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Introduction

Co-H-spaces are defined as generalizations of suspended spaces, and, to cer-
tain extent, they have dual properties of H-spaces which are considered as generali-
zations of loop spaces. For H-spaces the so-called Sugawara-Stasheff’s sequence
of fibrations plays an essential role, however, for co-H-spaces we have no such
ones. On the other hand, as Ganea pointed out, the coretraction y for the evalua-
tion map ¢ seems to be important for co-H-spaces. The purpose of the present
paper is to define A)-structures which are formal dual of Stasheff’s 4,-form and
some relevant notions, €. g., 4,-maps and (weak-) homotopy-coalgebras, and then
to consider how 7 relates to these notions.

In §1, we give the preliminary definitions and results concerning co-H-spaces
and the coretraction y. In §§2-3, we give the definitions of A,-spaces and
A,-maps and some of their properties. In §4, we define a generalized Hopf-
homomorphism H(f) of a map f of A’-spaces whose vanishing is equivalent to
f being a q-A%-map.

Now, our main results are as follows.

THEOREM 5.7. An A-cogroup X is an s-Ay-cogroup if and only if the cor-
responding coretraction y is a q-Ay-map.

THEOREM 6.4. If X is a simply-connected coalgebra of finite dimension,
then X has a homotopy-type of a suspended space.

THEOREM 6.20. Let X be an s-Aj-cogroup such that the corresponding
y is an As-map, then X is a weak homotopy coalgebra of order 3.

Our method is very elementary-homotopical, and the most difficulties arise
from the fact that we must construct the (s-)homotopy of (s-)homotopies.

The author wishes his hearty thanks to Prof. M. Sugawara for his encourage-
ment and valuable comments during the preparation of this paper.

§1. Preliminaries

In this section, we shall state preliminary facts which will be necessary in the
subsequent sections. Throughout present paper, if otherwise not mentioned,
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all considerations will be carried out in the category CW, of countable based
CW-complexes and based continuous maps, therefore, homotopies are based homo-

topies.

NOTATIONS.
W(X)=XV--VX, the wedge product (i.e., the one point union) of n-
RS

copies of Xn,

Jnt W(X)— X", the inclusion map,

V.: W(X)—X, the folding map, i.e., V (*,..., X,..., ¥) =X,

4: X—-X x X, the diagonal map, i.e., 4(x)=(x, x),

it X—> Wy (X), the inclusion map into the k-th factor,

Pr: W(X)— X, the projection onto the k-th factor,

XY, the join of spaces X and Y, whose typical point is tox@®¢t,y, to, t; =0,
to+t, =1,

X A 'Y, the smash product of spaces X and Y,

YX, the space of base point free maps f: X—Y (equipped with the base point
*: X oy),

{X; Y}, the space of based maps f: (X, *)—(Y, *),

[X; Y], the set of all based homotopy classes of based maps f: (X, *)—(Y,
*),

Qx(A, B), the space of paths in X whose starting points are in 4 and termi-
nating points are in B,

S, the suspension functor,

Q, the loop functor,

(categories will be denoted by bold-faced capital letters).

A multiplicative set M is the set with a multiplication u: M x M— M having
two-sided identity element e. We shall write xoy for u(x, y). A map f: M—>M’
of multiplicative sets is a homomorphism if it satisfies f(xoy)={f(x)of(y) for any
x, ye M and f(e)=e'. Multiplicative sets and homomorphisms make up a cate-
gory M. A multiplicative set M is said to admit inverses if there exist two maps
vg and v, of M into M such that xovg(x)=e and v;(x)ex=e hold. A loop A
is the multiplicative set satisfying the following conditions: for any a, be 4,
there exists a unique x e A such that aox=>b, and there exists a unique ye A
such that yob=a. Sometimes we shall write a\b and a/b for such x and y.
Loops and homomorphisms make up a category 4.

A based space (X, *) is a co-H-space if [X; ] is a covariant functor of
TOP, into M, or equivalently, there exists a based map u': X—X vV X such that
V(1v#)p'~1>F,(xVv u' hold, or j,u’~A4 holds, where ~ means that both
sides are homotopic. ' is the comultiplication and * is the counit. A co-H-
space is necessarily path-connected, We shall use the traditional notation + in
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[X; 1. Then, we have p'~i +i.

A co-H-space X is said to admit coinversions, if there exist two maps vk and
vi: X—>X such that P,(1vvpu'~*x~F,(viv Dy hold. A co-H-space X is
an h-coloop if [X; ] is a covariant functor of TOP, into 4.

ProrosiTioN 1.1. (cf. [7]). Let (X, %) be a given co-H-space.
(1.1.1) If X is simply connected, X admits coinversions.
(1.1.2) The following two conditions are equivalent:

(i) [X; XV X] admits a loop-structure with respect to y.

(i) X admits coinversions.

DerFiniTION 1.2. Given a triad (f;: X,—»B«X,: f,), define its fibred pro-
duct Ty, ,, by

Ty, = {(x1s X2, W)X X X, xB'[w(0) = x; and  w(l) = x,}.
The projections 7;: Ty, r,~X;, i=1, 2, are defined by
ni(xl, X2, W) = Xj.

LemMA 1.3. Let Ty, ,, be the fibred product of a given triad (f,: X,—B
«X3:f3)

(i) The projections n, and m, are fibre maps.

(ii) For any homotopy commutative diagram

X ,x,

") |7

X‘ _—Fl—) B P’
there exists a map k: X—- T, . such that n,k=g, and n,k=g, hold.

Moreover, if X is an h-coloop and n, induces a monomorphism m,,: [X;
T;, 5,1~ [X; X,] (this is the case when the homotopy-fibre of f, is contractible
in X,), then k is unique up to homotopy.

With abuse of language, we say that T, ., is a homotopy pull back of (f;:
X»B<X,: f5).

Finally, we shall recall Ganea’s theorems [3] for the subsequent considera-
tions.

THEOREM 1.4.  Consider the h-pull back T ;,, then there exists a homotopy-
equivalence 0: SQX—T, ;=T such that the following diagram is homotopy-
commutative.
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SQX ¥ XvX
l \\\‘\z‘ ,—’;:,’ 1
£ T J2
4/2

X ————XxX

where ¢ is the evaluation map, i.e., e<a, |> =I(a), and ¥ is the map defined by

[ (I(2a), *) Jor 0=acx<1)2
Y<a,l> =
(%, [2a—1)) for 12=aZ=1.

Moreover, ¥ induces monomorphism of generalized homotopy groups, and
therefore the totality of homotopy classes of comultiplications of X and the
totality of homotopy classes of coretractions of ¢, i.e., maps y: X »SQX satisfy-
ing ey~1, are in 1 to 1 correspondence. Finally, the homotopy fibre® of ¢,
i.e., the fibre of m,, is QX*QX.

THEOREM 1.5. Let @,: W,_,(SQX)— W(X) be the map defined by

Dy (*,..., <a, I>,..., %) =
i—th

{ (*,..., 1(2a),..., *) for 0=Zac=1)2,
(RPN W I2-2a)) for 12=<aZgl.

i—t
Then, @, induces monomorphisms of generalized homotopy groups, and W, _,
(SQX) may be considered as the homotopy fibre of V.
THEOREM 1.6. Let (X, uy) be an h-coloop, then wy is homotopy coassocia-
tive if and only if the corresponding coretraction y is a co-H-map.

§2. A -spaces

Let (X, u', *) be a co-H-space. There are various ways of coassociating to
define a map a: X— W,(X) using u’ repeatedly. For n=2, there exists only one
u'; but for n=3, there are two ways, (' vV )u’ and (1 v u')u’; for n=4, there are
5 ways,.... Moreover, different ways of coassociating may define the same map,
for example, (W' VIV v )w'=>0AVIive)y@w v (=@ vu)u'): X— W(X).

For each a: X — W,(X) we shall define a sequence o, of (n— 1) increasing inte-

gers by the following way.
For n=2, g,,={1}. Assume that we have defined for n (=2). Let

x) In general, for a given map f: X—Y, consider the following fibre space: E,={(x, W)
eXx YT|w(0) =f(x)}, and the map p,: E,—Y defined by p,(x, W)=w(l); defining j: X
—E; by j(x)=(x, *;(z) and r: E;—X by r(x, w)=x, we shall have rj=1, jr~1, p,j=fand
fr=p;. We call the fibre E, of p, the homotopy fibre of f. Notice that: E,=T; ,,
where i: PY—Y is the well known path-space fibering (terminating at the base point).
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a= (Vv g Ve VDL X — W(X) — Wi, (X)

x~1h

be a coassociating presentation of «, and o, = {i},..., i,—,}. Put

i, =2i ~for v<k,
2.1) Iy = iy +ig (ip =0 and i, =2"1),
i, =2i,_, for v> k.

(Thus, o, corresponds to a process of taking successive midpoints in the interval
[0, 2"].) As easily seen, o’s and ¢,’s are in 1 to 1 correspondence.

Now, let o (n+1—s,s) be the parenthesizing x;---(Xg *-Xg44-1) X, Of n-
letters word x;x,:--x,. Foreach a,={i,,...,i,_1}, we shall define a set of (n—2)-
parenthesizings 0, (n+1—s;, s;) by the followings:

22.a) If iy—i_ ;=i —0,=2"(v=0, 1,...,0r 2""2) and 2°|i, but 2"*!1+i,
then we say that {i,_,, i, i, defines 0,(n—1, 2).

(2.2.b) If {ix_ys.ees fxrs—1) defines On—s+1,9), irygoo1—ix—1=2#% 2Mirss_1
but 28tV i, o, o if {iy,..., i) defines 0, (n—s+1,5), iyp—ir=1i—ir_,
=2# 2#i, but 2#*14.,, then we say that {i,_, i\,..., iy+s} defines §(n—s, s+1).
2.2.0) If {iy—q,..s igss—q1) defines O (n—s+1,s) and {ixyq—1seeer Ixasse—1}
defines 0, (n—t+1,1) and ipygq—1 —lkps—1=lgss—1—Ixk—1=2¥, 2¥|i},+,-, but
2810 oy, then we say that {i,_(,..., ixys—1se-s ixas+e—1; defines o (n—s—t,
s+1).

Thus, to each a, we have defined the unique set of (n—2)-parenthesizings of
the n-letters word, and then applying these (n—2)-parenthesizings we have a
““‘complete” parenthesizing. On the other hand, these complete parenthesizings
and vertices of Stasheff’s complex K, are in 1 to 1 correspondence.

Therefore, the totality of o’s and the vertices set of K, are in 1 to 1 correspondence.

Here, we recall the definition of K, [10].
K, ={(t,-. t,,_z)GI”_2|Vj, 2jtl"'tj 21}, nz2,
0K, =L, = {(t,..., t,-2) € K,| 3, 27t;---t; = 1 or t; = 1}.

There exist face maps 0,(r, s): K, x K,;—»K,, r+s=n+1, 1 £k<r, and degeneracy
maps s;: K,—»K,_;, I<j<n, n=3, and these maps are subject to the following
commutation laws:

(2.3.2) 0i(r, s+t=1)(1 xGi(s, 1))
= Ojex—1(r+s—1, (0(r, s)x 1);

(2.3.b) Ojys—1(r+s=1, )(O(r, ) x 1)
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= O (r+t—1,5)(01r, H x )(1 x T), Jj >k,

where T: K, x K,—K, x K, is the switching map;

(2.3.0) $iSk = SiSj4 1 for k<j;

(2.3.d) 5;0(r, 5)
= 0p_1(r—1, 5)(s; x1) for j<k and r>2,
= O(r, s=1)(1 X S;_k41) for s>2,k<j<k+s,
= 0(r—1, s)(sj_g+1 x1) for k+s =<j;

2.3.e) $i0(n—1,2)=m; for 1Sj=k<n 1<j=k+1Zn,

$:,0,(2, n—1) =5,0,(2, n—1) = =,,

where 7, and ©, are projections onto the first and the second factors.

Since K, is a convex cell complex which is homeomorphic to I"~2, starting
with s;, 55, 53 K3—=K,={*} and using (2.3.d ~¢), we may define s; by induction
on n.

Now, we define the vertices transformations
Oy(r, 5): K,xK, — K, ,
for 1<k<r and r+s=n+1 by the following way:
24 0ilr, $)(&, m): X —5> W(X) sy Wul(X),

for any ¢ e K, and ne K,, where n(k)=1Vv:--v n v---v1. If &={{,,.... &}
k—th
and n={n,,..., 15—}, then we have

2.5) (k) = {2571¢,..., 257, _, an, +b,..., an,_ +Db,
2571, L 25T E Y,
where a=¢,— ¢, and b=2s"1¢, _,.
LEMMA 2.6. 0,(r, s)’s satisfy the commutation laws (2.3.2) and (2.3.b).

Therefore, we may regard K, as the cell complex defined by coassociatings.
Fig. I shows K,, K3 and K,.
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Fig. 1
K, ofx}
{1,2} {2,3}
Ky o o
0,(2,2) 9,(2,2)
(2,4,6}  95(3,2) {4, 6,7}
k, |32 0:(2,3)
o {12, 4} ° {4,5,6)
0,(2,3) 0,3, 2)

s {2, 3,4}

DEFINITION 2.7. A based space (X, %) is said to admit an A)-structure,
if there exist maps Mj: X x K;—» W(X), 2<i<n, satisfying the following condi-
tions:

27.1) y':X-XVX, defined by u'(x)=M%(x, {1}) for all xe X, is a comulti-
plication, and = is a counit;
(2.7.2) for any (p, 0)e K, x K,, r+s=i+1, it holds

Mi( 5 0(r, 8)(p, 0)) = M( 5 0)(k)eM( ; p),

where My( ; o)(k)=1V---VMy( ;0)V---VI;
(2.7.3) for i=3, it holds M;_,k(_'f' si(m)=p;Mi( ; 1), where p;=F ,(j—1)o*(}j)
=V 3())o*(J).

If X admits an Aj-structure, we call X an A)-space. If X admits an A/-
structure for every n, we say that X admits an AL -structure.

DEFINITION 2.7'. A based space (X, #) is said to admit a w-A,-structure,
if in the above Definition 2.7, the condition (2.7.2) is replaced by:
(2.7.2") there exist maps O (r, s)~1x 9, (r, s): X x K, x K,»X xK;, r+s=i+1,
and it holds

M0, 5)(x; (p, 0)) = My( ; 0)(k)-M(x; p)
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for any (x; (p, 0))e X x K, x K.

RemaRK 2.8. If X is homotopically non-trivial, then X cannot be strictly
coassociative, i.e., (u' vV 1)pu'=(1 Vv u')u’ does not hold. On the contrary, assume
that p’ is strictly coassociative. Put X_=p "' (X x{*}), X, =p""1({*} x X)
and Xo=X_nX,. Since X is homotopically non-trivial, we have X_—X,
#¢ and X, —X,#@. Let x be an element of X, —X,. Then, (1V u)u'(x) is
of the form (*, *, x'). Thus, we have

(0 V DI(X ) < () x {#} x X,
and
pips(u' vV Dp' =~ .
On the other hand, since * is the counit, we have
pips(w v =1,
which contradicts to non-triviality.

2.9. We recall the definition of A,-form [10] before we give Theorem 2.10.
A based space (X, e) is said to admit an A,-form if there exist maps M;: X'
x K;— X for 2< i< n satisfying the following conditions:
(29.1) M,(e, x; {1}) = My(x, e; {1}) = x forall xeX;
(2.9.2) for any (p, 0)e K, x K, r+s=1i, we have

Mi(x1,..., i3 O(r, 5) (p, 0))
= M/(x1,...s Xg— g5 M(Xpooo s Xt 515 0)y Xpgtoeoos Xi3 P)3
(29.3) forteK;, i>2, we have
Mi(X 15y Xj— 15 € Xji15enes X3 T)
=M (X155 Xjogs Xjp1see0s Xi3 S(T)).

THEOREM 2.10. Let X be a finite CW-complex, then the following two con-
ditions are equivalent:
(2.10.1) X admits an A,-structure.
(2.10.2) For any based CW-complex B, the mapping space {X; B} admits a
natural (i. e., functorial) A,-form.

ProoF. (2.10.1) implies (2.10.2). Suppose (X, *) has an A}-structure {M}},
2<iZn. For any B, define M;: {X; B}—{X; B} by
(2.11) Mi(uy,..., us DIX) = P(uy V- VuMi(x; 1),
for any (uy,...,u;; 7)€ {X; B} xK;. Let e: X—=%, then we have M,(u, e; {1})
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~u~My(e, u; {1}), but since we work in CW, we may assume that M,(u, e;
{1D=u=M,(e, u; {1}). Let (p,0)eK,xK,, r+s=i+1, then (2.7.2) implies
(2.9.2) as in the diagram below:

XxK.xK Mi(uq,..., ui;ok(r,s)(p,a)) B
r s
M;,x\l 7
W,.(X) x Ks Ms(up, .otk 45-13 )(k), W,.(B) v
bl;(k)l
. vs(k)
wi(X) : : Wi(B).

Similarly, (2.7.3) implies (2.9.3).

(2.10.2) implies (2.10.1). Put p'=i|+i%e{X; XV X}, then we have ju'
=i,+i,~4, where i; and i, are the inclusion maps of X into the first and the sec-
ond factors. Thus, u’ is a comultiplication, i.e., (2.7.1) is satisfied.

Define M,: X x K,—» W,(X) by

M(x; 1) = [M(i%,..., i}; D] ().
Then, for any (p, 6)e K, x K, r+s=v+1, we have
M(x; 0(r, 5)(p 0))
= [My(i'ss..0s Tm1s Moy iism13 0)s Tk B3 P)](X)
= M( ; 0)(k)M,(x; p).
Thus, we have (2.7.2). Similarly, we have (2.7.3).
| PropPosITION 2.12. SX admits an Al-structure.
Proor. For any vertex a={iy,..., i,—,} € K, and <t, x> € SX, put
Mi(<t,x>; ) = (%,..., <Q" Yt—ip_)(ix—ix—1) X>,..., ¥),

fOI‘ ik_létzn—l éik’ k=1, 2,‘.., n.
Since K, may be regarded as a convex polyhedron which is a cone over L,,

it can be triangulated adding suitable vertices; then M, : SX— W,(SX) can be de-
fined as a linear extension of M/.

§3. A,-maps and Mapping Cones

At first we shall fix a notation. Let F: X xI—Y be a homotopy satisfying
F(x, 0)=fy(x) and F(x, 1)=f,(x). Then, we shall denote F by H(f,, f)-
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DEFINITION 3.1. A map f: X—>Y of A,-spaces is a homomorphism if
W{(f)My, =My, (fx1) holds for any i<n.
For example, Sf: SX—SY is a homomorphism (with respect to up) for any

map f: X-Y.

DEFINITION 3.2. A map f: X—> Y of A)-spaces is an A}-maps, provided that
there exist homotopies

H; = HOW(f)MY, o My (fx 1): X xK;xI — W(Y), 2<i=<n,

which are subject to the following conditions:
(3.2.1) for any ,(r, s), r+s=i+1, there exists a homeomorphism 0,(r, s) of
K, x K x I into K;x I which preserves level and satisfies

Hi(0(r, 9)((x; (p, 0)), 1) =
H{(( 5 0), (21 = Dn/(2~ ' = 1) (k)oMY, (x5 p)
for 0<t<@ 1-1@1-1),
v,s( 5 @) (K)eH (x5 p), (2171 = 1)t 4+1=25"1)/(21-1 —2571))
for (2-1-1)/Q2i-1—-1)<t<1,

for any (p, 6)e K, x K, i = 3;
(3.2.2) there exist homotopies

& = H(fEx,r+piH3, Ey &f),
v = H(fEx,.+p5H3, Ey,.f),

where Ey p=H(ly, ptux) and Ey  =H(ly, pspy) and dotted plus + implies
addition with respect to homotopy parameter;
(3.2.3) there exist homotopies

H(p;Hi+Dy,i, (fx 1), Wio ((f)Dk,;,; + Hi-1(1Xs)):
XxKyxIxI— W,_(Y),
where DYy ; ;=H(p;MY ;, Mk ;_,(1 xs;)) and so on.

REMARK 3.3. 1) Homeomorphisms J,(r, s)’s are very complicated. For
i=4, 0,(3, 2) is given in the following Fig. 2.
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2) Define Dy=H(4, juy) by Di(x, )=(Ex,i(x, 1), Ex x(x, 1), then (3.2.2)
is equivalent to

(3.2.2") there exists a homotopy F=H((f xf)Dx+jyoH"%, Dyf), which is also
equivalent to

(3.2.2") there exists a homotopy G: X x I x - Y x Y satisfying the following con-
ditions

G(x, 1, 0) = (f xf)Dx(x, 1), G(x, t, 1) = Dy(f(x), 1),
G(x, 1, s) = jyH,(x, s) and G(x, 0, s) = 4,f(x).

DEFINITION 3.2’. A map f: X—-Y of A,-spaces is an quasi-A,-map
(abb. g-A,-map) if homotopies H; satisfy only the condition (3.2.1).

LeEMMA 3.4. If X is an h-coloop, then vy and vy are homotopy equivalences.

ProoF. Since 14vi~0, we have v| + v} vx~0; then by the cancellation law
we have vivg~1. Similarly, we have vgvj~1.

LEMMA 3.5. Let f: X—>Y be an A’-map of h-coloops, then vy f~fvy.
Proor. We shall obtain
SHvy rf =PIV Yy Ry f =0,
J+/vir =PV VR = 0.
Then, by the cancellation law, we have vy g f~fuy, .
NotATIONs 3.6. (i) Nx(f)=H(QYy rf, fVx.»)-
(i) N&()=H+fVy,p [+ Ve, rS)

=fNy,r=Ny,rf~(1V vy R)H),
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where Ny p=H(F(1V vk r)ix, *) and so on.

ProproOSITION 3.7. Let f: X—Y be an A,-map of A,-spaces, then the map-
ping cone C; has a canonical w-A,-structure, i.e., the inclusion map i: Y-C,
is a homomorphism.

ProoF. Let {M}; },<i<, and {My ;},<;<, be Aj-structures of X and Y,
respectively. Define M;: C,x K;—»W(C/) by

Mi(y; 1) = My,i(y; 1) for (y;7)eYxK,,
(271, Mj x(x; 7)) for (t,x)eCX,0=t< 1208,
Mi((t, x); 1) = { H{((x; 1), @ 1t=1/Q2""1—=1) for (t, x)eCX,
1271 <t < 1.
Next, define D': Cyx[-C,x C, by
D'(y, s) = Dy(», 9),
(2t/(2=5), Dx(x,s)) for 0=t=<(2-9)2,
D'((1, x), s) =
G(x, s, 2t+s5—2)/2) for (2-s)2<t L1,

where D’s and G in the right hand sides are homotopies defined in 3.2 and 3.3.
Then, we shall have D'=H(4, ju') for p'=M/ ; thus p’ is a comultiplication, i.e.,
(2.7.1) is satisfied.

To examine the condition (2.7.2’), we shall define the maps J(r, s): C, X

K, xK;— C;xK;, r+s=i+1, by
ak(r’ S) (,V, (p’ 0')) = (,V, ak(r, S)(p, O')) fOI' (ya (pa 0)) € Yx Kr X Ks’
((t, x); 0(r, 8)(p, 0)) if i<3 or t=1/271,
o(r, 5)((t, x); (p, 0)) = ) .
(x; 0(r, s)(p, @), ) if i=4 and t2=1/271,

As easily seen, (2.7.2') holds for any (y; (p, 6)) and ((¢, x); (p, 6)), 05t <1/201,
If t21/2071, put =21 1t—1)/(2-1 —1), then we have

Qi1 =125~ 1 —1) = (2 1t—1)/(25~1—1) for 1/2°1 <t < 1/2r1,
(21 = 1) +1=25"1))(2i"1 —=25-1) = (2r~14—1)/(2"" 1 —1) for
r1<t<1.

Thus (2.7.2') is a direct consequence of (3.2.1). The remaining conditions may
be obtained easily.
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REMARK 3.8. For n<3, C, admits an A,-structure. Moreover the projec-
tion p: C,—»SX is an A,-map.

PROPOSITION 3.9. Let f: X—>Y be an As-map of A-cogroups, then C,
is also an A'%-cogroup.

Proor. It is sufficient to show that C, admits a coinversion v'. Let vy
and vy be coinversions of X and Y, respectively. Define v': C,—C, by

V() =),

(2t, vx(x)) for (t, x)eCX and 0=t 1)2,
v(t, x) =

N'(f)(x, 2t—1) for (t,x)eCX and 12t£ 1.

Then, P(1vv)u': C,—»C, is homotopic to the map ¥ of the following forrﬁ:

VI, X)I0 = ¢ = 14} = (41, F(1V vx)ux(x)),

V(L 0I4 st <12} = N'(f)(x, 4t 1),

VI 012 2t 2 1} = P(LVpy)H)(x, 2t—1),

VY =P Vvy)uy.

Since N'(f)+ P (1 Vvy)H, ~f Ny~ N%y f~*, we obtain ¥ ~=*.

§4. Some Invariants

Given a map f: X— Y of A)-spaces, it will be the first problem. to determine
whether or not f is an A%-map, i.e., f satisfies

4.1 (fVAUy = pyf
and then
4.2) (fxf)Dx+jyH =~ Dy f.

If both X and Y are suspended spaces, say X =S4 and Y= SB, then so called

k
Hopf-homomorphisms H,: [SA; SB]-[SA; S(A B)] are useful to show (4.1),
especially if both X and Y are spheres, only H, and H, are necessary (cf. [4]).

LEMMA 4.3. Let X be an h-coloop, then for any space Y, we have the follow-
ing exact sequence of loops:

0—[CX, X; YxY, YVY] 5 [X; YV Y] 52 [X; YxY] —0.
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PrROOF. Let p% be the comultiplication of X, then p'(t, x)=(t, uy(x))*
gives an A -structure of CX. Then, proof may be carried out by the routine way
as in homotopy groups.

Now, let f: X—Y be a given map of h-coloops, and X be a finite CW-com-
plex, then (4.1) is equivalent to

alf) = (f V NHux—uyf = =

Obviously, j.[a(f)]=0; therefore we have the unique element [g]e[CX, X;
Yx Y, YV Y] such that r,[g]=[a(f)] holds. Moreover, we have isomorphisms

(cf. [3D)
[CX, X: Yx Y, YV Y] X [X’ QY><Y(*9 Yv Y)]
~ [X; QY=QY].

DEFINITION 4.4. Let H(f) be the image of [¢g] under the composition of
the above isomorphisms.

If Y=SB, then H(f)e[X; QSBxQSB]=[X; S(QSBAQSB)]~[X; S(B,,
A B,)], where B, denotes the reduced product of B. Thus, we may consider
H(f) as a modification of generalized Hopf homomorphisms.

By definition, we have

PROPOSITION 4.5. f satisfies (4.1) if and only if H(f)=0.

REMARK 4.6. Being fan A%-map, f has to satisfy the condition (4.2). Gen-
erally, for a g-A’,-map f of an h-coloop X to an A’,-space Y, we may define functions
Y, and Y; of Ker. H into [SX; Y], and their vanishing is equivalent to the con-
dition (4.2). Moreover, we may show that any g-A%-map f defined on a sus-
pended space is an A’-map, (cf. [9]).

REMARK 4.7. Define H,(f)e[X; SQY] by H.(f)=[SQ2foyx—7yyof], then
we shall have Y, H,(f)=iyH(f), where ¥: SQY->YVY and i': QY*QY->YVY
are maps defined in § 1 and ¥* and i}, are monomorphisms.

DEFINITION 4.8. A co-H-space (X, u%) is said to be homotopy-cocommuta-
tive if it holds Tuy~uy: X->XV X.

PrROPOSITION 4.9. Let (A4, ) and (B, ug) be co-H-spaces, and X be the
smash product of them, then we have
1) uy=pyAlgand py=1,4Auy are comultiplications of X,

%) More generally, if X is a co-H-space with comultiplication ¢%, then for any space Y, XA Y
is a co-H-space with comultiplication g5 Aly.
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ity ) is homotopic to y', ; therefore they define a unique comultiplication
of X, and finally,
iii) uy is homotopy-cocommutative.

PrROOF. i) Ej rAlpgives a homotopy from 1y to F(1V*)u; and Ny g
A 1 gives a homotopy from F(1V v} gy} to %, where v{ g=v) g Alp. Notice
that *: X —x*, is the common counit of ¢ and u5.

ii) As easily seen, it holds

(2 Vuo)uy = (LVTV (' V s

Then applying (F V P)(1 V*V =V 1) by the left-hand side, we have u'| ~pu},.
iii) Since uy=i} +i5, we shall obtain

M o (b i)+ (5 +9) = 15+ = Ttk
1.2 "1 2

THEOREM 4.10. If X is a homotopy cocommutative h-cogroup, i.e., A%s-

space with coinversion, then
H:[X; Y] — [X; QY*QY]

is a homomorphism.

Proor. It is sufficient to show that

[X; YIa[f] — [f)]e[X; YVY]

is a group-homomorphism.
At first, we shall mention that

uyV = Vyvy(uy V py).

Then, we have

py(fi+12) = Vyvy(uy f1 V 0y f2)ux

= uyrfi+uyfa.
Using homotopy-coassociativity and -cocommutativity, we shall have
(f1 +)V 1+ D)uk

> Vyvl((fy VIOV (2 V) Wk V m)ux-

On the other hand, since it holds

(ivhfux ~a(f)+uyfs  i=12,
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we have

(fi +f2) V(1 +2)ux
= Vyvy(((f) + 1y SOV (2 f2) + 1y o))
= Vyvy(Pyvy VI yvp) () Va(f2) V iy f1 V 1y o) (ke V wo)ux
= ((fp) +a(f2)+uy(fi+12).

Therefore, we shall obtain

a(fi+f2) =~ a(f1)+a(f7).

ExAMPLES 4.10. Our invariant H(f) is not necessarily easy to determine
its vanishing, however, in some cases we can do it.

(4.10.1) If aeng(S?) is an element of order 3, H(f) belongs to me(Q2S3%
QS3)x~ng(S°)~Z,, then we have H(a)=0 by Theorem 4.9.

(4.10.2) If B e n,5(S5)is an element of order 9, then H(f) belongs to 7, s(Q2S3*
QS3)~m,s(S°Ue!3). Since there exists an exact sequence

n,5(S%) — n;5(S° Uel3) — m,45(S*?)

and n,5(S°)~Z,~n,5(S'?), we shall obtain H(8)=0.

(4.10.3) Let ¢ be the non-zero element of [S3U,e”; S3]~n,(S3)~Z,,
then H(&) belongs to [S3 U ,e7; QS5xQS5T[S3 U ,e7; S°]1=0; therefore we have
H(&)=0. The same argument holds for &' e[S3 U, e7; S°€].

(4.104) Let ¢ be the non-zero element of [S*U,e”; S°U ge!®]xm,(S?)
~Z,, then H(&) belongs to [S3U ,e7; QS5 U ze!®)xQ(S3 U ze!®)]xn4(S°)=0;
therefore we have H(¢)=0.

§5. Aj-spaces and q-A3-maps

Theorem 1.4 says that the homotopy classes of comultiplications of X are
in 1 to 1 correspondence with the homotopy classes of coretractions. Therefore
we may give guess that the coretraction y: X —»SQX may characterize A)-structure
of X.

At first we shall make a remark: let X be an A%-cogroup with the A%-structure
{ux, M¥%, 3}, then by Theorem 1.6, the corresponding coretraction y is an g-A5-
map, which defines a new Aj-structure {u%, MY%, 3}, but we have no guarantee
that M% 3 and M% ; are homotopic relative X x K.

DEeFINITION 5.1.  An Aj-cogroup X is said to be an s-A,-cogroup, provided
that Wy(e)(L AoV IV VE)(IV IV )My so(yx1) is homotopic to (1Vv' VI
Vvv)(1V1Vu)My 5 relative to X x K3, i.e., the homotopy satisfies the condition
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induced from (3.2.1).
As easily seen, any suspended space is an s-Aj-cogroup with respect to its

natural Aj-structure.

ProposiTION 5.2. Let X be an A%-cogroup such that the corresponding
coretraction y is an q-A3-map, then X is an s-A-cogroup.

Proor. Let {Mj, ;} be the natural Aj-structure of SQX. Define H,: X
xKyx {1} UX x L, xI—>W,(X) by the followings:

FalX x Ky x {1} = W) Mo, 4(y x 1);

A, X x 0(K3x Ky x ) =

Wae)  Ho( 5 T0) (k) M, 5 for 0<t1<I1/7,
[ Wi ol (= 1j6)  for 1Sl o
MX XKy x Kyx 1) =

Wa(e)H5( ;5 Tt/3) (k)M , for 0<t<3/7,
{ Wae)uo(k)H( 5 (Tt—3)/4) for 37<t<l, k=12

The remaining part of L, x I is the tetragon T=PyP’, PyP] in the Fig. 3.

1 46,7 12,4.6! 1.2, 4}
%3, 2) a1(3.2)
3/7 :
1/7 Py P
() |
P

On the edge of T, A, is of the following forms:
H',|PoPy = Wy(e) (Hy( 5 TV Y V)1V ik for 0=<t=<1/7;
Wa(e) (o VIV ) (y v HS( 5 (Tt=1)[2)py
for 1/7=1t<3/7;

A.|P\Ps

Wae)(y Vy vV HZ( 5 701y V Dk for 0=1=1/7;

H4lPo P

H3 PPy = Wy(e) (1 V 1V uo) (H( 5 (Tt=1)[2) Vv y)uk
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for 1/7=1t=<3/7.
Now, put
H4PoPy = Wale) (H5( 5 Tt/3)H5( 5 Tt/3))uy for 0<1<3/.

Then, we shall have A,|PoP;~H,|P,P\P, and H,|P,Py~H,|P,PP;. In fact,
put

o( 5 Tt/(3—2s)) for 0<t<(3-29)/7,
IZ,L( > t7 S) =
Koy for 3-25)/7T=st=1;
(V) for 0<1t<s/7,
Hy g( 31, 5) =
HyY( ;5 (Tt—9)/(3—y3)) for s/7<t£1;

F( 5 t,5) = Wale)(H3,.( 5 1, )V H x( 5 1, )ity

Then, F is a homotopy from H,|P,P; to H||PyP,P;. Similarly, we may define
a homotopy F’ from H,|P,P; to H|{P,P,P;. These homotopies define H}|T.
Let M, be the extension of H) over X x K, x I, and put My ,=M,|X xK,
x {0}, then MY 4: X x K,— W,(X) together with {uy, MY 3} gives an Aj-structure
on X.
The following homotopy-commutative diagram shows that X is an s-A/-
cogroup:

tvivag 1VvgV Vg

SQXx Ky 2223, W (SQX) » W (SQX) —2— 22 W, (SQX)
)"‘l] oy Iw,(y) H5(3) Iwaw) N'(y)12,4) Iwa(r)
XX Ky = Wi(X) —vive— Wi(X) — v Wal(X)

My, 3

To prove the converse of Proposition 5.2, we shall need certain computative
lemmas.

LeMMA 5.3. Let X be an A’-cogroup, and define p: Wg(X)—> W, (X) by the
composition p=(1VFVIV1)(IVTVIV1)(1VFV1VI1V]), then we have

D,(1VvoVvy) = VIVT)p(D,V D,V P,).
PrOOF. Put &,=d,v,: SQX—X V X, then we shall have
D, =(1AVTYAVFIVI)(DP,VS,),
O, =(VIVT)(AVIVFVI)(P;VD,).

Therefore, we have
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&, =(VIVT)(LVIVFVI)(P;3VS,)
=(UVIVT)AVIVPVI(AVT)(AVFPVI(P,VE)VE,)
=(AVIVT)p(P,V P,V P,)(1VVyVVy).

Since (vp)? =1, we have the desired result.
LEMMA 5.4. Let X be an A4-cogroup, then we have
(41 p(AV ARV B My > (Vv VIV (LV IV @) My 3,
where iy =(1 V vy)uy.
ProOF. p(Ax V iy V ix) MY 3
~p(Ivvy VIV VIVY)AVEyVIVIVDxVIVIVI)(uxV1IVI) (=M, ;)
(by A5 and Aj, (=M 3)(x, )=M 3(x, 1 —1))
~(AvIVPVDAVTVIVAV*VYyVIVY)@xVIVIVD(xV1IVI])
°o(—Mx,3)
~(IVIVEVD (IVVRVEVIVYY) (IV R VIV (LV gV 1) (= MYy 3)
>~ (IvvxVIVYY) (IVug V1) (= My 3)
~ (IVvyVIVyy) My 3.

LEMMA 5.5. Let X be an Aj-cogroup. Define Iy: X x K;—»>W,(X) by
Iy=(1vvyVIVvvy)(1VI1Vux)My 3, then we shall have

(5.5.1) D1V Vo VVWs(IMy 3 ~(IVIVTDI, rel. XxK,,
(5.5.2) DIV Vo VYIMy 3 =~ (1VIVTW,(e)T, rel. XxKj.

Proof. (5.5.1) Define the homotopy H,: X xI-»SQX vV SQX from (y
V) iy to fig y by
_ (AVN'® (s 20k for 0=t=1/2,
Hy(x; ) =
(1Vvp)HS(x; 2t—1) for 125t 1.
Then, we shall have
D1V VoV 1V Vo)Wi(1)M 5
=(1V1IVT)p(P,V P,V @,)W5(y)M 3 (by (5.3)

=~ (LV 1V T We(e)We(y) (x V Bx V )My 3 (by Hy VH,V H)
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> (IV 1V T)p(iix V iy V iM5, 3
~(IvIVT)AVyx VIV (IVIVux)My 3 (by (5.4).
(5.5.2) may be shown similarly using Lemmas (5.3) and (5.4).
PROPOSITION 5.6. Let X be an s-A;-cogroup, then y is a q-As-map.

Proor. Consider the following diagram:

Mo, 3

sox M2, w,(SQX)

yxlI TWJ(Y)

XXKsTIX’T’Wa(X)

1VvgVvyg

» W3(SQX) 24 W, (X).

By Lemma 5.5, we have
D1V vy Vvp)Ws()My 5 = (1V 1V Ty,
D1V VoV Ve)Mp 3(yx1) = (1V LIV T)W;(e)Ty(yx1).

On the other hand, since X is an s-Aj-cogroup, (1V IV T)IIx is homotopic to
(1V 1V T)W,(e)ITo(y % 1); thus we have

D1V Vo VVo)Ws(1)My 3 = P (1V vy Vvo)Mp 3(yx 1)

relative X x K;. Since @, is a homotopy-monomorphism, and v}, is a homotopy-
equivalence, we shall obtain the desired result.

Combining Propositions 5.2 and 5.6, we have

THEOREM 5.7. Let X be an A’y-cogroup, then y is an q-As-map if and only
if X is an s-A’-cogroup.

§6. Homotopy-Coalgebras and Suspensions

In this section, we consider from a little different point of view. We begin
with the special case.

DEeFINITION 6.1. An A%-cogroup X is a coalgebra if there exists a coretrac-
tion 7y satisfying the following condition (I" )

Yoy = Sy 7.

REMARK 6.2. If X is a suspended space, then X is a coalgebra with respect
to its canonical coretraction.
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REMARK 6.3. Obviously, y is a g-A%-homomorphism, i.e., (yV y)uyx=nuopy
for uy=Y¥y.

THEOREM 6.4. If X is a simply-connected coalgebra of finite dimension,
then X has a homotopy-type of a suspended space.

To prove this-theorem, we need some preparations.

Given a triad (f: X—>B«Y:g), define its topological pull-back P, , by
P, ={(x, y)eXxY; f(x)=g(y)}. Define ©: SP, ,—Ps,, by O'<a, (x, y)>
=(<a, x>, <a, y>), then O’ is a homeomorphism. Next, define @: ST,
—-Tsps, by O<a, (x, y, w)>=(<a, x>, <a, y>, «a, w»), where «a, w»
is the path of SB defined by «a, w>» ()= <a, w(t)>, and define i, ,: P, —T,,
by i, (x, y)=(x, y, wy), where w, is the path of B defined by wy(t)=b=f(x)=
g(y). Then, we have the following (strictly) commutative diagram:

: STy, > Tsys,
(6.5) S"!.ST Lsr.Sy
SPf,y AN PSf,Sg'

PROPOSITION 6.6. Let X be a coalgebra, then starting with D, =QX

and y,=v, we have a sequence of maps y,: X—SD, such that the following
diagram is homotopy-commutative:

SDies i > X
4 \ lN
(6.7)s T,.0y = Di+1 i3 QX Ts,p.s00 = Wi =3 SQX
Pk, 1 l 19% Mk, 1 l lsn')'k
D, ——> QSD, SD, —s:— SQSD,

where ¢: D,—QSD, is the natural inclusion defined by ¢((6®)(t)= <t, 6% >
for any 6" e D, and tel.

Proor. If p(x)#=#, put yp(x)=<a,, I,>, then we have S¢ -y(x)=<a,,
(s—<s, I,>)> and SQy-y(x)=<a,, (s— <a, I, s>)>, where <a,, Il >

=y(I(s)) and (s— <a, l;>) denotes the loop of SQX which sends s to <a,,
I;>. Then the condition (I",) implies that

(6.8) a,,=s and I =1, for all sel.

Therefore, we may define a homotopy I': X x [-SQD, by
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<a,, (s— <s, I,>)> if  p(x)#x*,

I'(x, u) = [
* if y(x) = %,

and k,: X->W,; by k,(x)=(p(x), p(x), w(x)), where w(x) is the path in SQD,
defined by w(x)(u)=I(x, u), and finally y,: X—>SD, by

<ay (I, I, 0V)> it p(x) # *,

P2(x) = [ .
* if p(x) = *,

where w{!) is the path in QSD, such that «a,, w{!’>» =w(x) holds. Then the
diagram (6.7); is homotopy-commutative. Put y,(x)=<a,, 6(2)(x)> for x
¢Z={xeX; yp(x)=x}. Then, we obtain S¢,y,(x)=<a,, (r-><r, 63 (x)>)>
and SQy, - y(x)= <a,, y,°l.>=<a,, (r—<r, 6¥(x)>)> by (6.8). Define A(?):
X—-2-QSD, and 6¥: X —¥—> D3 by AI(x)(r)= <r, 6@(x)> and §C)(x)
=0 (x), I, ®?(x)), where w?)(x) is the path of QSD, defined by w®(x)(u)
=12)(x) for alluel.

Then, we may define x,: X—>W, and y;: X—>SD; by x,(x)=(y,(x), p(x),
<a, o¥(x)>), and

<da,, 63)(x)> for x¢Z,

P3(x) = ’

* for xeZ,

and it holds @,y;=k,.
Now, assume that we have defined maps y;: X—>SD,, i=1, 2,..., k (k=3),
such that it holds

<d,, 6M(x)> for x¢Z,
P(x) = [
* for xeZ,
where 6((x) = (60~ D(x), I,, @~V (x)) and @~ D(x) is the path of QSD,_,
defined by [0~ D(x)(w)](@) =<t 6“~1)(x)>, moreover it holds §C¢=1D (I (1))
=4§0-1)(x) for all tel.
Then, we obtain

Sep (X)) = <a,, (t— <t, dB(x)>)> = SQy, - y(x).

Therefore, we may define 6**V: X—3X-D,,, by &*+D(x)=(8®(x), L,
0®)(x)), where w®(x) is the path of QSD, defined by [w®™(x)(u)](®)= <t,
0®(x)>, and y;41: X—>SDyy by

<a,, 0%*+(x)> for x¢Z,

Yer1(x) =
* for xeZ,
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and k,: X—>W, by g (x)=(p(x), (%), «a,, ©®(x)>). Obviously, it holds
O, Yi+1 =k and 7y, 1, 0¥ D(x) satisfy the required conditions.

Now, let X be an (n—1)-connected coalgebra and consider the following
homotopy-commutative diagram:

X
Yk+1 ‘/tk\:'\k
> Wy~ SQX —— X.

SDk+1 O

Since conn.y*=2n—2 and conn. QX =n—2, using Lemmas 3.1 and 3.2 in [3],
we obtain

6.9.1) conn.y, = (k+1)(n—2)+2,
(6.9.2) conn. @, = (k+3)(n—2)+3,
(6.9.3) conn. (gomy 5) = (k+2)(n—2)+3,
(7.9.4) conn.D, = n—2.

ProoFr or THEOREM 6.4. For a sufficiently large k, we have dim X <(k+2)
(n—2)+3. Fixsuch a k, and put N=(k+2)(n—2)+3. Since conn.(eom, ,°
0)=(k+2)(n—2)+3, by J. H. C. Whitehead’s theorem, (gom; ,°0,)x: Hy(SDy 1)
—Hpy(X) is an epimorphism. On the other hand, since dim X <N, Hy(X) is
free, using Berstein-Hilton’s homology decomposition (Theorem 6.1 in [2]) we
obtain a CW-complex Y and a map f’': Y- D, , satisfying the following condi-
tions:

(6.10.1) f%: H(Y)——> H (D) is an isomorphism for ¢ < N—1.

(6.10.2) (gom; 00,°Sf")x: Hy(SY) — H\(X) is an isomorphism.

(6.10.3) H (Y)=0 for q > N.

Since H(X)=0 for g>N, f=¢om; ,00,°Sf": SY-X is a homotopy equivalence.

LEMMA 6.11. For the homotopy equivalence f in Theorem 6.2, f=foy is
homotopic to a suspended map.

Proor. By definitions, we have the followings:

%) For a based map f: X— Y, we denote conn. f=n if z;,(f)=0 for i <n, which is equivalent
to say that f,: 7;(X)—>r,(Y) is an isomorphism for i<n, and f,: 7,(X)-r,(Y) is an
epimorphism.
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m,,1°0; = Sp; for 1 ik,
2000y =7 for 1Zigk-1;
Y€ = € 2SRy, for 1 £iZk;

€,i°S¢ = lgp,:
where ¢, ;: SQSD;—SD; is the map defined by
g;<a, (r — <b, 8{V>)> = <b,, 6> .
Then, we obtain
yof o yogomy 0@ (0y,080T; 206 3030+ oY 080Ty 206 oSS
= £90S¢198Py,1°€0,2°5¢208P2,1° 98 k2SS Py oSS’
= S(py.1°°°Px,1°f ") -

COROLLARY 6.12.  The homotopy equivalence f in Theorem 6.2 is a q-A’,-
map.

Proor. Let y, be the canonical coretraction of SY, then we have ygoyof
~ SQy.SQfoyy, and then applying ¢, by the left we obtain yof~ SQ(eop)oSQfoyy,.
Therefore f is a g-A%-map.

Being X a coalgebra is a sufficient condition for X to be a homotopy-sus-
pended space, however, this characterization is not homotopically invariant, and
then we attempt to put it in the homotopy-version.

Define maps ¢;: SD;—» X, i=2, by ¢<a, (611, I, 0=V)> =l(a).

DEFINITION 6.13. i) A space X is a homotopy-coalgebra of order 1 (abbr.
HCAL-1), if it admits a coretraction y, i.e., X is an A)-space. A map f: X
—Y of HCAL-1’s is an HCAL-1-map if there exists a homotopy I',(f)=H(yy°
1, SQfyx).

ii) An HCAL-1 X is a homotopy-coalgebra of order 2 (abbr. HCAL-2)
if it admits a coretraction y, for ¢,, i.e., it holds g,0y,~1. An HCAL-1-map
f: X—>Y of HCAL-2’s is an HCAL-2-map if there exists a homotopy I',(f)

=H(yz,y°fs SD2(f)°y2,x)-

REMARK 6.14. i) Let X be an HCAL-1 with a coretraction y, f: X—>Y be a
homotopy-equivalence with a homotopy-inverse g, then 9’ = SQfoyog is a coretrac-
tion of Y and f and g are HCAL-1-maps with respect to these coretractions.

ii) Let X be an HCAL-2, and f: X—Y be a homotopy-equivalence with a
homotopy-inverse g. Since f and g are HCAL-1-maps, we may define D,(f):
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D,(X)-»D,(Y) and D,(g): D,(Y)—D,(X) such that we have D,(g)°D,(f)~1,
Dy(f)eDy(g) =1, my 1oD,(f)=8Qfor, ; and 1y ,0D,(f)=Qfen; , and so on. Simi-
larly, we may define SD,(f): SD,(X)—SD,(Y), Wi(f): Wi(X)->W,(Y), SD,(g9)
and W,(g) satisfying the similar conditions as above, and moreover, we have the
following homotopy-commutative diagram:

SD,(X) -0Lx, W (X) E2t, SQX X, X

sDz(f)HSDz(g) Wu(f)lem sanSQg f”a .

SD,(Y) —;75 Wi(Y) T SQY ——Y

Notice that D,(g)°D,(f)=~1 is shown by the fact that the exact presentations of
homotopies I';(f) and I'(g) are given by the aid of F=H(gof, 1). The essential
part is shown in the following Figure 4, where the thick arrows represent altogether
the third component w* of D,(g)-D,(f)(I', I", w).

QSQ(gof)oQyx-2(gef) (")

QSQ(gof)ee, () QSQ(gof)oQyx(l") Y
1,
/ QSQF(Qyx(I"), 1—0)
QSQF(w(2u), 1—1)
QSF(Qyy-QF(", 2—2u), 1—1)
0° ° 1

(2u) Qyx-Q(gof)U")

1
2 Fig. 4

Define y, y: Y-SD,(Y) by 7, y=SD,(f)°y, x°g, then y, y is a coretraction for
€, y=¢8y°m, 100, y and f and g are HCAL-2-maps with respect to y, x and 7, y.

Fix a map f: X—>SY and set f(x)= <a,, y,.>. Let {X; SY}(f) be the to-
tality of maps g: X—SY such that we have g(x)= <a,, y,.>. Then two maps
go and g, of {X; SY}(f) are said to be s-homotopic if there exists an s-homotopy
G=%H(g,, g,): X xI—>SY, i.e., G has the presentation G(x, u)= <a,, y,,>;
in notation, go=~g,.

PrOPOSITION 6.15. An HCAL-1 is an HCAL-2 if and only if there exists
a coretraction y for which we can find an s-homotopy I'=sH(Sc oy, SQyoy).
Therefore, an HCAL-2 X is an A5-cogroup. Further if an HCAL-2 X is (n—1)-
connected and of dimension<4n-—35, then X has the HCAL-1 homotopy-type
of a suspended space.
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Proor. Sufficiency is easily seen, and we show necessity. Put == H(eoy,
1), E;=H(&;07,, 1), K1 =0 0y,, Y'=71~1,1°K'1’ Y'=m; 50k} and Yz(xl= <a,, (I, I,
w,)>. Define an s-homotopy [I’'=SH(S¢;oy’, SQyoy”) by [I'(x,u)= «d,,
o> (u). Then, we have I'o=H(y, y)=¢ggol” +yoE,, Iy =H(y', y")=SQeol"
+8QFo(y"x1) and Iy=H(y", y)= =TI +T). Therefore, we may define [
=5H(Se;0y", SQy",y") by I"==Seol'y + " +SQNo(y” x1). Thus we have
obtained the first assertion. The remainders are easily obtained (cf. the proof of
Theorem 6.2).

DEFINITION 6.16. An HCAL-2 X is an HCAL-3 if there exists a coretrac-
tion y;: X—SD; for 5. An HCAL-2-map f: X—Y of HCAL-3’s is an HCAL-
3-map if there exists a homotopy I's(f)=H(y3 yof, SD3(f)ey3, x)-

By the same argument as in Proposition 6.15, we obtain

PROPOSITION 6.17. If X is an HCAL-3, then we have a homotopy H(St,o
Y2, SQy,0y), and then y, is a q-A,-map. Moreover, we can define a map k,:
X — W, such that it holds ©,09;~k,. Obviously, an (n—1)-connected HCAL-3
of dimension<5n—"7 has the homotopy type of a suspended space.

By the similar argument as in Remarks 6.14 (ii), we see that being an HCAL-3

is a homotopy-invariant.
We conclude this section by considering the relation between HCAL-3’s

and s-Aj-spaces. We begin with

PROPOSITION 6.18. Let X be an HCAL-2 satisfying the following condi-

tion [ss—I'5()]:
There exists a homotopy I'y(y): X x I x I-SQSQSQX such that we have

() (x, u, 0) = SQygol(x, u),

T (x, u, 1) = SQSQyo[(x, u),

F3()(x, 0, v) = pooel (x, v),

F(0) (x, 1, v) = SQI((x), v),

Iy (x, u,0) = <a,, r-><b,,,, s>< , >)>)> for(u,v)e(0,1),

where I'(x, u)=H(St;°y, SQy°y) (x, u)= <ay, (5= <by . li.>)> for the pres-
entation y(x)=<a,, l.>.
Then, X is an HCAL-3..

Proor. Notice that we have
S‘2°'y2(x) = <d,, (r — <, (lx’ Ix, CL)X)>)>

= <a,, (r — <r, 6(x)>)>,
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SQ’)’Z‘)Y(X) = <4y (r — <Ay (lx,r’ lx,ra wx,r)>)> »

where «a,, w,>» (u)=I(x, u) and <y le,>=y((r). Then, we may de-
fine a homotopy I,: X x I-SQSD, by

Fyx,0) = <y (r = b < (o L @) >)>,
where w, ,, is the path of QSQX such that it holds
I (x,u,0) = <a,, (r — «b,,,, o,,,»u>.
Then, it holds I, =SH(S¢,0y,, SQy,07), and we obtain a lift y;: X—>SD; by
73(x) = <ag, (6P(x), I, ©P(x))>,

where w(2)(x) is the path of QSD, such that we have «a,, ®)(x)» (v)=1(x,
v). Obviously, we obtain gop;=¢goy~1 and @,0y;=k,.

DEFINITION 6.19. We call an A%-cogroup a weak-homotopy-coalgebra of
order 2 (abbr. WHCAL-2) in the sense that there exists a homotopy I'(y)= H(S¢,
¥, SQyoy).

A WHCAL-2 X is a WHCAL-3 if there exists a homotopy I',(y): X x I xI
—SQSQSQX satisfying the first four conditions of [ss—I,(y)] with respect to
r'(y).

THEOREM 6.20. Let X be an s-A;-cogroup such that the corresponding y
is an A%-map, then X is a WHCAL-3.

To prove this theorem, we make some preparations.

Given an A%-cogroup A, a finite CW-complex Z and any space Y, let {Ax Z;
Y}, be the space of all maps f: (A% Z, xyx x Z)—(Y, %) and [A x Z; Y], be the cor-
responding homotopy set. Then, we have

LemMA 6.21. (i) {AXZ; Y}, is an A;-group under the multiplication in-
duced by py.

(1)) Ppy:[AXZ; W, (SQX)],»[AXZ; W(X)], and Y,:[AXZ; SQX],
V[AxZ; X—X], are monomorphisms.

Using Lemma 6.21 (ii), we obtain

LEMMA 6.22. For a q-A%-map f: X—Y of A’s-cogroups, the following two
conditions are equivalent:

[WHCAL-2] There exists a homotopy T'y(f): X x I x I-SQSQY satisfy-
ing the following conditions:
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FZ(f)(x’ u, O) = SQSQfofX(x’ u)s

fl(f)(x7 u, l) = FY(f(X)’ u)’
SQI(f)(yx(x), 2v) for 0=sv=<1/2

F(f)(x, 0, 0) ={ _
SQyyel'(f)(x,2v—-1) for 12Zv<1,

SQSQfoyo, x7x = Vo,yoSQfyx for 0=sv=1/2

fZ(f)(x’ l’ U)=[ _
Yool (f) (x—20—1) for 125v=1,

where I y=H(SQyxeyx, Yo,x°Yx) and L(f)=H(SQfoyx, yvof).
[WHCAL-2'] There existsa homotopy I';(f): X x I x I -SQYV SQY
satisfying the following conditions:

2(N)(x, u, 0) = (SQfV SQf)eI'x(x, u),
2(N)(x, u, 1) = I'y(f(x), ),
2(N)(x, 0,0) =
TN 2)VIC, 20)epx(x)  for 00172
{ (ry V 1n)eH2(f) (x—2v—1) for 12=svs1,

2(NH)(x, 1, v) =
{ (SQAV SQf Jopt xyx(x) = po,ySQfoyx(x) for 0=v<1)2,
oyl (f)(x, 20—1) for 12<v<1,

where I'y=H((yx V yx)°x» Ho,x°Vx) and Hy(f)=H((fV [)opx, 1y f).

As easily seen, an As-cogroup is a WHCAL-3 if and only if the coretrac-
tion satisfies the condition [WHCAL-2].

PROPOSITION 6.23. Let f: X—>SY be an As-map of As-cogroups. If
fVfis a homotopy-monomorphism, then f satisfies the condition [WHCAL-2].

Proor. Recall the Ganea’s proof of [3: Theorem 2.2], where the homotopy
H((y V y)er, yooy) is constructed via homotopies N=H(F (v'V 1)u', *), I'=H(P,o
7, 1), E=H(WV*)op', 1) and Z=H((u'V p')ept’, (1V 'V 1)o(1V u')ep’). Since
fis an A%-map, f is compatible with Z, N and E. Moreover, since fV fis a homo-
topy-monomorphism, f is compatible with I'.  Therefore, we may construct the

desired homotopy I',(f).

Proor oF THEOREM 6.20. As easily seen, yVy is a homotopy-monomor-
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phism, then we can obtain the result by Proposition 6.23 and Lemma 6.22.
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