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Introduction

Time delay mechanism arises in the dynamics of one or several species.

One of such models is

(0.1) U = dAU + a(l-U(t-r)lk)U9

where U means a population density, a, d, K and r are positive constants and

• =d/δt. In the absence of diffusion, (0.1) is well known as Volterra-Hutchinson's

equation (e.g. [11, p. 94]). It is not difficult to verify that there exists a global

solution of (0.1) in (0, oo)xΩ with initial and homogeneous Neumann boundary

conditions, where Ω is a bounded domain in JRn with the smooth boundary

dΩ (see Proposition 1.1 below). From an ecologial point of view, this boundary

condition describes the situation where some population is reserved in a domain

surrounded by a reflecting wall. The work by Cohen and Rosenblat [5], Lin

and Kahn [9], Murray [12] and Yamada [16] related to this field should be

referred.

Our interest lies in the spatio-temporal fluctuation of population density

around the spatially homogeneous and postitive steady state u(t, x) = K caused by

time delays. For this problem we study that a spatially homogeneous and tem-

prally periodic orbit bifurcates form u = K as the primary bifurcation when some

parameter, say r, crosses a critical value. We also discuss here a stability of the

bifurcating orbit. This is done by the approach due to Chow and Mallet-Paret

[4]

From both ecological and mathematical viewpoints, it is interesting to consider

time delay models which exhibit spatially inhomogeneous and temporally periodic

orbits bifurcating from the trivial solution as the primary bifurcation. We will

show such models in the forthcoming paper.

In this paper, taking the problem of a spatially inhomogeneous bifurcating

orbit into consideration, we develop a basic theory, especially the construction

of a local integral manifold, and show the existence of the Hopf bifurcation for

(0.1) with the homogeneous Neumann boundary condition and its stability.

Here we give a remark. Every solution of the ordinary functional differential

equation (shortly, OFDE) corresponding to (0.1) (i.e., d = 0) is a solution of (0.1)
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with the homogeneous Neumann boundary condition and the existence of periodic

orbits for OFDEs follows from the known Hopf bifurcation theorem for OFDEs

(cf. [3], [4], [7]). But even if a bifurcating orbit is stable as a solution of the

OFDE, we can not say anything about a stability as the solution of the cor-

responding PFDE. Thus we should construct a theory for PFDEs in parallel

with OFDEs. As for the Hopf bifurcation theorem for OFDEs it seems to the

author that the proof in [7, Theorem 1.1, p. 246] is incomplete. We shall give

a brief comment on this in Section 5.

By the change of variable t-+rt in (0.1) we may assume r = 1 from the begin-

ning. Instead we regard α as a bifurcation parameter. Furthermore, if we

change the unknown function by U = K(1 +«), our considering equation as a model

results in

(0.2) ύ = dΛu - au(t-\) - au(t-l)u

with

(0.3) (3ii/

where djdn stands for the outer normal derivative to dΩ.

In Section 1 as preliminaries we state a result on the existence, uniqueness,

regularity and positivity of solutions for an equation including (0.1) with initial

and homogeneous Neumann boundary conditions.

In Section 2 we investigate the variation of constants formula for the equation

(0.4) ύ = dAu-au(t-l)+f

with (0.3), which is fundamental in the later discussion. We consider there the

solution map which sends an initial function to the solution of the homogeneous

equation of (0.4) with (0.3). These solution maps form a strongly continuous

semigroup in C = C([—1, 0]; Lp(Ω)) and using these maps we derive the variation

of constants formula.

The considerations in Section 3 are partially done by C. C. Travis and G. F.

Webb [15]. But to make our concepts clear, adding some modifications we

study the spectrum of the generator of the solution map considered in Section 2,

define the characteristic equations and give a decomposition theorem to C.

Furthermore we study the formal adjoint equation of the homogeneous equation

of (0.4) and give a decomposition theorem to the variation of constants formula

which is used to construct a local integral manifold.

Section 4 is devoted to the construction of the local integral manifold which

plays an essential role in the Hopf bifurcation problem.

Section 5 contains the discussions of the Hopf bifurcation theorem in [7].

Finally in Section 6 we make a remark on a stability of the Hopf bifurcation

for (0.2) with (0.3) following S-N. Chow and J. Mallet-Paret [4].
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1. Preliminaries

In this section we state some results on the solution of

(1.1) U = dΔU+ (a-bU-cU(t-l))U in (0, oo)xΩ,

(1.2) dUldn = 0 on dΩ9

(1.3) U(θ) = φ(θ), - l g θ ^ O ,

where a and c are positive constants and b is a non-negative constant. First we

introduce some function spaces. Let W2tP(Ω), l < p < o o , be the Sobolev space

of real valued Lp functions whose derivatives of order up to 2 belong to Lp(Ω)

and | | . | | 2 f J , it norm. Put Wfcp(Ω) = {ueW2p(Ω); du/dn = 0 on dΩ}. For a

Banach space H we let C([Λ, &]; H) be the Banach space of //-valued continuous

functions on [α, b]. Let A denote the closed operator in LP(Ω) with dense domain

D(A) = W&P(Ω) defined by Au = - dΔu for u e D(A). Then - A generates a holo-

morphic semigroup {e~tA}t^0 and the equation (1.1) with (1.2) is written in the

following integral form:

(1.4) 1/(0 = e~tΛU(0) + Γ e-«-s>>A(a-bU(s)-cUs(-l))U(s)ds.
Jo

Here we write l/,(0)= l/(ί + 0), 0 e [ - 1 , 0], following J. K. Hale [7]. Through-

out this paper we assume n<p< oo. Proposition 1.1 below asserts the existence,

uniqueness, regularity and positivity of solutions for (1.1) with (1.2) and (1.3).

When ft#0, the proof is found in A. Schiaffino [14], and when ft = 0, we can

prove the existence, uniqueness and regularity of solutions by iteration on n:

Un+1(t) = e-«-vAU(k) + [ e-«-»A(a-cUJi-\))U*(s)ds
Jk

in each interval [/c, /c-f-1], fc = 0, 1,..., with the aid of the following Lemma 1.1.

The positivity of solution is, as in [13], due to the maximum principle for parabolic

equations.

LEMMA 1.1 (cf. [1. Theorem 5.23, p. 115]). Let u and υ be functions in

W2>P(Ω). Then uve2>p(Ω) and | |wt;||2}P^c||M|!2iP | |t;| |2fp, where c is a constant

independent of u and v.

Let Cγ denote the space C ( [ - l , 0 ] ; Wfcp(Ω)) and || | |C l its norm.

PROPOSITION 1.1. For any φeCΛ there exists a unique solution UeC([0,
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oo); W$>r(Ω)) of (1.1) with (1.2) and (1.3) such that ί/eC([0, oo); L*(Ω)). //

<£;>0 and </>(0)̂ 0, then U(t)>0 for ί>0, and furthermore if bφO, then 0<

2. The variation of constants formula

In this section we derive the variation of constants formula for the equation

(2.1) ύ = dΔu - au(t-\) + / in (σ, oo)x Ω,

(2.2) du/dn = 0 on dΩ,

(2.3) uM = Φ(θ\ - 1 £ 0 £ O .

As before we write (2.1) with (2.2) in the integral form

(2.4) u(t) = r ( ' - ^ φ ) - a? e-«-s">Aus{-\)ds

e-^-^Λf(s)ds for t ^σ.

Let C = C([- l ,0] ;L*(β)) and LJ0C([σ, oo); LP(Ω)) denote the space of U

valued locally summable functions on [σ, oo). It is easy to see by step by step

method that for any feL}oc([σ9 oo); LP(Ω)) and any φeC there exists a unique

solution u of (2.4) with (2.3) such that uteC for all t^.σ and u satisfies

(2.5) M e ^ Ke^-^\\\φ\\c + Γ ||/(s)||pds),

where K is a constant independent of 0,/and ί, and || | | c is the norm of C. De-

noting by u(σ, φ,f)(tf x) (or w(σ, </>,/)) the solution of (2.4) with (2.3), we define

the solution map Γ(ί, σ) of C to itself by

PROPOSITION 2.1. {T(t9σ)}t^σ forms a strongly continuous semigroup in

C and T(t, σ) is compact for each t> 1 +σ.

PROOF. It is obvious from the existence and uniquencess of solutions for

(2.4) with (2.3) that T(σ,σ) = / and the semigroup property T(t, s)T(s,σ) =

T(t, σ), t^s^σ, holds. The boundendness and the strong continuity of T(ί, σ)

follows from (2.5). The compactness of T(t, σ), t>l + σ, is due to C. C. Travis

and G. F. Webb [15, Proposition 2.4]. Thus the proof is complete.

Since the equation (2.1) wi th/=0 is autonomous, we may denote T(t,σ)

by T(ί-σ). We also note that T(t) is uniquely extended to a bounded linear
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operator from the space of piecewise continuous functions on [ — 1, 0] with values

in LP(Ω) to C. Now we show the following variation of constants formula.

THEOREM 2.1. Let u(σ,φ,f) be the solution of (2.4) with (2.3) for any

fe LJoc([σ, oo); LP(Ω)) and any φeC. Then

(2.6) ut(σ9 φj) = T{t-σ)φ + [ T(t-s)Xof(s)ds,

where X0 = X0(θy x) is such that Xo = 0for - l g 0 < O and X0 = i for θ = 0.

PROOF. Let v(t) = u{σ, φ, 0) (ί, ), ws(t)=u(0, Xof(s), 0) (t, •) and

= \'ws(t-s)ds.
Jσ

By definition, ws(θ) = 0 for -1<;0<O, so that ^ ( 0 = 0 for σ - l ^ ί < σ . If

t ̂  σ, then

v(t) = e-v-^φiO) - a

On the other hand,

vvs(O = e~tAf(s) for 0 ̂  ί ^ 1,

so that

H'(ί) = Γ e-(ί-»)^/(s)ds, if ffgίgff+1.
Jσ

Hence u(0 = K0 + ̂ ( 0 satisfies (2.4) on [σ, σ+1]. For ί^l,

ws(r) = e~tAf(s) - έi

Hence, if t ̂  σ 4-1, then

= Γ ^ ( ^

= Γ

-l) ds.
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Therefore, u(t) = υ(t) + W(t) satisfies (2.4) also on [ σ + 1 , oo). Thus u(t) =

u(σ9φj)(t, •), so that

ut(σ, φj) = vt + Wt = T(t-σ)φ + [' κ,_s(0, Xof(s), 0)ds
Jσ

= T(t-σ)φ + f T(t-s)Xof(s)ds.
Jσ

The proof is complete.

3. Spectrum of the infinitesimal generator of T{t)

By Proposition 2.1 we know that {T(ή}t^0 forms a strongly continuous semi-
group in C. To begin with, studing the spectrum of the infinitesimal generator
of T(t) and defining the characteristic equation for (2.1) with (2.2), we give a
decomposition theorem for C.

Let B (or B(a) if it is necessary to specify a) be the infinitesimal generator of
T(t) and D(B) the domain of B. When -1^0<O, the equation [T(t)φ"](θ) =
φ{t + θ) holds for sufficiently small ί>0 and any φeD(B). Then we have

Next consider the point 0 = 0. Since BφeC for φeD(B), Bφ(0) = φ(0). On
the other hand, since

[Γ(0</>](0) = e~tAφ(0) - a? e-^-^Aφs(-l)ds for 0 < t < 1,
Jo

it follows that

Hence we have Bφ = φ for φe D(B) and

D(B) = {φeC φeC, ψ(0) e D(yl), φ(0) = - Aφ(0) - α<£(-1)}.

Let λ be a complex number and Δ(λ) a linear map of D(A) to Lp(Ω) defined
by J(λ)(x = λot + Aα + αe"λα, α e

PROPOSITION 3.1. Let σ(B) be the spectrum of B. Then λ belongs to σ(B)
if and only if

(3.1) J(λ)oc = 0 for some α( # 0) e

PROOF. Let p(β) be the resolvent set of B. It is enough to show that

(3.2) p(B) = {λeC\ J(λ)oc Φ 0 for all α e
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First we note that by the Riesz-Schauder theory [17, pp. 283-285] the

condition in the right hand side of (3.2) is equivalent to the invertibility of Δ(λ)

in LP(Ω). Suppose that λeρ(B). Then for any φeC there exists a unique φe

D(B) such that

(3.3) φ(Θ) - λφ(Θ) = ψ(θ), -1 ^ θ S 0,

or equivalently,

(3.4) φ(θ) = eλθφ(0) + [Θ eλ^ψ(ξ)dξ.
Jo

Let α = 0(0). Then by the definition of B, α e D(A) and

(3.5) λoi + φφ) = Φ(β) = -AOL - aφ{-1).

Hence we have

(3.6) J(A)α = -^(0) + ae-λoc - aφ{-\)= -ψ(0) + a\° e^

Since the right hand side of (3.6) covers LP(Ω) when ψ varies in C, it follows that

Δ(λ) is invertible in LP(Ω).

Conversely, suppose Δ(λ) is invertible in LP(Ω). Then, for any xj/eC there

exists a unique oceD(A) satisfying (3.6). Define φ(θ) by (3.4) with φ(0) = α.

Since φ satisfies (3.3) and (3.5), φ e D(B), which implies λ e p(B). This completes

the proof.

Let {ξj}, 0 = ξo<ξίSξ2^ •oo, be the set of eigenvalues for — A with the

homogeneous Neumann boundary condition in Lp(Ω). Then (3.1) holds if and

only if λ satisfies λ-\-ae~λ-\-dξι = 0 for some /. In what follows we call

(3.7) λ + ae-λ + dξj = 09 j = 0, 1,...,

the characteristic equations and their roots λ the characteristic roots. Since

σ(B) consists of the characteristic roots, it equals the point spectrum Pσ(B).

Furthermore for any ω e R {λe σ(B): Re λ ̂  ω} is a finite set. To see this we

prepare the following

LEMMA 3.1. All roots of the equation λ + ye~λ + δ = 09 y and δ being real,

have negative real parts if and only if

(3.8) δ>-l,

(3.9) y + δ > 0,

(3.10) y <ζsinζ-<5cosζ,

where ζ is the root of ζ=-δ tan ζ,0<ζ<π if δφO, and ζ = π/2 if δ = 0. Further-
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more if we denote the right hand side of (3.10) by G(δ), then π/2<G(δ) for 0<

(5<oo and G(<5)->oo as <5-»oo.

PROOF. AS for the first assertion of this lemma we refer to [7, Theorem A.5,

p. 339]. We prove the second assertion. Since ζ= — δ tan ζ, 0 < ( < π , it follows

that ζ is differentiable with respect to δ and ζ'— — (sin ζ cos ζ)(cos2 ζ + δ)~ι.

Hence we have

G\δ) = ζ' sin ζ + ζ'ζ cos ζ - cos C + δζ' sin ζ = ζ' sin ζ - cos ζ

= — (sin2 C cos ζ) (cos2 ζ -f δ)~ι — cosζ.

When <5>0, the solutions of ζ= - ό t a n ς such that 0 < ζ < π are in (π/2, π), and

therefore we see that G'(δ)>0 for 0<<5<oo. It follows immediately that G(<5)->

oo as <5->oo. On the other hand, G(δ) tends to π/2 as <5-*+0. Thus we have

G(δ)>π/2 for 0 < 5 < o o , which completes the proof.

We proceed to show that {λ e σ(B) Re λ ^ ω} is a finite set. If we change the

variable by ζ = λ — ω, then (3.7) results in

(3.11) ζ + ω + αίΓω£rS + d ^ = 0, = 0, 1,... .

Take γ and δ in Lemma 3.1 as γ = ae~ω and δ = ω + dζj. Since G(^) in Lemma 3.1

tends to infinity as <5->oo, the conditions (3.8), (3.9), (3.10) hold for large./. Hence

Lemma 3.1 implies that the set

{λ;λ + ae~λ + dξj = 0 and R e λ ^ ω}

is empty for large j . On the other hand, the number of roots with Re λ^.ω for

each equation (3.7) is clearly finite. Thus our assertion holds.

Let Pλ(B) be the generalized eigensapce for a given λ in σ(B) and N(B — λl)k

the null space of (B — λI)k. Then by virtue of [17, Theorem 3, p. 229] we have

the following

PROPOSITION 3.2. For any λ e σ(B) the dimension of Pλ(B) is finite and there

exists an integer k such that

Pλ(B) = N(B - λlf and C = N(B - λl)k ® R(B - λl)k.

Let I be the dimension of Pλ(B) and ΦΛ = (φ 1 , . . . , φt) a basis of Pλ(B). Since

B commutes with (B-λI)k, we have BPλ(B)aPλ(B). This yields that there exists

an I x I constant matrix Mλ such that BΦλ = ΦλMλ. Since BΦλ = dΦJdθ, we have

φλ(θ) = φλ(0)eM*θ

9 - 1 g 0 ^ 0.

Since 0/0) eD(A), it follows that </>y e Cl9 j = 1,..., /.
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Analogously, from the fact that

(dldt)(T(t)Φλ) = BT(t)Φλ = T(t)ΦλMλ9

it follows that

T(t)Φλ = Φλe
M** = Φλ(0)eM^t+θ\

Since T(t)Bφ = BT(t)φ for φeD(B), we have

T(t)R(B-λI)k c R(B-λI)k.

The preceding results are summarized in the following

THEOREM 3.1. Lei A be a finite set {λjeσ(B)'J = l,..., p}9 ΦΛ = (Φu...i Φp)

and Myl = diag(M1,..., Mp), where Φ} is a basis for the generalized eigenspace

of λj and Mj is the matrix defined by BΦj = ΦjMj, 7 = 1,..., p. Then the only

eigenvalue of Mj is λj and for any vector a of the same dimension as that of

ΦΛ, the solution T(t)ΦΛa of (2.1) with / = 0 , (2.2) and the initial value ΦΛa at

σ = 0, is defined on (— oo, oo) by the relation

T(t)ΦΛa = ΦΛe
M^a, Φ{θ) = ΦΛ(0)eΛ

M*θ, - 1 g θ ^ 0.

Furthermore P ^ Ξ Θxe/i^ .^^i and there exists a subspace QΛ of C such that
T(t)QΛc:QΛfor all t^O and C = PΛ®QΛ.

Let us say that the equation £(*)= — dztoίO + flφ + l) is the formal adjoint

equation of ύ(t) = dAu(t)-au(t-\). Putting C* = C([0, 1]; Lq(Ω)\ l//7+l/ςf = l,

we define a bilinear form ((,)) by

(φ, φ) = <^(0), 0(O)> - α J° ^ <(A(ξ 4-1), φ(ξ)>dξ, for ^ e C* and φ e C,

where < , - > is the duality between Lp and Lq. Let β* be the operator, having

a dense domain in C* and a range in C*, defined by ((^, JBφ)) = {B*φ9 φ) for ψ e

and ^ e D(B*). Since

J ^ ), φ{ξ)>dξ

, φ(ζ)}dξ

, φ(0)> - a(φ{\\ φ(0)>

9 φ}9
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we have B*ψ(s) = -(#/ds)(s), O g s ^ l , B*ψ(0)= -A*ψ(0)-aφ(\) and D(B*) =

{ψeC*;φeC*,ψ(O)eD(A*),ψ(O)=-dΔψ(O) + aψ(\)}. We note that A* re-

presents the realization of — dΔ with the homogeneous Neumann boundary con-

dition in Lq(Ω), D(A*)=W$>q(Ω) and furthermore the eigenvalues of A* are

equal to those of A(cf. [2]]). Consider the formal adjoint equation

(3.12) v = -dΔv + av(t+\) in (-oo, 0)xΩ

with

(3.13) (dv/dn) U = 0 a n d v(ξ) = φ(ξ)9 O g f ^ l ,

or its integral form

(3.14) v(t) = etA*v(0) - a ί° e«-s)A*vs(l)ds for t ^ 0.

Here t>'(£) stands for v{t + ξ) for O ^ ξ ^ l . For any ψeC* there exists a unique

solution i? of (3.14) in C((-oo, 0] ; L«(Ω)) with the initial function ψ. Then

we define the solution map T*(t) of C* into itself by T^ήψ^v', - o o < ί ^ 0 .

As in the case of T(t), the set {T*(ί)}ί^o forms a strongly continuous semigroup

in C* and β* denotes the infinitesimal generator of T*(ί)

The following Theorem 3.2 is an analogue of [7, Lemmas 3.1, 3.2 and 3.4,

p. 175 and p. 177], so we omit the proof.

THEOREM 3.2 (i) σ(B) = σ(B*).

(ii) For any geC the equation (B — λI)kφ — g admits a solution φ in C

if and only if {h, g)=0for all heN(B*-λI)k.

(iii) Let Φλ = (φu...,φp) be a basis of Pλ(B) and Ψλ = col(ψί9...,ψp) a

basis of Pλ(B*). Then the matrix (Ψλ, Φλ))={(ψi9 φ.); /,7 = 1,..., p} is non-

singular. Therefore, by a suitable change of basis, {Ψ^ Φλ}=I.

(iv) φeC is uniquely written as φ = φp + φ°- where φp = Φλ((Ψλ, φ)).

Similarly to the definition of Mλ we define Mf by B* Ψλ = Mf Ψλ. We remark

that Mf = M when (Ψλ, ΦΛ))=/. In what follows we prove a decomposition

theorem for (2.6). We write the decomposition of C with respect to A = {λj e

σ(B);j=\,..., p} as C = P®Q. Let ΦΛ be a basis of P and ΨΛ a dual basis such

th*t{ΨΛ9 ΦJ=I.

THEOREM 3.3. Let u, φ and f be as in Theorem 2.1. Then

uf = T(t-σ)φp + {' T(t-s)Xξf(s)ds,
Jσ

u? = T(t-σ)φQ + [' T(t-s)X$f(s)ds,
J



The Hopf bifurcation and its stability 331

where Xξf(s) = ΦΛ(ΨΛ(O)J(s)> and X%f=Xof-Xξf.

PROOF. Put V =e~
MΛtΨΛ(ξ). Then V is infinitely differentiable with

respect to t and it together with its derivatives takes values in D(y400)(=Λ^=1

D(An)) and weC([0, oo); W~2>P{Q)). Since V* is a matrix solution of (3.12)

defined for — oo < t < oo, and

((Vs, us)) = <K (0), !*4(0)> - a J ^

= <K(s), u(s)> - a[S <F({ +1), ιι

it follows that

= {-dΔV{s), u(s)> + α < m ) , ιι(s)> + <F(s), dd«(s)> - a<y(s),

+ <K(s),/(s)> - β<F (l), u(s)} + β<K(s), M5(-D> =

This yields

which implies

(3.15) ((e-M-<ΨΛ, ut)) =

Consequently we have

^ , ψ) + (' T(t-s)ΦΛ(ΨΛ(O),f(s)>ds
Jσ

= T{t-σ)φp + [' T(t-s)Xξf(s)ds.
Jσ

Here we used the fact that T(t)ΦΛ = ΦΛe
MΛt and put

Defining Xg/by Zg/=X 0 /~ZJ/, we have

ii? = ιιr - αf = T(t-σ)φQ +

which completes the proof.
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4. The local integral manifold

In the Hopf bifurcation problem the existence of a two dimensional local

integral manifold for the equation (0.2) with (0.3) plays a central role. If this

manifold is constructed, the problem is reduced to the two dimensional case and

the well-known Hopf bifurcation theorem is applied (e.g. [6], [10] and [12]).

Thus in this section we construct a two dimensional local integral manifold by

analogy with O. E. Lanford III [8, 10] and N. Chafee [3].

Let ac be a critical point, i.e., the characteristic equations

λ + ace~λ + dξj = 0, j = 0, 1,...,

have a pair of simple complex conjugate roots ± iv0, v o >0, and the other chara-

cteristic roots do not lie on the imaginary axis. Then we rewrite (0.2) as

(4.1) ύ(t) = dAu(t) - au(t-\) - au(t~l)u(t)

= dΔu(t) - acu(t-l) - {(a-ac)ut(-\) + aut(-\)ut(0)}.

In what follows, taking the above nonlinear term into account we consider the

equation with a slightly general nonlinear term

(4.2) u(t) = dAu(t)-aeu(t-i)+f(ut9*)9

where cc — a — ac. Here we impose assumptions on /.

ASSUMPTION, i) There exists a positive α0 such that/ i s a k+ 1 (k^t 1) times

continuously differentiate function in (</>, α)e Cλ x [ — α0, α 0] with values in

ii) /(0, α) = 0 for any α e [ - α 0 , α 0] and Dφf(0, 0) = 0, where Dφf is the

Frechet derivative of/with respect to φ.

In (4.1), f(φ9 α)= - α φ ( - l ) - ( α c + α ) 0 ( - \)φ(0). By virtue of Lemma 1.1

this / satisfies the above assumption.

Let us now denote by C = PO@PX®Q the spectral decomposition, where Po

is the two dimensional eigenspace of B(ac) corresponding to {±/v0} and Pί the

generalized eigenspace corresponding to Λί = {?,eσ(B(ac)); ReA>0}. It is to be

noticed that the dimension / of Pt is finite by the discussion in Section 3. Since

P o , Pi<=C,, it follows that C1=P0®Pί®Qi where β = Q n C 1 . Let Φ o (resp.

Φ t) be a basis of Po (resp. Px) and Ψo (resp. Ψ^ the dual basis of Φo (resp. Φj)

such that {ψ09 Φo)) = / (resp. ((Ψ1? Φ J =/). For u e C(R; Wfr?(Ω)l put x(ί) =

{Ψθ9 ut) and y(t)=(Ψu ut). Let M?, uj and uf be the projections of ut to Po,

Pi and β, respectively. Then we have uf = Φox(t) and u} = Φίy(t). Scaling (4.2)

by U-+8U, α-*εα, we have
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(4.2)' ύ(t) = dAu(t) - acu(t- 1) + (1/e)/(ειιf, εα).

Let χ(x, α) be an infinitely differentiable function on R3=R2xR such that

/ = ! in B(0, 1/2) and χ = 0 in R3-B(0, 1), where £(0, r) = {(x, α) e R 3 |x|2 +

(α/α o ) 2 ^r 2 } . We write

gε(x9 y, z, α) = (l/ε)χ(x, ^ / ( ε Φ o X + e Φ ^ + βz, εα),

which is defined in R2xRιxQxR. Since we construct the integral manifold

only in a neighborhood of (u, α) = (0, 0), instead of (4.2)' we consider

(4.3) ύ(t) = dΔu(t) - acu(t- 1) + gt{x(t\ y(t\ z,, α), - oo < t < oo,

where zt = uγ. Then by virtue of Theorem 3.3 we have

(4.4) ii? = TQ(t-σ)u°σ + Γ Γ0(ί-s)Φ0Xβ(x(s), y(s), zs, α)Λ,

(4.5) u,« = T,(/-σ)«i + (' T , ( ί -s)* ! y,(x(s), y(s), z,, α)ί/s,

(4.6) z, = T β (ί-σ)z β + Γ TQ(t-s)ZE(x(s), y(s), zs, <x)ds,
Jσ

for f£.σ (σ being arbitrarily chosen and fixed in R), where To, Tx and TQ are

the restriction of T to P o , Pj and Q, respectively, X£(x, y, z, α) = < ̂ ( 0 ) ,

^rε(x, y, z, α)>, 7ε(x, j , z, α) = <lF1(0), gε(x9 y, z, α)> and Zε(x, j , z, α) = Xg^ε(x, y,

z, α). Applying ^ 0 and Ψγ to the both sides of (4.4) and (4.5), respectively, and

differentiating them, we obtain

(4.7) x(t) = Mox(t) +

(4.8) y(t) = M, v(0 + y.(x(ίλ X0, Zr, «),

where M o and Mx are the matrix representation of B(ac) restricted to P o and Pu

In what follows in order to avoid the complexity of notations we use fre-

quently the same notation || || to represent norms in various Banach space

whenever there is no fear of confustion. Let us put

(4.9) λE= Σ sup {\\DlΦ}Φi>Dί<X8\\ + \\D>φt*Di>Di<YB\\ +

where the sum is taken over^j^ + ljjl+jz+u^k+ί and the supremum is taken

over (x, α ) e f i 2 x R , \y\ύΊ a n d l |2 | |C lS2 ( z e g ) . Then we can make λε as small

as we like by choosing |ε| sufficiently small.

THEOREM 4.1. // |ε| is sufficiently small, then there exist k times con-

tinuously differentiable functions Fo and Go on R2xR with values in Rι and

Q respectively, satisfying the following conditions:
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i) Fo(0, α) = 0, DxFo(0, 0) = 0, Go(0, 0) = 0, DxGo(0, 0) = 0.

ii) For any α /eί

uf(α) = { 0 e C i ; </> = * 0 * + *i*O(*> α) + Go(x, α), x e

77ιew /or αwj; φe*Jf(oc), there exists a unique solution u(φ) of (4.3) with the
homogeneous Neumann boundary condition such that uo = φ, ut€Jί(u) for all
te(—oo, oo) and

(4.10) ut(φ) = Φox(t; x0) + Φ.Foixit; x0), α) + G0(x(ί; x0), α),

where xo = (Ψo, Φ) and x(t\ x0) is the solution of the ordinary differential
equation

x(t) = Mox(t) + Xε(x(tl F0(x(t), α), G0(x(t)9 α), α)

with initial value x0 at t = 0.

Furthermore if Ax is empty, then the manifold JV(μ) is locally attractive,

i.e., if the solution u of (4.3) satisfies |x(f)|-h ||z f||Cl S 1 for its χ and z components

and all t^O, then

\\ut-Φox(t)-Go(x(t), α||C l ^ Ke-y<\\φ\\Cι9 t ^ 0

for small |e|, where K and y are positive constants independent of t and φ.

Before the proof we note that when Ax =φ the y component does not appear

and then (4.10) is written as

ut(φ) = Φox(t; x0) + G0(x(t; xυ), α).

PROOF. F o r m a l , let

S? = {FeCm(R3; Rι); \\DJ'F\\ ^ 1, \j\ ^ m, F(0, α) = 0, DxF(0, 0) = 0 } ,

« 3 ; Q); | |D'G|| ^ 1, \j\ ^ m, G(0, α) = 0, DxG(0, 0) = 0}.

In what follows we shall find Fo e SJ and Go G S^ such that for the unique solution

of

(4.11) x(0 = Mox(r) + Xε(x(t), F0(x(t), α), Go(x(0, α), «),

with x(0) = x0, x o e Λ 2 , the following equations (4.12) and (4.13) hold:

(4.12) F 0(x 0, α) = [° e-M>sYE(x(s), F0(x(s)9 α), G0(x(5), α), ot)ds,

(4.13) G0(x0. α) = (° ΓQ(-s)Zε(x(s), F0(x(s), α), G0(x(s), α, α)rfs.

Let us first consider (4.11) with x(0) = x o for given F eS\+\ GeSfr1 instead of
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F o and Go. Then there exists a unique solution x(f; xθ9.F, G, α), which is /c+1

times continuously differentiable with respect to (ί, x0, α). Next we define

operators jΓγ and JΓ2 on S\+£=S\+ι xSk

Q

+1 by

(4.14) JTX(F9 G)(x0, α) = [° e-*»Yt(x(s), F(x(s), α), G(x(s), α), α)rfs,

(4.15) JT2(F, G) (x0, «) = Γ Γβ( - sJZ.Ws), F(x(s\ α), G(x(ί), α), α)ds,
J-00

where x(0 = x(ί; ô» ^ G> α ) w ^ shall show that JΓ^F, G)eS^ + 1 and

J Γ 2 ( F , G)eS£ + 1 . We investigate only the operator $Γ2, because the case of

Jf\ is similar and easier. Since the spectrum of BQ lies on a left half plane with a

positive distance from the imaginary axis and AT(t)φ = T(t)Aφ for φeCXi it is

easily verified that JΓ2(F, G) belongs to Q and is /c+1 times continuously di-

fferentiable. Furthermore, there exist positive constants c and β independent of

x0, α and ε such that

, G)(x0, α) | | C l ^ c | |ZJ C l f° ^*Λ g (c/β)λE.
J-00

In the sequel we use the notation c to represent variable constants independent of

x0, α and ε. Before estimating DXQJΓ2(F, G), DΛctiΓ2(F, G), we study magnitudes

of Dxox(t; x0, F, G, α) and Dαx(ί; x0, F, G, α). Putting x 1(0 = ̂ o

χ ( ί » x o . ^

G, α), we have from (4.11) with F and G in place of F o and Go,

(4.16) xHO = M oxK0 + DxXεtF,G(x(t))χi(t) with x^O) = /,

where x(f) = x(ί; Xo? F, G, α) and Xε>F G(x) = XE(x, F(x, α), G(x, α), α). From

(4.16) we see

xKs) = exp {Mos+ [S DxXEtF>G(x(τ))dτ} .
Jo

Since the eigenvalues of M o lie on the imaginary axis and

\\DxXEtF>G\\ Sλε9

it follows that

(4.17) || Dxox(s) || ^ e~λ°s for any s such that - o o < s ^ 0 .

Similarly we have

||£>αx(s)|| ^ e~λεS for any s such that — oo < s ^ 0.

Thus we have from (4.15)

||Z)X0JΓ2(F, G)|| ^ a ε Γ e(^-λ.).ds ^ cλJ(β-λΛ),
J-cc
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\\Dxjr2(F, G)|| S cλε Γ e^-^dS^cλJ(β-λε).
J-ao

Since λε-*0 as ε->0, it follows that

\\DX0X 2(F, G)|| g 1 and ||DαJΓ2(F, G)|| g 1,

if |e| is sufficiently small. Analogously, we obtain, for sufficiently small |ε|,

(4.18)

We remain to verify that JΓ2(F, G)(0, α) = 0 and (DXOJΓ2(F9 G))(0, 0) = 0. Since

gε(0, 0, 0, α) = 0 by Assumption ii), if follows from the uniqueness of the solution

of the Cauchy problem for (4.11) with F and G in place of Fo and Go that x(t\

0, F, G, α) = 0, which yields JT2(F, G) (0, α) = 0. On the other hand, since

DX0Zε(x(t\ F(x(t\ α), G(x(ί), α), α)

= D^Z, Dxox(ί) + DyZE DXF Dxox(t) + D rZ ε DXG D,ox(O,

and x(ί; 0, F, G, α) = 0, it follows from Assumption ii) that DXoJ>T2(F, G)(0, 0) = 0.

Thus we have X 2(F, G)eSk

Q

+ί. Similarly we see that Jf\(F, G)eSk

ι

+ι.

Next, we show that for any Fu F2eSk

1

 + ί and any G l t

(4.19) Σm^{\\DK*rχ{F l9 Gι)^JT1(F29 G2)\\ + \\DJ(JT2(Fl9 G1)-JT2(F2, G2)\\}

Here we note that the sum in (4.19) can not be taken over \j\^k+ 1, because we

would need the derivatives of order k + 2 of Xε, Yε and Zε when we try to estimate

the derivatives of order /c+1 in the left hand side of (4.19). To prove (4.19), we

consider only JΓ2{FU Gλ)-JίΓ2{F29 G2). For ί = 1, 2, let χ.(ί) = * ( ' ; *o> F,, G, , α).

Then

(4.20) JT2(Fl9 GΛ)(x09 α ) - J Γ 2 ( F 2 , G 2)(x 0, α) =

where Zj(s) = Zε(x((s), F^x^s), α), G^x^s), α), α), i = 1, 2. By the mean value

theorem we have

ZJ(s)-Z(s)£

2 = !)>Z |.{x1(s)-x2(s)} + D^ iF^x^s), «)-F2(x2(s), α)}

+ DΓZε • (CίJc^s), α) - G2(x2(s), α)}

= D,Z£ {x1(s)-x2(s)} + DyZε DxFι-{xι(s)-x2(s)}

+ DyZE- {Fι(x2(s), a)-F2(x2(s), oi)} +DIZs.£>AG1.{x1(s)-x2(s)}

+ D..Zε {C,(x2(s), α)-G 2 (x 2 (s), «)},
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which leads to

||Zί(s)-Zf(s)||Cl g Aε{|x1(s)-x2(s)| + WF^F.W + I ^ - G J } .

This together with (4.20) yields

(4.21) \\JT2(FU G,)(x0, oO-JT2(F2, G2)(x0, α)||Cl

et*\xx(s)-x2(s)\ds + (λJβ){\\Fι-F2\\ + WG.-G,]]}.

Now we estimate xί(s) — x2(s). Since x,(s) is the solution of (4.11) with xι(0) =
x0, Ft and G, instead of F o and Go 0 = 1, 2), it follows that

(4.22) xx(s) - x2(s) = (%Mo<s-τ>{XKτ)--Xε

2(τ)}Λ:, -oo < s g 0,
Jo

where Xε(s) = Xε(Xi(s), F£x£s), α), G£x£s), α), α), f = l , 2 . By the same esti-
mation as for Zβ

ι(s)~ Z^(s), we obtain

Thus we have, from (4.22),

which yields, by GronwalΓs inequality (cf. [7, Lemma 3.1, p. 15]),

(4.23) |x 1(s)-x 2(s)|g -λΛse-λ {\\F1-F2\\ + \\G1-G2\\}, - o

Substituting (4.23) into (4.21), we have, for sufficiently small |ε|,

F 1 9 G t)-JΓ 2(F 2, G2)|| ^ ^

By repeating similar arguments we obtain (4.19).
Choosing |ε| sufficiently small, we have cλε<\ in (4.19), which means that

the map (F, G)eSk

ι+£-+(JΓ1(F, G), JT2(F9 G))eSΪ+Q

1 is a strict contraction with
respect to the metric in Sk

ίQ. On the other hand, it is easy to see that this map is
continuous from S\Q into itself. Consequently there exist FOGS\ and GoeSfc
such that (4.11), (4.12) and (4.13) hold.

Now we must show that for any φ e JV(p) there exists a unique solution u(φ)
of (4.3) defined on (— oo, cc)xΩ such that uo = φ and ute^((x) for all
ίe(-oo, oo). To do so, put yo = Fo(xo, α) and zo = Go(xo, α), x(t) = x(t; x0,
F o, Go, α) for xo = (Ψo, φ}> and put y(t) = F0(x(t)9 α), zr = Go(x(0, α). Then we
have

y0
= Γ ^^Y ε(x(s), F0(3c(s), α), G0(x(s), α), a)ds,

JθO
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*o = Γ TQ(-s)Zε(x(s), F0(x{s), <x)G0(x(s), α), <x)ds,
J-oo

and furthermore

y(t) = ί° e-M^Yε(x(s; x(t)\ F0(x(s; x(t))> α), G0(x(s; x(t)l *), *)ds,
Jαo

zt = J°^ TQ(-s)Zε(x(s; x(0), F0(x(s; x(t)), α), G0(x(s; x(t)\ α), α)

where x(s; x(t)) = x(s; x(t), Fo, Go, α). Since the equation (4.11) is autonomous,

it follows from the uniqueness of the solution of the Cauchy problem for (4.11)

that x(s x(t)) = x(s +1 x0) = x(s +1). Thus we have

y(t) =

z t = Γ TQ( - s)zMs + 0. Fo(x(s+0, «). G0(x(s + ί), α), α)ί/s,
J— 00

which lead to

= Γ eΛ'i<ί- )yi(x(s), F0(x(5), α), G0(x(s), *)> ̂ )ds
Joo

eM«-*Yε(x(s), F0(x(s), «), G0(3c(s), α), α)rfs
o

f' e"«-'>YJ[x(s), F0(x(s), α), G0(3c(s), α), α)ds
Jσ

s ) , F 0 (χ( s ), «), G0(x(s), α), « y s

), F0(x(s + 0, α), G0(x(s + ί), α), <x)ds

= TQ(t-σ)z0 + [' TQ(t-s)Zε(x(s), F0(x(s), α), G0(x(s\ α), α)ds

Jσ
Hence ut = Φox{t)Λ-Φ1y{t)Λ-zt satisfies (4.5), (4.6) and u o = ψ. Since x(t) =

x(t; x0), (4.4) is also satisfied, and so u(φ) (t) = ut(0) is the required solution.

To prove local attractivity we prepare the following lemmas. The proof of

Lemma 4.1 is elementary, so we omit the proof.

LEMMA 4.1. Let x(t) and f(t) be non-negative continuous functions and a,

b positive constants. If

x(t) ύa + b[ x(τ)dτ + ['f(τ)dτ, t ^ 5,
Js Js

then
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x(t) ^ αeX'-')

Similarly, if

x(s) ^ a + b [ x(τ)dτ + ['f(τ)dτ, t ^ s,
Js Js

then

x(s) ^ ββ»('-*)

LEMMA 4.2. Let Λt=0 and u(φ) be a solution of (43) with the homogeneous

Neumann boundary condition and uo = φeCί suth that its x and z components

satisfy \x(t)\ + \\zt\\Cι ^ 1 for all t e [0, oo). Let β be the positive constant deter-

mined in the first part of the proof of Theorem 4.1. Then, for sufficiently small

|ε|, there exists a continuous function h of (ί, x, z, α) 6 [0, oo) x f i 2 x Q xR( = S)

to Q which is continuously differentiate with respect to x such that

(4.24) \ \ D ί h « 9 x , z , a ) \ \ £ 2 , \ j \ £ l 9 for ( t 9 x 9 z 9 a ) e S with \\z\\Ci ^ 1,

(4.25) h(t, 0, 0, α) = 0,

(4.26) zJiφ) = h{t9 x(t'9 Φ), zo(φ), α), 0 ^ t < oo,

(4.27) \\h(t9 xl9 zί9 <x)-h(t, x2, z29 α)||Cl

^ (KKβ-λ^lx^xΛ + e-U-'^Wzi-ZiWcs

where x(t; φ)={Ψ0, ut(φ))), zt(φ) = ut(φ)-Φox(t; Φ) and <5ε = Λε

PROOF. Let us denote by Sm (m ̂  1) the set of continuous functions h from S

to Q which are m times continuously differentiable with respect to x and satisfy

(4.25) and

\\D{hiU x, z, α)|| g 2, |JΊ ̂  m, for (ί, x, z , α ) e S with ||z||Cl ^ 1.

For given ί e [ 0 , oo), x o

e j R 2 a n c * zoeQ, consider the system of equations:

(4.28) h(t, x09 z0, α) = TQ(t)zQ + ̂  ΓQ(ί - s)Zf(x(s), Λ(s, x(s), z0, α), oc)ds

(4.29) x(5) = Mox(s) 4- Xe(x(s), ft(s, x(s), z0, α), α) with x(ί) = x0,

and the problem to find heS1 such that for the unique solution of (4.29) the

equation (4.28) holds. Here we note that the y component deos not appear in

the arguments of Xε and Zε, because Λί = 0. Taking S 2 , by the same argument

as in the first part of the proof of Theorem 4.1, we can show the existence of h eSι

which satisfies (4.26) and (4.27) for sufficiently small |ε|. On the other hand,



340 Kiyoshi YOSHIDA

z,( = *»(<£)) and x(ί) (=x(ί; φ)) satisfy

(4.30) z, = Γc(ί)z0 + \[ TQ(t- s)Zε(x(s), zs, o[)ds,

(4.31) x(f) = Mox(t) + Xc(x(0, z,, Φ) with x(0) = x0,

where x o = ((ίPo> 0)) and zo = φ-Ψoxo. Let ίe[0, oo) be fixed and let x(s) be
the solution of (4.29) with x o = x ( ί ; φ). Then,

(4.32) h(t, x(ή, z0, α) = TQ(t)z0 + \j'oTQ(t-s)Ze(x(s), h(s, x(s), z0, α), oc)ds,

(4.33) i(s) = Mox(S) + Jϊε(x(S), /i(s,x(s), z0, α), α) with x(ί) = x(ί; φ).

From (4.30) and (4.32), we obtain, as before,

(4.34) ||z,-M0llc, ^ (' «-«—>{|JE(s)-x(s)| + Hzf-Λ(s)||Cl}ds,
Jo

and from (4.31) and (4.33)

|x(s)-x( 5) | g λE Γ {|jc(τ)-x(τ)| + ||zt-Λ(τ)||Cl}dτ,
Js

where /i(τ) = /i(τ, 3c(τ), z0, α). By virtue of Lemma 4.1 we have

which together with (4.34) leads to

^ (A. + (λΛyi(β-λB)) Γ β-^- ) ||z.-ft(s)||ClΛ.
Jo

Thus

By GronwalΓs inequality we have zt = h(t), which shows (4.26).

Finally we show (4.27). Let x^s) and x2(s) be solutions of

x(s) = Mox(s) + ^CWS)» Λ(s, χ(s)» zί» α)> α ) w i t h ^(0

Then
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Γβ(ί-s){z8(x1(s), Λ^s), α)-Ze(x2(s),

where /j;(s) = /ι(s, x, (s), zί( α), i — i, 2. Hence

(4.35) ||Λ1(t)-

{ | I (
Jo

On the other hand, from the equation

it follows that for any 5 such that Orgs^

By virtue of Lemma 4.1 we have

|Xi(s)-Jea(s)| g «*•<—>|xt - x 2 | + A, \'

By substituting this into (4.35) we obtain

l + Aε Γ ̂ e~z 2 | | C l

AJxt -JC 2 | (' e-ί'-^
JO

Therefore

By Gronwall's inequality again we have

e"l|Ai(0-Λa(0llc, ύ e' 'ίlki-Zallc, +

which leads to our assertion.

PROOF OF THE LAST ASSERTION OF THEOREM 4.1. Fix any ί > 0 and put x t =

x(t;φ)( = {Ψ0, u,(φ)))) Let φ^Λiμ) be defined by ^ Φ o ^ + GoOti, α).
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Since the solution of (4.3) on Jί(v) is defined on (— oo, oo) x Ω and unique for each

initial function on ^ ( α ) , there exists a unique ^ e ^ α ) such that φι=ut(φ2).

Put x2 = (Ψo, Φilί Then by virtue of Lemma 4.2, we see

zt(φ) = h(U Xu zo(φ),<x),

G0(xu «) = ZtiΦi) = KU Xi, zo(φ2), α) = h(t, xu G0(x2, α), α),

and therefore, by (4.27),

(4.36) \\ztφ)-G0(xl9 α) | | C l ^ e-^-^) ί ( | | z ϋ (φ) | | C l + | |G0(x2, α)| |C l)

In what follows let us estimate \x2\. Note that x2 = x( — t; xx), where Jc(s; xt) is

the unique solution of the equation

x(s) = Mox(s) + X£x(s), G0(x(s), α), α) with x(0) = x^

Since x2 = x(- ί ; xj-xζ-t; 0) = DX2x x1? we have, by the same reasoning as

in the case of (4.17),

(4.37) | x 2 | : g ^ ' | * i | .

On the other hand, since x(s; φ) ( = x(s)) and zs(φ) ( = zs) satisfy

(4.38) x(s) = Mox(s) + Xε(x(s\ z5, α) with x(0)= f^o. Φ))( = *o)

(4.39) z s = TQ(s)z0(φ) + £τQ(s-τ)Z ε(x(τ), zτ, α)dτ, 5 ^ 0,

it follows, as before, from (4.39) that

| |zJ C l ^ e-^||zo(φ)||C | + K\5

oe-β^{\x(τ)\ + \\zt\\Cι}dτ.

This yields, by GronwalΓs inequality,

(4.40) | |z s | |C l ^ e-<'-*->i
Jo

By using (4.38) we have, again as before,

Jo

Substituting (4.40) into this, we obtain

|x(ί)| ύ \xo\ + KI(β-K

which yields, by Gronwall's inequality,



The Hopf bifurcation and its stability 343

(4.41) |x(01 ί e'«{\xo\ + λβ/(/J-λβ)||zo(φ)||Cl}

Since x1=x(t) = x(t; φ)9 it follows from (4.36), (4.37) and (4.41) that

\\zt(φ)-G0(xl9 α)||Cl g e-^-^-

where K is a positive constant independent of t and ψ, and y=β — 2δε — λε which
is positive for sufficiently small |ε|. The proof is complete.

5. Hopf bifurcation

In Section 4 we saw that we can construct a local integral manifold for our
equation in a neighborhood of a critical point ac and we can reduce the Hopf
bifurcation problem to the two dimensional case. On the other hand, according
to the Hopf bifurcation theory for a finite dimensional case (cf. [6], [13]), if the
characteristic equations have a pair of complex conjugate roots {λ(a), λ{ά)} in a
neighborhood of ac such that

(H.I) ReA(αc) = 0 and Im,l(α c)^0,

(H.2)

then non-trivial periodic orbits bifurcate from the trivial solution. Thus we
first study the characteristic equations

(3.7) λ + ae-λ + dξj = 09 j = 0, 1,....

We observe that a is not a critical point if 0<a<π/2 by virtue of Lemma 3.1.

LEMMA 5.1 ([7, Lemma 4.1, p. 254]). If y>e~1, then there exists a pair of
simple complex conjugate roots {λ(γ)9 λ(y)}9 λ(y) = μ(y) + iv(y)9 which are con-
tinuous together with their first derivatives in y and satisfy 0<v(y)<π,
v(π/2) = π/2, μ(π/2) = 0, μ'(π/2)>0 and μ(y)>0fory>π/2.

By virtue of Lemma 5.1 we see that αc=π/2, there exists a pair of simple
complex conjugate roots for (3.7) (withj = 0) which satisfy (H.I) and (H.2) and so,
it is the first critical point in a>0. On the other hand, if y = ac ( = π/2) and <5 =
dξj ( j^ l ) , then the conditions (3.8), (3.9) and (3.10) in Lemma 3.1 are satisfied,
which implies that all roots of (3.7), except a pair of complex conjugate roots
obtained above, have negative real parts. Hence, for ac = π/29 we can apply
Theorem 4.1 and obtain a local integral manifold *Jί((x) = {φeC1; ψ = Φox +
G0(x; α), xeR2}, and the Hopf bifurcation problem for the equation (0.2) with
(0.3) is reduced to the equation
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(5.1) x(0 = Mox(t) + X(x(t\ G0(x(t)9 α), α), - oc < t < oo,

i n a n e i g h b o r h o o d o f ( x ( ί ) , α ) = ( 0 , 0 ) , w h e r e α = α — π / 2 , M o is t h e 2 x 2 m a t r i x

\βιj\> alί = a22 = 0, α 1 2 = - α 2 1 = π / 2 a n d

X(x, z, α) = - α<!Po(0), Φ 0 ( - l ) x + z(-1)>

- α<!Po(0),

for any x e l ? 2 and z e β (cf. (4.1)). We write here (5.1) in the unsealed form,

i.e., ε = l in (4.11), and note that the y component does not appear in the argu-

ment of X in (5.1), because the characteristic equations (3.7) do not have roots with

positive real parts when a = π/2. It is easy to see that the characteristic equation

of the linear part of (5.1) has a pair of complex conjugate roots which satisfy

(H.I) and (H.2) at α = 0, i.e., α = αc = π/2. Thus, by the Hopf bifurcation theorem,

a non-trivial periodic solution xa(t) for (5.1) exists for small α > 0 . Since u(t) =

uf(0) = Φo(0)xα(0 + Go(xβ(0; α)lβ=o i s a solution of (0.2) with (0.3), we have the

following

THEOREM 5.1 The equation (0.2) with (0.3) has a temporally periodic

spatially homogeneous bifurcating orbit at the first bifurcation point ac = π/2

from the trivial solution.

We close this section by giving a remark on the proof of the Hopf bifurcation

theorem due to J. K. Hale [7, Theorem 1.1, p. 246]. It seems to the author that

his proof is incomplete because the fact "the second integral is zero" of the

third line from below at p. 248 does not hold. This fact is essential in his proof.

We can also show that even if "the second integral" is correctly evaluated it does

not lead to his assertion

(5 3) det δH(0> °' Q ) j 0

Here we give an example. Consider an ordinary functional differential equation

x ( 0 = -(π/

where/(0, α) = 0, Dxf(Q, 0) = 0 and/satisfies a suitable regularity condition. We

denote by {λ(oc), λ(oc)}, Λ(α) = μ(α)-f-iv(α), a pair of simple complex conjugate

roots of the corresponding characteristic equation such that λ(0) = iv(0) =/π/2

and.μ'(O)τέO (see Lemma 5.1). As usual we decompose C = C([—1, 0]; Λ) as

C = Pa®Qa with respect to {A(α), λ(α)}. Let Φα be a basis of Pa. When α = 0,

we may take Φo(0) = (sin(π/2)0, cos(π/2)0). Let ΨΛ be the dual basis of Φa such

that (Ψa9 Φα))=/. Then y 0 = c o l ( ^ l f ψ2), where

Ψι(β) = Msin(π/2)0 + (π/2) cos (π/2)0} ,
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φ2(θ) = /c0{cos (π/2)0 - (π/2) sin (π/2)0},

fco = 2/(l+π2/4).

In this case "the second integral" becomes

-π/2 I Ί

- 1 π/2jo J-i

where M(0) is the 2 x 2 matrix [α^ ] , aλ { = α 2 2 = 0, α 1 2 = —<*2\ = π /2, which is

written as 5(0) in [7] . Furthermore,

(5.4) (d#/5α)(0, 0, 0) = - ί
Jo

= - 2/π
Jo

where β!=col(l, 0) and £/(s) = Φo(0)eM(O)s. Here we used the fact that ϋ(t) =
(π/2)l/(ί-l). The equation (5.4) means that (d///dα)(0, 0, 0) is equal to (dHj
dβ)(O, 0, 0) up to a constant (cf. the 8ίΛ line from below of p. 248 in [7]). Thus
Hale's assertion (5.3) does not hold.

6. Stability of bifurcation orbits

In the preceding section we showed the existence of the Hopf bifurcation for
the equation (0.2) with (0.3). We shall here give a brief discussion on the stability
of the Hopf bifurcation. S-N. Chow and J. Mallet-Paret [4] discussed this
subject for Wright's equation x(t)= — ax(t —1)(1 +x(t)), i.e., in the spatially homo-
geneous case of the equation (0.2). Their analysis remains valid for the equation
(0.2) with (0.3) with a slight modification, because (i) the local integral manifold is
constructed in C, (this is one of the assumptions in [4, p. 141]) and (ii) the orbit
appearing at the first bifurcation point is spatially homogeneous and so we can
take the same basis Φo( = (sin(π/2)0, cos(π/2)0)) as in the case of Wright's
equation. In the case where spatially inhomogeneous orbits appear at the first
bifurcation point the situation becomes very complex. This analysis will be done
in the forthcoming paper.

We first state the results on stability in [4, p. 125 and p. 135]. Let x, y and
z be generic points in JR2, Rι and (5, respectively, and ε be the same parameter
as in Section 4. Then according to [4], an annulus jtf* surrounding a periodic
solution is given by

: |x| < ( l + y)r0, γ >0 as ε —> 0,

\y\ + ||z||Cl S β*|ε|, Ω* = constant,
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where r 0 is a positive constant independent of ε which is determined by the given

equation with a — ac. If B(ac) does not have the spectrum with positive real parts

(in this case y does not appear and the integral manifold Jt(p) is locally attractive),

s/* is positively invariant under the condition μ'(ac)K<09 where K = K* + K**

is the constant defined in [4, p. 133]. Here "jtf* is positively invariant" means

that if solutions are in s#* at t = σ, then they stay in sf* for t>σ. The Hopf

bifurcation is stable if s/* is positively invariant.

In what follows we shall compute the value of K in our case (αc = π/2). We

use the notations of [4, Section 9] as possible as we can. But we employ, as be-

fore, the notations B, Mp and ((•,•)) instead of A, AP and ( , ) in [4]. Moreover,

in our case we note that a0 = b0 = π/2 (as for the notations aN, bN, see [4, p. 148]).

As in [4] we can derive K = K* + K**9

K* = 0, K** = - (bo/2)Img2(2ibo-BQrιXl

g2 = -

In order to determine K** we must evaluate (2ib0 — BQ)~1X(^. The determination

of φ = (2ibo-BQ)-1X$ is a little different from [4, p. 151]. To caluculate,

more generally,

we must solve

(6.1) φ(θ) = 2iboφ(θ) - φ(θ)

subject to the conditions

(6.2) φ(0) = dAφ(0)-aoφ(-l),

(6.3) (dφ(0)/dn)\dΩ = 0.

From (6.1)

φ(θ) = e2ib°θφ(0) -
Jo

and so

φ(-i) = e~
2iboφ(0) -

Jo

This together with (6.1) and (6.2) yields

-dΔφ(0) + (2ibo + aoe-2ib°)φ(0) = ψ(0)

For ψ = Xowe have

-dAφ(0) + (2ibo + aoe-2ib°)φ(0) = 1,
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which together with (6.3) leads to

Thus we have

ψ(-l)= -0(0),

- (bol2) Im [g2(2ib0- B ) " 1 ^ ] =

= -π(3π/2-l)/40(l+π2/4).

On the other hand, by the same calculation as in [4], we have

We therefore obtain

K = K** = - π(3π/2-l)/40(l+π2/4) < 0.

Since, be virtue of Lemma 5.2, μ'(π/2)>0, we see that Xμ'(π/2)<0 and so s/* is
positively invariant. Thus we have shown

THEOREM 6.1. If\ε\ is small, the bifurcating orbit in Theorem 5.1 is stable.
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