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§1. Introduction

Let G be a connected compact Lie group and K be a closed subgroup of G.
Let © and o be finite-dimensional unitary representations of K. We denote by
E. the homogeneous hermitian vector bundle associated with 7. Let 2(E,) be
the space of all C*® sections of E, with usual topology and 2’'(E,) be its dual
space. A homogeneous differential operator of 2(E,) to 2(E,) is a left invariant
differential operator on 2(G/K) when 1=0=the identity representation of K.
Let 2 be 2(G) or 2(G/K). In [1] Cerezo and Rouviere have determined when
an invariant differential operator on 2 has an elementary solution, by using the
Fourier transforms of 2 and 2’. On the other hand, N. R. Wallach has defined
the Fourier transform on E; and determined the images of 2(E,) and 2'(E,) in
[2].

The main purpose of the present paper is to generalize the notion of ele-
mentary solutions to vector bundle case and to characterize homogeneous differ-
ential operators which have elementary solutions. For this purpose we adopt
a different definition from [2] of the Fourier transform as a direct generalization
of [1].

Let V, be the representation space of 7. Sections of E_ can be identified with
V.-valued functions f which satisfy f(xk)=1(k™1)f(x) for all xe G and keK.
We first define the Fourier transforms of vector valued functions in §2. In §4
we study the images of 2(E,) and 2'(E,) by the Fourier transform which is the
restriction of the above Fourier transform. In §3 and § 5 we characterize homo-
geneous differential operators which have elementary solutions.

In [2] Wallach has determined which homogeneous differential operator is
globally hypoelliptic. In §6 we show when a globally hypoelliptic operator has
an elementary solution.

§2. Fourier transforms of vector valued functions

2.1. Let G be a connected compact Lie group and let dx be the normalized
Haar measure on G so that the total measure is one. For a finite-dimensional
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complex Hilbert space W we denote by ( , ), and | ||, the inner product and
the norm, respectively. Let C(G; W) be the set of all continuous W-valued
functions on G and C*(G; W) be the set of all infinitely differentiable W-valued
functions on G. And we denote by L%(G; W) the set of all measurable W-valued
functions f which satisfy

171 = ({_1reotiax)” < +oo.
We put

(f. 9) = SG (f(x)» g()wdx.

Let G be the set of all equivalence classes of irreducible unitary represen-
tations of G. Let &, be a fixed representative of ye G and V, the representation
space of m,. We put d(y)=dim¢V,. Let W(y)=End (V,)®W and w(G)=
U,e¢ W(y) (disjoint union). '

DerINITION.  For any fe C(G; W) we define a W(G)-valued function f on
G by
7o) =m0t @ f(xd.

We call f the Fourier transform of f.

Let e,..., e, (m=dim; W) be an orthonormal basis of W. For any two
elements A=3 "7, L;®e; and B=3 ", L;®e; of W(y) we put

(A’ B)y,W = Z7=1 tr (L.’/*LJ)’

where the asterisk denotes the adjoint of the matrix. Then it is not difficult to
see that ( , ), is independent of the choice of the orthonormal basis of W and
it defines an inner product of W(y). We put |4, »=(A, A)}/F and we put
(4, B),=(4, B), w and ||A]l,=||All, w in the case when W=C. For any w(G)-
valued function @ on G such that a(y) e W(y), we put

lall* = 3 ,e6 d@) a3 w-

Let L2(G; W) be the set of all W(y)-valued functions a on G such that a(y) e W(y)
for all ye G and |a||<+o. Then L2(G; W) is a Hilbert space with the norm
II 'l and the inner product

(a, b) = X,e6 d()(a(y), b()),,w-

The following lemma is well known.
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LEMMA 1. When dime; W=1, i.e., W=C, we have the following assertions:
(1) (Parseval’s equality) If fe C(G; C), then

Iz = 1715
(2) (Inversion formula) If fe C*(G; C), then

J() = Zyee dy) tr (1,() ()

(3) The mapping f~ f can be extended to an isometry of L*(G; C) onto
L*G; C).

For any element A=3"_, L;®e; € W(y) we put

Then we can easily see that tr is independent of the choice of the basis of W and
that it is a linear mapping of W(y) to W.

Let I, be the identity operator on W. If we apply the above lemma to each
coordinate, we have immediately the following lemma.

LemMma 2. (1) If fe C(G; W), then

If1l2 = 1715
) If feC*(G; W), then

J() = e d) tr ((m,(x) ® Iy)f(1);

(3) The mapping f~f can be extended to an isometry of L%G; W) onto
L2(G; w).

2.2. Let g be the Lie algebra of G and & the universal enveloping algebra
of the complexification of g. We identify ® with the algebra of all left invariant
differential operators on G. Let V be another finite-dimensional complex
Hilbert space. Then any element D=3 ;{,®L; of G@Hom (V, W) defines a
linear mapping of C*(G; V) to C*(G; W) by

Df)(x) = 2,;((§; ® LN (x) = Z; Li((; ) (x)).

Let dr, be the differential representation of m,. For any y€G and (e G
we put E(y)=d1ry(€). Let X,..., X,, (n=dim G) be a basis of g. For a multi-
index a=(ay,..., %), x;€N, 1<a;<n, of length p we put X*=X, ---X, and
(X =(=1PX,, - X,,. If E=3,¢,X* (c,€C), we put {*=3,C,(X*)*. Then
&* is the L2?-adjoint of ¢, i.e., for any f, g e C*(G; C), (&f, g9)=(f, E*g). It is
easy to see that
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(&) = EO)*
For any ye G and D=%;¢,®@L;e G®Hom¢ (V, W) we put
ﬁ(V) = Zj Ej('}’) ® Lj-
Then D(yp) is an element of End (V,)®Hom¢ (V, W). We put
D* =% ;¢ ® L%
Then we have (D*f, g)=(f, Dg) for all fe C*(G; W) and ge C®(G; V). As is
easily seen, we have
(D*)(y) = (DO)*.
If X eg and L e Hom¢ (V, W), then we have
(X ® L)Y () = (X() ® L] (y)
for any fe C*(G; V). Hence we have the following lemma.

LeEMMA 3. Let De G®Hom¢ (V, W). Then
(DOfY(@) =DMf),  (feC=(G; V), y€0).

The following two lemmas are analogies of Proposition 4 of [1]. .

LemMa 4. Let De ®®Hom¢ (V, W). Then the following statements (1)
and (2) are equivalent:

(1) The mapping D of C*(G; V) to C*(G; W) is injective;

(2) For all ye G there exists a left inverse of D(y).

LemMa 5. Let De ®®Homc (V, W). Then the following statements (1)
and (2) are equivalent:

(1) The image of C*(G; V) by D is dense in C*(G; W);

(2) For all yeG there exists a right inverse of D(y).

PrOOF OF LEMMA 4. (2)=(1). Let feC®(G; V) and assume that Df=0.
Then, for all ye G, D(y)f()=(Df)(y)=0 by Lemma 3. Let D(y);! be a left
inverse of D(y), ie. D(y).'eEnd (V,)®Hom, (W, V)=Hom¢ (W, V)(y) and
ﬁ(y){lﬁ(y)=lyy®ly. Then f(y)=D()c'D(»)f(y)=0 for all yeG. Therefore,
we have f=0 by Lemma 2.

(1)=(2). Let us assume that D(y)4=0 for Ae V(y). We define a function
feC>(G; V) by

f(x) = d@®) tr (n(x) ® Iy)A).
Then f(y)=A and f(3')=0 for y'#v, '€ G. Hence we have (Df)"(y")=0 for all
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y'€G. Therefore, Df=0 and hence f=0 by the assumption. By the irreduci-
bility of 7, we have 4=0. Thus we see that D(y) is injective. Q.E.D.

PrROOF OF LEMMA 5. (2)=(1). We assume AeW(y) and put f(x)=
tr (,(x)®1,)D(y)r'4) € C*(G; V), where D(y)z! is a right inverse of D(y). Then
f(»)=D(y)z'4/d(y) and f(y")=0 for y'#y, € G. Hence we have (Df)'(y)=
Ald(y) and (Df)"(y")=0 for y"#y. Therefore, we have (Df)(x) =tr((n,(x)®Iy)A).
Since the set of linear combinations of tr (n,(x)®Iy)A4), Ac W(y) and ye G, is
dense in C*(G; W), the image of D is dense in C*(G; W).

(1)=(2). By the denseness of the image of D in C*(G; W) we can see that
D* is injective. Hence there exists a left inverse (D*)*(y)f! of (D*)*(y) for all
ye G by Lemma 4. As D(y) =((D*)"(y))*, (D*)"(y){!)* is a right inverse of D(y).

Q.E.D.

Let us fix a positive definite inner product on g which is invariant under
Ad(G). Let X,..., X, be an orthonormal basis of g with respect to this inner
product. Let p be a positive integer. For a multi-index o of length p we put
le|=p. For any ¢ € N we define a differential operator D, by

Dy = ¥ ogui=a (XO)* X7,

where X*=X, ---X,. The following two lemmas are due to Cerezo and
Rouviére [1, p. 564].

LEMMA 6. Let A=—3"_, X;? be the Laplacian of G. Then D,=3}%_, 4/.

Hence D, is an element of the center of . Therefore, D,(y) is a scalar
operator of V, for all ye G.  We put Dy(y)=d,(y)I,.

LEMMA 7. For any yeG,
1 <do(y) <di(p) << dy(y) <.
And for any ¢ € N and a such that || < 4,

IX=Yely, < d2|olly,  forall vel,

2.3. If we identify (X*)(y) with (X*)*(y)®Iy, we have
IX*f113 = 2 1ee AW 1XYW DI2w
< e A T2 w (lef< )
< X0ec W) 1IDDF W2 w = 1D, f 13-

For fe C*(G; W) we set pu(f)=I1X*fll, and pj(f)=I[ID,fll,- Then we get
the following lemma.
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LemMA 8. The topology on C*(G; W) defined by the system of seminorms
{ul}, coincides with the topology on it defined by the system of seminorms {u?},.

We topologize C*(G; W) by the above seminorms and denote it by 2(G; W).
Let fe L%(G; W). Then, by Sobolev’s lemma, f is infinitely differentiable if and
only if X*fe L%(G; W) for all multi-indices «. Hence we have the following.

LEMMA 9. Let fe LA(G; W). Then fe 2(G; W) if and only if
> ee AN XY DI w < +00  for all multi-indices .

Let T: f—<T, f) be a linear mapping of 2(G; W) to C. Then T is con-
tinuous if and only if there exist a constant C>0 and an integer ¢ >0 such that
KT, fOI<C|D,f|l, for all fe 2(G; W). We denote by 2'(G; W) the set of all
continuous linear functionals on 2(G; W). Let W be the dual space of W and
we denote by (¢, w)y the value of pc W at we W. Let ey,..., e, be an ortho-
normal basis of Wand ¢;,..., ¢,, be its dual basis of W. Let ay(x), p, q=1,...,

d(y), be the matrix entries of m(x) with respect to a fixed orthonormal basis in

V,. If E}, are matrix units, then ny(x)®w=zgfz)=1 E} ®@a} (x)w, we W. The
functions x+a},(x)w are members of 2(G; W). For Te 2'(G; W) we put

T(y); = TEGL KT ap(xDepEp,  T(r*); = TaGL KT, a}(x)e; E},
and
T()’) = 2.T=1 T()’)j ® ¢j’ T()’*) = 2.7=1 T(Y*)j ® ¢j-
Then T(y) and T(y*) are elements of W(y)=End (V,)®W.
With any g € 2(G; W) we associate an element 6(g) of 2'(G; W) by
O). 15 = {_<a00, Sdwdx, e 2(Gs W. @

Then we have the following immediately.
LemMA 10. Let g€ 2(G; W). Then 0(g)"(y)=4(y) for all yeG.
For A=Y"_, L,®e;e W(y) and B=3"_, L;®¢, € W(y) we put
(B, Ay, w = X7 tr (L;L)).
If fe 2(G; W) and f(x)= X", f(X)e;, then
J() = Tyee d() Ty tr (1) fi(0)ej,

which converges in the sense of the topology of 2(G; W). Hence we have, for
Te 2'(G; W),

(T f> = Zyee d) L=y L8521 <T, a()e> Fi)gp
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= 31e6 d0) 71 tr (TG*);5,00) = Zoee AN TG, JOD -

Then there exist a constant C>0 and an ¢ € N such that

CIDufll2 = 12 4e6 AN TG, FO)Dyw]
= 12 e6 AN KTG*), Do fY 0wl

By Lemmas 7 and 5, D, 2(G; W) is dense in 2(G; W) and hence so is in
L*(G; W). Therefore, the mapping h— ®(h) defined by

B(h) = T e AWy KTG*), BG)

is a continuous linear functional on L2(G; W). Then by Riesz’s theorem and
Lemma 2 there exists a function a € L2(G; W) such that

(h, @)= ®(h) and |a] < C.
If we put h(x)=D(tr (n,(x)L)w) for LeEnd(V,) and we W, then we see that
h(y) = dy(y)d(y)"'L®w and h(y")=0 for y’' #7y, y'€ G. Hence
4y CTG®), LOWY, = (LOW, a(y)), = <a(i)*, LOWY,
where A* for A=3"7_, L;®e;€ W(y) is defined by A*=3m_, L*®¢;. Then
we have a(y)*=d,(y)"1T(y*). Then
2 1ec AWAMHTONZ 0 = Thee dO) la)* |25
= 2,6 d0) la)w = llal?> < C. (2.2)

Let W,=3>"_, Re; be the real form of W generated by e,...,e,. Then
W=W,+(—1)Y2W,. We denote by conj the conjugation of W with respect to
W, : conj(w; +(—D12w,)=w, — (= 1)2w, (w,, w, € W,). The conjugation f of
fe2(G; W) is defined by f(x)=conj(f(x)). Then the conjugation T of T
€ 2'(G; W) is defined by (T, f>=(T, fy. Then we can easily see that T(y*);
= %(y)’}-‘ for all j=1,..., m. Hence by (2.2) we have

3 ee AN 2N T 2.5 < C2. 2.3)

Since T and T are simultaneously members of 2'(G; W), T satisfies the same
type of inequality as (2.3). That is, there are a C>0 and an £ € N such that

3 1ec A2 TO)3w < C2.

Conversely, we assume that a W(G)-valued function b on G satisfies; (1)
b(y) € W(y) for all ye G and (2) the sum

2yee A () 21617,
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has a finite value, say C2? (C>0), for some ¢eN. Let b(y)=32"_, b(y);®¢;.
We put

(T £ = T yee d®) Ty {tr (GO0} (2.4)
for fe 2(G; W). By taking f(x)={a},(x)}"-e;, we can see that Ty(p)=b(y).

DEFINITION.  We call the W(G)-valued function T on G the Fourier trans-
form of Te 2'(G; W).

Then we have already proved the following.

PROPOSITION 1. A W(G)-valued function b on G is the Fourier transform of
some Te 2'(G; W) if and only if it satisfies the following conditions (1) and (2):

(1) b(y)eW(y) for all yeG;

(2) There exists an £ € N such that

2 ec AW 2bMIw < + 0.

In particular, if W=C and T=6 (Dirac’s delta), then 3(y)=I,, and [|5(y)|?
=d(y). Hence we have the following corollary.

CoRrOLLARY (Cerezo and Rouviére [1, p. 567]). There is an integer 6,e N
such that

> ye6 (d(y)/dﬂo(V))z < + 0.

For each fe C*(G; W) and a we set u3(f)=sup,.g | X*f(x)|w-

LEMMA 11. The topology of C*(G; W) defined by the system of seminorms
{u3}, coincides with that of 2(G; W).

Proor. Let fe C°(G; W). Then for any multi-index «

1X=f O = 1 ,e6 d) tr (my(x) @ Ip) (XY D)%
< (Zhee ) ()7t (my(x) @ Ty) (Do X f) (D)l w)?
< (Z4ee AP di(0) ) (T e litr (m,(x) @ Iy) (Do X ) (D)%)
< (Zyee A2 du(y) ™) (Zyee A 1D X ) W3, w)
= (Zyee )2 d(0) ) 1 XDy f 13-

Hence if £>24,+ |a|, then there exists a constant C>0 such that
1X2f()llw < CID.f |,

for all fe C*(G; W) and for all xe G by the corollary of Proposition 1. Con-
versely,
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1D. 113 = SG Do f (O)[Frdx < supse [1Do f (X) Iy Q.E.D.

Hence we can call any element of 2'(G; W) a distribution on G. The
following lemma is due to Cerezo and Rouriére [1, Lemma 3].

LEMMA 12, For any j,,..., j,€ N there exists a constant C>0 such that

dj,(¥)--+d;,(v) < Cdy(y)
for all £>2(j,+-+j,) and for all yeG.
From Proposition 1 and Lemma 12 we have the following.

LemMA 13. A W(G)-valued function b on G such that b(y)e W(y) for all
y€G is the Fourier transform of a distribution on G if and only if there exist
a C>0and an ¢ € N such that

16y < CdM/d(y)1/?  for all yeG.

PrOOF. The necessity can be seen easily. So we prove the sufficiency. By

Lemma 12 there is a C’>0 such that dy(y)d, (y) <C'd,(+4,)(y) for every yeG.
Then

bl y,W/dZ(a + Jzo)(')’)

= (16, w/de(¥) (@o(P)ds (N]Ara 40y PN/de (1)< CC'dy ()71 (2.5)
Hence

26 A2 40N O w < CPC2 E e d(y)?d, (1)2 < + 0. (2.6)

Therefore, by Proposition 1 there exists a distribution T such that T=b.
Q.E.D.

To obtain (2.6) from (2.5) it is sufficient to use the inequality |b(y)ll,» <
Cd,(y)d(y)!/2. Hence we have the following corollary.

COROLLARY. The following statements (1), (2) and (3) are equivalent:

(1) There exist an £€ N and a C>0 such that |b(y)|, w < Cdy(y)/d(p)!/?
for all ye G;

2) There exist an £€N and a C>0 such that |b(y)|l,w<Cd,(y) for all

yeG

(3) There exist an ¢eN and a C>0 such that |b(y)|, »<Cd,y(y)d(y)'/?
for all ye G.

LEMMA 14. Let a be a W(G)-valued function on G such that a(y) e W(y) for
allyeG. Then a is the Fourier transform of a function of 2(G; W) if and only
if for any £ €N there is a constant Cy>0 such that |[a(y)|l,w < Cod(y)'/%[d,y(y)
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for all yeG.

Proor. The necessity is easy to see by Lemma 9. To prove the sufficiency
we choose a constant C; so that d, (y)d,(y)<Cydy+4,(y). If there exists a
constant C, which satisfies the inequality in the lemma, then for any £e N

2 yee A (a3 w
< CP Xy @Ay (D)0 + 0 W* a2 w
S (CoCou400))* Xyec (A()/d, (1))* < + 0.

In particular, if we put £=0, we then have a e L2(G; W). Hence we obtain the
sufficiency from Lemmas 7 and 9. Q.E.D.

By Lemma 9, if fe 2(G; W), then || f(y)|],.w < C(dy(p)d(y)1/2)~1.

COROLLARY. The following statements (1), (2) and (3) are equivalent:

(1) For any £ € N there exists a C>0 such that |la(y)|,w < Cd(y)~1/2dy(y)~!
forall yeG;

(2) Forany ¢ €N there exists a C>0 such that |la(p)|l,.w < Cdy(y)~! for all
yeG;

(3) Forany 4 e N there exists a C>0 such that ||a(y)|l,w < Cd(y)"/2dy(y)~*
for all yeG.

Let 2(G; W) be the set of all W(G)-valued functions a on G such that a(y)
belong to W(y) and satisfy a condition in the above corollary. For ae 2(G; W)
we set

fo(a) = sup,ee (du(»)/d()'?) [a@),, -

We topologize 2(G; W) by the system of seminorms {fi,},.n. Let 2'(G; W) be
the set of all W(G)-valued functions b on G such that b(y) € W(y) and that there
exist an £ € N and a C> 0 satisfying [|b(y)|, » < Cd,(y)d(y)~* for all ye G.

Let fe 2(G; W). For any £ N we choose ¢'e N so that £'>2(4+¢,).
Then by Lemma 12 there is a constant C, >0 such that dy(y)d, (y)<C,d,(y) for
allye G. Then we have

IDuf 13 = Zsee AT D2 w
= 3 yee (A0)2d (3P dy (1) (du A | F 112w
< €} 3 pee (d)/ds () H{5UPsee (o)A@ | F ), w32.
If we put C=C (X ,cq (d()/d, ())?)!/?, then we have
IDyfll2 < C supyeq (Ao (/A 1T D)y

Conversely, we can easily see that
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supyee (diMAMY 1T D Nyw < 1D f -

Because of this bijectiveness of the Fourier transform we have thus proved that
the Fourier transform gives a topological isomorphism between 2(G; W) and
2(G; w).

For any be 2'(G; W) we defined T,e 2'(G; W) in (2.4), which is the in-
verse Fourier transform of b. Let f,€ 2(G; W) be the inverse Fourier transform
of ae2(G; W). We put (b, a)=(T,, f,>. Then the mapping a—<b, a) is
a continuous linear functional on 2(G; W). Conversely, if a—®(a) is a continu-
ous linear functional on 2(G; W), then the mapping f®(f) is a continuous
linear functional on 2(G; W). Therefore, there is a distribution Te 2'(G; W)
such that (T, f)=®(f). Then, for any ae 2(G; W), ®(a)={(T, f,>=<T, a).
Hence &=Te 2'(G; W). Therefore, 2'(G; W) is the space of all continuous
linear functionals on 2(G; W). We endow 2'(G; W) and 2'(G; W) with the
weak topologies as the conjugate spaces of 2(G; W) and 2(G; W), respectively.
We have now obtained the following theorem.

THEOREM 1. The Fourier transform gives topological isomorphisms of
2(G; W) onto 2(G; W) and also of 2'(G; W) onto 2'(G; W).

§3. Differential equations on G

3.1. We use the following identifications of linear spaces. Let W, W, W,
and W, be finite-dimensional complex Hilbert spaces.

@ WeWw,= Homc(Wp W,).
For w, e W;, w,e W, and ¢ € Wu (W1 @wy)(P) =L, Wi D, W,.
(b) Hom¢ (Wy, Wy) = (Homg (W,, Wy))".

For LeHom, (Wl, Wz) and MeHom,(W,, W,), <L, M>HomC(W1,Wz)=
tr CLM).

© 2G W)W, =2(G;, W, ®@W,).

Let efV,..., el and e{?,..., e{2) be orthonormal bases of W, and W,, re-
spectively. If fe 2(G; W,®@W,) and f(x)=3;; fij(x)eiV®@e? (f;j(x) € C), then
fi=2ifieV € 2(G; Wy) and f=3 ; f;®@e? € 2(G; W,)@W,.

@) 2(G;W)®W,=2'(G; W, ® Wy).

Let ¢$?,..., ¢ be the dual basis of e{?,...,e). Let T=Y;T;Qe? e
2'(G; W)®W, (T;€ 2'(G; Wy)) and =2 ,0¢P e 2(G; W)@W,=2(G;
Wi @W,). Then (T, f>=2%;<T; f.
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Let £(2(G; W,), W,) be the set of all continuous linear mappings of 2(G;
W) to W,.
(e 2(2(G; W), W) = 2'(G; W,) @ W,.
Let Te Z(2(G; W,), W,) and fe 2(G; W,). Then
T(f) = Z;<¢?, T(fDw,ef

We put (T}, [>=<d?, T(f/))w,. Then T;e2'(G; W,) and T=Y ; T;®e?
EQI(G; Wl)@Wz.

(f) 2(G; W) < 2'(G; W).

Here we identify fe 2(G; W) with 0(f) e 2'(G; W) (see (2.1)).

(8) Hom¢ (W,, W3) = Hom¢ (Homg (W;, W), Home (W), W3)).

Let LeHomg (W,, W;). We identify L with the mapping M—LM of
Hom( (W,, W,) to Hom (W, W3).

The convolutions SxT of two distributions S and T of 2'(G; C) and Tf
of Te 2'(G; C€) and a function fe 2(G; C) are defined as follows. For any
Fe 2(G; C) we put (,F)(y)=F(xy), x, yeG, and F(x):F(x“l). The function
x—FS5(x)=<8S, ,F) is an element of 2(G; C). Then {SxT, F)=<(T, F§). On
the other hand (T%f)(x)=<T, .f>. Then we have (S*T)"(y)=8(y)T(y) and

(Tf)"(») =TS () for all yeC.
Now let us define the convolutions of distributions on vector valued func-

tions. Let

S=3,S:®B;e 2'(G; C)@Homg (W,, W3)=2'(G; Hom (W,, W3)),

T=3,T,®C;€ 2'(G; C)®Hom, (W,, W,)=2'(G; Hom, (W,, W,)),

F=Y ,F,®A,e 2(G; C)®Hom¢ (W,, W)= 2(G; Hom¢ (W,, Wy)).
We put

(S¥T, Fy = X, {SiT;, Fy tr (\C;'B,A,).
If f=3,®w,e2(G; C)® W, = 2(G; W,), we put
(T¥f)(x) = X (Tirf)) (x) @ Cyw,.

Then it is not difficult to see that SxTe 2'(G; Hom¢ (W,, W;)) and Txfe 2(G;
W,) and that

(S*T)"(») = S»T(») and (T¥)(») = TRj(»)  forall yeG.
3.2. Forany (=3 ,c,X*e® we put *é=3, c(X*)* (here the notation is
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the same as in §2). Let D=3} ;({,®L;e ®®Hom (W,, W,). We define
'D e ®®Hom, (W,, W,) by

tD = zj 'fj ® ‘Lj.

For any Te 2'(G; W,) and Se 2'(G; W,) we define DTe 2'(G; W,) and
'DSe 2'(G; W;) by

(DT, gy =<T,'Dgy>, ge2(G; W),
DS, f> =<(S,Dfy,  fe2(G; W,).

Clearly, the mapping D: 2'(G; W,)» 2'(G; W,) and *D: 2'(G; W,)—2'(G; W)
are continuous.

Let De ®®Hom. (W5, W). By the identification (g), D can be considered
as an element of ®®Hom,(Hom. (W;, W;), Hom. (W,, W)) and hence as a
mapping of 2'(G; Hom¢ (W,, W;)) to 2'(G; Homg (W;, W)). On the other
hand, if we regard D e ®®@Hom; (Hom. (W,, W;), Hom¢ (W,, W)), then D is a
mapping of 2'(G; Homg (W,, W3)) to 2'(G; Homg (W,, W)). Let

Te 2'(G; Hom¢ (W, W,)) and Se 2'(G; Homg (W,, Wy)).
Then we have
DS e 2'(G; Hom¢s (W,, W)),  D(S*xT)e 2'(G; Homg (W,, W)),
(DSY(MT(») =Dy (SxT)Y\(»)  forall yeG.
Therefore, we have
D(S+T) = (DS)+T.

Let fe 2(G; W,) and Te 2'(G; Hom¢ (W,, W,)). 1If De G®Hom, (W,, W),
then D(Txf)e 2(G; W), DTe 2'(G; Hom¢ (W,, W)) and (DT)xfe 2(G; W).
Since (DT)"(y)f(y)=D(y) (Txf)(y) for all ye G, we have

D(Txf) = (DT)f.

- 3.3. Let dy be a continuous linear mapping of 2(G; W) to W so that
Sw(f)=f(1), fe 2(G; W). Regarding that d, is an element of 2'(G; WQW)
by the identifications (d) and (e), let us calculate the Fourier transform 8, of dy.

LEMMA 15.  As an element of End (V,Q W),
Sw(» =Iygw forall yeG.
PRrROOF.

Sw(y) = 2ij 2pa0ws ap(x™Ve; ® ¢, YE;, @ ¢; ® e;.
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We put f(x)=2X, f(x)®¢, and f(x)=0d,a},(x"1)e; where J5; is Kronecker’s
delta. Then

Ow, [) = 0wy [0 = Zs {5 Ow(fDw = Z s [(1)Dw = 0:j0py
Hence we have
Sw() = TIWE, @ X, ¢, ®e;.
Therefore,
e =1y, ® Iy = Iy g Q.E.D.
3.4. Let De ®®Hom, (V, W). Let us consider the differential equation
Df = u, 3.1
where u € 2(G; W).

PROPOSITION 2. If for any y€ G there exists a right inverse D(y)g* of D(y)
and if for any £ € N there is a constant C,>0 such that

DR A,y < Cod()/?dy(y)
for avery y € G, then the function f(x) defined by
f) = Tyee d) tr (m,()D()RA()) (3.2)
is a function of 2(G; V) and is a solution of (3.1).

PROOF. By Lemma 14 we know that fe 2(G; V). And f(y)=D(y)r'a(y).
Hence D(y)f(y)=a(y) for all ye G. Therefore, Df=u. Q.E.D.

3.5. Let De ®Hom (V, W).

DerINITION.  If a distribution E e 2/(G; Homg (W, 7)) satisfies DE=4y,
we call it an elementary solution of D.

LEMMA 16. If D has an elementary solution, then D is a surjective mapping
of 2(G; V) to 2(G; W).

Proor. Let E be an elementary solution of D. For any ue 2(G; W) we
put f=Exu. Then we have fe 2(G; V) and Df=DExu=0u*u=u from §§3.1,
3.2 and 3.3. Q.E.D.

THEOREM 2. Let De G®Hom (V, W). Then the following conditions are
equivalent: ‘

(1) D has an elementary solution;
(2) The mapping D of 2'(G; Homg (W, V)) to 2'(G; Hom¢ (W, W)) is
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surjective;
(3) For any ye G, D(y) has a right inverse D(y)g! which satisfies that there
exist a constant C>0 and an ¢ € N such that

IDGY g omeow,vy < Cdo(M)/d()V/2 for all yeG.

ProoF. Let E be an elementary solution of D. For any distribution Te
2'(G; Homg(W, W)), we put S=E+T. Then Se2'(G; Hom¢ (W, ¥)) and
DS=T. Implication from (2) to (1) is trivial.

On the other hand, E(y) is a right inverse of D(y) for all yeG. As Ee
2'(G; Homg (W, V7)), we have the inequalities in (3). Conversely, we assume
that D(y) has a right inverse as in (3). Then the mapping y—D(y)g! is clearly
in 2'(G; Homg (W, V)) and hence it is the Fourier transform of a distribution
Ee 2'(G; Hom¢ (W, V)). E is obviously an elementary solution of D. Q.E.D.

The operation of D on 2'(G; Hom, (W, V)) is as follows. By our identi-
fications, 2'(G; Hom¢ (W, V))=2'(G; C)QW®V and 2'(G; Hom¢ (W, W))
=2'(G; C)QW®W. From §3.2 D maps 2'(G; V)=2'(G; C)QV to 2'(G; W)
=2'(G; C)QW. If D=% ¢,®L;e 6®Hom,(V, W) and TQuve 2'(G; C)®V,
Then D(T®v)=3% ¢{;T®L;v and, as a mapping of 2'(G; Hom, W, 7)) to
2'(G; Hom¢ (W, W), (TR¢Rv)=Y (i T®P®Lp. Thus we have the follow-
ing lemma.

LeMMA 17. Let De ®®Homg (V, W). If D maps 2'(G; V) onto 2'(G; W),
then D has an elementary solution. Similarly, if the transpose D of D maps
2'(G; W) onto 2'(G; V), then D has an elementary solution.

3.6. In this number we assume that dim. V'=dim. W.

LeEMMA 18. Let De ®®Hom¢ (V, W). Then D has an elementary solution
if and only if so does 'D.

PROOF. Let E be an elementary solution of D. Then E(y) is a right inverse
of D(y) and is also a left inverse of D(y), i.e. E(y)D(y)=1Iy gy. By Lemma 4, D is
an injective mapping of 2(G; V) to 2(G; W). Hence D is a continuous bijective
mapping between two Fréchet spaces. Thus D is a topological isomorphism
between 2(G; V) and 2(G; W). For any Se 2'(G; V) the linear functional
g—<{S, D~'g> on 2(G; W) is continuous. Then there exists Te 2'(G; W) such
that (T, g>=<S, D~1g). Hence T, Df>={(S, f) for all fe 2(G; V), therefore,
S=!DT. Then by Lemma 17, *D has an elementary solution. Conversely, if
tD has an elementary solution, D has clearly an elementary solution since *(*D)
=D. Q.E.D.

THEOREM 3. We assume that dim¢ V=dims W. Let De G®Hom, (V, W)
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be an invariant differential operator of 2(G; V) to 2(G; W). Then the fol-
lowing conditions are equivalent:

(1) D has an elementary solution;

(2) *D has an elementary solution;

(3) D(2(G; V)=2(G; W);

(4) D is a topological isomorphism of 2(G; V) onto 2(G; W);

(5) D maps 2'(G; Homg (W, V)) onto 2'(G; Hom¢ (W, W));

(6) D(2'(G; Hom¢ (W, V))>2(G; Hom¢ (W, W));

(7) For any ye G, D(y) is invertible. And there exist a constant C>0 and
an 4 e N such that

“D('}’)ﬂ”v,ﬂomc(w,m < Cdy(y)/d(y)/? forall ye G.

ProoF. The equivalence of (1) and (2) is given in Lemma 18. The equiva-
lences between (1), (5) and (7) are in Theorem 2. Lemma 16 gives the implica-
tion from (1) to (3).

If (3) holds, the surjectivity implies the injectivity from Lemmas 4 and 5.
Then as in the proof of Lemma 18, D is a topological isomorphism of 2(G; V)
onto 2(G; W). By the duality, *D is a topological isomorphism of 2'(G; W)
onto 2'(G; V). Hence by Lemma 17, *D has an elementary solution.

The implication from (5) to (6) is a matter of course. Conversely, let us
assume that D(2'(G; Homg (W, V))>2(G; Hom¢ (W, W)). We put g,(x)=
d(y) tr (n(x))Iy, y€ G. Then there is T? € 2'(G; Hom¢ (W, V)) with DT7=g,.
Hence we have D(y)(T?)(y)= 9,(n=1y ®Iy. Thus D(y) is invertible. Let us
consider the bilinear form {h, f» =<0(f), h) defined on the product space of
2(G; Hom (W, W)) with 2(G; Hom, (W, W)), where the former is a metrizable
space with seminorms h+—|D,*Dh||, (£ € N) and the latter is a Fréchet space.
If <h, f) is separately continuous, it is continuous. It is trivial that it is con-
tinuous with respect to f for any fixed h. By our assumption, there is an Se€
2'(G; Homg (W, V) such that DS=f. Hence <h,f)=<(DS, h>={(8S, 'Dh).
Thus this is continuous with respect to h for any fixed f. Hence there exist a
constant C and ¢, ¢’ € N such that

ISG <h(x), f(x)>HomC(W,W) dx| = ClIDyf[|2IDy*Dhi,.

If f(x)=X,,/;(x)¢:®e;, we put f*(x)=3,,;f;(x)e;@¢;. Let A be an element
of End (V,)®@Hom (W, W) and put f(x)=d(y)tr((z,(x)®Iy)A4) and A=f*.
Then we have

I£13 = d(p) ”A“%,HomC(W,W)’

1D f1I3 = dy(y)*d(y) ”A”%,Homc(W,W)
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and
1Dy *Df*|13 = Dy D¥f |1} = dy(2)2d() |1 DD)* Al12 ttom . m-
Let A=D(y)*"!. Then
”D(y)—IHy,HomC(W,V) < Cdy(y)d,(y)d(y)t/2.
By Lemma 12 there is a constant C’ such that
dy(d(y) < C'dyo409(¥)

for all ye G. Thus we have completed the proof. Q.E.D.

§4. Fourier transforms on homogeneous vector bundles

4.1. Let K be a closed subgroup of G. Let 7 be a finite-dimensional unitary
representation of K. Let E,.=Gx_V, be the homogeneous vector bundle as-
sociated with . We identify the spaces of (continuous) sections, smooth sections
and L2-sections with C(G; 1), C*(G; t) and L*(G; 1), respectively, which are the
set of all functions f of C(G; V,), C*(G; V,) and L*(G; V,) such that f(xk)=
t(k)~1f(x) for x € G and k € K, respectively. Since C®(G; 7) is a closed subspace
of 2(G; V,), it is also a Fréchet space and we denote it by 2(G; 7).

We define the Fourier transform of sections on E, by the restriction of the
Fourier transform of C(G; V) to C(G; 7).

Let 0, be the continuous linear mapping of 2(G; V,) to V, defined by

s = orisak,  (fe2(G; V).

Regarding &, as an element of 2'(G; V,® V)=2'(G; Hom¢(V,, V), let us
calculate §..

LEMMA 19, 5.(7) = SK 7,(k) ® w(k)dk.
PROOF.
3y) = ZiGL Zpks (O ah(x e ® 9D E} ® ¢ ® ¢
= T4 T T (B 8y TER |l (0 RedOy. B} © 6, @ ¢

= Zi,j Zp,q SK a;q(k)E};q ® Tji(k)¢i ® ej = SK ﬂy(k) ® T(k)dk Q E D

By the invariance and the normalization of the measure we have

(m,(k) ® ©(k)IL(y) = 3y) (m,(k) ® (k) = S(7) 4.1)
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for every ke K and hence
S = 5.

Hence §(y) is a projection. Moreover, we can see that §(y) is self-adjoint with
respect to the inner product ( , ), .. Hence 5.(y) is an orthogonal projection of
V(y)=End (V,)®V, onto I(y, t)=Im 5 (y), the image of 5,(y), with kernel N(y, 1)
=ker 8,(y). The space V(y) is the orthogonal direct sum:

V(y) = 1(, 1) @ N(y, 7).

Let 2(G; 1)={ae 2(G; V)| a(y)eI(y, 1) for all ye G}. Then 2(G;1)is a
closed subspace of 2(G; V).

THEOREM 4. The Fourier transform gives a topological isomorphism of
2(G; 1) onto 2(G; 7).

Proor. Let fe 2(G; t). Then
) =m0t @ fidx = | m(ek=1y71 @ flxkdx = (m, 00 © ()] ()

for every ye G. Therefore, f(y) € I(y, 7) and hence fe 2(G; 7).
Conversely, let ae 2(G; t). Then by (4.1) we have

a(y) = 3(Ma(y) = (m,(k) ® ©(k)S.()ay) = (n,(k) ® ©(k)a(y).
Hence
(m (k) ® Iy )a(y) = (Iy, ® w(k)™Ha(y).
If we put
Fx) = Eyee d) tr (n,(x) ® Iy )a(y))
then fe 2(G; V,), and by the above relation we have
J(xk) = (k)71 f(x).
Hence fe 2(G; 1). Q.E.D.

Let L%(G; 1) be the set of all a e L%(G; V,) such that a(y) e I(y, 7) for all yeG.
Then L%(G; 7) is a closed subspace of L2(G; V,) and is the completion of 2(G; 1)
in L*(G; V,). Hence we have the following.

COROLLARY. The Fourier transform extended to L*(G; V,) gives an isome-
try of L¥(G; 1) onto LX(G; 7).

From the definition of the convolution in § 3,

(Okf) (x) = 356 d) tr (%) ® Iy, )0.(NF ().
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Because of the uniform convergence of the series, we can show that

(64/) (x) = SK (k) f (xk)dk.
Thus we have the following.

LemmA 20. A V-valued function fe 2(G; V,) is a section which belongs to
2(G; 1) if and only if 6 xf=f.

4.2. We denote by 2'(G; 1) the set of all continuous linear functionals on
2(G; 7). For Te 2'(G; V,) we denote by ®(T) the restriction of T to 2(G; 7).
Then it is clear that &(T)e 2'(G; 7). Conversely, if Se 2'(G; t), we can define
a distribution on 2(G; V,) by f—<S, é.#f>. For any Te 2'(G; V,) let us define
T.e 2'(G; V,) by

(T, f>=<Téx>, (fe2(G; V).
We put 2.={Te2'(G; V,) | T.=T}.
LEmMA 21. The mapping @ gives a linear isomorphism of 2. onto 2'(G; 7).

Proor. For any Se 2'(G; t) we put T=S,e€ 2'(G; V,). Then T.=(S,),
=S8,=T. Hence T,e 2; and from Lemma 20 we have ¢(T)=S. We next as-
sume that ¢(T)=d(T’), T, T'€ 2.. Then for any fe 2(G; V,),

KL f) =<T ) =<T, 04> =<T", 0> =<T,, f> =T, f>.
Thus we have proved that @ is an isomorphism. Q.E.D.

Remark that if we endow 2'(G; 7) with the weak topology, then & is a
topological isomorphism of 2;, which is a closed subspace of 2'(G; V,), onto
2'(G; 7). We thus identify 2'(G; t) with 2. hereafter.

Let 7 be the contragredient representation of 7 on V..

LemMmA 22. For any Te 2'(G; V,) we have
T.(y) = 6T and T,=5xT.
Proor. Let f(x)=ay,(x"e;e 2(G; V). Then
S4f(x) = gK al (k- 'x " Nr(k)e;dk = X2 3 49 SK al (k) (k~Yal (x~edk.
Then
0 = | Toa Zum(0CT, aly( e Ely © Wil = 5MT).

Q.E.D.
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Thus we can characterize the Fourier image of 2'(G; 7). Let
2'(G; 1) = {beD'(G; V))|5(»b(y) = b(y)  for all yeG}.

THEOREM 5. The Fourier transform gives a topological isomorphism of
2'(G; 1) onto 2'(G; 7).

4.3. Let 0 be the injection of 2(G; V,) into 2'(G; V) defined by (2.1).
LemMma 23. 0(2(G; 1)< 2'(G; 7).

PrROOF. Let fe 2(G; 7). For any g€ 2(G; V,) we have
O 8> = O, 9> = | <100, {2hgerdky, dx
= [ <[ sehk, g>s, dx = {_<G.aD @, 900>,

- SG f ), g(x)Yp.dx = O(f), g -

Therefore, 0(f);=0(f) and hence 8(f) € 2'(G; 7). Q.E.D.

§5. Differential equations on homogeneous vector bundles

5.1. Let o and 7 be finite-dimensional unitary representations of K. The
adjoint action of K on g can be lifted to an action on ®. We denote it by k- ¢,
£e® and ke K. Then K acts on G®Hom¢ (V,, V,) by

k-D=7%;k-&;®w(k)Ljo(k)™*
for D=3 ;¢,®L;, {;€6 and L;e Hom¢ (V,, V,). We put
HDy(0,7) ={De® ® Hom¢ (V,, V) | k-D =D  forall keK}.

We know that any D € HDy(o, 7) maps 2(G; 6) to 2(G; 1) (see N. R. Wallach
[2, §5.4.7]). And we know that any homogeneous differential operator of E,
to E, corresponds to an element of HDg(o, 7) (see N. R. Wallach [2, §5.4.11]).

Since
drn(Ad (k)X) = m(K)X(y)m, (k)™

for any ke K and for any X € g, we have
(k-D)"(y) = (m,(k) ® ©(k)D(y) (m,(k)~* ® o(k)~!)

for each De ®®Hom¢ (V,, V,). Hence if D € HD(o, ), then we have
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D) (m,(k) ® o(k)) = (m,(k) ® 1(k))D(») .
for all ke K. Therefore, we have
D()8,(y) = 5.(»D(») 5.1y

for all ye G. Hence we have D()I(y, 6)<I(y, t) and D(y)N(y, o) = N(y, 7).

5.2. We denote by & and 7 the contragredient representations of ¢ and 7
on VP, and V., respectively, as before. Then K acts on Hom¢ (V,, V,) by L
—6(k)L7(k)~1, and we denote it by A(k)L. For F € 2(G; Hom¢ (V,, V,)) we put

F¥(x) = F(k-'xk), (keK).

Let Te 2'(G; Hom¢ (V,, V,)). We define A(k)T and T*, which are members of
9/(C;; HomC ( Vt’ Va))a by

CUI)T, Fy =T, (k")Fy and (T* Fy =<T, F*™"),

where A(k™1)F is a function defined by (A(k~V)F)(x)=A(k~1)(F(x)). Let
2'(G; Homg (., V,)), be the set of all Te 2'(G; Hom, (V,, V,)) such that

Tk = (k)T  forall keK.
LEMMA 24. Let be 2'(G; Hom¢ (V,, P,)). Then b is the Fourier trans-
form of some Te 2'(G; Homg (V,, V), if and only if

(m,(k) ® a(k)b(y) = b(y)(m(k) ® ©(k))  for all keK.
PrOOF. Let Te 2'(G; Homg (V,, V,)),. Let ey,..., €4,y and éj,..., €,y be

orthonormal bases of V; and V,, respectively. And let @;,..., ¢4 and ¢i,...,
¢ be their dual bases. Then

(T(y) = 249 3489 801 (T, a)(kx k™ Ne; @ ¢5> E}, ® ¢; @ €
= (n (k) ® I, )T (m, ()1 ® I,).
On the other hand, by the identification Hom, (7., ¥,) with V,® P, we have
(k) (e: ® ) () = (x(k)e; ® 3(K)§) (¥)
for y e V.. Hence
AUk DTY () = Zi 2 Zpg SUEDT, aj(xNe; @ ¢70E), ® ¢; ® €
=25 2t 2pa KT ap(x e, @ ¢ E}, @ T(k™1)p, @ a(k™)e;
= (Iy, ® a(k"NT) Uy, ® (k).

Thus we have
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(m,(k) ® a(k)T(y) = T(y) (n,(k) ® ©(k))  forall keK.
Conversely, let b be an element of 2'(G; Hom¢ (V,, V,)) such that
(m,(k) @ a(k)b(y) = b(y)(n,(k) ® ©(k))  forall keK.

Then by Theorem 1 there is a unique Te 2'(G; Hom, (V,, V,)) such that T=b.
Hence for any ye G

(T ) = (m(k) ® Iy )b(y) (n (k)™ ® Iy,)
= (Iy, ® a(k)™") (n,(k) ® a(k)b(y) (m,(k)"* ® Iy)
= (Iy, @ a(k)™1)b(y) (n,(k) ® ©(k)) (m,(k)™* ® Iy,)
= (Iy, ® a(k)™)b() Iy, ® ©(k)) = (MkHT)().
Therefore, Tk=A(k"1)T. Hence Te 2'(G; Hom¢ (V,, V.)),. Q.E.D.

COROLLARY. If Te2'(G; Hom¢(V, V,), and ue2(G;1), then Txu
€ 2(G; o).

Proor. We know that Txu e 2(G; V,). From Lemma 24
(k) ® a(kNT(MA) = T() (m,(k) @ 1(k)i(y) = TRA®).
Hence T+u € 2(G; o) by Theorem 4. Q.E.D.

5.3. DEerINITION. Let DeHDg(o, 7). When there exists a distribution
Ee 2'(G; Homg (V,, V,)), such that

DE =4,
we call E an elementary solution of D.

We assume that D has an elementary solution E. Let ue 2(G; 7). Then
from the corollary of Lemma 24, f =E*u is in 2(G; 6). And

Dy f () = DWEMA(y) = S.na(y) = a(y)  forall yeG.

Therefore, f is a solution of the differential equation Df=u. Thus we have the
following lemma.

LemMMA 25. Let De HDg(o, 7). If D has an elementary solution, then D
is a surjective mapping of 2(G; o) to 2(G; 7).

We assume again that E is an elementary solution of D. By Lemma 24 we
have

EmS () = 8.ME®).
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Hence E(y)I(y, ©)<I(y, 6) and E(y)N(y, ©)=N(y, 0). We put D(y, 0)=D()l1(,,0
and E(y, ©)=E®)|;¢r)- Then

D(y’ G)E()” T) = II(y,r)’

where Iy, ., is the identity operator on I(y, 7). Hence E(y, 1) is a right inverse of
D(y, o).

Taking o=1 we define 2'(G; Hom¢ (V,, V), as before. Then by Lemma
24, 2'(G; Homg (V,, V), is the subspace of Te 2'(G; Hom¢ (V,, V) such that

(1,(k) ® w(kNT () = T() (m,(k) ® 2(k))  forall keK.
We put
2'(G; Homg (V,, V))x = {Te 2'(G; Hom¢ (V,, V,)),104T = T},
2'(G; Homg (P, V,))* = {Te 2'(G; Hom¢ (V,, V,)),|6,#T = T}.
Then Te 2'(G; Homg (V,, 7)) belongs to 2'(G; Hom¢ (V,, V.))4 if and only if
SMTM) = T(1o() = T(y)  forall yeG.
And Te 2'(G; Hom¢ (V,, V,)) belongs to 2'(G; Homg (V,, V,)), if and only if
5T = T = T(y)  forall yel.
Clearly, 6,€ 2'(G; Homg (7., D),
Let E be an elementary solution of D. Then if we put E, =6,%E, we have
D()E;(y) = DSME®) = DMEMS) = 5.(0)* = 6.()

forallye G. Hence E, is also an elementary solution of D. And E, is a member
of 2'(G; Homg (V,, V,))x.

Let L e Hom¢ (I(y, 1), I(y, 0)). If we denote by [L|, ., the Hilbert-Schmidt
norm of L, then

”L @ OHy,Homc(Vr,Vo') = ”L”y,r,o-’
where O is the null operator of N(y, 7) to N(y, o).

THEOREM 6. Let De HD(o, ). Then the following conditions are equiva-
lent:

(1) D has an elementary solution;

(2) The mapping D of 2'(G; Hom¢ (P, V,))x to 2'(G; Homg (P, V),
is surjective;

(3) For any ye G, D(y, o) has a right inverse D(y, o)g! which satisfies that
there exist a constant C>0 and an ¢ € N such that

IDG, )ztllyee < Cdo()d@)V?  for all yeG.
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Proor. We have shown the implication (1)=>(3).
(D=>(2).  Since for Se 2'(G; Hom, (7., V,)), we have

O ONOES O XONOESIONE)
by (5.1) and
D(»SMSy) = DMSH),

we see that D is a mapping of 2'(G; Hom¢ (V., V,))x to 2'(G; Homg (V., V.))s.
Let E be an elementary solution of D. For Te 2'(G; Hom¢ (V,, V.)), we put
S=E,+«T. Then Se 2'(G; Hom¢ (V., V,)). And we have

8.N8() = 8.ME.MTH) = ExNTG) = S(»)
and

S5 = ExNTM4) = ExTG) = 80).
Hence Se€ 2'(G; Hom¢ (V,, V,))«. Moreover,

D)3 = DME,MTH) = 6T = T(k).

Hence DS=T. Thus D is surjective.

The implication (2)=>(1) is trivial.

3)=(1). We put b(y)=D(y, 6)s'@®0, where O is the null operator of
N(y, 7) to N(y, 0). Then b(y) e Hom¢ (V,, V,)(y)=End (V,)®Hom¢ (V,, V,) for
all ye G and there are a C>0 and an £ € N such that

” b(Y)l[y,Homc(Vt,Va) S Cdﬂ()’)/d(y)llz for every y € G'

Hence by Lemma 13 be 2'(G; Hom¢ (V,, V,)) and we then have that there is
Te 2'(G; Hom¢ (V,, P,)) such that T=b. We put E=§,%«T%5,. Then Ee
2'(G; Hom¢ (Vra Va))* and
D(E®) = D38, T»)S.(»)
= 5.9 (D@, 0) ® D®)lney,e) (D7, O)R* D 0)o.(y)
= 6.(1D(y, 0)D(y, 0)x16.(7) = 6.(»)* = 5.»).
Hence DE=5,. Q.E.D.
LEMMA 26. If D e HDg(o, 1), then *D € HDg(%, ).
Proor. Let keK and X, Yeg. Then
(k- XY) ="((Ad (k)X)(Ad (k) Y) = (Ad (k)Y)(Ad (k)X)
= k-(YX) = k-/(XY).
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Hence for any £e€ ®
(kO =k
Thus we have, for D=3;¢{;QL;e G®Hom (V,, V),
Wk-D)=3%;k-"¢; ® to(k 'y Lt(k=1)"t = k-*D.
Therefore, D € HDy(o, 1) if and only if D € HDg(%, ). Q.E.D.

LemMA 27. Let De HDi(g, 7). If D maps 2'(G; &) onto 2'(G; %), then D
has an elementary solution. Similarly, if 'D maps 2'(G; 1) onto 2'(G; o),
then 'D has an elementary solution.

ProOOF. By Lemma 26, D maps 2'(G; 6) into 2'(G; T). By Theorem 6 it
is enough to prove the surjectivity of the map D of 2'(G; Hom¢ (7, V,))x to
2'(G; Homg (P, 7). We choose bases as in the proof of Lemma 24. Let
Se 2'(G; Hom¢ (V,, V). Under the identification 2'(G; Homg (V,, V.)=
2'(G; C)® V.®V,, we can write

S= 3,8 ®¢;®e, S,;€2'(G; C).
Then
80) =308 ® ¢ ®e,
where S;,(y) € C(y)=End (V,). We put
S;=3;8;;®e; (1£igd®).
Then S;€ 2'(G; OQV,=2'(G; V). Let §,(»)=3,L,®M,, L,eEnd(V,) and
M,eHom (V,, V,). We have
SM3M) = X1; T LSii(n) ® ¢ ® Mee; = 8(7).
On the other hand,
M8 = ;T LS,(») ® M,
Hence 6,(7)S,(y)=S8(y) for all ye G. This shows that S;e 2'(G; ). From our
assumption it follows that there are T;e 2'(G; é) such that DT,=S; If
D=Y,({@A4,e 6QHome (V,, V) and =3, T;,®¢, € 2'(G; C)QV,, then
DT, = 2,2.:&T;, @ A, = XS @ ;.
We put
T=7%:, T ® ¢: ® ¢, € 2'(G; Homg (¥, 7,)).
Then ' :
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DT=33¢T,@¢;® A€, =25, ¢p;®e;=S.
We put T'=Txd,. Since T, 2'(G; &), we can see that 5,(y)Ti(y)=Ti(y). Hence
8T’ = T'MéLy) = T'(),
ie. T"e 2'(G; Hom¢ (V,, V), And
DT' = (DT)*6, = S*o, = S. Q.E.D.

By the injection 0, 2(G; Hom (V,, V,)) can be regarded to be a subset of
2'(G; Hom¢ (P, V). We define 2(G; Hom (V,, V,)), as the subspace of all
fe 2(G; Homg (V,, V,)) which satisfy 8.(9)f(7)=f(1)d.(y)=f(y) for all yeG, that
is, f=0xf=f*0..

5.4. THEOREM 7. We suppose that rank d,(y)=rank d.(y) for all yeG.
Let De HDy(o, t). Then the following conditions are equivalent:

(1) D has an elementary solution;

(2) D has an elementary solution;

(3 D(2(G; 0))=2(G; 1);

(4) D is a topological isomorphism of 2(G; o) onto 2(G; 1);

(5) D maps 2'(G; Homg (V,, V,))x onto 2'(G; Home(V,, V)i

(6) D(2'(G; Homg (V., V,)s<2(G; Home (V;, V))us

(7) For any ye G, D(y, o) is invertible. And there exist a constant C>0
and an 4 € N such that

1D, 0) Uy < Cdu())d()'/?  for all yeG.

ProoF. The implication from (1) to (3) is given in Lemma 25.

(3)=(4). If D is a surjection from 2(G; o) to 2(G; 1), then D(y, o) is a
surjection from I(y, ) to I(y, ) for all yeG. Then D(y, o) is regular, for
dimg I(y, 6)=dim¢ I(y, 7). If Df=0 for fe 2(G; o), then D(y, 0)f(y)=0.
Hence f(y)=0 for all ye G. Therefore, D is a continuous bijective mapping of
2(G; o) to 2(G; 1) and is a topological isomorphism.

(4)=(2). We put D;=D|,G,,. Then the inverse mapping D;~! of D, is
a continuous mapping of 2(G; t) onto 2(G; g). For any Se€ 2'(G; g) the
linear functional T: g—<{S, D,~'g) is continuous on 2(G; 1), i.e. Te 2'(G; 7).
Regarding S and T as elements of 2'(G; V,) and 2'(G; V,), respectively, we get
S,=S and T,=T. Then for any fe 2(G; V,)

(8,0 =<85 1> =<8, 0% > = T, D(6,f)>
=<T, 6.4Df)) =T, Df) =T, Df) = {'DT. f) .

Hence S='DT. Thus we have proved that ‘D is a surjective mapping of
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2'(G; 1) to 2'(G; 6). Then 'D has an elementary solution from Lemma 27.

If *D has an elementary solution, then combining the fact D=*(*D) with the
implications proved above, we have (1).

(2)=(5). If *D has an elementary solution, ‘D is a topological isomorphism
of 2(G; %) onto 2(G; &) as mentioned above. Then by the duality D is a
topological isomorphism of 2'(G; ¢) onto 2'(G; %) in the sense of the weak
topology. Then, as we have proved in the proof of Lemma 27, D is a surjection
from 2'(G; Hom (V,, V,)), to 2'(G; Hom (P, V).

The implication from (5) to (6) is trivial.

By Theorem 6, (1) is equivalent to (7).

Now let us assume (6). We put

h(x) = d(y) SK tr (., (xk))e(k)dk.
Then h,e 2(G; Hom¢ (V,, V). We set

g,(x) = d(y) tr (m,(x))]y..
Then h,=6,+g. As we have seen in the proof of Theorem 3,
a0 =1, ®Iy..
Hence
) = 60d,(0) = 5.0

Therefore, h,e 2(G; Hom¢ (V,, V))x and by our assumption there is a T
€ 2'(G; Hom¢ (V,, V,)), such that DT?=h,. Then (T?)"(y) ;¢ is the inverse
of D(y, o). If we replace A by D(y, 0)*"!@0, where O is the null operator of
N(y, 1) to N(y, g), the rest of the proof is the same as that of Theorem 3. Then
we can prove that D(y, o)~! satisfies the condition in (7). Q.E.D.

§6. Global hypoellipticity and elementary solutions

Let o and 7 be finite-dimensional unitary representations of a closed sub-
group K of G. By Lemma 23 we can consider that 2(G; o) is a subspace of
2'(G; 6).

DErINITION. Let De HDg(o, t). Then, D is called globally hypoelliptic if
whenever DTe 2(G; 1) for Te 2'(G; 6) then Te 2(G; o).

We set G(6)={ye G|5,(y)#0}. For AeHom¢ (I(y, 6), I(y, 7)) we put
m(A) = inf {| Ao, v, | [vll,v, = 1, vel(y, 0)}.
For D e HDg(o, ) we put m‘;(D)=m;(D(y, 0)). The following theorem, which



170 Masaaki EcucHr and Keisaku KUMAHARA

characterizes globally hypoelliptic operators, is due to N. R. Wallach [2, Theo-
rem 5.8.3].

THEOREM 8 (Wallach). Let De HDg(o, t). Then the following conditions
(1) and (2) are equivalent:

(1) D is globally hypoelliptic;

(2) There are an £€ N, a C>0 and a finite subset F of G(a) such that

mg(D) > Cd,y(y)™? for all yeG(o)\F.

For Be Hom, (I(y, t), I(y, o)) we put
M3(B) = sup {||[Bwll, v, | Iwl,v, =1, wel(y, 7)}.

For a homogeneous differential operator De HDg(o, 1) we put My(D~!)=
M(D(y, o)1) if D(y, o) is invertible.

COROLLARY. Let De HDy(o, 1). If rankd$,(y)=rankd(y) for all yeG,
then the following conditions are equivalent:

(1) D is globally hypoelliptic;

(2) There exist an £€N, a C>0 and a finite subset F of G(c) such that,
for ye G(o)\F, D(y, o) is invertible and

Mi(D™Y) < Cdy(y).

Proor. (1)=(2). By Theorem 8 there are an £eN, a C'>0 and a finite
subset F of G(o) such that m%(D)>C'dy(y)"! for yeG(e)\F. Hence, for y
e G(o)\F, D(y, o) is invertible. Remark that if 4eHom¢ (I(y, 0), I(y, 7)) is
invertible, then Mt (A~')=m3(4)~'. Therefore, if we put C=C""!, we have
).

2)=>(1). Let yeG(o)\F. Let vel(y, o) be lvll,v,=1. Then D@y, o)v#0
and ||D(y, o)v],,.#0. Hence

1= lloll,y, = ID(y, &)=X(D(y, )0/ID(y, o)oll, v )y, 1Dy, OIoll,y,
< My(D7Y) [D(y, o)vll,.p, < Cdy(y) 1D(y, )0, v,
Therefore,
mg(D) > C~1dy(y)~*  forall yeG(o)\F.
Hence by Theorem 8, D is globally hypoelliptic. Q.E.D.

THEOREM 9. We assume that rank d,(y)=rank d,(y) for all yeG. Let
D e HDy(a, 7). Then D has an elementary solution if and only if it is globally
hypoelliptic and is an injective mapping of 2(G; o) to 2(G; 7).
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ProoF. Suppose that D has an elementary solution. Then by Theorem 7,
D(y, o) is invertible for every y € G and there exist a constant C>0 and an £e N
such that

ID(y, 6) e < Cdy(y)  forevery yeG.
Hence if we I(y, ) and |w|,y_ =1, then
ID(y, 0)"Wl,v, < Cdy(y) [Wll,y, = Cdy(y)  forevery yeG.
Therefore,
M3(D™!) < Cdy(y)

and then D is globally hypoelliptic by the corollary of Theorem 8.

Conversely, suppose that D is globally hypoelliptic and injective. We first
show that D(y, ¢) is invertible for all ye G. Let us assume that D(y, 6)v=0 for
vel(y, 6). We set f(x)=d(y) tr (m,(x)®Iy )v). Then f(y)=v and f(3")=0 for
y'#7v, '€ G and hence 6,(y)f(y")=f(") for all y’e G. Then fe 2(G; o) and
Df=0. Hence f=0. By the irreducibility of n,, v=0. Thus we have proved
that D(y, o) is injective and hence invertible. By the corollary of Theorem 8
there are an £e€ N, a C>0 and a finite subset F of G(o) such that

Mi(D™1) < Cd,y(y) for every e G(o)\F.
If we I(y, 7), we then have
ID(y, 0)~wll,y, < Cdy() Wl,y,  forany yeG(o)\F.

We put C’'=max {C, d,(y)"1|D(y, 0) !, (7€F)}. Let g be any function in
2(G; 1). Then for any je N we can find C;>0 so that

19y, < Cydi(0)7!

(Lemma 14 and its corollary). For any te N we choose j so that j>2(t+4).
Then we know that there is a constant C”">0 such that d,(y)d,(y)<C"d;(y) for
any ye G. We define a V,(G)-valued function a on G by

a(y) = D(y, 0)7'4().
Then it is easy to see that a(y) € I(y, o) for all ye G. Since we have
la)ll,,v, < C'C;C"d ()1 for any ye G,
a is the Fourier transform of a function fe 2(G; o). Since
(DfY(y) = DDy, 0)719() = 4(»),
we have Df=g. Therefore, D(2(G; 6)) =2(G; t). Hence by Theorem 7, D has
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an elementary solution. Q.E.D.
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