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The present paper is considered as a supplement to the author's paper [1],
Our aim is to prove the following theorem.

THEOREM. Let a be a real number, l<p<^co and l^q^oo.
(a) The dual of 2^tq is isomorphic to Λl*q,.

(b) There exists an isomorphism η: Λ*taQ-*(λpta$' such that the restriction
of η to Λj j 0 0 is the canonical embedding of Λ£>OO into its second dual C*J>00)".

Notation and related definitions are given in section 1. As in [1], the
proof of the Theorem is done by establishing the corresponding results for some
spaces of harmonic functions which are isomorphic to the spaces considered in
the Theorem. Our result (a) is an n-dimensional and non-periodic version of a
result of T. M. Flett [3; Theorem 19], whereas (b) when p= oo is that of a result
of K. de Leeuw [5; Theorem 2.1] (cf. also [3; Theorem 19]).

1. Notation and preliminaries

We use Rn to denote the n-dimensional Euclidean space, and for each point

*=(>!, ...,*„) we write |x|=Oι + + *«)1/2

Unless otherwise stated, all functions are supposed to be complex- valued.
As usual we use 3f = 3f(Rn) to denote the space of all rapidly decreasing functions
on Rn', & stands for its subspace consisting of functions with compact supports.

For any positive integer k let Z£ be the set of all ordered fc-tuples of non-

negative integers, and for each μ = (μ1?..., μfc) let

\μ\ = μ1 + ... + μk.

An element of Z£ is called a multi-index.

If u is a function defined on an open subset of Rk, we use Df to denote the

partial derivative of u of order m with respect to the i-th coordinate. Further,

for each multi-index μ = (μl5..., μk) we write

If /is a measurable function defined on Rn, we set
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||/||00 = esssup|/(x)|,
xeRn

and we define Lp = Lp(Rn), where l^p^oo, as the space of those measurable

functions / for which ||/||p<oo, equipped with the norm || ||r
For each real number p, l gp^Ξoo, we use p' to denote its conjugate, i.e.,

p' = l, where we set l/oo=0.
The Fourier transform of a function fe L1 is given by

. „. Λ ίeΛ",
Rn

where ζ y = ξ\yι \ H^iJV
We consider the space .R"+1 as the Cartesian product Rn x R, so that we can

write each z e Rn+1 in the form z = (x, ί), where x e Rn and t e R. We denote by

Ω the upper half space Rn x ]0, oo[.
We use B to denote a constant, depending on the particular parameters p,

#,..., α, /?,... concerned in the particular problem in which it appears; if we wish

to express the dependency, we write B in the form B(p, #,..., α, /?,...)• These
constants are not necessarily the same on any two occurrences.

For measurable functions u defined on Ω, let

ΓΓ Ύlp

M (M; ί) = \ |M(X, t)\pdx , 0 < p < oo,

MJw; ί)= ess sup |w(x, ί)l -
xeRn

We also let

| |M|| J, i 0 0=esssupMp(tt; ί)
ί>0

Moreover, for any s>0 and yεR", us, w
(s) and w ( y» s ) are the functions given by

MS(X) = w(x, s), x e R»,

t/(s>(x, 0 = M(X, 5 + 0, (̂ , 0 e Ω,

u<*β>(x, 0 = u(y - x, s + 0, (x, 0 e Ω.

We use P to denote the Poisson kernel for Ω, i.e.,

P(x, i) = cnt/(\*\2 + ί2)(π+1)/2 for x eRn and ί > 0,
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where cπ = π~(π+1)/2Γ((π + l)/2). The following two properties of the Poisson
kernel are frequently used.

(P. 1) Ps(ξ) = e-
2π\s\s, ξεR" and s > 0.

(P. 2) ps*pt = ps+t for all s, ί > 0,

where * denotes the convolution operation.

Let/be a measurable function on Rn such that \ |/(x)| (1 + \x\)~n~ίdx< oo.

The Poisson integral of/, denoted by w, is the function defined on Ω by

κ(x, ί) = P,*/(x) = /*P,(x), (x, 0 6 Ω.

It is well-known that u is harmonic in Ω and satisfies the following relation :

(*) M(X, s + t) = Ps*ut(x)9 x e Rn, and s, t > 0.

The equation (*) is called the semigroup formula hereafter.
For the properties of the Poisson kernel and Poisson integrals, we refer to

[1] and the references given there.

DEFINITION 1 (cf. [1 § 3, Definition A]). For any real number b, let jf b

denote the linear space of all harmonic functions u in Ω with the property that if
μeZJ+1, c>0, and K is any compact subset of Rn, there is a positive constant
B such that

\D*u(x, 01 ^ Br(b+\^ for every x in K and t ^ c.

Further, let jpξ = Π y<b tfr

DEFINITION 2 (cf. [1; §3, Definition B]). For any u in «#% and α<fo, .Rαw

is the function defined on Ω by
(i) R°u = u',
(ii) i f α > 0 ,

jRαw(jc, t) =

(iii) if α is a negative integer, say α = — m, then

(iv) if α = —β < 0 and β is not an integer, then

R«u = R-PU = Rm-β(R-mu)9

where m = [β] +1 (here [7] stands for the greatest integer not exceeding 7), and
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Rm~β, R~m are defined by (ii) and (iii).

REMARK. If α<fe and we^, then RΛuε3fb-Λ. If α + y<fr , y<b and

, then RΛ+?u = R*(R?u) (cf. [1; Theorem 3.2]).

DEFINITIONS (cf. [1;§5]). Let α be a real number, and l^p, q^co.

Define

JT(α; p, q) = {we^ί/p_α; *«» = P/T^wU^ < 00} .

Moreover, let 00 be the set of infinitely differentiate functions with compact
supports not containing the origin and «#** be the set of Poisson integrals

of functions in 00, where 00 = {$: ι^e00}. If p or g is oo, define j^λ^q^ to

be the closure of ̂ * in «^(α; p, g).

We shall list some results obtained in [1] which will be needed in the proof

of the Theorem. Let α be a real number and 1 ̂ p, q^oo.
(1.1) Let jS>0 and ||ί%||^<oo. Then ueJPβ+n/p(cf. [1; Theorem 3.5]).
(1.2) Jf (α; p, q) is a Banach space with norm #^q provided that, if α^/t/p

then we must identify harmonic functions u satisfying Dj + 1w = 0 for some non-
negative integer k with the zero element (cf. [1; Theorem 5.1]).

(1.3) If k is a non-negative integer greater than α, then \\tk~*Dk

n + l( )\\p^q

is an equivalent norm on «^(α; p, q) (cf. [1; Theorem 5.1]).
(1.4) If l^p, g<oo, then Jf* is dense in «^(α; p, q) (cf. [1; Theorems 7.1

and 7.2]). Note also that jf* is dense in 3fλ*pΛ if p or q is oo (see Definition 3).
(1.5) For each real number y, there exists an isometric isomorphism Rγ of

(α; p, 4) onto «?f (α + y; p, g). Further, #y maps jf Jlj§00 (3fλl,Λ resp.) onto

oS ί ̂ ^SίJ resP ) If y<n/p-α or we^7*, then /?yM is identical to the one
defined in Definition 2 (cf. [1; Theorem 5.1 and its remark, Remark to Lemma

7.1]).
(1.6) Let A*Λ(l£p, q<ao)9 Λ*tao (l^p^oo) and ̂ (l^^oo) denote

the Lipschitz spaces defined by Herz [4] (cf. [1; §7]). We let also Λ*t(X> (A^tq

resp.) be the space of boundary values of functions in 3? (α; p, oo) (^(α; oo, q)
resp.) with the obvious norm. Then u*-*u( , 0) = lim^o u( , ί) is an isomorphism
of «^(α; p, g) onto Λ£ί<z and of tfλlΛ onto >ίjj(z; the limit being taken in &* if
α<n/p and in &"\0> (the space of tempered distributions modulo polynomials)
if α^H/p (cf. [1; Theorems 6.1, 7.1 and 7.2]).

LEMMA 1 (cf. [1; Lemma 6.1]). Let l gp, g^oo, α fte α raz/ number and
u be in «^(α; p, g).

(i) M(S) e JT(α; p, g) and ί«iβ(ιιW) £**.&) for any s>0.

1) The spaces 3rλ%>00 and ,r>ls,g are denoted by %Ά%)00 and ^-4 ,̂5 respectively in [1].
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(ii) If q<co or q = oo and Mp(R~Λ~ίu', f) = o(t~1) as f->0+ and f->oo,
then w(s)-»w in Jί?(ot', p, q) as s-»0 + .

LEMMA 2 (cf. [1 Lemma 6.2 and its proof]). Let l^p, q ̂  oo, / be a func-
tion in LP and u be its Poίsson integral. Let k be a positive integer such that
2fc>α>0.

(i) u^eje^i p, q) and <?"p)q(u^)^BS-*\\f\\p for all s>0.
(ii) Furthermore, if all partial derivatives of f of order less than 2/c-fl

exist, are bounded and belong to Lp, then wejf(α; p, q) and £%,J(u)£B(\\f\\p

+ M f c/M (Here Ak is the Laplace operator iterated k times.)

LEMMA 3 (cf. [1; Lemma 6.3]). Let l^p, q^oo, α be a positive number
and k be a positive integer such that 2fc>α. Define

<u, vyk = <κ, vy =

for all u in jj?(— α; p', q') and all v in ^(α; p, q).

(i) < , •> is a continuous bilinear form on Jf(— α; p', q')xjί?(a', p, q).
(ii) Ifu€J>^(— α; p', q') and v is the Poisson integral of a \l/e^9 then

, vy = lim \ w(x, s)ψ(x)dx.
S-+0+ JRn

Moreover, ι/<w, w>=0/or every w which is the Poisson integral of a function in
&>, then w = 0. (Note that < , > does not depend on k.)

Hereafter, let E' and E" denote the dual and second dual of the normed vector
space E.

LEMMA 4 (cf. [1; Lemmas 8.2 and 8.3]). Let l^p, q^oo and a be a
positive number. Let F be in «^(α; p, q)' and let u(y, s) = F(P(y>s)) for all

(i) u is harmonic in Ω, and u( , s) is bounded and uniformly continuous
on Rn for each s>0.

(ii) If g is a U° -function with compact support and s>0, then

F(t>< >) = ( u(y, s)g(y)dy,
JRn

where v is the Poίsson integral of g.

2. Proof of the Theorem

First, we prepare some lemmas.
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LEMMAS. Let k be a non-negative integer and l^p<co. Let feLp

such that \ \kfeLp. Then there exists a sequence {^Jc:00 with the property

that

Hi ~ f \ \ P — 0 and || I \k(φt - f)\\p — > 0 as i — > oo.

PROOF. This follows easily from the well-known regularizing process.
For α>0 and weCK, the space of all continuous functions with compact

supports in Ω, define

i«-!p(x - y,s + t)w(y, t)dydt

for every (x, s)eΩ (cf. [1; §9]). An easy application of Fubini's theorem and
property (P. 2) in § 1 shows that Tα(w) is the Poisson integral of the function /
defined by

/OO = Γ f t«-ip(y ~ z9 t)w(z, t)dzdt, y e R".
Jo JR»

It then follows that/ 6 C°°, and Dκf belong to Lp and vanishes at infinity for any
p9 l^p^oo, and /ceZ+. Further, property (P. 1) in § 1 implies that

where B and a are positive constants that depend on w.

LEMMA 6. Let α>0 and k be a positve integer such that 2k >α. Let f
be a function in L°° and u be its Poisson integral. If f and \ \2kf are in L1, then

qfor any q, l^q^co.

PROOF. It is obvious that, under the above assumptions, / is almost every-
where equal to a function whose partial derivatives of order less than 2k -f 1 exist
and are bounded, so that we may assume that / has this property. Hence, to
establish the lemma, on account of Lemma 2 it is sufficient to find a sequence
{φi}^&Q such that ||0i-/|| «,->() and M*^-/)!! «,->() as i->oo. Now Lemma 5
implies that there is a sequence {^i}<=00 so that ||ι/^— /|(ι-»0 and ||(2π| |)2fcOA*

~/)llι->0 as i-*oo. Set φi = \l/i. Then Φied0 and

\\Φι -/L ^11^ -/111,

The proof of the lemma is thus complete.

COROLLARY. Let α>0, s>0, yeRn and wεCκ. Then P^ s) and Tα(w)
belong to 3fλπ,q for any q, l^q^co. Also, the set of Poisson integrals of
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functions in & is dense in J^Jί^^.

LEMMA 7. Let α>0, l<q^co and u be in «#*( — α; 1, oo) such that

sup |<w< s>, ϋ>| ^ C < oo /or α / / s > 0.

M ejf(-α; 1, q') and £ϊ?q>(u) ^ BC.

PROOF. The proof can be done exactly in the same way as Lemma 9.4 of
[1]. The only new thing to be taken care of is that for weC^, Tα(w) can be
approximated in the & J^-norm by functions in Jf *, and this follows from the
corollary to Lemma 6.

As in [1], the Theorem is an easy consequence of the following two state-
ments. Let α, p, q be as in the Theorem.

(S. 1) Je2^}q' is isomorphic to(jf-a;l9 q'\
(S. 2) There exists an isomorphism 0:^(α;/?, oo)-^ λ*^" such that

the restriction of Θ to 3ί?λ*t<X) is the canonical embedding of άfλ^^ into its
second dual

PROOF OF (S. 1) (cf. [1; Theorems 8.1 and 9.2]). On account of (1.5), we
may assume that α>0. Let k be a positive integer such that 2/c>α. Let u be
in jf ( — α; 1, q'). Then it follows from Lemma 3 that FM = <w, > is a continuous
linear functional on 3Pλ^Λ with \\FU\\ <^B#ϊ«q>(u), and FM = 0 implies w = 0.

Conversely, assume that Fejeλ^^. Let u(y, s) = F(P(y>s)) for every
(y, s) e Ω. Then u is harmonic in Ω by Lemma 4. Denoting by v the Poisson
integral of a function \\ι e ̂ , we derive from Lemmas 3 and 4 that

(2.1) F(ϋ(s)) = \ u(y, s)ψ(y)dy = <w(s), v)
J Rn

which, together with Lemma 2, implies that

K u(y,
\jRn

Hence

M I (M;S)= sup \ u(y, s)ψ(y)dy
Ψe& JRn

^ B\\F\\s-

It then follows from (1.1) and (1.3) that weJf(-α; 1, oo) and #l
Assume that l<^f^oo and let v be in jf *. Since i? can be approximated in the

by Poisson integrals of functions in 2 (see the corollary after
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Lemma 6), we derive from (2. 1 ) that F(v^) = <w(5), v) for every v e jf*. Therefore

sup |<ι/(s>, ι;>| = sup |F(i;<s>)|
i eJT* υe%**

*Ztq(v)£l /«,β(»)^l

^ ||F|| for every ,y>0,

which, by Lemma 7, implies that we«^(-a; 1, q') and ^^,(M)^J5||F||.

Now let w be the Poisson integral of φe^. Since w(s)-»w in ^λ^tq by

Lemma 1, the continuity of F, Lemma 3 and (2.1) imply that

F(w) = lim^o F(w<s>) = lims_»0

Observing that the set of Poisson integrals of functions in & is dense in
we derive that F = FM.

By combining the above results, we conclude that wι-»Fu = <w, •> is an

isomorphism of e (̂ — α; 1, q') onto jf λ^^ . The proof of (S. 1) is thus complete.

Before proceeding on with the proof of (S. 2), we need two more lemmas.

LEMMAS. Let l<p^ao and α^O. Define

«w, ι?> = </r2αw, R2*vy if α > 0

if α = 0

/or α// Me^(α; p, oo) and all VGJ^( — (X; pf, 1). T/zen <£ , •> is a continuous

bilinear form on J^(<x\ p, oo)x«^( — a; p7, 1). Further u^>Gu = ̂ u, •> is an

isomorphism of 3?(μ\ p, oo) onίo ^f( — a; //, 1)', and Cw» ̂  = <^ "> /or anj

uεj>ί?λ*iao and t>e^(-a; /?', 1). Consequently, υ^>Hv = ̂  , ι;> is an iso-

morphism of (̂ — a; p', 1) onto

PROOF. We shall prove the lemma only for α>0, since the case α = 0 can

be similarly treated. First, Lemma 3 and (1.5) imply that

Hence, it follows easily that ut-+Gu = ̂ u, •> is a continuous, 1-1 and linear map

of Jί? (α; p, oo) into « (̂ — α; p', 1)'. To see that this map is onto, let G be in

^(-α; p', 1)'. Let F be the element of ^(α; p', 1)' defined by

F(\v) = G(R-2αw) for w e 3e(u.\ p', 1)

or equivalently by
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GO) = F(R2"υ) for ue^(-α; pf, 1).

The proof of Theorem 8.1 of [1] then implies that there exists u' EJ^( — α; p, oo)
such that

G(V) = F(R2*v) = <ιι', R2*vy for every t? e «^(-α; p'9 1) .

Let u = R2Λu' e«^(α; p, oo). Then we conclude that

GO) = </r2βtι, #2αu> = «w, ι?> for all ye^(-α; p'9 1).

Lastly, to show that <w, t;> = <ι;, w> for all uEje2«tao and y e Jf (-α; p', 1),
it is sufficient, on account of (1.4), to verify this relation for any M, υ e jf*. With
this restriction on u and t;, various applications of Fubini's theorem and integration
by parts below are easily justified. Let k be a positive integer such that 2/c>α.
Then a repeated application of integration by parts shows that

Denoting the last integral on Rn by /, we derive from Fubini's theorem, Definition

2 and its remark that

7= R-2*R-2ku(x, t / 2 ) - S

2 ^ P ( x - y 9 S)υ(y9

, ί/2)

R»
(x9 t/2)dy.

Consequently, ^u, v^ = (v, M>, and the proof of the lemma is complete.

The following general lemma is known.

LEMMA 9 (cf. [2; Lemma 30]). Let X, Y be Banach spaces, and let Z be
a closed subspace of X. Let B( 9 •) be a continuous bilinear form on XxY.

Define

μ : χ - >

v : y — > Z

Assume that μ and v are isomorphisms ofX onto Y' and of Y onto Z', respectively.

Then there exists an isomorphism θ: X^Z" such that the restriction of θ to Z
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is the canonical embedding of Z into its second dual Z".

PROOF OF (S. 2). Again we shall give a proof only for the case α>0, because

the case α^O can be handled in a similar way. Apply Lemma 9 with X = 3?(u\

p9 oo), y=Jf(-α; jp', 1), Z = jfλ«^ and B( , •) = «•,'»• Then the assumptions

of Lemma 9 are satisfied by Lemma 8. Hence, the statement (S. 2) follows.

3. Remarks

(i) The method used here can also be adopted to show the following two

results. Let α be a real number, 1 < p ̂  oo and 1 ̂  q ̂  oo .

(S. 3) The dual ofd(a; oo, q) is isomorphic to Λ( — α; 1, q').
(S. 4) There exists an isomorphism p: Λ(α; p, oo)-»d(α; p, oo)" such that

the restriction of p to d(α; p, oo) is the canonical embedding of d(oc; p, oo) into

its second dual.

Here for a real number β and l^jp, g^oo, .4(β; p, g) is the Lipschitz space

defined by M. H. Taibleson [10] (see also [2]), and d(β; p, oo) is the closure of
£> (or &>) in Λ(β\ p, oo). Note that if l<p<oo, then d(β; p, oo) = Λ(β; p, oo),
and hence (S. 4) for this case was obtained earlier by T. M. Flett [2; Theorem 26].

(ii) There is another method of studying Lipschitz (Besov) spaces which is

based on Mihlin-Hormander's multiplier theorem, Plancherel-Polya-type in-

equality for entire functions of exponential type and the abstract theory of

interpolation. This method was initially developed by J. Peetre ([8], [9]) and

has also been extensively studied by H. Triebel and others (see [11] for a com-

prehensive bibliography on the development of this method). There are duality
results but mostly for non-homogeneous spaces of Taibleson (see e.g., [11],

[12]); Professor Triebel indicated to the author that there should be no serious
difficulty in extending some of them to the homogeneous case.

We conclude this paper by stating two problems that should be worth
studying.

PROBLEM 1. This problem was raised to the author by Professor R. Johnson
(private communication). He asked what one can say about the dual of Λ$t(l

when either p or q is oo. He also suggested that (Λ^00)' = Λ~^1 ®S£)00, where

S£>00 is the set of "singular elements" in a sense to be specialized. For simplicity

assume α>0. By considering the corresponding space of harmonic functions and

taking F EJί? (α; p, oo)', we see that there is a unique w e^fX — α; /?', 1) such that
F(v) = Fu(v) = (u, v) for all vejtfλ*^. Using this fact and identifying Fu with

u, we see that ^(a; p, oo)' = jf (-α; p', l)0jfS£>00, where ^S«>00 is the closed
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subspace of Jf (α; p, oo)' consisting of all linear functional that vanish

The problem is then reduced to that of finding as much information as possible

about #S 9aύ or S£>00.

PROBLEM 2. The second problem is of a more general nature. Can the

method used in [1], [2] and [3] be adopted to treat general domains in RnΊ
For a domain in Rn with the cone property, the analogue of Λ(oι p, q) was defined
by T. Muramatu [6] and the dual of this space in many extreme cases was in-

vestigated in [7] by a different method.
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