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1. Introduction

To the general question proposed in J. L. Lions [6] as to when the solution

of a variational inequality has a compact support, H. Brezis [4], A. Bensoussan

and J. L. Lions [1], H. Brezis and A. Friedman [5] have given various affirmative

answers for solutions of stationary or evolutionary variational inequalities.
In the present note we shall consider the solution u of an elliptic (stationary)

variational inequality of the form

- Au + αu ^/, u ̂  ψ,
(VI)

(u - Ψ)( - Au + αw - /) = 0 in Ω

under various boundary conditions, where Ω is a bounded domain in RN, A

denotes the Laplace operator, and α is a positive constant.

By a solution u of (VI), the domain Ω is divided into two subdomains Ωί

and Ω2 such that

Ω! = [x\u — Ψ} (coincidence set),

Ω2 = {x\ — Au -f αw =/} (continuation set).

Recently, A. Bensoussan, H. Brezis and A. Friedman [2] obtained an estimate

on the size of Ω{ under the Dirichlet boundary condition.

The purpose of the present note is to obtain some estimates on the size of
Ω1 under other boundary conditions (Neumann, mixed and Signorini). Our

main results in this note are stated in section 3 (Theorems 3.2, 3.3 and 3.4).

Section 4 is devoted to the study of the behavior of solutions of (VI) near the

boundary of Ω. It seems interesting to the author that estimates of the same type
can be derived for these different boundary conditions by computing only one
comparison function.

2. A comparison theorem

Let Ω be a bounded domain in RN with smooth boundary Γ. For a maximal
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monotone graph β in R2 such that Oe/?(0), we use the following notations:

β+(r) = max {z|z e β(r)} if r e D(β) ,

/rW = min{z|zej5(r)} if reD(/0,

j8+(r) = j8-(r) = + oo if r^D(β) and r^supD(β),

β+(r) = β~(r) = - oo if r<£D(β) and r ^ inf D(β) .

We assume that

(2.1) /eL°°(Ω), <Fe ^2'°°(Ω) and ^ φe W^Γ),

where W*'°°(i2) denotes the usual Sobolev space (which is a subspace of

Let α>0 and

K = {u e Hl(O)\u ^ <P a.e. in Ω} .

We consider the following elliptic variational inequality with boundary
condition :

\ ( — Δu + au)(v — u)dx ^ \ f(υ — u)dx for any veK,
JΩ JΩ

(2.2)

- —^ + φ 6 ]8(ιι|Γ - ιA) a.e. on Γ.

Here n is the outer normal to Γ.

Existence and uniqueness of the solution of (2.2) are well known. The

regularity of the solution is proved by H. Brezis [3, Th. I. 12, p. 55] for more

general elliptic operators, but in the case of ψ = φ = 0. By the same method, it is

easy to see that in our case the solution u belongs to H2(Ω) n WltCO(Ω)9 provided

that the corresponding hypothesis

(2.3) Q¥- 4- β-(Ψ\Γ -ψ)£φ a.e. on Γ
on

is satisfied.
Therefore, by (2.1) and (2.3), the solution u of (VI) which we shall consider

in the sense of (2.2) exists uniquely and belongs to H2(Ω) n W1 CO(Ω). Thus, in

paticular, it is continuous.

The next theorem, although elementary, enables us to estimate the support

of the solution u.

THEOREM 2.1 (Comparison theorem). Let /eL°°(Ω), Φe Pf2 °°(Ω), φ,

e Wίt<x>(Γ) and ύeH2(Ω) satisfy the following differential inequalities:
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- Aύ + αώ ^ /, ύ ̂  Ψ in Ω,
(2.4)

-ι£) on Γ,

w/tere β is a maximal monotone graph in R2.

Suppose that /^/, Ψ^Ψ a.e. in Ω, φ^φ, ψ^φ a.e. on Γ and β~^β+.

Then we have, for the solution u of (2.2), u^ύ a.e. in Ω.

PROOF. Take v = u — (u — ti)+ = min(u, ύ) in (2.2). This is possible since

!g Ψ and so v e K. By integration by parts, we have

\_VuV(u - ti)+ + au(u - ay~\dx + ί ^-(u - ύ)+dΓ
JΩ Jr on

(2.5)

^ - ( /(u - ύ)+άx.
JΩ

On the other hand, multiplying (2.4) by (u — ύ)+ and integrating over Ω, we find,

after integration by parts,

( [PώP(ιι - U)+ + αή(tι - ύ)+]dx - f |i(M - ti)+dΓ
JΩ )r vn

(2.6)

^( /(u - ύ)+dx.
JΩ

From (2.5) and (2.6) it follows that

- f [P(ιι - β)P(ιι - β)+ + α(ιι - ή)(u - β)+]dx
Jβ

+ °^ L
We note that

- (φ - φ)(u - ύ)+ ^ 0 a.e. on Γ.

In fact, if u > ύ at a point of Γ, then there exists a real number ξ such that u —

>ξ>ύ — ιj/ and we have

fi*(ύ - φ) ^ β-(ξ) ^ β+(ξ) ^ β-(u - tfr) .

Hence we obtain



10 Naoki YAM AD A

ί [Γ(ιι - ώ)Γ(u - ύ)+ 4- φ - ώ)(w - £)+]dx ^ 0.
JΩ

Therefore, the assertion follows from the coerciveness of the bilinear form

a(u, v) = \ \VuVv + αMt>]dx
JΩ

in Hl(Ω).

3. Estimates on the support of solutions

In the following, we suppose that there exists a positive number y such that

(3.1) f - ( - ΔΨ + <*Ψ)£ -γ a.e. in Ω.

Let u be the solution of (2.2). If we set u = u — Ψ, then the difference u satisfies
the following variational inequality:

-Au + oiu^f, ύ ̂  0,

(3.2) S( - Ju + αδ - /) = 0 in Ω,

-ι£) on Γ,

where /=/-(- J^ + α^F), φ = φ-dΨldnandφ = \l/-Ψ\Γ.
Throughout this section we choose as a comparison function the function

fv defined by

(3.3) w(x) = - r \x - x0|
2, x0 e Ω,

and compare it with ϋ.

3.1. The Dirichlet problem
If we take

f ] -oo, +oo[ if r = 0,
β(r) =

[ φ(empty set) if r Φ 0,

then the Dirichlet boundary condition u\Γ = ψ arises.
The following theorem is due to A. Bensoussan, H. Brezis and A. Friedmar

[2, Th. 3.1, p. 307].

THEOREM 3.1. Let (3.1) hold and assume that there exists a positive number
δ such that
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ψ(x) - Ψ(x) ^δ on Γ.

If x0eΩ satisfies dist(x0, Γ)^(2N^/y)1/2, then we have u(x0)=Ψ(x0).

REMARK 3.1. In [2], this result is proved in the case that Ω is not neces-
sarily bounded.

3.2. The Neumann problem

If we take β(r) = 0 for any r e#, then the boundary condition becomes du/dn
= φ, that is, the Neumann problem is considered.

THEOREM 3.2. Let Ω be convex and (3.1) hold. Suppose that there exists
a positive number δ such that

φ - ̂  < δ on Γ.
on ~

If xΌeΩ satisfies Θ0(x0)dist(x0, Γ)^Nδ/γ, then we have U(XQ)=Ψ(XO).
Here we have set

0o(*o)= infcos(φc), x - x0),
xeΓ

and n(x) is the unit outer normal to Γ at x e Γ. (Since Ω is convex and bounded,
it is easy to see that ΘO(XQ)>O for each x0eΩ.)

PROOF. Take any point x0eί2 with 00(x0) dist (x0, Γ)^Nδ/y. We have
by (3.1) and (3.3) that

(3.4) v v ^ O , - Λ w + α w ^ - y ^ / in Ω.

If we show

(3.5) ^^φ on Γ,

we can apply Theorem 2.1 to ύ and obtain u ̂ w. In paticular, we have

tt(x0) - n*o) ^ >v(x0) = 0,

and the assertion follows.
To show that (3.5) holds at xeΓ, we introduce a new coordinate system

e={έί9 e2>. "> &N} with the origin at x0 such that the direction of &N coincides with
the direction from x0 to x. Let x and n(x) be represented, in terms of e, as

x = (xi9 x29..-, xN) and n(x) = (Λ 1 , .A 2 > > KN) respectively.
We then have
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,Λ,fτr\ — y 02

and so,

dw

where θ is the angle between eN and n(x).

Since cos θ ̂  #o(xo)> we obtain

Thus the proof is completed.

on Γ.

REMARK 3.2; The assumption of the convexity of Ω can be relaxed. The
assertion is correct for x0eΩ such that 00(x0)>0 and 00(x0) dist (x0, Γ)^Nδ/y.

The first condition can be satisfied if, for example, Ω is star-shaped with respect

to x0 in an obvious manner.

3.3. The mixed problem
Consider the case where

β(r) = kr (k> 0) for any r e R9

and ι̂  = 0. This boundary condition means du/dn + ku\Γ = φ, and we are led to

the mixed problem.

THEOREM 3.3. Let Ω be convex and (3.1) hold. We assume that there

exists a positive number δ such that

φ-d¥-- kΨ\Γ ^δ on Γ.
on

If x0 e Ω satisfies

(3.6)

then we have u(x0) = Ψ(x0).

PROOF. It is sufficient to show that

(3.7) JhL'+kw\Γ^φ on Γ.
on
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By (3.5) we have

- β . 0 .

Since the right hand side of (3.6) is the positive root of the equation (ky/2N)t2

+ (yθ0(xo)/N)t-δ = Qy we obtain (3.7).

3.4. The Signorini problem

If we choose

(
0 if r > 0,

]-oo,0] if r = 0,

</>(empty set) if r < 0,

then the boundary condition is

u\Γ^Ψ, du/dn^φ, (u\Γ - ψ)(du/dn - φ) = 0 on Γ.

This condition is called the Signorini condition.

THEOREM 3.4. Let Ω be convex and (3.1) hold. Suppose that there exist
two positive numbers δ1 and δ2 such that

ψ - Ψ\Γ ^ δl9 φ - Qj?- ^ δ2 on Γ.

Ifx0eΩ satisfies

dist(jc0, Π ̂

PROOF. It is sufficient to show that

w|Γ ^ ψ, $£- ^ φ on Γ.
on

But these inequalities are obvious from the proofs of Theorems 3.1 and 3.2.

4. Estimates near the boundary

In this section, we shall study the behavior of solutions of (2.2) near the

boundary under suitable conditions.
We suppose that (3.1) holds for /, and choose a comparison function as

follows :
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/ Λ ί 9 Λ 7 d X - * θ l -S)2 if I X - X o l >S9

Ws(*) = 2N

I 0 if \x - x0| ^ s>

where x0 6 Γ, and s will be suitably chosen according to the boundary assumptions
sated below.

From (3.1) we obtain

(4.1) ws(x)^0, - Jws(x) + αws(x) ^/ in Ω.

Indeed, for any x e Ω such that |x — x0| > 5, we have

and, if |x — x0| ̂ s, it is obvious since ws(x) = 0. This fact will be used throughout
the following theorems.

THEOREM 4.1 (The Dirichlet problem). Let (3.1) hold and ψ(x)-Ψ

for some <5>0. Suppose that there exist a point x 0 eΓ and a positive number
r>(2Nδ/γy'2 such that ψ(x)=Ψ(x) on Γ f) £(x0, r), where B(x0, r) is the ball
with center x0 and radius r.

Then u(x)=Ψ(x) in Ω n B(x0, 5), where s = r-(2Nδ/yY/2.

PROOF. It is sufficient to show that ws(x)^ψ(x) on Γ. If |x — x0 |^Λ we

have

and if |x — x0|<r, it is evident. Thus the assertion follows from Theorem 2.1.

THEOREM 4.2 (The Neumann problem). Let Ω be strictly convex, i.e., Γ
does not contain any line segment. Suppose that (3.1) holds and that φ(x) —
(dΨ/dn)(x)^δfor some δ>0.

If there exist a point x0EΓ and a positive number r such that dΨ/dn = φ
on Γ f] B(x0, r), then u(x) = Ψ(x)for x e Ω Π B(xQ9 s\ where we have set

Nδ

0o(*o: r) = inf cos (n(x)9 x - x0),
xeΓ(]B(xo,r)c

and B(x0, r)c denotes the complementary set of B(x0, r).
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PROOF. First we remark that 00(x0: r)>0 for all x0eΩ by the strict con-
vexity of Ω. It remains to show (3.5) for ws. If |x — x0| > r, we have

dws __ ycosθ n i Λ > yg0(*0: r) , _ .
~W"~W~(l o l '- N ( }

and it follows immediatly for the case of |x — x0 |^r. Thus we can apply
Theorem 2.1 and the proof is completed.

Corresponding to Theorem 3.3, we have the following theorem.

THEOREM 4.3 (The mixed problem). Let Ω be strictly convex. Suppose
that (3.1) holds and that φ(x)-dΨ/dn-kΨ^δ for some <5>0. We assume that
there exist a point x0eΓ and a positive number r such that

= φ(x) on ΓnB(x0, r),

and

2m
\ k2 yk

Then we have u(x)=Ψ(x)for x e Ω n B(x0, s).

REMARK 4.1. We can relax the assumption of the strict convexity of
Ω (see REMARK 3.2).

The proof of Theorem 4.3 is omitted since it is easy to see (3.7) for vvs.
For the Signorini problem, we immediately have :

THEOREM 4.4 (The Signorini problem). Let Ω be strictly convex. Suppose
that (3.1) holds and that \l/-Ψ\r^δί9 φ-dΨ/dn^δ2 for some δl9 (52>0.

If\l/(x)=Ψ(x) and φ(x) = (dΨ/dn)(x) on Γ n B(x0, r)for some positive number
r such that

then we have u(x)=Ψ(x) in Ω n B(x0, s).
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