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Throughout the present paper, R will represent an associative ring (with or
without 1), and C the center of R. We denote by N and D= D(R) the set of all
nilpotent elements and the commutator ideal of R, respectively. Given a, beR,
we set [a, b]=ab—ba as usual, and formally write a(1+ b) (resp. (1+ b)a) for
a+ab (resp. a+ba). Let m, n be fixed positive integers.

Following [7], a ring R is called s-unital if for each x in R, xe Rx N xR. As
stated in [7], if R is an s-unital ring, then for any finite subset F of R, there exists
an element e in R such that ex=xe=x for all x in F. Such an element e will be
called a pseudo-identity of F.

We consider the following conditions:

1) There exist non-zero polynomials ¢(z), ¥(t) with integer coefficients whose
constant terms are 0 and such that [¢(x), y(y)]=0 for all x, yeR.

1), [x*, y»]=0forall x, yeR.

1), For each pair of elements x, y in R there exists a positive integer i=
i(x, y) such that [x"‘, y»]=0.

2), (xy)*=x"y" and (xy)"*1=x"*1yn*1 for all x, y e R.

3), (xy)*=(yx)" for all x, yeR.

4), [x, (xy)"]=0 for all x, yeR.

5). [x", y]1=0 for all x, yeR.

5), For each pair of elements x, y in R there exists a positive integer i=
i(x, y) such that [x", y]=0.

6), [x*, y]=[x, y*] for all x, yeR.

6), There exists a polynomial () with integer coefficients such that
[x2¢(x), y]=[x, y*] for all x, ye R.

6), [x, (x+y)"—y"]=0for all x, yeR.

7)., For each pair of elements x, y in R there exists a polynomial p(t)=
p(x, y; t) with integer coefficients such that [nx —x2p(x), y]=0.

8), For each pair of elements x, y in R there exist a positive integer i =i(x, y)
with (i, n)=1 and a polynomial ¥(f) =V(x, y; t) with integer coefficients such that
[ix—x2y(x), y]1=0.

9), For each pair of elements x, y in R, n[x, y]=0 implies [x, y]=0.

Needless to say, 1), implies 1) and 1), and 5), does 6),.

Recently, in [1], [3], [7], [8] and [9], the following commutativity theorems
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have been obtained.

A ([1, Theorem 1] and [9, Theorem 1]). If R is an s-unital ring satisfying
1), and 9),, then the following statements are equivalent:

a) R is commutative.

b) [x, (xy)"—(yx)*]=0 for all x, yeR.

¢) [x, {x(1+u)}"—x"(14+u)"]1=0 for allue N and xeR.

B ([7, Theorem 3, 4)], [3, Theorem 5] and [9, Theorem 2]).

(1) Let R be an s-unital ring satisfying 2),. If N is n-torsion free, then R
is commutative.

(2) Suppose n>1. If R is a ring with 1 satisfying 6), and 9),, then R is
commutative.

(3) Suppose m>n and mn>1. Let R be an s-unital ring satisfying the
identity [x™, yl=1[x, y"]. If for each pair of elements x, y in R, n![x, y]=0
implies [x, y]=0, then R is commutative.

C ([8, Theorem]). Suppose m>1. Let R be a ring with 1 satisfying 2),.
If (m, n)=1 and (x+ y)"=xm+ y™ for all x, y € R, then R is commutative.

D ([3, Theorem 6]). Suppose m>1 and n>1. Let R be a ring with 1
satisfying 6),, and 6),. If (m, n)=1, then R is commutative.

The present objective is to prove the following theorems.

THEOREM 1. If R is an s-unital ring satisfying 1), and 9),, then the following
statements are equivalent:

a) R is commutative.

b) Every ue N with u2=0 is central.

c) [x, {x*(1+u)}"—{x""(1+u)x}*]=0 for all ue N with u>=0 and xeR.

d) [x, {x(Q+u)}"—x*(1+u)"]=0 for all ue N with u?=0 and xeR.

THEOREM 2. Let R be an s-unital ring satisfying 9),.

(1) If any of the conditions 2),, 3),, 4),> 5)u 5), and 6), is satisfied, then R
is commutative.

(2) Suppose n>1. If R satisfies the condition 6), or 6),, then R is com-
mutative.

(3) The conditions 1), and 1), are equivalent.

THEOREM 3. Suppose m>1 and (m,n)=1. Let R be an s-unital ring
satisfying 6),. If R satisfies one of the conditions 2),, 3),, 4)4s 5 5), and 6),,
then R is commutative.

THEOREM 4. If R is an s-unital ring satisfying 1), 7), and 9),, then R is com-
mutative.



Some commutativity theorems for rings 459

THEOREM 5. Let R be an s-unital ring satisfying 6),, and 6),. If (m, n)=1,
then R is commutative.

Obviously, Theorem 1 covers Theorem A. Moreover, in view of Theorem 2
(3), Theorem 1 also improves [4, Theorem 1]. Theorems 2 and 5 improve
Theorems B and D, and Theorem 3 contains Theorem C.

In preparation for the proof of our theorems, we establish the following
lemmas and propositions.

LEMMA 1. Let R be a ring satisfying a polynomial identity f=0, where the
coefficients of f are integers with highest common factor 1. If there exists no
prime p for which the ring of 2 x 2 matrices over GF(p) satisfies f=0, then D is a
nil ideal and there exists a positive integer h such that[x, y]*=0 for all x, yeR.

Proor. By [2, Theorem 1], D is a nil ideal. Consider the direct product
RR*R_ Since the ring RR*R satisfies the same identity f=0, D(RR*R) is also nil.
Let X =(X)xyerxrs Y= xyerxr>» and [X, Y]*=0. Then it is immediate
that [x, y]"=0 for all x, yeR.

LEMMA 2. If an s-unital ring R satisfies 1), and 9),, then [u, x*]=0 for all
ueN and xe R, and N is a commutative nil ideal containing D.

ProOF. Obvious by [6, Theorem] and the proof of [4, Lemma 5].

LemMMA 3. If R is an s-unital ring satisfying 1), then there exists a positive
integer k such that kD=0.

ProOF. Let ¢(t)=p,t+pyt>+---+p,t". Suppose p;=0. Obviously,
¢'(t)=2p,t+3pst2+---+mp,t™! is non-zero, and so there exists an integer ¢,
such that q,=¢'(t,)#0. Then ¢,()=¢(t;+1)=q,t+ - +p,", and [$,(x),
¥(»)]=0 for all x, yeR. (Note that R is s-unital.) Because of the above
observation, we may assume that p, #0. Now, replacing x by ix in the identity

[pyx, Y(N] + -+ [pmx™, Y()] = [$(x), Y(»)] = 0,

we have
ilpyx, YW1+ 4 i"[ppx™, Y] =0  (i=1,..,m).

Hence, d[p,x, Yy(y)]=0, where d(#0) is the determinant of the matrix of integer
coefficients in the last equations. Finally, repeating the above procedure for
V¥(y), we obtain the conclusion.

COROLLARY 1. Let R be a ring satisfying 9),. If there exists a polynomial
V(t) with integer coefficients such that [nx—x?y(x), y]=0 for all x, yeR, then
R is commutative.

PROOF. As is easily seen from the proof of Lemma 3, there exists a positive
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integer k such that kD=0. Combining this with 9),, we can see that there exists
a polynomial y(¢) with integer coefficients such that [x—x2y(x), y]=0 for all x,
yeR. Then R is commutative by [5, Theorem 37].

PROPOSITION 1. If R is an s-unital ring satisfying 1), and 9),, then DN =0,
and in particular, D?>=0.

ProoF. According to Lemma 2, N is a commutative nil ideal containing D
and [u, x*]=0for alue N and xeR. Now, let ue N, and x, ye R. Then

0 = [xu, y"] = x[u, y"] + [x, y"Ju = [x, y"Ju

= 215 Y% yIym e = T yi i w) [x, y] = nymt[x, yu.

Hence, by [1, Lemma 1 (2)], we obtain n[x, yJu=0. On the other hand, by
Lemma 3 and 9),, k[x, yJu =0 with a positive integer k such that (n, k)=1. Now,
it is immediate that [x, yJu=0, proving DN =0.

PROPOSITION 2. If R is an s-unital ring, then there hold the following
implications: 2),=3),=4),<5),=95),.

Proor. Since 2), together with 5), implies 3), and 5), does 4), and 5);, it is
enough to show that 2),=4), and 3),=>4),=5),.

2),=>4),. Since xyx"y"=(xy)**l=xnt1yn*1  we have x[x", y]y"=0, and
therefore x[x", y]=0by [1, Lemma 1 (2)]. In particular, x[x", y*]=0. Hence,
[x, xy) T=x{(xy)" —(yx)*} =x[x", y"]=0.

3),=>4),. Itisimmediate that [x, (xy)"]=x{(xy)"—(yx)"}=0.

4),=5),. As a consideration of x=E, and y=E,, shows, D is a nil ideal
(Lemma 1). Let T be the (s-unital) subring of R generated by all n-th powers of
elements of R. Let ue N, and u’ the quasi-inverse of u. If a is an arbitrary ele-
ment of R, and e a pseudo-identity of {u, a}, then [u, a]*=[e+u, {(e+u)(e+
u')a}"]1=0. In particular, every nilpotent element of T is in the center of T.
Now, let s, te T. Since s"t"—(st)* is in the nil ideal D(T), we get s"[s, t"]=
[s, s"t"]=[s, (st)»]=0. Then, [s, t"]=0 by [1, Lemma 1 (2)]. This implies
that [x7, y»*]=0 for all x, yeR. So, according to Lemma 3, we can find a
positive integer k such that kD=0. Then, recalling that [x", [x", y]]=0, we see
that [x"k, y]=kx"*~D[x" y]=0. This enables us to see that x"**[x, y"]=
[x, x"*kyn]=[x, (x-x"*~1y)"]=0. Hence, [x, y"]=0 again by [1, Lemma 1(2)].

LEMMA 4. Assume that for each ue N and x€R there exists a positive
integer i=i(u, x) such that [(14+u)"', x]=0. Then for each ue N and xeR
there exists a positive integer | such that [n'u, x]=0.

Proor. Letue N, and xe R. By hypothesis, there exists a positive integer
i such that [(14+u)"’, x]=0. If u2=0, then [niu, x]=[(1+u)*’, x]=0. Sup-
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pose now that if u?=0 with h<k then [n/u, x]=0 for some positive integer j,
and consider u with u*=0. Then, we can find a positive integer j such
that [n/u?, x]=---=[nfu", x]=0. Obviously, [ni*iu, x]=n/[(1+u)"’, x]=0.
This completes the proof.

LEMMA 5. Let R be a ring satisfying the identity [[x, y], z]=0. Ifn>1,
then 6), implies 5),6.

Proor. First, we claim that R satisfies the identity

(xr=0* 1) [x, y»*] = 0.
Indeed,

0= [xnz’ yn] _ [x”, ynz] — nxn(n—l)[xn’ yn] — nxn—l[x’ yn2]
= n(x=D* = Dx""1[x, pr’] = (x"D* =) [x", pr*]=(x""D* = 1)[x, y»*].

Since every ring is a subdirect sum of subdirectly irreducible rings, we may assume
that R itself is a subdirectly irreducible ring with heart S(#0). Now, let a be an
arbitrary element in the right annihilator #(S) of S. If [a, r**] is non-zero for
some reR, then, by the claim at the opening, the left ideal I={x€eR|
xa"~1D?=x} contains the non-zero central element [a, r"*], so that I=2S.
But then s=sa""1*=0 for all seS. This is a contradiction. We have thus
seen that [a, y»°]=0 for all ye R. Next, we prove that R satisfies the identity
[x*, y»*]=0. If [x, y**]=0 for all x, y e R, there is nothing to prove. Now,
assume that [b, d">]#0 for some b, de R. Then, again by the opening claim,
the left annihilator I(b(»~1+1—p) contains the non-zero central element [b, d*°],
and so contains S. Then, since b(*~1>**1 —p is in r(S), it follows from what was
just shown above that [b("~D?**1_p_ gn*]=0, Thus, at any rate, R satisfies the
identity [x(»~D?**+1 — x_ yn*1=0, and so the subring generated by all n3-th powers of
elements of R is commutative by [5, Theorem 3]. Consequently, R satisfies the
identity [x"*, y"»*]=0. Now, by 6),, it is immediate that [x"°, y]=[x"*, y**]=0.

PropOSITION 3. If n>1, then 6),, 6), and 6), are equivalent, and 6),
implies 5),. for some positive integer a.
PrOOF. Obviously, 6), implies 6);,. If 6); is satisfied, then
[x, x+y)" — y"] = [XY(x), (x+y) — y] = [x*¥(x), x] = 0.
Next, if 6)), is satisfied then
[x, y"1 =[x, y]1 = [x, (x+ )] = [x+y)", y] = [x+y, x+»)"]1 = 0.

We have thus seen the equivalence of 6),, 6), and 6);.

Suppose now that 6), is satisfied. By Lemma 1, there exists a positive integer
h such that [x, y]*=0 for all x, ye R. Choose a positive integer x such that
n<>h. Let T be the subring of R generated by all n*-th powers of elements of
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R. Since [[x, y], z"*]=[[x, y]", z]1=0 for all x, y, zeR, we get [s"°, {]=0
for all s, te T(Lemma 5). It therefore follows that [x"***°, y]=[x""°, y"*]=0
for all x, yeR.

The next is a slight generalization of [2, Theorem 2].

COROLLARY 2. Suppose n>1. Let T be the subring of R generated by all
n-th powers of elements of R. If R satisfies 6), and the centralizer of T in R
coincides with C, then R is commutative.

Proor. According to Proposition 3, there exists a positive integer o such
that [x"*~!, y]=[x"%, y]=0 for all x, ye R. Then, [x"*™*, y]=0 by hypothesis.
We can repeat the above process to obtain the conclusion [x, y]=0.

LEMMA 6. The condition 8), implies 9),.

ProOF. Suppose n[a, b]=0 (a, be R). Let R’ be the subring of R gen-
erated by {a, b}. Then it is easy to see that n[x, y]=0 for all x, ye R". Com-
bining this with 8),, we can show that for each pair of elements x, y in R’ there
exists a polynomial p(¢)=y(x, y; t) with integer coefficients such that [x — x2y(x), y]
=0. Hence, R’ is commutative by [5, Theorem 3], and so [a, b]=0.

We now proceed to prove our theorems.

PrOOF OF THEOREM 1. a)=>c) and d). Trivial.

b)=-a). By Proposition 1, every commutator squares to 0, and hence is
central. Then n2x"1y»~1[x, y]=nx""1[x, y*]=[x", y»]=0. Now, by [I,
Lemma 1 (2)], it follows that n?[x, y]=0, and so [x, y]=0.

c¢)=b). Letu2=0. Since [x", u]=0 by Lemma 2, we have

0 =[x, {x"(1+u)}" — {x""1(1+u)x}"]
= [x, x**(1+u)" — x"*~1(1 +u)"x]
= x"*"1[x, [x, (1+u)"]] = nx"*~[x, [x, u]].

Now, by making use of [1, Lemma 1 (2)] and 9),, we obtain [x, [x, u]]=0.
This yields nx""[x, u]=[x", u]=0. Hence, we get [x, u]=0 again by [1,
Lemma 1 (2)] and 9),.

d)=b). Let u2=0. Since [{(1+u)x}", 1+u]=0 by Lemma 2, we see that

0=x(1+u) ' [{Q+uw)x}", 1 + u] = [x, {x(1+u)}"]
= [x, x"(1+u)"] = nx"[x, u].
Then, by [1, Lemma 1 (2)], we obtain n[x, ﬁ] =0, and hence [x, u]=0.

PROOF OF THEOREM 2. (1) First, we prove that if R satisfies 5),, then R
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is commutative. Let a,beR, and e a pseudo-identity of {a, b}. Then
[a"', b]=0 with some positive integer i. Since [a, b]e N (Lemma 2), [a, [a,
b]]=0 by Lemma 4. Hence we get nia"'~1[a, b]=[a"', b]=0. Similarly,
ni(a+e)”~![a, b]=0 with some positive integer j. From these we obtain
nka"*-1[a, b]=0=n*(a+e)"*1[a, b], where k=max{i,j}. Then, by [I,
Lemma 1 (2)] there holds that n*[a, b]=0, and hence [a, b]=0.

If any of the conditions 2),, 3),, 4), and 5), is satisfied, R is commutative by
Proposition 2 and what was just shown above. If 6)] is satisfied then R is com-
mutative by [5, Theorem 3]. On the other hand, in case n>1 and 6), is satisfied,
R satisfies 5),. for some positive integer a (Proposition 3). Thus, again by the
the above, R is commutative.

(2) This is only a combination of (1) and Proposition 3.

(3) It suffices to show that 1), implies 1),. Let T be the (s-unital) subring of
R generated by all n-th powers of elements of R. Then T satisfies 5);, and hence
T is commutative by (1). That is, R satisfies 1),.

Combining Theorem 2 with Lemma 6, we obtain

COROLLARY 3. Let R be an s-unital ring satisfying 8),.

(1) If any of the conditions 2),, 3),, 4)u, S)u 5), and 6), is satisfied, then R
is commutative.

(2) Suppose n>1. If R satisfies the condition 6), or 6),, then R is com-
mutative.

PrOOF OF THEOREM 3. Let x, y € R, and e a pseudo-identity of {x, y}. Then

[xm, y] = [xm, y+e] = [(x+y+e, y+e]
= [(x+y+em, yl = [(x+e), y].

Thus we have
[mx + ($)x? + -+ mxm1, y] = [(x+e)" — x™, y] =0,
and so R satisfies 8),. Hence, R is commutative by Corollary 3.

ProoF or THEOREM 4. By Lemma 3, there exists a positive integer k such that
kD=0. In view of 9),, we may assume that (k, n)=1. Combining this with 7),,
we see that for each pair of elements x, y in R there exists a polynomial y(f)=
y(x, y; t) with integer coefficients such that [x—x2y(x), y]=0. Hence, R is
commutative by [S, Theorem 3].

PROOF OF THEOREM 5. If m=1 or n=1, then R is commutative by _[5,
Theorem 3]. Henceforth, we assume that m>1 and n>1. Then, by Pro-
position 3,
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[x, my + (5)y* +--+ my" 1] =0 and [x, ny + ))y> +--+ ny"'] =0

(see the proof of Theorem 3). Since (m, n)=1, the last two identities imply that
there exists a polynomial y(¢) with integer coefficients such that [x, y— y?y(y)]=0
for all x, ye R. Hence, again by [5, Theorem 3], R is commutative.

Finally, we prove the following

COROLLARY 4. Suppose mn>1 and (m, n)=1. If R is an s-unital ring
satisfying the identity [x", y]=[x, y™], then R is commutative.

Proor. We may assume that n>1. If m=1, then R is commutative by
[5, Theorem 3]. Thus, henceforth, we assume that m>1. Then, by Proposition
3, R satisfies 5),,. for some positive integer a. This also implies that [x, y**]=
[xm*, y]=0. Since (m*, n*)=1, R is commutative by Theorem 5.
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