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Introduction

Maruo [4] introduced the notion of weak ideals generalizing that of
subideals to study some kind of coalescence in Lie algebras. Recently Kawamoto
[3] has considered N,-pairs (k€ N) and N -pairs of subalgebras to study criteria
for subideality and ascendancy in Lie algebras. For a subalgebra H of a Lie
algebra L, the fact that (H, L) is an N,-pair means that H is a k-step weak ideal
of L. In this paper we shall introduce the notion of weakly ascendant subalgebras
of a Lie algebra generalizing those of weak ideals and N _-pairs and investigate
their properties.

The main results are as follows. If L is a hyperabelian Lie algebra of length
A and H is a u-step weakly ascendant subalgebra of L, then H is a uA-step ascendant
subalgebra of L (Theorem 1). Therefore a subalgebra of a hyperabelian Lie
algebra is weakly ascendant if and only if it is ascendant (Theorem 2). Every
finitely generated, weakly ascendant subalgebra of a Lie algebra is at most of
w-step (Theorem 4). For a subset S of a generalized solvable Lie algebra L such
that {S) is finite-dimensional and nilpotent, S is a left Engel subset of L if and
only if {(S) is weakly ascendant and if and only if {S) is ascendant (Theorem 5).
For subalgebras H < K; (i = 1,:--, n) of a finite-dimensional. Lie algebra, H is
weakly ascendant of finite step in (K,,:--, K,,» if and only if so is it in each K;
(Theorem 7).

1.

Throughout the paper, let L be a not necessarily finite-dimensional Lie
algebra over a field T of arbitrary characteristic unless otherwise specified, and
let A and u be arbitrary ordinals.

We write H<L when H is a subalgebra of L and H< L when H is an ideal
of L.

A subalgebra H of L is a A-step ascendant subalgebra of L, denoted by H<1*
L, provided there is a series (H,),<; of subalgebras of L such that

(a Hy=Hand H, =1L,

(b) H,<t H,,, for any ordinal « < 4,

(c) Hg= a\<JﬁHa for any limit ordinal g < A.
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H is an ascendant subalgebra of L, denoted by H asc L, provided H<*L for some
A. Especially when A=n<w, H is respectively an n-step subideal and a subideal
of L, denoted by H si L.

We shall generalize these notions as follows. We say a subalgebra H of L
to be a A-step weakly ascendant subalgebra of L, provided there exists an as-
cending chain (M,),<; of subspaces of L such that

(a) My=Hand M, =1L,

(b) [M,:, H] = M, for any ordinal « < 4,

() M;= U M, for any limit ordinal § < A.

We then write H <‘L We simply call such a chain (M,),., a weakly ascending
chain for H in L. We say a subalgebra H of L to be a weakly ascendant sub-
algebra of L provided H<*L for some ordinal .. We then write H wasc L.
Especially when A< w, we call H a weak subideal of Land write H wsi L.

We recall the definitions of some classes of Lie algebras. 2 and U denote
respectively the classes of abelian and solvable Lie algebras over a field f. L be-
longs to EU provided there is an ascending abelian series (K,),<; of L, that is,
a series (K,),<; of subalgebras of L such that

(a Ko=(0)and K, =L,

(b) K,<tK,,,and K,,/K,e U for any ordinal a < 4,

(¢) Kz =\U K, for any limit ordinal g <A.

L belongs to E(<Il* )2 provided there is an ascending abelian series (K,),<; of
ideals of L. L is called hyperabelian if L € &(<)2.

For a subalgebra H of L, we say that L belongs to E(H) provided there is
an ascending abelian series (K,),<; of H-invariant subalgebras of L. Obviously
B(<)U<EH)UA<LEN.

When we emphasize the role of the ordinal A in the definitions of EU, (< )A
and E(H), we write £, £,(<)W and E,(H)U respectively.

For subalgebras H, K of L, Kawamoto [3] has considered the following
conditions: (H, K) is an N,pair (neN) if [K, ,H]=H, and an N -pair if for
any a e K there is an n=n(a)e N such that [a, ,H]=H. These conditions for
(H, L) are special cases of weak ascendancy, as is seen in the following

LEMMA 1. Let H be a subalgebra of a Lie algebra L.
(@) ForneN, HL"L if and only if (H, L) is an N,-pair.
(b) H<Z“L if and only if (H, L) is an N -pair.

Proor. (a) If (H, L)is an N,-pair, put
Mi:[L3n-iH]+H (OSISH)

Then (M,),<, is a weakly ascending chain for H in L and H<"L. The converse
is evident.
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(b) If(H, L)is an N -pair, put
M;={aelL|[a, HlcH} (0<i<ow),
M,=L.

Then (M,),<,, is a weakly ascending chain for H in L and H<“L. The converse
is evident.

2.

We begin by showing some elementary properties of weakly ascendant
subalgebras.

LeMMA 2. Let L be a Lie algebra over .

(@) If H<*L and K<L, then Hn K<*K.

(b) If H<*L and K<L, then H+ K<*L.

(c) Let f be a homomorphism of L onto a Lie algebra L. If H<*L,
then f(H)<*L. If H<AL, then f~1(H)<*L.

Proor. Assume that H<*L and let (M,),, be a weakly ascending chain
for Hin L. Then

(a) (M, n K),<, is a weakly ascending chain for H n K in K.

(b) (M, + K),<; is a weakly ascending chain for H + K in L.

() (f(Mp),<; is a weakly ascending chain for f(H) in L.
If (M,),<, is a weakly ascending chain for H in L, then (f~!(M,)),<, is such a
chain for f~1(H) in L.

We shall next show the following lemma, which generalizes [3, Lemma 3] as
is seen by Lemma 1.

LEMMA 3. Let L be a Lie algebra over ¥ such that L=H+K with H<L,
K<L and KeU. Then H<*L if and only if H<*L.

Proor. Assume that H<*L and let (M,),<; be a weakly ascending chain
for Hin L. Then for any a<A[M,, HI€M, and

M,=M,nH+K)=H+ (M, n K).
If follows that for any a <A
My, Myss]1=[H + (M, n K), H+ (M, 0 K)]
€ H*+[H,M,,, n K]+ [M, n K, H] + K2
S H+ M, n K)
= M,.
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Hence M,<L and M,<M,,, for any a<A. Therefore H<*L. The converse
is evident.

By making use of Lemmas 2 and 3 we now show the following theorem,
where Core;(H) denotes the largest ideal of L contained in H.

TueOREM 1. Let L be a Lie algebra over a field ¥ and let H be a subalgebra
of L such that L/Core,(H)e¥£;(H/Core, (H))U. Assume that H<*L. Then

H<*#AL,
Especially, if A is not a limit ordinal (and even if H<*H+ L?),

H<rG-DHL,

Proor. We may assume that L e £,(H)W. This can be easily seen by using
Lemma 2 (c).

If A is not a limit ordinal, there exists an ascending abelian series (K,),<; of
H-invariant subalgebras of L such that K, ,=L2. In fact, if (L,),<; is an
ascending abelian series of H-invariant subalgebras of L, put K,=L,n L? for
a<A—1and K;=L,. Then each K, is H-invariant. Since L/L,_, €%, it follows
that L2cL,_, and so K,_;=L2. For any a<i—1

KZi1=(Lasy N L?)?
S Li:y n L2
cL,nL?=K,.

Therefore K,<K,,, and K,,,/K,eW. Thus we see that (K,),<; is a desired
series.

Now let (K,),<; be an ascending abelian series of H-invariant subalgebras
of L such that K,_,=L2 if 1 is a non-limit ordinal. Then for any a <1

K,<H+ K,<L.
Assume that 1 is a non-limit (resp. limit) ordinal and
H<*H+ L? (resp. H <*L).

For each a<A—1 (resp. a<4), put K,, =K, /K, and H=(H+K,)/K,. Then
K,,,<H+K,,, and K,,, €. Since H<*H+K,,, by Lemma 2 (a), we
have H<*H+K,,; by Lemma 2 (c). Hence by using Lemma 3 we see that
H<*H+K,,,. Tt follows that

H+ K,<t*H + K, ;.
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For a limit ordinal <4

H+K,,=H+(UpK¢)
a<<

= UH + K.

a<p
Therefore
H<r@-OH + K, ;<L (resp. H<#*L).

Observing that if H<*L then H<*H+ L? by Lemma 2 (a) and that u(1—1)
+ 1< ul, we finish the proof.

COROLLARY 1. Let L be a Lie algebra over a field t and let H be a sub-
algebra of L such that L|/Core,(H)e¥£,(<)W (especially, Lek,(<)N). If
H<*®L, then H< L where

puA -1 +1 for a non-limit ordianl A
V=
Ui for a limit ordinal A.

Proor. This is immediate from Theorem 1, since E;(<)A<E,(H/Core,
(H)A and E,(<)U is Q-closed.

Owing to Lemma 1 we furthermore have the following two corollaries, which
are [3, Theorems 4 and 12].

COROLLARY 2. Let H be a subalgebra of a Lie algebra L and assume that
L/Core, (H)e ™. If(H, L?) is an N,-pair, then H<nm=D*1[,

Proor. If (H, L?) is an N,-pair, then (H, H+L?) is also an N,-pair. By
Lemma 1 (a) H<"H+L?. Therefore by Theorem 1 H<"(m=1+1]

COROLLARY 3. Let H be a subalgebra of a Lie algebra L and assume that
L/Core; (H)e &(<)W. If(H, L) is an N -pair, then H asc L.

Proor. If (H, L) is an N -pair, then by Lemma 1 (b) H<®L. Therefore
by Theorem 1 H asc L.

It is shown by the examples in Section 5 that in Theorem 1 the assumption
L/Core, (H) e (H/Core, (H)) cannot be removed.

THEOREM 2. Let L be a Lie algebra over a field t and let H be a subalgebra
of L such that L/Core,(H)e E(H/Core, (H))W. Then the following conditions
are equivalent:

(a) H wasc L.
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(b) H asc L.
(¢) There exists an ordinal A such that H<*{H, x) for any x € L.
(d) There exists an ordinal A such that H<*(H, x) for any xe L.

Proor. (a)=>(b) follows from Theorem 1.

(b)=>(d) and (d)=>(c) are evident.

(c)=(a): Assume that H<*{H, x) for any xe L. Then for each xeL
there exists a weakly ascending chain (M, (x)),<, for H in {(H, x). For each
a< ] denote by M, the subspace of L spanned by {M,(x)|xeL}. Then it is
immediate that (M,),<; is a weakly ascending chain for H in L and H<*L. This
completes the proof.

COROLLARY. Let L be a Lie algebra over a field ¥ and let H be a subalgebra
of L.

(a) Let L/Core,(H)et&(<)U (especially, Let(<a)A). Then H wasc L
if and only if H asc L.

(b) Let L/Core (H)erU (especially, LeN). Then H wsi L if and
only if H si L.

PrROOF. (a) is immediate from Theorem 2, since E(<a)WA<LE(H/Core, (H)U
and (<) is Q-closed. (b) follows from Theorem 1.

The statement (b) in the above corollary is contained in [3, Theorem 11], as
is seen by Lemma 1 (a).
As another consequence of Theorem 1 we have the following

THEOREM 3. Let L be a Lie algebra over a field . Let H be a subalgebra
of L such that L|Core, (H) € g, and {a®) is finitely generated for any ae L.
If H<*®L, then H<#*L,

PrOOF. We may assume that Le £,2(. Let (K,),<; be an ascending abelian
series of L. For any a<4, let L, be the sum of all H-invariant subspaces of K,.
Then it is easy to see that each L, is a unique maximal H-invariant subalgebra of
K, and (L,),<; is an ascending abelian series of H-invariant subalgebras of L ([3,
Lemmas 15 and 16]). Therefore Le£,(H)2. The assertion now follows from
Theorem 1.

The following corollary is [3, Theorem 17].

CoRroLLARY. Under the same hypothesis as in Theorem 3, if (H, L) is an
N -pair, then H asc L.

Proor. If (H, L) is an N-pair, by Lemma 1 (b) H<®L. Hence the
statement follows from Theorem 3.
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3.

To show further properties of weakly ascendant subalgebras, we need the
following lemma generalizing [1, Lemma 1.2.3].

LeMMA 4. Let L be a Lie algebra over ¥. Let H be a finitely generated,
weakly ascendant subalgebra of L and let K be a finite-dimensional subspace
of L. Then there exists an n=n(K) e N such that [K, ,H]<H.

ProOOF. Let (M,),<, be a weakly ascending chain for H in L and let N be a
finite-dimensional subspace of H generating H. Take a basis {x, -, x,} of N
and a basis {a,,'--, a,} of K. For each neN, let u, be the first ordinal such that

{[ai9 Xjp™ts xj"] |1 <i<tl <ik< S} = Mu,,‘

Then p, is not a limit ordinal. Since [M,.,, N]=M, for any a<], we have
Hyr1 <M, unless u,=0. Since the ordinals < A are well-ordered, it follows that
u,=0 for some neN. Hence [K, ,N]=M,=H. By the Jacobi identity we con-
clude that [K, ,H]<H.

We remark that for any finitely generated, weakly ascendant subalgebra H
of L, H*= ;0\ H! and H®) = R H® are characteristic ideals of L. This can be

i=1 i=0
shown by u;ing Lemma 4, as in the proof of [4, Theorem 2.2].

THEOREM 4. Let L be a Lie algebra over a field ¥. Then every finitely
generated, weakly ascendant subalgebra of L is at most of w-step.

Proor. By Lemma 4 we see that for any a € L there exists an n=n(a) e N
such that [a, ,H]<H. Hence (H, L) is an N -pair. By Lemma 1 (b) it follows
that H<°L.

It is shown by the second example in Section 5 that in the above theorem
the index o is best possible.

We shall here consider an application of Theorem 4. The set of left Engel
elements of L is denoted by ¢(L). We define e*(L) to be the family of subsets S
of L satisfying the following condition: For any a € L there exists an n=n(a, S)
eN such that [a, ,S]=(0). We may call See*(L) a left Engel subset of L.
Now we have

LEMMA 5. Let S be a subset of a Lie algebra L such that {S) is nilpotent.
Then S € e*(L) if and only if {(S) <“L.

PrOOF. Put H={S) and let H be nilpotent of class m. If H<“L, then for
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any a e L there is an ne N such that [a, ,H]<H. It follows that
(4, n+mH] = H™*1 = (0).
Hence H e ¢*(L) and therefore S e e*(L). The converse is evident.

THEOREM 5. Let L be a Lie algebra over a field T belonging to 0. For
a subset S of L such that {S) is finite-dimensional and nilpotent, the following
conditions are equivalent:

(a) See*(L).

(b) <S) wasc L.

(c) <S> <~L.

(d) <S) asc L.

ProoF. (b)=>(c) follows from Theorem 4.

(¢)=(d): Put H={S) and assume that H<® L. Then by Lemma 5 He
¢*(L). Hence for any a € L there is an n e N such that [a, ,H]=(0). It follows
that

<aH> = <a’ [a’ H];"" [a, n—lH]>

is finitely generated. Therefore by Theorem 3 H asc L.
(d)=>(b) is evident.
Since (a)<>(c) by Lemma 5, the proof is complete.

As an immediate consequence of Theorem 5 we have the following

CoROLLARY. Let L be a Lie algebra over a field t belonging to £%. For
any x € L, the following conditions are equivalent:

(@) xee(l).

(b) (x) wasc L.

(c) (x> <*L.

(d) <x) ascL.

This corollary generalizes [1, Theorem 16.4.2 (a)], which states the equiva-
lence of (a) and (d) only for a field  of characteristic 0.
As a slight generalization of [1, Proposition 1.3.5] we show the following

THEOREM 6. Let L be a Lie algebra over a field £. Then every perfect
weakly ascendant subalgebra of L is an ideal of L.

Proor. Assume that H<*L and H=H2. If (M,),<; is a weakly ascending
chain for H in L, then we can show by transfinite induction that [M,, HIcH
for any a<A. Taking a=A, we see that H< L.
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4.

In this section we shall observe weakly ascendant subalgebras of step < w.

LemMMA 6. Let H<K, (c€l) be subalgebras of a Lie algebra L. If
H<°®K, for any 6el, then HL*{K,|oel).

ProoF. We may assume that L=(K,|celI). If we put
No(H) = {aeL]|[a, ,H] < H for some neN},

it is easy to see that N (H)<L ([3, Lemma 1 (a)]). If H<®K_,, then by Lemma
1 (b) (H, K,) is an N -pair and so K,<N(H). Hence L=N_(H). Therefore
(H, L) is an N -pair and by Lemma 1 (b) H< L.

THEOREM 7. Let L be a finite-dimensional Lie algebra over a field t.
Let H<K, (i=1,:--, n) be subalgebras of L. If H wsi K, for any i, then H wsi
<K1""’ Kn)'

ProoF. When L is finite-dimensional, H<®L is equivalent to H wsi L.
Hence the statement follows from Lemma 6.

By Theorem 7 we see that for any subalgebra H of a finite-dimensional Lie
algebra L there exists a unique maximal subalgebra of L which contains H as a
weak subideal.

As a consequence of Theorem 7 we have the following result ([2, Theorem 6]).

COROLLARY. Let L be a finite-dimensional solvable Lie algebra over t.
Let HLK; (i=1,-:-, n) be subalgebras of L. If H si K; for any i, then H si {K,,
e, KD

ProoF. When L is solvable, H wsi L is equivalent to H si L by Theorem 1.
Hence the statement follows from Theorem 7.

THEOREM 8. Let L be a Lie algebra over a field T and let H be a finite-
codimensional subalgebra of L. Then H wsi L if and only if for any a € L and
any x € H there exists an n=n(a, x) €N such that [a, ,x]€ H.

Proor. Assume that the condition holds. For any xeH, ad, x induces
a linear transformation p(x) of the space L/H. By assumption each p(x) is nil.
Since the space L/H is finite-dimensional, p(x) is nilpotent. Therefore the
enveloping associative algebra of p(H) is nilpotent. Hence there exists a keN
such that p(x,)---p(x,)=0 for any x,,-::, x, € H. This means that [L, ,H]<H.
By Lemma 1 (a) H<*L. The converse is evident.
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5.

Let S={x, y, z) be the 3-dimensional simple Lie algebra over a field of
characteristic # 2 with multiplication

[x9 Z] = 2x9 [ya Z] = _2ys [X, y] =z (*)

Then it is known [4] that {y) <2 S, {y) is not a subideal of S and S ¢ EU=
E({)U.

Let V' be the vector space over a field f of characteristic 0 with basis {e;, e,,*:}
and let x, y, z be respectively the linear transformations of V defined by

X e — €4y iz,
y: eg—0, e—i(i — 1)e;—, (i=2),
z: e — 2ie; i=1).

Then S=(x, y, z) is a simple Lie subalgebra of End,V satisfying (*). Consider
V as an abelian Lie algebra so that every element of S is a derivation of V. We
construct the split extension

L=V+S

(cf. [5, Example F]). Then it is easy to see that {y) <® L, {(y) is not a weak
subideal of L, {y) is not an ascendant subalgebra of L, L¢ £% and a priori
L ¢ 5y
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