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§1. Introduction

Given a smooth function b(x, y), x, y € R, we set

bLx, u] = | b(x, uy  (or = | _b(x, yu(dy)

for a function u(y) (or a measure u(dy)), and consider

(1.1a) ﬁii - %‘a’_;‘; _ a—ax(b[x, ulu),
(1.1b) u(0, x) = u(x),

where u(x) is a probability density function. In connection with Kac’s work [4]
on the propagation of chaos for Boltzmann’s equation, McKean [7] described
the diffusion process {X(t)} associated with (1.1) as the limit process, as n— oo,
of any single component process of the diffusion X™(f)=(X{"(¢),..., X{M(1)) with
generator

n l ¢, 0° n 1 0
(1.2) KMe = 5 Zi=t ax(? + X (ﬁz:k#ib(xi’ x"))—axii

and with initial density u(x,)u(x,)---u(x,); in fact, it was shown that for each
fixed m the process {(X{"(?),..., XW(£))} converges in law to {(X,(?),..., X.(D))}
where {X,(1)}, k=1, 2,..., are independent copies of {X(f)}. Thus we have the
following law of large numbers:

(1.3) UM =n"134 5x§‘")(r) — u(®);

here J, denotes the o-distribution at x and u(f)=u(t, x)dx where u(t, x) is the
solution of (1.1). The next stage is the central limit theorem which investigates
the limit of

(1.4) SO(1) = nAU™() — u(v),

as n—oo. This kind of problem was considered by Kac [5] and McKean [8] for
Boltzmann’s equation, and by Martin-Lof [6] and It6 [3] for non-interacting
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Markovian particles. The present diffusion model differs from that of [6], [3]
in the sense that there are intermolecular interactions due to the dependence of
b(x, y) upon y.

The purpose of this paper is to find the limit process {S(t)} of {S("(¢)}, as
n—o0, in a very simple case in which b(x, y)= —A(x—y) for a positive constant
A. In this case, the diffusion process {X(f)} associated with (1.1) can be obtained
as the solution of the stochastic differential equation (SDE)

(1.5) dX(t) = dB(t) — MX(t) — pydt,

where {B(f)} is a 1-dimensional Brownian motion and p=E{X(0)}=E{X(®)}.
Without loss of generality we may assume that x=0 in which case the generator
of {X(?)} yields

(1.6) Ko =271¢" — Ax¢’.

Although the process {S((#)} is signed-measure-valued, the limit process {S(#)}
turns out to be distribution-valued. Our result is that {S(¢)} is a diffusion process
on an appropriate space @3, of distributions and satisfies the SDE

(1.7 d{5(1), 9> = d{B(®), ¢> + (S(1), (K+L)p)dt, @ePs;,

where {B(#)} is certain @},,-Brownian motion (continuous Lévy process on
®3,,), determined by (3.7) of §3, and (L,p)(x)=Au(t, " )x with u(t, ¢')=
E{¢'(X())}. Making use of Hermite polynomials, the SDE (1.7) will be solved
in an explicit form.

§2. The limiting Gaussian random field

The diffusion process X ™(t)=(X{")(¢),..., X{")(¢)) with generator K™ can be
obtained as the solution of the SDE

@1 XP0) = X, + B + - So BLX(s), UM(s)lds, 1<k <n,
for b(x, y)=—A(x—y), >0, where the initial values X,’s are mutually inde-
pendent random variables with common distribution u and {B,(f)}’s are inde-
pendent copies of a 1-dimensional Brownian motion; it is also assumed that
{Xy; k=1} and {By(t); k=1} are independent. If u has a finite expectation, that
is, if E{|X|} <oo, then by the result of McKean [7] (propagation of chaos) we
have E{|X{"(t)— X(t)|} >0 (n— o) for each fixed k, where X,(¢) is the solution of

. X0 = X+ BUD + | BIX), u(ds

u(s) = the probability distribution of X,(s).
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If in addition u has a smooth density, then u(¢) has also a smooth density which
is the solution of (1.1).

Let W be the space of continuous paths w: [0, c0)—>R, and denote by U the
probability measure on W induced by the process {X,(f)}. Any continuous
process in R may be regarded as a W-valued random variable which is denoted
by the corresponding bold face letter. The law of large numbers (1.3) is now
elaborated as follows:

(2.3) UM =n-t 3 oxm — U (in probability).
If we set
2.4) S = pt/2(U™ — ),

then it is expected that S(™ converges in law to some Gaussian random field S as
n—o0. In this section we calculate the characteristic functional of this limiting
random field S.

We notice that E{X,(t)} =E{X,}=u. Therefore, by making use of a trans-
lation in the phase space if necessary, we may consider only the case u=0. In
what follows we assume that u=0, and estimate the speed of convergence of

{X"(@)} to {X, (0}

LemMa 2.1. We have
2.5) XP@) = X, @) + n712Y (@),
where

2.6) YO =4 SO Z™(s)ds + %S;exp {— _@%} Z™(s)ds

_ 2 St exp {_%}Xk(s)ds ,

n—1 Jo
Z(n)(t) = n—1/22;=1 Xj(t) .

Proor. Solving the differential equation

Y'fcn)(t) — nl/z{n—ﬁTb[Xfc")(t), U(")(t)] - b[Xk(t), u(t)]}

—_ — ___’_1_)'_ (n) A n (n) ni (n) - n'/2),
n—lYk (t)+n_121=1YJ (t)+n‘—lz (t) n—1

Xk(t) ’
we obtain (2.6).

Denote by =, the set of functions £(w) which are expressed as
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2.7 &w) = e(W(11),..., w(ty))
with some ¢, t,,..., t,=0 and polynomials ¢(x,,..., X,,).

LEMMA 2.2. In addition to p=0, we assume that the initial distribution u
has finite absolute p-th moments for all p>0. Then E,< L*(W, N).

Proor. If X is a u-distributed random variable independent of a 1-dimen-
sional Brownian motion {B(t)}, then the probability law in the path space W of
the process

2.8) X(t) = eHX + go e Ht=9dB(s)
is W. Since E{|X(#)|?}<C, for any p=0, we have
Sflu(dw) = E{@(X(t,),... X(t,))} < ©
and hence £, < L¥(W, ).
We define S{” and U™ by
2.9 St = n2(UP — W) = n"12 31 (g, — U).

LemMA 2.3. Under the same assumption for u as in the preceeding lemma,
we have

(§M, & = (S, & + Xm10,0Y™(t) + R,,
for E(w)=p(w(ty),..., w(t,)) € E,, where
Yo(e) = A S; Z(s)ds ,
0,0 = E{0;0(X(t1)s-- s Xi(tw)} »
and R,—0 in probability as n— .
ProOF. We can write
EX M) — &X))
= o(X(t)+n~12YM(2),..., Xi(t) + 171 2YO(8,)) — o(X(t1)seees Xiltw)
=31 0,0(Xi(t),..., Xy(t,))n~H2Y (M(t;)
3 S:, S; O, 0(Xat) + n 1Y O(1))s,...., Xilty) +n=12Y 0 (2,) s)dsdt
x YR ()Y r(t)/n
= 21 0,0(Xilty),., Xi(tW)n™V2Y(M(1)) + Ry
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and hence
(SM, &y = (S, & + V2 U™ — U, &)
=8, & + T {n 1t Thny 00Xty Xt )}YEP(t) + n7Y2 20 Ry

Since E{|X(1)|P}<C, for any p>0, it follows from the expression (2.6) that
n~12yr_ R,—0 in probability as n—»oo0. Moreover, by the law of large num-
bers we have n™' ¥ i_, 0,0(X;(t1),..., Xi(tm))—~0;¢ in probability, proving the
lemma.

Let Z be the set of functions £ on W which are expressed as

(2.10) E= &0+ Szo.éla(t)dt,

with some &,, &, € Zy, 0Sa<b<oo and a continuous function a(t) on [0, c0),
where 0, denotes the shift: (6,w)(s)=w(t+s), s=0 and (6,¢,)(w)=¢&,(0,w). We
introduce a linear operator A: E— L2(W, U) by

A =A¥m, aj_wg” ws)ds, i ¢is of the form (2.7)
0
— AL, + S" A )a(s)ds,  if & is of the form (2.10).

Then we have the following theorem.

THEOREM 2.1. We assume that the initial distribution u has finite absolute
p-th moments for all p=0 and u=0. Then for any £E€ E

lim,_, , E{ei5‘":8} = ¢=Q(8)/2,

where Q(&)=|E+ AE)2—(E+ A&, 1)? and |-| and (-, -) denote the norm and the
inner product of L%(W, W), respectively.

Proor. It may be enough to consider only when £ is of the form (2.7).
Introducing the evaluation map e,: W— R defined by e(w)=w(t), we have {S{, e,>
=Z™)(t), and hence

YOt = A g Z(s)ds = A S' (S, e>ds = (S, AS' e ds .
1] 0 0
Therefore, we have
lim, ., E €58 = lim, o, E exp {i<S§, & + i 71 0;0Y™(2,)}
= lim,, E exp {i{(S{, £ + AX 71 0,0 S; e ds)}

= e~2Q)/2,
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in which we have used the classical central limit theorem.

§3. The SDE for {S(z)}
Let {S(&), £ € E} be a Gaussian random field such that

E{ei$:0) = ¢ @®)/2,  feE,

where Q(¢) is defined in Theorem 2.1, and define S(¢) by <{S(?), @) =<8, e(w(t))>
for any polynomial ¢ of xe R. Then we have

lim, o E{e<S™ 1,05} = E{eiS®.0)} |

In this section we derive the SDE for {S(f)} by making use of a method of It6 [3].
In what follows we assume that a probability distribution u, which is to be
the initial distribution of the diffusion process {X(f)} with generator K, has a

density u(x) satisfying ;1=S xu(x)dx=0 and
3.1 u(x) < const. g(x),

where g(x)=(A/n)1/2¢~***, Denote by u(f) the probability distribution of X(¢).
Then it has a density u(t, x) which also satisfies u(t, x)<const. g(x), the const.
being the same as the one in (3.1).

We introduce the following notations:

H,(x) = H,(x; A) = (—1)"{n!(2/1)"}‘1/2e1"’Z,%e“"z, n=0,1,..,
P = {¢ = X a,H, (finite sum), a, = real},
lellz = 1% Ly ai(k+1/2)**, aeR,
®, = | - |l ,-completion of P,
&/, = the dual space of &, (=d_,),
o=nN,9, =9,
For ¢ € P we set

t
Mfo, w) = e(w(®) — e(w(0)) — SO(K(P) (w(s))ds .
Then {M (¢, w)} is a U-martingale, and it is not hard to prove
t
(32) Mo, Wi = {10z,

(33 (Mo, W, M, ) = | @' o,
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where | - ||,y and (-, -), denote the usual norm and inner product, respectively,
in L2(R, u(7)).

LemMa 3.1.  If we set
&, w) = Mg, w) = 4] uGs, 9 wis)ds
for ¢ &P, where u(s, ¢)=E{¢'(X(O)}, then
(3.4 Elow) + ALlg, W) = Mg, W),

(3.5) lim, ., E{<S™ 80,1} = exp {— S' @’ |2 ds[2} .
0

ProoF. It is enough to prove that A¢(¢, w)=lgt u(s, 9" )w(s)ds. By the
0

definition of A, we have
t t s
A% (9, W) = 2utt, 0 |\ wi)ds = 2 (' uts, (Koy)ds | weorde
— A2 St u(s, (p’)dsgs w(t)dr.
0 0
Since ji(s, ¢")=u(s, Ko')=u(s, (Kp)' +1¢’), we have
t t s
A&lp, w) = 2utt, @) ] wisrds 2§ s, 92ds | oy
= lgt u(s, @"Yw(s)ds (integration by part),
0

as was to be proved.

For ¢ € P we can write
(3.6)  <S(), 9> — <S(0), > = <S, p(W(1)) — P(W(0))>

= <8, &lo, W + <5, | Ky w©)ds + 2" s, o m(o)dsy

= ¢S, &0, W + ] <S(), Kodds + 2 uts, 0)<SE), 01>ds

where ¢,(x)=x. A method of It [3] is to derive the SDE for {S(¢)} from (3.6)
by noticing that

B(¢p) = <S8, o, w))

defines a @’-Brownian motion. In fact, by Lemma 3.1 we have

Efemorm@n) —exp (- | |9'l3ndei2},  0Ssst,
s
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and because of the bound
l¢"I%w < const. [¢'[|3 < const. [},

there exists a Brownian motion (=continuous Lévy process) {B(t)} in ®3,, such
that

3.7 Ee @02} =exp (| 10'30de/2), o€,
(3.3) {B(t), > = B(¢), a.s. for peP.

Now (3.6) yields

(3.9 d{S(1), 9> = d<B(1), ¢} + {S(1), Ko + Lip)dt,

where L,: p—Au(t, ¢")o,.
Our next problem is to solve the SDE (3.9). Here, the test function ¢ is
taken from @. Setting

B(t) = (B(t), Hy), k=0,1,..
S () = (S(), Hy), k=0,1,..,
and noting that H,’s are eigenfunctions of K (KH,= —21kH,), we have from
3.9
dS(t) = dBy(t) — 2AkS,(t)dt + (A/2)2u(t, H})S,(d)dt .

This can be solved easily; the result is

So(H) =0,

t

S = e 24 5,0) + | e2re-0 apy(s)

(0]

+ RO, s, He s, + ! Rt=9 (' ute, By )aeaB,9),
where
Ry (1) = kV2(2k—1)"1(e 4t —e=24ke)=1
and {S,(0), k=1} is a Gaussian system with
E{Sj(O)Sk(O)} = (Hj‘Hj, Hk—ﬁk)u,

E{50} =0, H;

J

= S H(xu(x)dx .

Thus, {S(?)} is a diffusion process on @3,, and we obtain the following theorem.

THEOREM 3.1. For any polynomials ¢4,..., ¢,, of x(eR) and t,,...,t,>0,
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joint distribution of {S™(t,), ®1),-.., <S™(t,), ¢,y converges to that of

{8(ty), @175..., {S(tn), @my as n—oo, where {S(1)} is a diffusion process on D3,
satisfying the SDE (3.9).
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