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§ 1. Introduction

Given a smooth function b(x, y), x, y eR, we set

,ti] = ( b(x,y)u(y)dy (or = ( b(x, y)u(dy))
JR JR

for a function u(y) (or a measure u(dy))9 and consider

/i 1 \ du I d2u d ,ur -, x
( U a ) W = T-dx-i---Jx-(blx>U^u)>

(1.1b) u(0,x) = u(x),

where u(x) is a probability density function. In connection with Kac's work [4]
on the propagation of chaos for Boltzmann's equation, McKean [7] described
the diffusion process {X(t)} associated with (1.1) as the limit process, as n->oo,
of any single component process of the diffusion X(n\t) = (X[n)(t),..., X(

n
n)(t)) with

generator

(1.2) J5T<"V = i ^

and with initial density u(xl)u(x2)"-u(xn); in fact, it was shown that for each
fixed m the process {(X[n\t),..., X^\t))} converges in law to {(Xt(t),..., Xm(t))}
where {Xk(t)}9 fe=l, 2,..., are independent copies of {^(0}- Thus we have the
following law of large numbers:

(1.3) t / ( M )«=«- 1E2=i^cn ) ( 0 —>*/(/);

here Sx denotes the ^-distribution at x and u(t) = u(t, x)dx where u(t9 x) is the
solution of (1.1). The next stage is the central limit theorem which investigates
the limit of

(1.4) S(*>(0 = n^\U^\t) - u(t))9

as n-»oo. This kind of problem was considered by Kac [5] and McKean [8] for
Boltzmann's equation, and by Martin-Ldf [6] and Ito [3] for non-interacting
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Markovian particles. The present diffusion model differs from that of [6], [3]
in the sense that there are intermolecular interactions due to the dependence of
b(x9 y) upon y.

The purpose of this paper is to find the limit process {S(t)} of {,S(w)(0}, as
n->oo, in a very simple case in which b(x9 y)= — X(x — y) for a positive constant
X. In this case, the diffusion process {X(i}} associated with (1.1) can be obtained
as the solution of the stochastic differential equation (SDE)

(1.5) dX(t) = dB{t) - X(X(t) - fi)dt,

where {B(i}} is a 1-dimensional Brownian motion and fi = E{X(0)} = E{X(t)}.
Without loss of generality we may assume that /i = 0 in which case the generator
of {X(t)} yields

(1.6) Kcp = 2 - V - kxcp'.

Although the process {5(/l)(0} is signed-measure-valued, the limit process {S(i)}
turns out to be distribution-valued. Our result is that {S(t)} is a diffusion process
on an appropriate space <P'3/2 of distributions and satisfies the SDE

(1.7) d<S(t), cpy = d<B(t), cp} + <S(0, (K + Lt)cp>dt9 cp E <P3/2,

where {B(t)} is certain 4>3/2-Brownian motion (continuous Levy process on
#3/2)* determined by (3.7) of §3, and (Lt(p)(x) = Xfi(t9 cp')x with fi(t9 <p') =
E{<p'(X(f))}. Making use of Hermite polynomials, the SDE (1.7) will be solved
in an explicit form.

§ 2. The limiting Gaussian random field

The diffusion process X^n\t) = (X[n\t)9..., X(
n
n\i)) with generator K^ can be

obtained as the solution of the SDE

(2.1) Xi«Xi) = Xk + Bk(t) + - A _

for b(x, y) = — k{x — j;), X>0, where the initial values Xk's are mutually inde-
pendent random variables with common distribution u and {Bk(t)}'s are inde-
pendent copies of a 1-dimensional Brownian motion; it is also assumed that
{Xk\ k^.1} and {Bk(t); k^l} are independent. If u has a finite expectation, that
is, if E{\Xk\}<oo, then by the result of McKean [7] (propagation of chaos) we
have E{\Xk

n\i)-Xk(t)\}^0 (n->oo) for each fixed k, where Xk(t) is the solution of

I Xk(t) = Xk + Bk{t) + Jo blXk(s), u(s)-]ds

' •• u(s) = the probability distribution of Xk(s).
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If in addition u has a smooth density, then u(t) has also a smooth density which
is the solution of (1.1).

Let Wbz the space of continuous paths w: [0, oo)->R, and denote by U the
probability measure on W induced by the process {Xk(t)}. Any continuous
process in R may be regarded as a PF-valued random variable which is denoted
by the corresponding bold face letter. The law of large numbers (1.3) is now
elaborated as follows:

(2.3) £/<"> = n-1 22=i 5X<»> > H (in probability).

If we set

(2.4) S^=

then it is expected that 5 ( n ) converges in law to some Gaussian random field S as
n->oo. In this section we calculate the characteristic functional of this limiting
random field S.

We notice that E{Xk(t)} = E{Xk}=ji. Therefore, by making use of a trans-
lation in the phase space if necessary, we may consider only the case fi = 0. In
what follows we assume that /x = 0, and estimate the speed of convergence of
{Xi*\t)} to {Xk(t)}.

LEMMA 2.1. We have

(2.5) *£»>(/) = Xk(f) + n-"2Yln)(!),

where

(2.6) r £»>(/) = A T ZW(js)ds + J^J T exp | -

PROOF. Solving the differential equation

we obtain (2.6).

Denote by So the set of functions £(w) which are expressed as
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(2.7) Z(w) = cp(w(tl),...9w(tJ)

with some tl9 t2,..., tm^0 and polynomials cp(x1,..., xm).

LEMMA 2.2. In addition to ju = 0, we assume that the initial distribution u
has finite absolute p-th moments for all p>0. Then SoaL2(W9 U).

PROOF. If X is a w-distributed random variable independent of a 1-dimen-
sional Brownian motion {B(t)}, then the probability law in the path space W of
the process

(2.8) X(t) = e~XtX
Jo

is U. Since E{\X(t)\p}gCp for any p^09 we have

) = EMXitJ,..., X(tm)Y} < oo

and hence 30aL2(W, U).

We define S(
o

n) and C/̂ > by

(2.9)

LEMMA 2.3. Under the same assumption for u as in the preceeding lemma,
we have

/or |(w) = (p(w(r1),..., w ( O ) e S 0 . where

jRn->0 in probability as n->oo.

PROOF. We can write

i),..., Xk(tJ)

Rttk,



Central limit theorem for a simple diffusion model of interacting particles 419

and hence

h),..., Xk(tm))}Yi»\tj) + n^2 ZUi Ku

Since E{\Xk(t)\
p}^Cp for any p>0, it follows from the expression (2.6) that

n~1/2 Xic=i^!fc->0 *n probability as n-»oo. Moreover, by the law of large num-
bers we have n'1 ^^=1dj(p(Xk(t1),..., Xk(tm))-^dj(p in probability, proving the
lemma.

Let S be the set of functions t; on W which are expressed as

(2.10) { = «o

with some £0, ^ e S 0 , 0 :ga<b<oo and a continuous function a(i) on [0, oo),
where 0t denotes the shift: (0rw)(s) = w(t + s), s^O and ( ^ i ) ( w ) = ^1(0rw). We
introduce a linear operator A: E^L2(W9 U) by

^ = A E7=i ^ ( ° w(5)ds, if { is of the form (2.7)

= i4£o + T ^(O^Oa^ds, if f is of the form (2.10).
J a

Then we have the following theorem.

THEOREM 2.1. We assume that the initial distribution u has finite absolute
p-th moments for all p^.0 and n = 0. Then for any £ e E

where Q(O = \£ + A£\2-(£ + A£, I ) 2 and \ \ and ( • , •) denote the norm and the

inner product of L2(W, U), respectively.

PROOF. It may be enough to consider only when £ is of the form (2.7).
Introducing the evaluation map et: W->R defined by et(w) = w(t), we have <5^n), ety
= Z^n\t\ and hence

y<»>(0 = A [' Z^(s)ds = X [' <Si">, es>ds = <5^w), A T esds} .
Jo Jo Jo

Therefore, we have

lim^co E e*<sin>-t> = lim^oo E exp {

= l i m ^ , £: exp
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in which we have used the classical central limit theorem.

§3. TheSDEfor {S(t)}

Let {S(Q, £ e E} be a Gaussian random field such that

where Q({) is denned in Theorem 2.1, and define S(f) by <S(f), <P> = <S,
for any polynomial cp of x e R. Then we have

In this section we derive the SDE for {5(0} by making use of a method of ltd [3].
In what follows we assume that a probability distribution u, which is to be

the initial distribution of the diffusion process {X(t)} with generator K, has a

density u(x) satisfying /x= \ xu(x)dx=0 and

(3.1) u(x) < const. g(x),

where g{x)=^{Xjnyi2e~Xxl. Denote by u(t) the probability distribution of X(t).
Then it has a density u(t9 x) which also satisfies u(t, x) < const. g(x), the const,
being the same as the one in (3.1).

We introduce the following notations:

Hn(x) = Hn(x; X) = {-\Y{n\{2iy}-We**-^e-**\ n = 0, 1,...,

3̂ = {cp = J] ak#fc (finite sum), ak = real},

*« = II • II .-completion of ^J,

<P'a = the dual space of 4>a ( ^ (P_a),

For 9 e ̂ 5 we set

Mt(<p9 w) = 9(w(0) ~ <PW)) (
Jo

Then {M,(<j», w)} is a U-martingale, and it is not hard to prove

(3.2)

(3.3) {Ml<p, w), MM, w)) =
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where || • ||tt(T) and (•, -)U(T) denote the usual norm and inner product, respectively,
in

LEMMA 3.1. If we set

£,(?, w) = Mt(<p, w) - A \ iz(s, (p')w(s)ds
Jo

for <pe% where fi(s9 (p') = E{(p'(X(s))}9 then

(3.4) U(p,w) + Atfo, w) = MJL<p9 w),

(3.5) lim^oo E{*<sin>-M*>»»} = exp { -

PROOF. It is enough to prove that A^t((p9 w) = X\ fi(s, (p')w(s)ds. By the
Jo

definition of A, we have

Jo

( ^ 9 ) ( ( )
Jo Jo

Since /i(s, (pf) = fi(s, K<p') = fi(s, (Kcp)' + Xq>'), we have

, w) = A/<r, cp') [' w(s)ds - Af /i(s, cp')ds f
Jo Jo Jo

= k\ fi(s, (p')w(s)ds (integration by part),
Jo

as was to be proved.

For cp E ̂ } we can write

(3.6) <5(r), <P> ~ <S(0), cp) = <S, 9(w(0) " 9

where cp^^x. A method of Ito [3] is to derive the SDE for {5(0} from (3.6)
by noticing that

defines a ^'-Brownian motion. In fact, by Lemma 3.1 we have

= e x p { - ( ' \\(p'\\2
u(t)dxl2}, O g s g f ,

Js
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and because of the bound

\\<p'\\iit) ^ const. \\<p'\\* ^ const. \\<p\\lf2

there exists a Brownian motion ( = continuous Levy process) {B(i)} in <P'3/2 such
that

(3.7) { } p {[
Jo

(3.8) <B(t), <p> = Bfo), a.s. for

Now (3.6) yields

(3.9) d(S(t), q>y =

where L,: <p-*X(j(t, (p')<pi-
Our next problem is to solve the SDE (3.9). Here, the test function q> is

taken from $. Setting

Bk{t) = <B(t\ Hk}, k = 0,l,...

sk(t) = <s(o, Hky, k = o, i,...,

and noting that Hks are eigenfunctions of K (KHk= — 2XkHk), we have from
(3.9)

dSk{t) = dBk{i) - 2XkSk(t)dt

This can be solved easily; the result is

So(0 s 0.

Sj(0 = e-2Afct Sk(0) + {' e-2Xk«
Jo

+ Rk(t) \' fa H^JdsSM + \' Rk(t-s) \'
JO Jo Js

where

Rk(t) = k^2^k-\y\e-kt-e-1Xkt)r^
and {5fc(0), fc^l} is a Gaussian system with

E{Sj(0)Sk(0)} = (Hj-Hj, Hk-Hk)u9

E{Sj(0)} = 0, Hj = J Hj(x)u(x)dx.

Thus, {5(0} is a diffusion process on 3>3/2 and we obtain the following theorem.

THEOREM 3.1. For any polynomials (px,..., cpm of x(eR) and tu..., tm>0,
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the joint distribution of <S(M)(*i), <?!>,..., <S(n)(fm)> <Pm> converges to that of
(Sfa), (?!>,..., <S0m)> <?/*> as n->oo, w/zere {5(0} is a diffusion process on <P'3/2

satisfying the SDE (3.9).
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