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Introduction

Time delay mechanism arises in the dynamics of one or several species.
One of such models is

(0.1) U = dAU + a(1-U(t—r)[k)U,

where U means a population density, a, d, K and r are positive constants and
. =0/dt. In the absence of diffusion, (0.1) is well known as Volterra-Hutchinson’s
equation (e.g. [11, p. 94]). It is not difficult to verify that there exists a global
solution of (0.1) in (0, c0) x 2 with initial and homogeneous Neumann boundary
conditions, where Q is a bounded domain in R” with the smooth boundary
0Q (see Proposition 1.1 below). From an ecologial point of view, this boundary
condition describes the situation where some population is reserved in a domain
surrounded by a reflecting wall. The work by Cohen and Rosenblat [5], Lin
and Kahn [9], Murray [12] and Yamada [16] related to this field should be
referred.

Our interest lies in the spatio-temporal fluctuation of population density
around the spatially homogeneous and postitive steady state u(z, x)=K caused by
time delays. For this problem we study that a spatially homogeneous and tem-
prally periodic orbit bifurcates form u =K as the primary bifurcation when some
parameter, say r, crosses a critical value. We also discuss here a stability of the
bifurcating orbit. This is done by the approach due to Chow and Mallet-Paret
[41.

From both ecological and mathematical viewpoints, it is interesting to consider
time delay models which exhibit spatially inhomogeneous and temporally periodic
orbits bifurcating from the trivial solution as the primary bifurcation. We will
show such models in the forthcoming paper.

In this paper, taking the problem of a spatially inhomogeneous bifurcating
orbit into consideration, we develop a basic theory, especially the construction
of a local integral manifold, and show the existence of the Hopf bifurcation for
(0.1) with the homogeneous Neumann boundary condition and its stability.
Here we give a remark. Every solution of the ordinary functional differential
equation (shortly, OFDE) corresponding to (0.1) (i.e., d=0) is a solution of (0.1)
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with the homogeneous Neumann boundary condition and the existenec of periodic
orbits for OFDEs follows from the known Hopf bifurcation theorem for OFDEs
(cf. [3], [4], [7]). But even if a bifurcating orbit is stable as a solution of the
OFDE, we can not say anything about a stability as the solution of the cor-
responding PFDE. Thus we should construct a theory for PFDEs in parallel
with OFDEs. As for the Hopf bifurcation theorem for OFDEs it seems to the
author that the proof in [7, Theorem 1.1, p. 246] is incomplete. We shall give
a brief comment on this in Section 5.

By the change of variable t—rt in (0.1) we may assume r=1 from the begin-
ning. Instead we regard a as a bifurcation parameter. Furthermore, if we
change the unknown function by U = K(1 + u), our considering equation as a model
results in

(0.2) u=ddu — au(t—1) — au(t—1)u
with
0.3) (Oufou) | = O,

where d/0n stands for the outer normal derivative to 0Q.

In Section 1 as preliminaries we state a result on the existence, uniqueness,
regularity and positivity of solutions for an equation including (0.1) with initial
and homogeneous Neumann boundary conditions.

In Section 2 we investigate the variation of constants formula for the equation

(0.4 t=ddu — au(t—1) + f

with (0.3), which is fundamental in the later discussion. We consider there the
solution map which sends an initial function to the solution of the homogeneous
equation of (0.4) with (0.3). These solution maps form a strongly continuous
semigroup in C=C([—1, 0]; LP(R2)) and using these maps we derive the variation
of constants formula.

The considerations in Section 3 are partially done by C. C. Travis and G. F.
Webb [15]. But to make our concepts clear, adding some modifications we
study the spectrum of the generator of the solution map considered in Section 2,
define the characteristic equations and give a decomposition theorem to C.
Furthermore we study the formal adjoint equation of the homogeneous equation
of (0.4) and give a decomposition theorem to the variation of constants formula
which is used to construct a local integral manifold.

Section 4 is devoted to the construction of the local integral manifold which
plays an essential role in the Hopf bifurcation problem.

Section 5 contains the discussions of the Hopf bifurcation theorem in [7].

Finally in Section 6 we make a remark on a stability of the Hopf bifurcation
for (0.2) with (0.3) following S-N. Chow and J. Mallet-Paret [4].
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1. Preliminaries

In this section we state some results on the solution of

(1.n U =dAU + (a=bU—cU(t—1))U in (0, o0)x Q,
(1.2) dUf/on =0 on 0Q,
(1.3) U@ =¢@0), —-1=6=0,

where a and ¢ are positive constants and b is a non-negative constant. First we
introduce some function spaces. Let W2:7(Q), 1<p<oo, be the Sobolev space
of real valued L? functions whose derivatives of order up to 2 belong to L?(Q)
and ||, it norm. Put Wi P(Q)={ue W??(Q); 0u/on=0 on 0Q}. For a
Banach space H we let C([a, b]; H) be the Banach space of H-valued continuous
functions on [a, b]. Let 4 denote the closed operator in L?(Q) with dense domain
D(A)= W3 ?(Q) defined by Au= —dAu for ue D(A). Then — A generates a holo-
morphic semigroup {e~'4},>, and the equation (1.1) with (1.2) is written in the
following integral form:

(1.4) U(t) = e~'AU(0) + SO e~ (t=94(q — bU(s)— cU(— 1) U(s)ds.

Here we write U(0)=U(t+0), 6e[—1, 0], following J. K. Hale [7]. Through-
out this paper we assume n<p<oo. Proposition 1.1 below asserts the existence,
uniqueness, regularity and positivity of solutions for (1.1) with (1.2) and (1.3).
When b#0, the proof is found in A. Schiaffino [14], and when b=0, we can
prove the existence, uniqueness and regularity of solutions by iteration on n:

Ui = e04U() + [ 94— cU(~1)Un(s)ds

in each interval [k, k+1], k=0, 1,..., with the aid of the following Lemma 1.1.
The positivity of solution is, as in [13], due to the maximum principle for parabolic
equations.

LEMMA 1.1 (cf. [1. Theorem 5.23, p. 115]). Let u and v be functions in
W2:p(Q). Then uve??(Q) and |uv|,,<cllul,lvll,, where c is a constant
independent of u and v.

Let C, denote the space C([—1, 0]; WZ-P(R)) and | - ||¢, its norm.

PROPOSITION 1.1. For any ¢ € C, there exists a unique solution U e C([O0,
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o); W P(Q)) of (1.1) with (1.2) and (1.3) such that Ue C([0, 0); LA(Q)). If
$=0 and ¢(0)#0, then U()>0 for t>0, and furthermore if b#0, then 0<
U(t, x)<max {||¢|c,, a/b}.

2. The variation of constants formula

In this section we derive the variation of constants formula for the equation

2.1 t =ddAu — au(t—1) +f in (o, ©0)x Q,
2.2) oufon =0 on 0Q,
(2.3) u0) =¢(0), —-1=<06=<0.

As before we write (2.1) with (2.2) in the integral form

(2.4) u(t) = e-t-4y(g) — agt ==y (= 1)ds
+ S' e~ =) Af(5)ds for t=o.

Let C=C([—-1, 0]; L?(Q)) and L},([o, 0); LP(R2)) denote the space of L?
valued locally summable functions on [0, o). It is easy to see by step by step
method that for any fe L},.([a, 0); LP(Q2)) and any ¢ € C there exists a unique
solution u of (2.4) with (2.3) such that u, e C for all t=0 and u satisfies

(2.5) lullc < Keke=2(lldlc + S; 1£ (Sl ds),

where K is a constant independent of ¢, fand ¢, and | - || is the norm of C. De-
noting by u(o, ¢, f)(t, x) (or u(e, ¢, f)) the solution of (2.4) with (2.3), we define
the solution map T(t, o) of C to itself by

T(t, 0)¢ = uo, ¢, 0).

ProposiTION 2.1.  {T(t, 0)},5, forms a strongly continuous semigroup in
C and T(t, 6) is compact for each t>1+ao.

Proor. It is obvious from the existence and uniquencess of solutions for
(2.4) with (2.3) that T(o,0)=I and the semigroup property T(t, s)T(s, 0)=
T(t, 6), t=s=0, holds. The boundendness and the strong continuity of T(t, o)
follows from (2.5). The compactness of T(t, 6), t>1+a, is due to C. C. Travis
and G. F. Webb [15, Proposition 2.4]. Thus the proof is complete.

Since the equation (2.1) with f=0 is autonomous, we may denote T(t, o)
by T(t—o). We also note that T(¢) is uniquely extended to a bounded linear
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operator from the space of piecewise continuous functions on [ — 1, 0] with values

in LP(Q) to C. Now we show the following variation of constants formula.

THEOREM 2.1. Let u(a, ¢,f) be the solution of (2.4) with (2.3) for any

fe L}, ([0, ©); LP(Q)) and any ¢ € C. Then

2.6) w0, §.1) = Tt=0)p + || Tt—9Xof)ds,
where X o= X(0, x) is such that X,=0 for —1<0<0 and X,=1 for 6=0.
PrROOF. Let u(t)=u(a, ¢, 0)(t, -), w(t)=u(0, X, f(s), 0)(¢, -) and

w(t) = S' w(t—s)ds.

By definition, w(0)=0 for —1=<6<0, so that W(f)=0 for s—1=t<o.

t20, then

o(f) = e-G-Ag(0) — aS e~ (=5)Ay(s — 1)ds.

On the other hand,
wy(t) = et f(s) for 0=5t=1,
so that

W ={ eeotpas, it osrgo+,
Hence u(t)=v(t)+ W(¢) satisfies (2.4) on [o, 0+1]. For t=1,
w(f) = e 4f(s) — aS: e~ (=dy (t— 1)dr.
Hence, if t=0+1, then
W(t)=§' w(t—s5)ds
[ eonsiyas—a (" eromy, c- 1y arfas
=St e =94 f(s)ds— ag {S e~ (t=D4y (1—1 —s)d‘t}ds
Sde (t=94 f(s)ds— ag - et ')" Sa ws(r—l—s)ds}dt
. I

e N f(s)ds—a\ e DAW(s—1)ds.

If
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Therefore, u(t)=uv(t) + W(t) satisfies (2.4) also on [6+ 1, c0). Thus u(t)=
u(o, ¢a f) (ta * ), SO that

u(o, 6,) = v, + W, = Ta=) + || u,_0, Xof(), 0)ds

= T(t—0)¢ + S T(t—$5)Xof (5)ds.

The proof is complete.

3. Spectrum of the infinitesimal generator of 7°(¢)

By Proposition 2.1 we know that {T()},, forms a strongly continuous semi-
group in C. To begin with, studing the spectrum of the infinitesimal generator
of T(tf) and defining the characteristic equation for (2.1) with (2.2), we give a
decomposition theorem for C.

Let B (or B(a) if it is necessary to specify a) be the infinitesimal generator of
T(t) and D(B) the domain of B. When —1<60<0, the equation [T(t)¢](0)=
¢(t+ 0) holds for sufficiently small >0 and any ¢ €e D(B). Then we have

[B¢](0) = lim,.o ([T()$1(0)—$(0))/t = §(6).

Next consider the point §=0. Since B¢ e C for ¢ e D(B), B$(0)=4(0). On
the other hand, since

[T(1)$](0) = e~*4¢h(0) — aS; e t-94¢ (—1)ds for 0<t<I,
it follows that
[B¢1(0) = lim,,o ([T()9](0)—(0))/t = —AP(0) — ap(—1).
Hence we have B¢ =¢ for ¢ € D(B) and
D(B) = {¢p€C; ¢ C, ¢(0) € D(A), $(0) = — A$(0) — ad(—1)}.

Let A be a complex number and 4(A) a linear map of D(4) to L?(Q2) defined
by 4d(A)a=lo+ Ao+ ae *a, a € D(A).

PROPOSITION 3.1. Let a(B) be the spectrum of B. Then A belongs to o(B)
if and only if

3.1 Ad(A)a =0 for some a#0)e D(A).
ProOOF. Let p(B) be the resolvent set of B. It is enough to show that

3.2 p(B) = {1eC; A(2)o # 0 for all «e D(A)\{0}}
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First we note that by the Riesz-Schauder theory [17, pp. 283-285] the
condition in the right hand side of (3.2) is equivalent to the invertibility of 4(1)
in LP(Q). Suppose that A€ p(B). Then for any Y € C there exists a unique ¢ €
D(B) such that

(33 $O) - 14(©) = W(), -1 5650,
or equivalently,

(34) $(0) = 9(0) + || AP,
Let a=(0). Then by the definition of B, « e D(4) and
3.5) Aa + Y(0) = $(0) = —Ax — ap(—1).

Hence we have
0
(3.6) Ad(X)a = —y(0) + ae *a — ad(—1)=—y(0) + ag e~ FOY(E)dE.
-1
Since the right hand side of (3.6) covers L?(Q) when y varies in C, it follows that
4(J) is invertible in LP(Q).

Conversely, suppose 4(4) is invertible in LP(Q). Then, for any y € C there
exists a unique a € D(A) satisfying (3.6). Define ¢(6) by (3.4) with ¢(0)=a.
Since ¢ satisfies (3.3) and (3.5), ¢ € D(B), which implies A € p(B). This completes
the proof.

Let {{;}, 0=¢p < =¢,<--— 00, be the set of eigenvalues for —4 with the
homogeneous Neumann boundary condition in LP(Q). Then (3.1) holds if and
only if A satisfies A+ ae~%+d¢,=0 for some I. In what follows we call

3.7 A+ae*r4+dé;=0, j=0,1,..,

the characteristic equations and their roots A the characteristic roots. Since
a(B) consists of the characteristic roots, it equals the point spectrum Po(B).
Furthermore for any we R {1ed(B): Re A=w} is a finite set. To see this we
prepare the following

LeMMA 3.1.  All roots of the equation A+ye *+06=0,y and & being real,
have negative real parts if and only if

(3.8) o> —1,
(3.9) Y+ 6 >0,
(3.10) Y <{sin{ — dcos{,

where { is the root of {=—dtan{, 0<{<m if 6#0, and {=n/2 if 6=0. Further-
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more if we denote the right hand side of (3.10) by G(9), then n/2<G(d) for 0<
0< oo and G(6)— o0 as d— 0.

PRrROOF. As for the first assertion of this lemma we refer to [7, Theorem A.S,
p. 339]. We prove the second assertion. Since {= —§ tan {, 0<{<m, it follows
that { is differentiable with respect to § and ('= —(sin{ cos{)(cos?{+d)'.
Hence we have

G'(O)={sin{ + {lcos{ —cosl + 6'sin{ ={'sin{ — cos{
= —(sin?{ cos {)(cos? { + &)~ ! — cos{.
When >0, the solutions of {= —dtan{ such that 0<{<mn are in (n/2, n), and
therefore we see that G'(6)>0 for 0<d<oo. It follows immediately that G(6)—

oo as —00. On the other hand, G(d) tends to n/2 as 6— +0. Thus we have
G(6)>n/2 for 0<d < oo, which completes the proof.

We proceed to show that {1 € 6(B); Re A= w]} is a finite set. If we change the
variable by {=1—w, then (3.7) results in

(3.11) (+w+ae@et+d;=0,j=01,...

Take y and 6 in Lemma 3.1 as y=ae™® and 6 =w+d¢;. Since G(6) in Lemma 3.1
tends to infinity as d— oo, the conditions (3.8), (3.9), (3.10) hold for large j. Hence
Lemma 3.1 implies that the set

{A;A+ae*+dl;=0 and Rel 2 w}

is empty for large j. On the other hand, the number of roots with Re A= w for
each equation (3.7) is clearly finite. Thus our assertion holds.

Let P,(B) be the generalized eigensapce for a given 4 in ¢(B) and N(B—AI)*
the null space of (B—AI)*. Then by virtue of [17, Theorem 3, p. 229] we have
the following

PROPOSITION 3.2.  For any /€ o(B) the dimension of P,(B) is finite and there
exists an integer k such that

P,(B) = N(B—AI)* and C = N(B—Ail)* ® R(B—Al).

Let I be the dimension of P,(B) and &, =(¢,,..., ¢,) a basis of P,(B). Since
B commutes with (B— AI)*, we have BP,(B)= P,(B). This yields that there exists
an I x | constant matrix M, such that B®,=®,M,. Since B®,=d®,/dl, we have

®,(0) = ,(0)eM*®, —1<0<0.

Since ¢ (0) € D(A), it follows that ¢;€C,, j = 1,..., L.
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Analogously, from the fact that

(d/dt)(T(t)®,) = BT()®, = T()®,M,,
it follows that
T(t)d’;, = ¢,1eMA' = ¢,1(0)eM“'+0),

Since T(t)B¢=BT(t)¢ for ¢ € D(B), we have
T(HR(B—AI)* = R(B—AI)k.
The preceding results are summarized in the following

THEOREM 3.1. Let A be a finite set {i;e a(B); j=1,..., p}, P,=(Py,..., D))
and M, =diag (M,,..., M), where ®; is a basis for the generalized eigenspace
of 4; and M; is the matrix defined by B®;=®;M;, j=1,..., p. Then the only
eigenvalue of M; is 1; and for any vector a of the same dimension as that of
®,, the solution T()®,a of (2.1) with f=0, (2.2) and the initial value @, a at
o=0, is defined on (— o0, ) by the relation

T()D,a = eM'a,  &(0) = &,(0)e,M40, —1<0<0.

Furthermore P,=@®,. 4P, <=C, and there exists a subspace Q, of C such that
T()Q,<=Q, forall t=z0 and C=P,®Q,.

Let us say that the equation 0(t)= —dAdv(t)+auv(t+1) is the formal adjoint
equation of u(t)=ddu(t)—au(t—1). Putting C*=C([0, 1]; L%(Q)), 1/p+1/g=1,
we define a bilinear form (, ) by »

(V. 8) = WO, 0> —a " CUE+1), gL, for yeC* and $eC,

where ¢ -, -) is the duality between L? and L1. Let B* be the operator, having
a dense domain in C* and a range in C*, defined by (, Bo) = (B*Y, ¢) for ¢ €
D(B) and y € D(B*). Since

(V. B§) = WO, $O)> - al’ ChE+1), O
= O, —A$(0)—ag(~ ) — aC(1), HO)>
+ a(O), ¢(= D) + al” W&+, BEdE
= (= A"(O), $(O) — acu(1), HO)>
+al WE+D, 4OXE = (B, ),
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we have B*Y(s)= —(dy/ds)(s), 0<s=1, B*Y(0)= — A*Y(0)—ay(1) and D(B*)=
{¥ € C*; Y € C*, Y(0) € D(A*), Y(0)= —dAY(0)+ay(1)}. We note that A* re-
presents the realization of —dA4 with the homogeneous Neumann boundary con-
dition in L(Q), D(A*)= W3 4(Q) and furthermore the eigenvalues of A* are
equal to those of A(cf. [2]]). Consider the formal adjoint equation

3.12) b= —ddv + av(t+1) in (—o0,0)xQ
with
(3.13) (0v/én)| ;=0 and wv(&)=y({),0=¢=1,

or its integral form

(3.14) o) = e4u(0) — a §° et-94ys(1yds  for 1< 0.
t

Here v*(£) stands for v(t+¢&) for 0SE<1. For any y € C* there exists a unique
solution v of (3.14) in C((— oo, 0]; L4(R)) with the initial function . Then
we define the solution map T*(t) of C* into itself by T*(t)y =v', —0<t=<0.
As in the case of T(t), the set {T*(t)},<, forms a strongly continuous semigroup
in C* and B* denotes the infinitesimal generator of T*(t).

The following Theorem 3.2 is an analogue of [7, Lemmas 3.1, 3.2 and 3.4,
p. 175 and p. 177], so we omit the proof.

THEOREM 3.2 (i) o(B)=oa(B*).

(ii) For any geC the equation (B—Al)*¢=g admits a solution ¢ in C
if and only if (h, g) =0 for all he N(B*—I).

(iii) Let ®,=(¢,,..., ¢,) be a basis of P,(B) and ¥,=col(Y,,...,¥,) a
basis of P;(B*). Then the matrix (¥, ®,)={(W: ¢;); i,j=1,..., p} is non-
singular. Therefore, by a suitable change of basis, (¥;, ®,)=1.

.(iv) ¢ €C isuniquely written as ¢ =¢F + ¢2 where p¥=®,(¥;, ¢).

Similarly to the definition of M, we define M* by B*¥,=M%*¥,. We remark
that M¥=M when (¥,, #,)=1. In what follows we prove a decomposition
theorem for (2.6). We write the decomposition of C with respect to A={/;€
a(B); j=1,...,p} as C=P®Q. Let &, be a basis of P and ¥, a dual basis such
that (¥,, &,)=I.

THEOREM 3.3. Let u, ¢ and f be as in Theorem 2.1. Then
uP = T(t—o)p? + g' T(t—s$)XEf(s)ds,

u = T(1—0)p2 + S T(t—5)X8f (s)ds,



The Hopf bifurcation and its stability 331

where X§f(s)=® ¥ 40), f(5)> and X§f=Xof~ XEf.

PrROOF. Put Vi=e Maty (£). Then V' is infinitely differentiable with
respect to t and it together with its derivatives takes values in D(A%®)(=N%,
D(A")) and u € C([0, o0); W=2:2(Q)). Since V' is a matrix solution of (3.12)
defined for — o0 <t< o0, and

(Ve ) = Vo), u@d —a | v+, ugoyde

= V), u(e)> - af_ (VE+ D, u@de,
it follows that
(d[ds) (V5, ug) = <V(s), u(s)y + <V(s), 4(s)> —alV5(1), u(s)) + acV(s), u(=1))
= {—dd4V(s), u(s)> + al{Vs(1), u(s)) + {V(s), ddu(s)y — a{V(s), u(—1))
+V(5), (s> — alV(L), u(s)y + alV(s), u(— 1)) = {V(s), f(5)).
This yields
(Vs ) = (V) + . <V, S(5)>ds,
which implies
(3.15) (eMar¥,, uy) = (e Ma7¥,, @) + g; CemMasW (0), f(s))ds.
Consequently we have

U = (P ) = Dy(eMaY, 9) + 0, (' emIMap,0), £(5)> ds
= T=)2u(¥,, ) + || TU=5)0,KP L0), F©)>ds
= T(t—0)" + S' T(t—5)XE f(s)ds.

Here we used the fact that T(t)®, = eM4* and put
XEf(s) = @ ,K¥40), f(5)) .
Defining X¢f by X3 f=X,f— X2 f, we have

u® = u, — u? = T(t—0)2 + S' T(t=s5)X8f(s)ds,

which completes the proof.
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4. The local integral manifold .# ()

In the Hopf bifurcation problem the existence of a two dimensional local
integral manifold for the equation (0.2) with (0.3) plays a central role. If this
manifold is constructed, the problem is reduced to the two dimensional case and
the well-known Hopf bifurcation theorem is applied (e.g. [6], [10] and [12]).
Thus in this section we construct a two dimensional local integral manifold by
analogy with O. E. Lanford III [8, 10] and N. Chafee [3].

Let a, be a critical point, i.e., the characteristic equations

A+aet+dé;=0, j=0,1,..,

have a.pair of simple complex conjugate roots +ivy, vo>0, and the other chara-
cteristic roots do not lie on the imaginary axis. Then we rewrite (0.2) as

(4.1) () = dAu(f) — au(t—1) — au(t— Du(f)
=ddu(t) — au(t—1) — {(a—aJu(—1)+au(—1)u 0)}.

In what follows, taking the above nonlinear term into account we consider the
equation with a slightly general nonlinear term

4.2) u(t) = ddu(t) — au(t—1) + f(u,, @),
where a=a—a,.. Here we impose assumptions on f.

AssUMPTION. i) There exists a positive o, such that fisa k+ 1 (k=1) times
continuously differentiable function in (¢, a)e C; x [—ay, 2] Wwith values in
W2 r(Q).

i) f(0, ®)=0 for any ae[—ay, ap] and D, f(0, 0)=0, where D,f is the
Fréchet derivative of f with respect to ¢.

In (4.1), f(¢p, 0)=—ad(—1)—(a.+a)p(—1)¢(0). By virtue of Lemma 1.1
this f satisfies the above assumption.

Let us now denote by C=P,® P, DQ the spectral decomposition, where P,
is the two dimensional eigenspace of B(a.) corresponding to {+iv,} and P, the
generalized eigenspace corresponding to A; ={.ea(B(a.); Re A>0}. Itis to be
noticed that the dimension [ of P, is finite by the discussion in Section 3. Since
Py, P,<=C,, it follows that C;=P,@®P,®0, where J=0QnC,. Let &, (resp.
®,) be a basis of P, (resp. P,) and ¥, (resp. ¥,) the dual basis of @, (resp. ?,)
such that (¥, ®¢) =I:(resp. (¥, ?,)=I). For ue C(R; WP(Q)), put x(t)=
(Yo, u,) and y(£)=(¥,, u,). Let u?, u! and u2 be the projections of u, to Py,
P, and Q, respectively. Then we have u?=®yx(t) and u! =®,y(t). Scaling (4.2)
by u—eu, a—ex, we have
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4.2y u(t) = ddu(t) — au(t—1) + (1/e) f(eu,, ex).

Let x(x, o) be an infinitely differentiable function on R3*=R2?x R such that
x=1 in B(0, 1/2) and y=0 in R3-B(0, 1), where B(0, r)={(x, a)e R3; |x|2+
(xfag)*<r?}. We write

ge(x, y, z, ) = (1/e)y(x, @) f(ePox + &P,y + ez, €x),

which is defined in R2xR!x(Q x R. Since we construct the integral manifold
only in a neighborhood of (u, «)=(0, 0), instead of (4.2)" we consider

4.3) u(t) = ddu(t) — au(t—1) + g(x(), y(¥), z,, &), — 0 <t < 00,

where z,=u?. Then by virtue of Theorem 3.3 we have

(4.4) uf = To(t= g + || To(t=9)BoX(x(5), ¥(5), 2, s,
(4.5) uj = Ty(t—o)u; + S' Ti(t— )P, Yi(x(s), ¥(s), z,, a)ds,
(4.6) 0= Tolt=0)z + || Tolt=5)Z,x(5), ¥(5), 2, 05

for t=0 (¢ being arbitrarily chosen and fixed in R), where T,, T, and T, are
the restriction of T to Py, P, and Q, respectively, X,(x,y, z, a)=<{¥y0),
9o(x, ¥, 2, 1)), Yi(x, p, 2, ) ={P1(0), g.(x, y, 2, ®)> and Z,(x, y, z, &)= X8g.(x, y,
z,d). Applying ¥, and ¥, to the both sides of (4.4) and (4.5), respectively, and
differentiating them, we obtain

4.7 xX(1) = Mox(t) + X (x(1), y(1), z,, &),
(4'8) )’(t) = Mly(t) + Ye(x(l)’ .Y(t)’ Zt’ CX),

where M, and M, are the matrix representation of B(a,) restricted to P, and P,.

In what follows in order to avoid the complexity of notations we use fre-
quently the same notation ||.|| to represent norms in various Banach space
whenever there is no fear of confustion. Let us put

(4.9)  2,= X sup {|D{'DJ2DIsD}+X,|| +||D{:DJ:DIsDi*Y,|l + | D} D}:DIDIZ, |1},

where the sum is taken over |j|+|j,| +j3;+js<k+1 and the supremum is taken
over (x, ))e R2x R, |y|£2 and ||z|¢,S2(z€ 0). Then we can make /4, as small
as we like by choosing |¢| sufficiently small.

THEOREM 4.1. If |e| is sufficiently small, then there exist k times con-
tinuously differentiable functions F, and G, on R?> xR with values in R' and
QO respectively, satisfying the following conditions:
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i) Fo(0, a)=0, D Fy(0, 0)=0, G,(0, 0)=0, D,G,(0, 0)=0.
ii) For any a let
M) ={PpeC,: ¢ = Dox+ D, Fo(x, )+ Gy(x, @), x € R?}.

Then for any ¢ e .#(x), there exists a unique solution u(¢) of (4.3) with the
homogeneous Neumann boundary condition such that ug=¢, u, € #(a) for all
te(— o0, o) and

(4.10) ul@) = Pox(t; xo) + P, Fo(x(t; x0), @) + Go(x(t; Xo), @),

where xo= (¥, @) and x(t; x,) is the solution of the ordinary differential
equation

-*(t) = MOX(t) + Xe(x(t)a FO(X(I)i a)s GO(x(t)s a)a a)

with initial value x, at t=0.

Furthermore if A, is empty, then the manifold .#(a) is locally attractive,
i.e., if the solution u of (4.3) satisfies |x(t)| + | z,/c, =1 for its x and z components
and all t=0, then

[, — Pox(1) — Go(x(1), allc, = Ke™"|[¢pllc,, 120

for small |¢|, where K and y are positive constants independent of t and ¢.

Before the proof we note that when A, =¢ the y component does not appear
and then (4.10) is written as

u @) = Pox(t; xy) + Go(x(1; xo), @).
ProoF. For m2=1, let
St = {FeC"(R*; R); |[D'F| < 1, |j| £ m, F(0, ) = 0, D,F(0, 0) = 0},
3= {GeC"(R?; 0); |DIG| £ 1, |jl £ m, G(0, @) = 0, D,G(0, 0) = 0}.

In what follows we shall find F, € St and G, € S} such that for the unique solution
of

(4~l 1) ".C(t) = Mox(t) + Xa(x(t)’ FO(X(I)’ d), GO(X(I)a a)’ a)’

with x(0)= x,, x, € R?, the following equations (4.12) and (4.13) hold:
(4]2) FO(XO, lX) = So es_M|sYs(x(S)9 FO(X(S), d), Go(x(s)s d), (Z)dS,
413)  Golxo, @) = Siw To(—S)Z(x(5), Fo(x(s), @), Go(x(s), o, @)ds.

Let us first consider (4.11) with x(0)=x, for given FeSk*!, GeSk'! instead of
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F, and G,. Then there exists a unique solution x(t; x,, F, G, ), which is k+1
times continuously differentiable with respect to (t, xo, ). Next we define
operators ', and ¢, on S§ij =8%*1 x Sg*! by

@19 H(F, )0, ) = || eMeY(x(6), Flx(s), @), G(x(6), ), 2)ds
@15) o, O (o) = [ To(=9Z,x(5), Fx(s), o0, GUx(0), @), s,

where x(t)=x(t; xo, F, G, «). We shall show that . (F, G)eS§"' and
A (F, G)e S§*'. We investigate only the operator ¢, because the case of
2y is similar and easier. Since the spectrum of By, lies on a left half plane with a
positive distance from the imaginary axis and AT()¢=T(t)A¢ for ¢peC,, it is
easily verified that 2¢,(F, G) belongs to § and is k+1 times continuously di-
fferentiable. Furthermore, there exist positive constants ¢ and f independent of
X0, & and ¢ such that

1#:(F, §)(xor D, < clZile, | eds < (el

In the sequel we use the notation ¢ to represent variable constants independent of
Xo, « and &. Before estimating D, %, (F, G), D, ,(F, G), we study magnitudes
of D, x(t; xo, F, G, ®) and D,x(t; xo, F, G, «). Putting x(t)=D, x(t; xo, F,
G, o), we have from (4.11) with F and G in place of F, and G,

(4.16) x1(t) = Mox'(t) + D, X, pc(x(t))x'(t) with x'(0) =1,

where x()=x(t; xo, F, G, ) and X, pqe(x)=X.(x, F(x, a), G(x, a), ). From
(4.16) we see

x1(s) = exp {Mos + SO D.X, ¢ o(x(x))dx} .

Since the eigenvalues of M, lie on the imaginary axis and

IDxX . r el < 2,
it follows that
4.17 Dy x(S)l| < e s forany s suchthat —o0 <s 0.
Similarly we have
D x(s)|| < e~ *es forany s suchthat —oo <s=<0.

Thus we have from (4.15)

0
1D #3(F, G| < cagg eW-i0sds < A /(B—1,),
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1D AF, G < e S eW-1ds < e f(B—12,).

Since 1,—0 as e—0, it follows that

IDxX5(F, G) =1 and | D, 5(F, G| = 1,
if |e| is sufficiently small. Analogously, we obtain, for sufficiently small ||,
(4.18) IDIAH(F, GOl <1, |jl<k+ 1.

We remain to verify that X,(F, G)(0, «)=0 and (D,,¢",(F, G))(0, 0)=0. Since
g.(0, 0, 0, a)=0 by Assumption ii), if follows from the uniqueness of the solution
of the Cauchy problem for (4.11) with F and G in place of Fy and G, that x(¢;
0, F, G, a)=0, which yields #%(F, G) (0, ¢)=0. On the other hand, since
D ,Z(x(1), F(x(1), @), G(x(1), &), a)

= D,Z,- D, x(t) + D,Z,- D,F - D, x() + D.Z,-D,G- D, x(1),
and x(t; 0, F, G, a)=0, it follows from Assumption ii) that D, ¢",(F, G)(0, 0)=0.
Thus we have K,(F, G)e S§"!. Similarly we see that & (F, G) e Sk*1.

Next, we show that for any F,, F,e€8%*! and any G,, G, e S§*!
4.19) X5 adliDIC(Fy, G) = A (Fa, Gl + IDI(AHH(Fy, Gy)— A 5(F,, G}
< ke 2y skllIDI(F =Gl + DG, =Gy}

Here we note that the sum in (4.19) can not be taken over |j|<k+ 1, because we
would need the derivatives of order k+2 of X,, Y, and Z, when we try to estimate
the derivatives of order k+ 1 in the left hand side of (4.19). To prove (4.19), we
consider only J,(F,, G,)— X ,(F,, G;). For i=1, 2, let x(t)=x(t; xo, F;, G;, @).
Then

(4.20) A5(Fy, Gy)(xg, @) = H5(F 5, G3) (X0, @) = S:CTQ('“S) {Z)(s)—Z2(s)}ds,

where Zi(s)=Z(x,(s), F{(x,(s), @), G{x,(s), @), @), i=1,2. By the mean value
theorem we have

Z)()—Z(s); = DiZ, - {x,() = x2(5)} + D,Z, - {F(x(5), ) = F5(x5(s), 0)}
+ D.Z, - {G(x:(5), ®) — Ga(x5(s), 0)}
= DiZ,- {x1(5) = x2()} + DyZ,- DF - {xy(s)—x5(s)}
+ DyZ, - {F(x2(5), @) — F5(x5(5), 0)} + D.Z,- D,Gy - {x,(s)— x5(s)}
+ D.Z, - {G(x,(s5), 0) — G(x5(5), a)},
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which leads to

1ZX(s) = Z3($)lc, S Z{Ix1()—x3()] + |Fy—F,ll + |G, =G, |}
This together with (4.20) yields
(4.21) || 2(Fy, G1) (X0, 0)— A o(F2, Gy)(Xo, D¢,

< 2" ePIxi()=xs(0)lds + CIBLUIF,—F] + 16, = Gall)

Now we estimate x,(s)—x,(s). Since x(s) is the solution of (4.11) with x,(0)=
X0, F; and G, instead of F, and G, (i=1, 2), it follows that

4.22)  x,(5) — x5(s) = S:)e’”"(s"’{Xg(‘r)—Xf(t)}dt, - <s=0,

where  Xi(s)= X (xi(s), F(x/5), @), G{x{(s), @), ), i=1,2. By the same esti-
mation as for Z!(s)—Z2(s), we obtain

1X2(s) = X2(9)c, S 2{lx1(5)—x5()] + [[Fy—F5| + Gy —Gll}.
Thus we have, from (4.22),
()= xS A 1519 = 295 = 2sIF, = F +1G, = G}, — 0 <520,
which yields, by Gronwall’s inequality (cf. [7, Lemma 3.1, p. 15]),
(4.23) [x1(8)=x,(8)| £ — A se”**{|F,—F,||+]|G;—G,||}, —oo<s=Z0.
Substituting (4.23) into (4.21), we have, for sufficiently small |¢],
[545(Fy, G)— A 5(F3, Go)ll S 2 {lIFy—F2l + G, —G,|}.

By repeating similar arguments we obtain (4.19).

Choosing |¢| sufficiently small, we have cA,<1 in (4.19), which means that
the map (F, G) e Sk'd — (X' \(F, G), X,(F, G))eSt¥J is a strict contraction with
respect to the metric in 8% 5. On the other hand, it is easy to see that this map is
continuous from 8% , into itself. Consequently there exist F,e Sk and G,eS%
such that (4.11), (4.12) and (4.13) hold.

Now we must show that for any ¢ € .#(a) there exists a unique solution u(¢)
of (4.3) defined on (—o0, ©0)x Q2 such that uo=¢ and u,e.#(x) for all
te(—o0, ©). To do so, put yo=F(xg, @) and zq,=Gy(xq, @), X(t)=x(1; X,
Fo, Gy, a) for xo= (¥, ¢), and put y()=Fy(X(t), a), z,=Gy(X(t), «). Then we
have

vo= [ VRO, Fo(R6), 0, Go((5), @), w)ds,
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20 = [\ To(=9Z(6), Fo5(5), ©Go((5), 0, s,
and furthermore
¥ = [ MY (a(s3 30, Fo(x(53 5(0), 2), Golx(s3 K0, ), @)ds,
2= To(=9)Zx(s3 30, Folx(s3 %0), ), Go(x(53 F(0), ), s

where x(s; X(¢))=x(s; X(t), Fo, Go, ®). Since the equation (4.11) is autonomous,
it follows from the uniqueness of the solution of the Cauchy problem for (4.11)
that x(s; X(1))=x(s+1; xo)=X(s+t). Thus we have

y0) = | MR+, Fo(s+0), ), Go((s+1), @), @)ds,
2= ] To(=)ZR(s+1), Fo(S(s+1), @), GolS(s-+1), 2), o)ds
which lead to
30 = [ MDY, Fo(3(6), 9, Go(6), ), ods
= {7 ey, 3(9), Fo(x(6), 0), Golw06), @), 2)ds
+ [ M0 y,(3(5), Fo(3(6), 0, GolFs), @), a)ds
= Mit=y(0) + || MDY (R(5), Fol(5), 0, GoR(6), @), a)ds,
2= [\ To(=9Z5s+0, Fo&s+0, 0, Go(R(s-+1), @), a)ds
= To(t—0)zo + S: To(t—5)Z(X(s), Fo(X(s), ), Go(X(s), @), a)ds.
Hence u,=®,x(f)+® y()+z, satisfies (4.5), (4.6) and uo=¢. Since X(r)=
(t; x,), (4.4) is also satisfied, and so u() (f) =u,(0) is the required solution.

To prove local attractivity we prepare the following lemmas. The proof of
Lemma 4.1 is elementary, so we omit the proof.

LEMMA 4.1. Let x(t) and f(t) be non-negative continuous functions and a,
b positive constants. If

x)Sa+b S' x(D)dt + S' fds, 12,

then
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x(1) < aedt-9) + S' bE-f (1)dx.
Similarly, if
Xs)<a+b S' x(t)dr + S' f(odr, 12,
then
x(5) < aer=0 + " erep(odr,

LEMMA 4.2. Let A, =g and u(¢) be a solution of (4.3) with the homogeneous
Neumann boundary condition and uy=¢ € C, suth that its x and z components
satisfy |x(O|+lzllc,£1 for all te[0, ©). Let B be the positive constant deter-
mined in the first part of the proof of Theorem 4.1. Then, for sufficiently small

e|, there exists a continuous function h of (t, x, z, a) € [0, c0) x R2x J x R(=S)
to @ which is continuously differentiable with respect to x such that

(424) IDih(t, x, z, )| < 2, |jl £ 1, for (t,x,z,a)eS with |z|c, =1,

(4.25) h(t, 0,0, «) = 0,
(4.26) z(@) = h(t, x(t; @), zo(§), @), 0=t < 0,
4.27) Ih(t, X1, 21, &)= h(t, X3, 25, @)llc,

S (A/(B— A€ |x; —X3| + e =04z, —z,]¢,,
where x(t; §)=(¥o, u(9)), z{@)=uld)— Pox(t; D) and &,=2,+(%)*[(B—4,).

PrOOF. Let us denote by S™ (m > 1) the set of continuous functions h from S
to J which are m times continuously differentiable with respect to x and satisfy
(4.25) and

IDIh(t, x, z, @)| £ 2, |jl <m, for (t x,z, a)eS with |z|¢, < 1.

For given te[0, ), xo € R? and z, € §, consider the system of equations:

(4'28) h(t’ X0s Z0s a)= TQ(t)ZO + S; TQ(t _S)Ze(x(s)s h(S, X(S), 205 (Z), a)ds
(4'29) X(S) = MOx(S) + XE(X(S), h(S, X(S), Z0s d), a) with X(t) = Xo,

and the problem to find heS! such that for the unique solution of (4.29) the
equation (4.28) holds. Here we note that the y component deos not appear in
the arguments of X, and Z,, because A, =¢g. Taking S2, by the same argument
as in the first part of the proof of Theorem 4.1, we can show the existence of h € St
which satisfies (4.26) and (4.27) for sufficiently small |¢|. On the other hand,
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z(=z,(¢)) and x(t) (=x(t; ¢)) satisfy

(4.30) 2, = To()zo + S; To(t—$)Z,(x(s), z,, %)ds,
(4.31) 2(f) = Mox(t) + X,(x(1), 2, #) with x(0) = x,,

where xo=(¥,, ¢) and zog=¢—¥,x,. Let te[0, c0) be fixed and let x(s) be
the solution of (4.29) with x,=x(¢; ¢). Then,

(4.32) h(t, X(1), zo, @) = Tp(t)zo + S;TQ(t—s)Z,()?(s), h(s, x(s), zo, &), 00)ds,
(4.33)  3(s) = Mo3(s)+ X (R(s), h(s, X(s), zg, @), @) With F(1)=x(t; }).
From (4.30) and (4.32), we obtain, as beforé,
(4.34) lzz—h(®lc, = 4, S; e P {|xX(s) = x(s)| + llzs— h($)llc,}ds,
and from (4.31) and (4.33)
1%6) = x| = 2 [/ (5@ =@ + 2.~ hDl e e,
where h(t)= h(z, X(t), zy, @). By virtue of Lemma 4.1 we have
56 =% S 4 [ ez~ hle,d,
which together with (4.34) leads to
2= hDle, < G2 | 000§ etetm |z — ho)le, deds
+ 2., Pz, — hs)lc,ds

S G + GHE=2) [ e 12,= h)c,ds.

Thus
2= hDle, SCy + RUB—2) | erlz,= hs)lc,ds.

By Gronwall’s inequality we have z,=h(t), which shows (4.26).
Finally we show (4.27). Let X,(s) and X,(s) be solutions of

X(s) = Myx(s) + X (x(s), h(s, x(s), z;, @), @) with x(t) = x;.

Then
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hy(@®)—=hy(t) = To(t)(z,—2,)
+ . Tolt =) (281(6), hy(5), )= Zu4(5), ha(s), D}ds
where hi(s)=h(s, X,(s), z;, @), i=1,2. Hence

(4.35) () —hyOllc, £ e lzy—22llc,

2] P05, = %) + 11y = b, }s.
On the other hand, from the equation
%(s) = eMots=0x, 4 & Mols=0 X (%,(7), h(x), a)dx,
it follows that for any s such that 0<s<t¢
50— %0 £ 51 =3l + 2§ 15,050 + 1@ = ha@le,)de.
By virtue of Lemma 4.1 we have
19,9~ 529 S eC0]x, = x| + 4, | =y @) = By,

By substituting this into (4.35) we obtain

t
hi(®)—=h®)llc, = e #llzy— 25, + 2 So e P~ | hy(s)— hy(5)| c ds
+ 2, 1%, =%, S' - (B30 ds + (A,)ZS' ) S 3<=9)| (1) = hy(1) | ¢, d7ds
0 0 s
t
S ez —z5llc, + (AJ(B—A)) Ix; —X;3| + 6, So e P~ hy(s)— hy(s)llc,ds.
Therefore
ePt|hy () —hy(Dlc, = llzy—2zzllc, + P (A/(B—2.)) %1 — X,

t
+ 6, g 5] hy(5)— h(s)  c, ds.

By Gronwall’s inequality again we have
Pt hy ()= hy(Dllc, < e {llzy— z2llc, + €' (A/(B—A0) Ixy —x,l},
which leads to our assertion.

PROOF OF THE LAST ASSERTION OF THEOREM 4.1.  Fix any t>0 and put x, =
x(t; $)(=(¥o, u(9))). Let ¢, €.#(x) be defined by ¢,=d¢x;+Go(x, ).
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Since the solution of (4.3) on .#(«) is defined on (— o0, 00) X 2 and unique for each
initial function on .#(a), there exists a unique ¢, € #(a) such that ¢, =u,¢,).
Put x,= (¥, ¢,). Then by virtue of Lemma 4.2, we see

z(P) = h(1, x1, 2¢(9), @),
GO(xl’ a) = zr((bz) = h(ts X1s ZO(¢2)’ a) = h(t’ X1s GO(XZ’ a)’ a)a

and therefore, by (4.27),

(4.36) [12{P)—Go(xy, Dllc, = P2 (||lzg(P)llc, + 1 Go(*X2, Dllc,)
S e 070 (flzo(P)llc, +1x2) -

In what follows let us estimate |x,|. Note that x,=%(—t; x,), where X(s; x,) is
the unique solution of the equation

x(s) = Mox(s) + X, (x(s), Go(x(s), ), &) with x(0) = x;,.

Since x,=X%(—t; x,)—X(—t; 0)=D,,%-x,, we have, by the same reasoning as
in the case of (4.17),

4.37) [x,] £ e*t|x,].
On the other ﬁand, since x(s; ¢) (=x(s)) and z(¢) (= z,) satisfy
(4.38) x(s) = Mox(s) + X, (x(s), z, @) with x(0)=(¥,, ¢) (=x,)
(4.39) 2y=To()zo($) + SO Ty(s—Z(x(x), zz, adz, s 2 0,
it follows, as before, from (4.39) that
Ize, < elzo(Blc, + A |, PO x@ + Izlc, .
This yields, by Gronwall’s inequality,
(4.40) Iz, < P25 zo(@)lc, + 4 ! ORI |x(D)] dr.
By using (4.38) we have, again as before,

t
IX(O) < Iol + 4 | (x)| + 2.} ds.
Substituting (4.40) into this, we obtain
t
XD = [x0l + Ae/(B— 2l zo(D)llc, + I So |x(s)lds,

which yields, by Gronwall’s inequality,
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(4.41) IX(D)] £ e2H{xol + 2./(B—2)Zo(P)c,} -
Since x, =x(t)=x(t; ¢), it follows from (4.36), (4.37) and (4.41) that

I2($)— Go(x1, Dllc, = e 20723 BJ(B— )| zo(D)llc, + |Xol}
= Ke || llc,,

where K is a positive constant independent of ¢ and ¢, and y=p—-26,— 4, which
is positive for sufficiently small |¢]. The proof is complete.

5. Hopf bifurcation

In Section 4 we saw that we can construct a local integral manifold for our
equation in a neighborhood of a critical point a. and we can reduce the Hopf
bifurcation problem to the two dimensional case. On the other hand, according
to the Hopf bifurcation theory for a finite dimensional case (cf. [6], [13]), if the
characteristic equations have a pair of complex conjugate roots {A(a), 2(a)} in a
neighborhood of a, such that

(H.1) ReAMa,) =0 and ImAi(a,) # 0,
(H.2) Re (a,) # 0,

then non-trivial periodic orbits bifurcate from the trivial solution. Thus we
first study the characteristic equations

3.7 A+aet+déi=0, j=0,1,...
We observe that a is not a critical point if 0<a<mn/2 by virtue of Lemma 3.1.

LeMMA 5.1 ([7, Lemma 4.1, p. 254]). If y>e~!, then there exists a pair of
simple complex conjugate roots {A(y), A(y)}, A(y)=pu(y)+iv(y), which are con-
tinuous together with their first derivatives in y and satisfy 0<v(y)<m,
w(rn/2)=n/2, u(n/2)=0, u'(n/2)>0 and u(y)>0 for y>n/2.

By virtue of Lemma 5.1 we see that a.=mn/2, there exists a pair of simple
complex conjugate roots for (3.7) (with j=0) which satisfy (H.1) and (H.2) and so,
it is the first critical point in a>0. On the other hand, if y=a, (==/2) and 6=
d¢; (j=1), then the conditions (3.8), (3.9) and (3.10) in Lemma 3.1 are satisfied,
which implies that all roots of (3.7), except a pair of complex conjugate roots
obtained above, have negative real parts. Hence, for a.=n/2, we can apply
Theorem 4.1 and obtain a local integral manifold #(x)={peC,; dp=DPyx+
Gy(x; o), x € R?}, and the Hopf bifurcation problem for the equation (0.2) with
(0.3) is reduced to the equation
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5.1 x(1) = Myx(1) + X(x(2), Go(x(2), a), @), —o0 <t < 00,

in a neighborhood of (x(t), ®)=(0, 0), where a=a—mn/2, M, is the 2 x 2 matrix
[ai;], a;1=a;,=0, a;,=—a,;=n/2 and

X(x, z, &) = — ol ¥o(0), Po(—Dx+2z(—1))
— al¥(0), (Po(— Dx +2z(—1)) (Po(0)x +2(0)))

for any xe R? and ze{ (cf. (4.1)). We write here (5.1) in the unscaled form,
i.e., e=1 in (4.11), and note that the y component does not appear in the argu-
ment of X in (5.1), because the characteristic equations (3.7) do not have roots with
positive real parts when a=mn/2. It is easy to see that the characteristic equation
of the linear part of (5.1) has a pair of complex conjugate roots which satisfy
(H.1) and (H.2) at =0, i.e., a=a.=n/2. Thus, by the Hopf bifurcation theorem,
a non-trivial periodic solution x,(t) for (5.1) exists for small «>0. Since u(t)=
u0)=Po(0)x,() + Go(x,(t); ®)|g=0 is a solution of (0.2) with (0.3), we have the
following

THEOREM 5.1 The equation (0.2) with (0.3) has a temporally periodic
spatially homogeneous bifurcating orbit at the first bifurcation point a,=n/2
from the trivial solution.

We close this section by giving a remark on the proof of the Hopf bifurcation
theorem due to J. K. Hale [7, Theorem 1.1, p. 246]. It seems to the author that
his proof is incomplete because the fact “‘the second integral is zero’’ of the
third line from below at p. 248 does not hold. This fact is essential in his proof.
We can also show that even if “the second integral’’ is correctly evaluated it does
not lead to his assertion

J0H(0, 0, 0)

o p 7

(5.3 det

Here we give an example. Consider an ordinary functional differential equation
(1) = = (n2+a)x(t—1) + f(x,, @),

where f(0, «)=0, D, f(0, 0)=0 and f satisfies a suitable regularity condition. We
denote by {A(@), A(a)}, A(@)=pu(x)+iv(a), a pair of simple complex conjugate
roots of the corresponding characteristic equation such that A(0)=iv(0)=in/2
and p'(0)#0 (see Lemma 5.1). As usual we decompose C=C([—1, 0]; R) as
C=P,®Q, with respect to {A(a), A(@)}. Let @, be a basis of P,, When a=0,
we may take P,(0)=(sin (n/2)0, cos (n/2)8). Let ¥, be the dual basis of @, such
that (¥,, @,)=1. Then ¥,=col (Y, ¥,), where

¥ 1(0) = ko{sin (n/2)0 + (n/2) cos (n/2)0},
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Y2(0) = kof{cos (n/2)0 — (r/2) sin (n/2)6},
ko = 2/(1+72/4).

In this case ‘“‘the second integral’’ becomes

400 —n/2 1
_n/zg S e MO DY (0)D((0) eM O+ géds =k, # 0,
0J-1 -1 /2 |

where M(0) is the 2x2 matrix [a;;], a;,=a,,=0, a,,=—a,,=n/2, which is
written as B(0) in [7]. Furthermore,

(5.4)  (3H/32)(0, 0, 0) = — 3: MO (O)U (— 1)e,ds

=~ 2/n S: MOy (0)U(s)e, ds = — 2/n g“ e~ MO (0)B,(0)eM ©5 M(0)e, ds,
0
where e, =col (1, 0) and U(s)=®,(0)eM©®s.  Here we used the fact that U(f)=
(n/2)U(t—1). The equation (5.4) means that (0H/dx)(0, 0, 0) is equal to (OH/
B)(0, 0, 0) up to a constant (cf. the 8" line from below of p. 248 in [7]). Thus
Hale’s assertion (5.3) does not hold.

6. Stability of bifurcation orbits

In the preceding section we showed the existence of the Hopf bifurcation for
the equation (0.2) with (0.3). We shall here give a brief discussion on the stability
of the Hopf bifurcation. S-N. Chow and J. Mallet-Paret [4] discussed this
subject for Wright’s equation x(f) = —ax(t— 1)(1 + x(1)), i.e., in the spatially homo-
geneous case of the equation (0.2). Their analysis remains valid for the equation
(0.2) with (0.3) with a slight modification, because (i) the local integral manifold is
constructed in C, (this is one of the assumptions in [4, p. 141]) and (ii) the orbit
appearing at the first bifurcation point is spatially homogeneous and so we can
take the same basis @y(=(sin(n/2)8, cos(n/2)0)) as in the case of Wright’s
equation. In the case where spatially inhomogeneous orbits appear at the first
bifurcation point the situation becomes very complex. This analysis will be done
in the forthcoming paper.

We first state the results on stability in [4, p. 125 and p. 135]. Let x, y and
z be generic points in R, R' and , respectively, and ¢ be the same parameter
as in Section 4. Then according to [4], an annulus «7* surrounding a periodic
solution is given by

. (I=9ro < Ix| <(l+y)ro, y—0 as e—>0,

Iyl + lizllc, < 2*|¢el, Q* = constant,
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where r, is a positive constant independent of & which is determined by the given
equation with a=a,.. If B(a,) does not have the spectrum with positive real parts
(in this case y does not appear and the integral manifold .#(«) is locally attractive),
«* is positively invariant under the condition p'(a,)K <0, where K=K*+ K**
is the constant defined in [4, p. 133]. Here “«/* is positively invariant’’ means
that if solutions are in &/* at t=g, then they stay in o&* for t>0. The Hopf
bifurcation is stable if o* is positively invariant.

In what follows we shall compute the value of K in our case (a,=7/2). We
use the notations of [4, Section 9] as possible as we can. But we employ, as be-
fore, the notations B, M, and ( -, -) instead of A, Apand (-, -)in[4]. Moreover,
in our case we note that a,=b,=rn/2 (as for the notations ay, by, see [4, p. 148]).
As in [4] we can derive K= K*+ K**,

K* =0, K** = — (bo/2)Im g,(2ib,—Bg)~'X$,
g2 = — [bo/2(1+bd)](1—ibo) ($(0)i+H(—1)).

In order to determine K** we must evaluate (2ibo— Bg) ' X%. The determination
of ¢=(2ibog—By)"1X§¢ is a little different from [4, p.151]. To caluculate,
more generally,

¢ = (2ibo—B)"'y

we must solve

(6.1) $(0) = 2ibod(0) — Y(6)
subject to the conditions

(6.2) ‘ $(0) = d4¢(0) — aod(—1),
(6.3) (0¢(0)/0n) |50 = 0.

From (6.1)

#(6) = e2mag(0) — | exitots-2y(s)ds
and so

B(—1) = e200g0) — | " e-2i0oer Dy (s)ds.
This together with (6.1) and (6.2) yields
—dA@(0) + (2iby+ age2'%)p(0) = Y(0) + aq S;l e~ 2ibo(s* 1yy(5)ds,
For y =X, we have

—dAP(0) + (2iby + age2ib0)¢(0) = 1,
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which together with (6.3) leads to
¢(0) = 2/n(2i—1).
Thus we have
o(—1) = —¢(0),
— (bo/2) Im [g,(2ibo— B)™'X ] = — b§(3bo—1)/10n(1 + b3)
— (372 —1)/40(1 + n2/4).

On the other hand, by the same calculation as in [4], we have
— (bo/2) Im [g,(2iby—B)~'1X}] = 0.
We therefore obtain
K = K** = — n(3n/2-1)/40(1 + n2/4) < 0.

Since, be virtue of Lemma 5.2, u'(n/2)>0, we see that Ku'(n/2)<0 and so «/* is
positively invariant. Thus we have shown

THEOREM 6.1. If || is small, the bifurcating orbit in Theorem 5.1 is stable.
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