(VB) = {B, jv[ﬁ251]kv, Jv[BoBlky} .
By (3.6), (3.8) and easy calculations, we see that

(3.9) there is Best s(VB) such that PB(i; Alg)=[Bi, ] A1z modj,[6,4]
‘[BiyJknys (my A 1p)B=[n,B1A 1gmod jy [, f][B6,1ky and kyBjy=p'0,+6,[Bd],
and such B’s form a coset of the subgroup I=/{j,[B?5,1ky, jv[BS:B1lky} of
< 16(VB).

For any B in (3.9), B(i; Alp) and [Bi,;] A 1, induce the same homomorphism
on BP,( ). Since (i; Alg), is the natural epimorphism to the quotient (3.7)
(iii) of (3.7) (ii), we see that any B in (3.9) satisfies (a).

Put B(iy Alg)—[Bi, A 15=xj,[6,81[BisJks and (m, Alp)B—[n,BIA15=
Vim[mB1[BS,1ky. Then,

B'=B—(x—y)jv[B*d11ky—(x+)jy (B3, Blky

satisfies (b) by (2.5) and (3.6). The uniqueness of f satisfying (b) follows from
(3.8) and

In Ker(iy Alp)* n Ker(ny A lg)e =0.
g.e.d.

REMARK 3.10. Let o be the Steenrod algebra mod3. Denote by E,
the exterior algebra generated by Milnor’s primitive elements Q,..., Q,. Iden-
tifying E, with a quotient of &/, we may regard E, as an «/-module. Then,
E, and E, are realized by the cohomology of M and V [15,Th.1.1]. Let M,
be an extension (as an A-module) of E, by X''E, such that £3a=Qb in M,,
where a and b are the generators corresponding to E, and X''E,(dega=0,degb
=11). If E, is realized, then so is M,. In fact, H¥(V(n) AB;Z3;)=M, if V(n)
exists. In particular, My and M, are realized by MB and VB. We see also
that the mapping cone VB(2) of B realizes M,, i.e.,

H*(VB(2); Z3) = M,,
though E, can not be realized [15, Th. 1.2].

THEOREM 3.11. Let 8,=06, AlgesZ/_s(VB). Then the element Bé,—35,p
belongs to the center of & ,(VB). In particular, there is a relation

(3.12) B26,+pB6,B+6,82 =0.

Proor. By the definition of Ay, Ava(B(1)®)=Ay(B(1y0) A1y [16, Th.2.4.
(i)], and so ;LVB(B(I)é):[Bal]/\]B-[élﬁ]/\]B=B—51_51B by (2.1) and (1.1)
(b). By (3.5), lyﬂ(éﬂ(l)5)=/31/\1y3=0, and hence AVB(B(”é)C:(—l)"”'f{AVB
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(B(1y0) for any & e o, (VB) by [16, Th. 2.4. (iii)]. Letting £=f, we obtain (3.12).
g.e.d.

From (3.12) we have immediately
CoROLLARY 3.13. jB35,=4,p3.

Now, we denote the cofibering for W=M U ,.CZ3M by M -2, W=2,3°M.
There is a sequence of cofiberings [8, Lemma 1.5]

(3.14) 4V e, W b,y 1,35y,
where a and b are given by
(3.15) aiy = ia, mya=mn,; bi,=1i;, m,b=oan,.

Proor oF (1.4). By (3.14), WB is the mapping cone of 5,. Hence, by
(3.13), there is p: Z*3WB—WB such that pa=apB?® and bp=p3b, a=anly,
b=bAlg. By (3.15) and (1.1)(a), @ and B3 induce the multiplications by
v, and v3, respectively. Hence p induces the multiplication by v3. q.e.d.

In the above we have obtained
(3.16) pa = ap3, bp=p3b (@=aANlgb=D>bA1p).
As a consequence of (3.16), we have

PROPOSITION 3.17. For the elements B3, in (1.2) and p, in (1.6), there
holds the relation B3, €{p,, 3, %,}.

PROOF. Bie = (nmy A 1)B3%yiyi
= (nny A 1g)ap3tjyi,i by (3.15)
= (nn, A lp)p'jwaiyi by (3.16)
= (7, A lp)pijwi,ai by (3.15).

Since (nmy A 15)p%jwi, and ai are an extension of p, and a coextension of
ay, B, lies in the bracket {p,, 3, «,}. g.e.d.

§4. Proof of Theorems 1.3 and 1.6

R. Zahler [18][4] defined an invariant taking values in Ext2-* (BP*, BP*),
A= BP*(BP) the Steenrod ring of the Brown-Peterson cohomology theory, whose
coefficient ring is BP*(=BP_,)=Zz3)[v,, v;,...], degv;=—2(3"—=1)[2,§6] cf.
[3] (this v; is the dual of v; e BP, in the previous sections). This invariant detects



3-Primary S-Family in Stable Homotopy 455

B’s of [9] and p’s of [8] for p=5 (cf. [4, Remark at the end of §2]). We shall
follow his line with minor alteration.

Denote by W, the mapping cone M U - CX4" M(W,=V, W,=W)and i,: M- W,
the inclusion. Let H,(r) be the image of (i.i)*: ny(W,; B)»mn(B). Take ¢
=ni,ie H(r). Since i}¥=0: BP*(W,)-BP*, (ni,)*=0 and there is a short exact
sequence of A-modules:

E .

n-*

0 — Z**2BP¥/(3) — BP¥(C,;,) — BP*(B) — 0,

and we obtain the class {E,} € Ext}-**2(BP*(B), BP*/(3)). Denote by 4: Ext)'
(—, BP*/(3))=Exti}!-i(—, BP*) the connecting homomorphism associated with
the short exact sequence of A-modules:

0 —> BP* X3, Bp* %, BP/(3) — 0,

and by ¢: BP*— BP*(B)=BP*+X!!BP* the right inverse of j*: BP*(B)— BP*.
Let ' also satisfy n’i,i=¢. Then ni,=#'i, modn*r, . ,(B). If k#—1 mod4
and k# 10, any element of n,, ,(B) induces the trivial homomorphism, and hence
{E,}={E,} modIm7m,=Kerd. Therefore A{E,} depends only on & Thus,
letting e, (&)=c*4{E,}, ne(i,)*"'¢, we obtain a well-defined homomorphism

“4.1) e,. H(r) — Ext%**2(BP*, BP¥), k# —1mod4, k#10.

Let t=3/a, where a#0 mod3, a=1 and f20. If 1 <r<3/, the multiplica-
tion v4y: 216t BP*— BP*/(3, v) is an A-homomorphism [18, Lemma2]. Hence

vy € Ext$:16/(BP*, BP*/(3,v")).

Denote by A4,: Exti:J(—, BP*/(3,v,))—Exti1.i=4r(—, BP*/(3)) the con-
necting homomorphism associated with

E,: 0 — X74"BP*/(3) LN BP*/(3) — BP*/(3,v7) — 0,
and put
e(r, t) = A(4,(vy)) € Ext3:16t~47(BP*, BP¥*)

for 1=r£3/,t=3%a,f20,a=21, a0 mod3. Then, D.C. Johnson and R.
Zahler ([4,§2],[18, Th. 1.a]) proved

THEOREM 4.2. e(r, t)#0.
Now we shall prove Theorems 1.4 and 1.6.

Proor oF (1.4). We shall show e,(B,)=e(1,t). Then B,#0 follows from
(4.2). Put n=(nn, Alp)pj,, k=16t—6. Then B,=niie H (1) and e,(B) is
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defined for t=2.

Since [w,f] is the Spanier-Whitehead dual of [fi,], it follows from (3.9)
that the coset B+1 in (3.9) is self-dual. Hence, any B in (3.9) induces the mul-
tiplication by v, on the BP-cohomology. So, ¢=n* e Ext$-16/(BP*(B), BP*/(3,
v,)) is given by ¢c=v} and Ppk*=0.

Applying BP*( ) to the cofiber sequences for i, and ni,, we obtain the
commutative diagram of short exact sequences:

E,: 0 —— Z¥+2BP*/(3) — Zk*6 BP*/(3) —— Zk+6BP*/(3, p,) — 0
n*=¢
E,: 0 — Ik+*2BP*/(3) —> BP*(C,;) — —> BP*(B)————— 0.

Then {E,} =¢*{E} in Ext!-* and we have
*E,} = (p)*{E } = A,(¢0) = 4,(v3).
Thus, e,(f)=*4{E,}=44,(v4)=e(l,1). g.e.d.

ProoF oF (1.6). In the same way as above, we see that e,(p,)=e(2, 3t)
and p,#0. The relation B3, €{p,, 3,a,} is proved in (3.17). q.e.d.

§5. Remarks for small ¢ and non-realizability

We shall compare our elements B, and p, with the results on G,. The non-
realizability of some cyclic BP,-modules will be proved. As we only treat the
3-primary elements, we denote simply by G, the 3-component of G,.

It is easy to see from (1.1) (b) that

Bi=ify =0 and B,=jp,
for By=n[r B1[Bi ]i € Gye.

The elements kB, and kp, lie in G,¢_,; and Gug_,, Which contain the
image of the J-homomorphism [1]. But kB, and kp, can not be contained in
Im J, because these elements factor through V or W. Since G,¢,-17/ImJ (=3,
5,6) and G,,/ImJ vanish ([11],[7, Th.B], [6]), we have kB,=0 for t=3,5,6
and kp, =0. Therefore,

p1 = tje,, By= tjes,
where &, ={a,, f3,3,2,} and &,={¢;, 3, 2,}, and

Bs =jﬂ5a ﬁa =jﬁ6'

These two equalities give generators S5 of G,4 and 4 of Gg,.
We proved [7] that the element f, does not exist. In fact, the following



3-Primary $-Family in Stable Homotopy 457

relation is easily seen from [7, Th. B]
kBa = £Bi& (#0),

and B, can not lie in the image of j,.
Since (¢, f5)%: G46—> G5 is monomorphic [7], we have

{61’ 3, 9‘2} = {82’ 3, al} =0.
The non-existence of f, is equivalent to the relation
(5.1) {81, 3, az, 3} = {82, 3, 0(1, 3} = ‘_l'ﬂlﬁ'.

This means that (nn, A 15)pjw (and (nm, A 15)B3j, also) can not be compressed
to the bottom sphere of B. Furthermore the element ky pj, € & 5,(W) satisfies

5.2) kwpjwizi = iyie’, nn,kypjw = —&'nn, for suitable sign of € .

There are elements fB,: S!6*4W, t=1,2, such that nn,f,=f,. Then,
since f,¢’ =0, the element (77, A 15)5j B, can be compressed to the bottom sphere
of B, and the compression is 5. But, since f§,&'#0, such a compression does
not exist for t=1.

From (5.2), we can see kp,=(nn,kyp)(pjwii)=(F¢,)e'—&'(+£e)=0.
Hence we obtain an element p, such that

P2=1ip2 Be=1{p23,0}.

This generates Gg¢ and coincides with Nakamura’s p,[6] up to sign.
In the following, we shall discuss the non-realizability of BP,-modules.
We first prove Theorem 1.7.

ProoOF OF (1.7). Let assume that there is an X such that BP,(X)=BP,/(3,
v?,v3) as a BP,-module. Then, in the same way as L. Smith [10, Lemmas 2.1-
2.2], the homology group of X localized at 3 is calculated and we see that X is
3-equivalent to a complex

X =5° u 3el Ue9 U 3elO Ue49 u 3eSO u e58 u 3659 .

Let Y be the 10-skeleton of X’ and Y’ be X~ 1(X’/Y). Then there is a
cofibering Y'— Y- X’ and we have a short exact sequence

(%) 0 — BP,(Y') — BP,(Y) — BP(X") — 0.

The complexes Y and Y’ are mapping cones of some elements of oZ/g(M)=2Z,,
generated by 2. The BP homology of the mapping cone of xa? is BP,/(3, v?)
or BP,/(3)+X°BP,/(3) according as x#0 or x=0. Hence, it follows from (%)
that the attaching classes for Y and Y’ are non-zero, Thus, we obtain a map
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f: Z48W— W realizing the multiplication by v3.

Put y=nn,fi,ie G;5. Then, exactly the same discussion as in [8], [9]
shows y#0. Hence y is a non-zero multiple of ¢, and satisfies {y, 3, a;, 3} =0.
This contradicts to (5.1). g.e.d.

The above proof can easily be generalized, and in the same way the following
results are obtained.

(5.3) If BP,/(3,v,,v%) is realized, there is a non-zero element ye G 4,_¢ Such
that 3y=0, {y,3,0,}=0 and {y, 3, ,, 3} =0.

(5.4) If BP,/(3,v},v3") is realized, there is a non-zero element y€ Gug,— 10
such that 3y=0, {y,3,a,}=0 and {y, 3, «,, 3} =0.

Since {B,,3,a,}#0 [14, Prop. 15.6], {e;,3,2,,3}#0 and Gs3=0 [7], it
follows from (5.3) that
(5.5) fort=2,3,4, BP/(3,v,,0%) can not be realized.

Appendix. 5-Primary y-family

For p=35, the existence of V(3) (and the construction of the y-family) is
not known. We can, however, construct y’s in m.(B) for p=>5 in a similar manner.

Set B=S°U,,e3° and VBQ)=V(2)AB. A mapu: V(2Q)AV(2)-VB(2) is
called a multiplication if the restrictions of u on V(2)AS°=V(2) and on S°
AV(2)=V(2) are the inclusions.

By Theorem 5.2 of [15], m(VB(2)) is isomorphic, for deg<197, to the
graded vector space A in the theorem, and hence

Zs for i=0,7, 39, 54, 86, 93,
n(VB(2)) =
otherwise for i<197.

We can therefore extend any map(V(2)AS®)U(S°AV(2))—»VB(2) over the
whole of V(2) AV(2). Thus,
(A.1) there exists a multiplication u: V(2) A V(2)— VB(2).
The relation f; A15=0 in (3.3) holds for any p=3, and we have
(A.2) there exists a multiplication ug: BA B—B.
Now, we denote by

(A.3) Yo: S248 — V(2)
an element having V<2%> as its mapping cone. Then,

(A.4) 1y induces the multiplication by v on the BP homology.
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Using the elements of (A.1)—~(A.3), we define
(A5) 7: X248VB(2) — VB(2)
by the following composition
Z248YB(2) = S248 A VB(2) 2L, V(2) A V(2) A B
—#ML 5 V(2) A B A B 1282, VB(2).
Let iy: S°—>V/(2) be the inclusion. Then, we have easily
(A.6) P(io A 1g) =70 A 1p.
From (A.4) and (A.6), it follows that

(A.7) 7 induces the multiplication by vy on each factor of BP4(VB(2))=BP,/(5,
vy, 02)+Z3%BP,[(5, vy, v,), hence BPy/(S, v, v;, v3)+2Z3°BP,/(S, vy, v, v3) is rea-
lized by the mapping cone of 7.

Recently, H. R. Miller, D. C. Ravenel and W. S. Wilson [5] have announced
the non-triviality of y,€ G(p24 - 1)p+1-2)q-3> 4=2(p—1), for all t=1 and primes
p=7. So, we expect the non-triviality of the elements 7, € 7,44, - 59(B) defined
by the compositions

248t 1122481B ioAlp 2248'VB(2) FAIR VB(2) noNlB 2593’

where j and i, are the inclusions to the bottom spheres and n,: V' (2)—S3° is the
collapsing map.
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