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1. Introduction

We consider a real n-dimensional system of differential equations

(1.1) % — X(x, 1), te[a, b]
and observe the problem of finding a solution of (1.1) which minimizes a real
functional

(1.2) v[x] = (g[xD*g[x]

locally, where g[x] is a real m-dimensional functional and A* is the transpose of
a matrix A.

In [1] H. T. Banks and G. M. Groome, Jr. proposed an iterative procedure
of finding a solution to the above problem for a linear g[x] by the use of the
quasilinearization of the differential system (1.1) and obtained a condition for
v[x] to have a local minimum at a point of attraction of the iterative procedure.
In [12] M. Urabe proposed the Newton iterative procedure and the generalized
Newton one. The latter is simpler than that proposed by Banks and Groome.
In [9] H. Shintani and Y. Hayashi studied the same problem for several types of
g[x] and conditions for a local minimum of (1.2). It is worthwhile to note the
work [8], though it is dissimilar to the above works.

In all the above-mentioned works except [8], the original problem is reduced
to the following boundary value problem:

dx

(1.3) > X(x, 1), tela,b]

with the boundary condition

(9’ [P D*9(x) = 0,

where @,)(t) is the fundamental matrix of the differential system

L~ X0, Oy
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with @,y(to)=1 (I: the unit matrix), ¢, is some point in [a, b] and g’(x) is the first
Fréchet derivative of g[x]. For obtaining approximate solutions this reduction
is very powerful.

In [4] M. Fujii observed a posteriori error estimation of an approximate
solution by using finite Chebyshev series for the original problem and gave a
numerical example. In the above-mentioned boundary value problem, the
boundary condition includes @ ,(f). But in general only its approximation can
be obtained. He found the following fact: In order to estimate an error bound
of the approximate solution directly by making use of the method proposed in
[3], the knowledge of the exact fundamental matrix @,(t) is required. Thus
some manipulations are necessary. However, in his case the error bound obtained
was somewhat of an overestimate.

In a posteriori error estimation a fundamental matrix plays an important
role. In many practical applications exact fundamental matrices and their
inverses are not available, so that the estimates are not applicable if the approxi-
mate fundamental matrices and their approximate inverses are not so accurate.
In [6] Y. Hayashi gave a posteriori error estimates of the approximate solutions
in terms of the approximate fundamental matrices and their approximate inverses.

In this paper we still treat a posteriori error estimation of the approximate
solution and the local minimality of the exact solution corresponding to the ap-
proximate one. A numerical example is given.

In Section 2 we state the original problem of the least squares type for
ordinary differential equations and give preparatory descriptions. In Section 3
it is shown that the problem given in Section 2 is reduced to a special boundary
value problem under the assumption that a certain matrix is positive definite.
We also propose a condition for a local minimum in terms of error bounds of
the approximate solution and the approximate fundamental matrix. In Section 4
we obtain a theorem which is an improvement of the results in [6, Theorem §]
for saving time. In Section 5 we give a numerical example in which the same
problem as in [4] is treated by using finite Chebyshev series.

Computations in this paper have been carried out by the use of FACOM
M-200 at Kyushu University and OKITAC 50/10 at Toyama University.

2. Preliminaries

2.1. The problem of the least squares type

Let R" be a real n-space with any norm | -| and let || - ||4 denote the dual
norm of ||-||. For any k x n real matrix B (k<n), let || B|| be the natural norm
induced by the norm ||-|. Then by [2, pp. 42-43] it holds that
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lle*l = llellx for eeR".

Let C[J] be the Banach space of all real n-vector functions x(f) continuous
on the interval J=[a, b] with the norm | x|.=sup,||x(?)| and let M[J] be the
Banach space of all real n x n matrix functions A(t) continuous on J with the norm
|All.=sup,, |A(t)||. The identity operator and the unit matrix are denoted
by the same symbol I. The sum F+G and the product FG of two operators
F and G are defined in the usual manner.

For two Banach spaces X and Y, we denote by L(X, Y) the set of all bounded
linear operators from X into Y and we abbreviate L(X, X) by L(X). For F: Dc
X—-L(X,Y) let F(x) be an element of L(X, Y) associated with xe D. When
F: Dc X—Y is Fréchet differentiable at x e D, we denote by F’(x) the Fréchet
derivative of F at x.

Let A=(a,, a;,...,a,)e M[J] and heC[J]. Then for any Te L(C[J)),
we define T4 e M[J] by

TA = (Ta,, Ta,,..., Ta,),
and for a bilinear operator N from C[J] into C[J], we define N[h, A] by
N[h, A] = (N[h, a,], N[h, a,],..., N[h, a,]).
For Y;e L(C[J])(i=1, 2,..., n), let Ye L(C[J], M[J]) be the operator defined by
Yh = (Y;h, Y,h,..., Y,h).

Let ' be a domain in the tx-space intercepted by two hyperplanes t=a and
t=b such that the cross sections R, and R, at t=a and t=>b make an open set in
each hyperplane. Put Q=R, U Q' U R, and let D, be the domain of C[J] defined by

D, = {xeC[J]|(t, x(1)) e for all teJ}.

Let us consider the system of differential equations

dx _
2.1 s X(x, t) for telJ

and the problem of finding a solution which minimizes the functional

(2.2) v[x] = (g[x])*g[x]

locally, where x and X(x, t) are real n-vectors, X(x, t) is continuous in Q and twice
continuously differentiable with respect to x in 2, and g: Dy— R™ is twice continu-
ously Fréchet differentiable in Dy. We assume that (2.1) has at least one solution
in Dy.

For any fixed ¢y € J let x(, c) be a solution of (2.1) on J such that x(ty, ¢)=c,
and let
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Ay = {ceR"|x(t, c)eDy}.
Let g: 49— R™ and s: 4,— R! be defined by

(23) qlc] = glx(t, o)1,

(2.4) sle] = (qleD*qlcl/2

respectively, and let A=A, be a convex domain. Then for any ¢, c+e€ 4, by
[9, Lemma 3] it holds that

(2.5) s[c+e] = s[c] + s'(c)e + s"(c)ee + o(||e]?),

where

(2.6)  s'(c)e = (qLcD*q'(c)e,

(2.7 s"(c)ee = (q'(c)e)*q(c)e + (q[c])*q"(c)ee,

(2.8)  g'(c)e = g'(x(t, ) [x.(t, c)e],

(2.9)  q"(c)ee = g"(x(1, ) [x (1, c)e, x(t, c)e] + g'(x(1, ) [x. (1, c)ee],

x. and x,, are the first and the second Fréchet derivatives of x(¢, c¢) with respect

to c respectively.
From the assumption on X(x, f) it follows that x(t, c¢) is the fundamental

matrix of the system

(2.10) %« = X.(x(t, ¢), )y

satisfying x.(ty, ¢)=1, and that x_.(¢, c) is the solution of the system

@.11) % ee = X (x(1, ¢), zee + X (x(t, ¢), ) [x(t, O)e, x(t, c)e]
satisfying x..(to, ¢)=0, where X, and X,, are the first and the second Fréchet
derivatives of X(x, t) with respect to x respectively.

If s[c] attains a local minimum at ¢e€ 4, as is well known, it holds that
s'(8)=0. Conversely a sufficient condition under which the solution & of s'(¢)=0

minimizes s[c] locally is given by the following [7, Theorem 5].

THEOREM 1. Let ¢ €4 be a solution of s'(c)=0 and suppose there exists a
positive constant o such that

(2.12) s"(c)ee = afe||*  for all eeR"

Then s[c] attains a local minimum at c=¢.
In many practical applications the solution ¢ of s'(c)=0 and the solution
x(t, &) of (2.1) can not be obtained exactly. We can obtain only its approximation.
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Therefore in the next section, using x(® e C[J] and Z(® e M[J] which are ap-
proximations of x(t, ¢) and x(t, ¢) respectively, we establish a theorem assuring
that x(¢, &) is a solution of (2.1) minimizing (2.2) locally.

2.2. Positive definite matrices

A matrix 4 € L(R") is called positive definite if
(2.13) e*4e > 0 for all eeR" (e # 0).
We have

LEMMA 1. Let A, Be L(R") and suppose there exists a positive humber o
such that

(2.14) e*Be = afle| el  for eeR",
(2.15) o> ||A—Bj.
Then A is positive definite.

ProoF. For any ee R" (e#£0), by (2.14) and (2.15) it follows that

e*Ae = e*Be + e*(A—B)e
2 (a—[lA—BlDllel«lel > 0.

Hence by (2.13) A is positive definite.

Since
(2.16) e*Be = e*(B+ B¥*)e/2 for all eeRn,
we have the following

COROLLARY 1. Let u be the least eigenvalue of (B+ B*)/2 and suppose
(2.17) u > ||A— B,

where || - ||, is the spectral norm. Then A is positive definite.
For any symmetric Ce L(R"), since |C|=]|C|l,, we have the following
COROLLARY 2. Let A and B be symmetric and suppose that for the least
eigenvalue v of B

(2.18) v> ||A—B]|.

Then A is positive definite.
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3. The local minimality

3.1. The boundary value problem of the least squares type
Let
D = {xeDy|x(t,)ed}.

For xe D, let &,(t) be the fundamental matrix of the system

dy

% = X.(x(1), Oy

with @,y(t5)=1 and let U be a domain in M[J] including
Upg = {® e M[J]|xeD, &t,) = I}.
Let f: D x U—R" be defined by
3.1 fIu] = (g'(x)Z2)*g[x] for u=(x,Z)eD x U.
Substituting (2.3) and (2.8) into (2.6), for u=(x(t, c), x(t, ¢)) we have
(3.2 s'(c)e = (g[x(t, D*g'(x(1, ¢)) [x(1, c)e]
= e*f[u].

The solution x=x(¢, &) of (2.1) with & such that s’(¢)=0 and the fundamental
matrix Z=x/(t, ¢) of (2.10) are a solution of the following boundary value problem:

.‘:;';C = X(x, 1),
(3.3) idt% = X (x(1), D Z, Z(to) = I,

flul =0 for u=(x, Z)eD x U.

Conversely let # =(%, Z) be a solution of (3.3). If we put &=%(t,), then s'(2)=0.
Let X,: Dx U—L(C[J], M[J]) and E: M[J]x M[J]— L(C[J]) be defined by

(3.4) X,(wh = X, (x(t), ) [h(t), Z(1)] for u=(x,2Z)eD x U, heC[J],

(3.5 E(P, Q)h = S P()Q(s)h(s)ds  for P, QeM[J], heC[J]

respectively. Let x..=x./(t, ¢) be the solution of (2.11) satisfying x (o, c)=0.
Then we have
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(3.6) xecee = || X (ORI Xulx(5), 9 [xlo)es xe()elds
= E(x,, x; )X ,(u)[x.ele for all eeR",

where x=x(t, ¢), x,=x/t, ¢) and u=(x, x.).
For any u=(x,Z)eDxU, heC[J] and P, Q, Ve M[J], let us define
fo: DxU—-L(C[J], R®) and f,: Dx U—~L(M[J], R*) by

3.7 Lwh = (g'(x)Z)*g'(x)h + (¢"(x) [h, Z])*g[x],
(3.8) L)V = (g'(x)V)*q[x]

and f,: Dx U x M[J]x M[J]—-L(C[J], R") by

(3.9) fau, P, Q) = f(u) + f(w)E(P, Q)X ,(u).

Then substituting (2.3), (2.8) and (2.9) into (2.2), by (3.6)—(3.9), we see that
(3.10)  s"(c)ee = e*(g'(x)x.)*g'(x)x.e + (g[xD* {g"(x) [x.e, x.]
+ g'(X)E(x,, x) X 5(u)x e}e
= e*{fx(u)xc +fz(u)E(xc5 x:I)XZ(u)xc}e
= e*fo(u, x., x;)x.e  forall eeR",
where x=x(t, c), x.=x(t, ¢) and u=(x, x.).
For the solution fi=(%, 2) of (3.3), if the matrix f,(fi, Z, 2~1)Z is positive

definite, then from (3.2), (3.10) and Theorem 1, £ is a solution of (2.1) minimizing
(2.2) locally.

3.2. A condition for a local minimum

Let & =(&, Z) be the solution of the problem (3.3) and let u(® =(x(®, Z®)e
D x U be an approximation of #i. Furthermore suppose the error bounds

(3.11) I£=x@), <v, 1Z2-ZO| Lo

are given. Put

(3.12) D,={xeClJ] | [x—x|,=v}<=D,
(3.13) U,={ZeM[J] | |Z-Z©V| . S0} cU.

Let Ae M[J], Ye L(C[J], M[J]), [, e L(C[J], R") and [, e L(M[J], R") be
operators which are independent of u=(x, Z)e Dx U and which approximate
X, (x(8), 1), X,(w), f(u) and f,(u) in Dx U respectively. Let &(¢) be the funda-
mental matrix of the system

(3.14) _"Jf_ = A(t)y
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satisfying @(to)=1. We denote by @,(t) the inverse matrix of &(t).
Let #(t)e M[J] and &, M[J] be matrices that approximate &(f) and
®,(t) respectively. We define I, € L(C[J]) by

(3.15) I, =1y + LLE(®, &)Y.
From now on, we write E(®, &,) as E for simplicity. Put

& ,(s)A(s)ds,

o

(3.16) (1) = B, — I + S:
(3.17) p =max(b—tg, to—a).
Then we have the following

LEMMA 2. Suppose (3.11) holds. Then it follows that
(3.18) IEZ, Z7Y) - E|. < By,
where B, is a positive number such that

(3.19) p{B,exp (pus) + Bs(exp (pus)—1)/us} < By

and f,, B3, us are non-negative numbers such that

(3.20) 1Z=8|l. + I18ll.lirsll. < Ba,
(3.21) 118,11 X L200), D) — AD. < Bs,
(3.22) 1XL2(8), Dllc = ps.
Proof. Put
(3.23) o(t, ) = Z(D2(s)™! — B()P(s),

where 2(s)™! satisfies
(3.24) 205 =1 + S, 2(1)1 X (%(x), 7)d = O,
Since by (3.16)
(3.25) B,(s) — I + S, &,(1)X (£(x), T)dz

= (@) + | BiD (X0, D) — A@)r,
it follows that
(3.26) (1, 5) = Z(t) — &(1) — B(D)r(s)

~ {0, 90X, ) + BOB, (X, D) — A},
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From (3.20)-(3.22), it follows that
321 o, I = 1Z-8|l. + 1B]clrill. + ’S;{”q’(t’ DI X L(2(2), D,

+ [Pl Pl X L(2(), T)—A(T)ll.:}drl

t
< B2+ [{) Qo Dl + Byae|
[+]
By Gronwall’s inequality, we have

(3.28) lo(t, )l < B, exp(pus) + Bi(exp (pus)— D)/us.

Since
E(Z, 2 Yh — Eh = S' o(t, s)h(s)ds for heC[J],

by (3.28) and (3.19) we have (3.18).
REMARK. Let ps and p, be non-negative constants respectively such that
X cx(x(0), )= Xo(xO@), Dl S s  forall xeD,,
(1 X x(xO@®, Dlle + ps)v + [ X(xO@®), ) — ADll: S pa-
Then | X (2(2), t)—A(®)|. and || X (£(2), t)|. can be evaluated by
1XL2(0), D—ADl. £ 1, 1 XLR(D, Dl = N Alle + 4y
Furthermore by (3.11), we have
1Z-8ll. <0+ |ZO-B|..

Let 8 be a positive constant such that

(3:29) 20+ IEY leptzy + (Mgl + 2 DU E N+ Bra + 1YIB1} < B,

where B, U0, 12, and p, are non-negative constants such that

(3.30) IEZ, Z7) - E|. < By,

(3.31) If)=loll = uzo  forall ueD, x U,
(3.32) I f)— 1| = Uz forall xeD, x U,,
(3.33) 1X,(w)—=Y|, < uq forall ueD, x U,.

Then, for the local minimality, we have the following

THEOREM 2. Suppose (3.11) holds for the approximate solution u(® =
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(x®, ZM)e Dx U of (3.3) and that there exists a constant o such that
(3.34) e*1,Ze = afel|,llel for all eeR",
(3.35) a, = |[Llle + BU1Z®| +0) < a.
Then % is a solution of (2.1) which minimizes (2.2) locally.
Proor. By (3.32), (3.30) and (3.33) we have

(3.36) | fADEZ, Z7)X(0)-LEY)

SN =LINEYI + 1Lf ADI{IEZ, Z)) N X (2) =Y.

+ |E(Z, Z7Y—-E| Y]}

S NEYlcpay + Nl +p2 ) {UNE N+ Bua + 1Y B3
and by (3.31), (3.36) and (3.29) we see that
(3.37) S8, Z, Z7) = L)l £ 1fd@) = Lol + 1 fADEZ, Z~)X () -1 EY|

=B
Furthermore by (3.11) and (3.37) it follows that
(3.38) 1fx8, Z, Z7MVZ =12 = |I(Z=2®) + (f(81, 2, Z7) - 1,)Z|
< ILllo+BIZI, £ oy

By (3.10) we see that
(3.39)  s"(&)ee = e*f,(fi, Z, 271)Ze

= e*1,Z®e + e*(f,(1, Z, 272 —1,Z®™)e  for all ee R".
By (3.38), (3.34), (3.35) and Lemma 1 we have

s"(8)ee > 0 for all eeR" (e#0)

and the conclusion of the theorem follows from Theorem 1.

For any real symmetric matrix B, we denote by A,,;,(B) the least eigenvalue
of B. By Corollary 1 to Lemma 1 we have the following

COROLLARY 1. Suppose the assumptions of Theorem 2 hold with | -| and
(3.34) replaced by | - ||, and
(3.40) Amin (LZO +(LZ©O)*)2 2 a

respectively. Then the conclusion of Theorem 2 is valid.
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By Corollary 2 to Lemma 1, we have the following

COROLLARY 2. Let lo=f(u®), I, =f(u®) and Y=X,(u'®), and suppose
the assumptions of Theorem 2 hold with (3.34) replaced by

(3.41) Amin (LZ) 2 .
Then the conclusion of Theorem 2 is valid.

In particular we consider the case X(x, t)=A(f)x and g[x]=¢[x]—d, where

A(tye M[J], E€e L(C[J], R™) and d is a constant m-vector. In this case the
theorem yields the following

CoROLLARY 3. Let [o[-J=(,[ZO@1)*¢[-] and suppose the following in-
equality holds:

Amin I0[Z]) > lllollo + (IZ®]lc+o)pz0.

Then % is a solution of (2.1) which minimizes (2.2) in D.

4. A posteriori error bounds of %0 = (x(®, Z(%)

Let C!'[J] be the space of all real n-vector functions continuously differenti-
able on J with the norm | - |. and denote by M![J] the space of all real nxn
matrix functions continuously differentiable on J. Let W![J]=C'[J] x M![J]
be the space with the norm

Iwlly, = max(p~'|lhlle, g 'IVI)  for w=(h, V)e W'[J]

and put D'=(Dx U)n W1I[J], where p and g are suitable positive numbers.
Let B=C[J]x M[J] x R"x M" be the Banach space with the norm

lell, = max({rl., IPl Idl, lel)  for ¢ =(r, P, d, e)eB,

where M" is the space of n x n real matrices.
Let us define F: D!'—>B by

@0 Fu=(% - x 0, - X 02,71, 26 1)

for u=(x, Z)eD.
Then the problem (3.3) is equivalent to that of finding the solution ue D! of
4.2 Fu =0.

Let A, &, &,, Y, l,, 1,, I, and E be the matrices and the operators defined
in Section 3 and put
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(4.3) G = 1,[8].
When det G#0, we define the operators Sy, S,, S, and A, by
(4.4) S,=86",8,=58,,8,=1-38,,, A,=S8,E,

respectively. For any ¢=(r, P, d, e)e B, let L, e L(B, W'[J]) be the operator
defined by

4.5) Lio=w,
where w=(h, V)e W1[J],
h=FIOI‘—-§2EP+§Od—§2(5€, V=EYh+EP+5e.

Let R;, R, € L(C[J]) and the linear operator /: WI[J]—R" be defined as
follows:

4.6) Rih=& S:O (Bi(s) + B,(s)A(s)h(s)ds + (I— BB, ()h(1),
4.7 Ryh = Rih + &(t) (B ,(t,) — Dh(t,) for heC[J],
(4.8) Ifw] = I,[h] + L[V] for w=w(h, V)e Wi[J].
For any w=(h, V)e W'[J] and ueD!, let L: W\[J]-»B and K, K,, K,:
D'- W1[J] be the operators defined by

(4.9) Lw = (%?- - A(t)h,—‘i,—tV — AWV — Yh, I[w], V(to)),

(4.10) Ru=u—L,Fu, Ryu=L,(Lu—Fu), R,u=({I-L,L)u

respectively. Then it holds that

(4.11) Ru = Ru + K,u.

By (4.1), (4.9), (4.10) and (4.5) we have

(4.12) Riu = wy,

where u=(x, Z)e D!, w,=(h,, V;)e W[J],
hy, = Bo(X(x, t)— A(t)x)— S, E(Ty(x)Z — Yx) + 8o(I[u] —f[u])-S, B,
Vi=EYh +E(T\(X)Z-Yx)+ &, T(x)= X.(x, )—A(1).

Since @;=—®,A(1), by (4.9), (4.10), (4.6) and (4.7), the integration by parts
yields

(4.13) Rou = w,,
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where u=(x, Z)e D!, w,=(h,V,) e W[J],
h, = §,R,x — §,R,Z, V, = EYh, + R,Z.

Now we show the following theorem which is an improvement of the results
in the previous paper [6, Theorem §].

THEOREM 3. Let u©®=(x(®, ZO®)e D! be an approximate solution of
(4.2) and suppose there exist an operator L,, a positive constant 5 and non-
negative constants 1, k, x; (j=0, 1, 2, 3) such that

(i) L, is invertible;
(ii)) Di={ueW'[J] | |u—-u®|,=é} < D!;
(ili) k=max (p (ko +k,), 471K, +x3)) <1,

(4.14) plHollcits + 180l + 18, El (quy + pra) < xco,
(4.15) IEY ko + I Ell(qus + pra) < x4,

(4.16) PISsR; . + ISR, | £ ks,

(4.17) IEY|e2 + qlRzll £ Kes,

where u,, u,, Uy are constants such that

(4.18) 1X(x(0), D - Al =, forall xeDjnD,
(4.19) If @ =1l = pp for all ueD;
(4.20) 1X () — Yl < py for all ueDj

(iv) L Fu®|, < n;
(v) A=n/(l-xk)=0.

Then the sequence u® defined by ut+v=y® — [ Fu® (k=0, 1,...) converges
to fie D} as k—>oo. 1 is the unique solution of (4.2) in D}, and

4.21) o —u®|, <xkd  (k=0,1,...).

The proof of this theorem is quite similar to that of [6, Theorem 8] and is
omitted.

ReMARK 1. A sufficient condition for (i) is given in [6, Lemma 12].

REMARK 2. When the error bound A(p, q) of u(®) can be obtained by apply-
ing Theorem 3, since

la—u©],, = max (p~!|2=xO]|,, g~ |Z~-ZO],),

we have estimates
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(4.22) 12 =x@|, < pAp, 9), 1Z-ZV| < 9P, 9).

Therefore we can evaluate v and o, the bounds of (3.11), as small as possible by
choosing the parameters p and g suitably.

5. A numerical illustration

5.1. Chebyshev-series-approximations

In order to obtain an approximation to a solution of the boundary value
problem (3.3), we consider finite Chebyshev series

xy(2) = %‘ao + 214, T (),
(5.1) .
Zy@) = 730 + XN BT, (1)

with undetermined coefficients ag, ay,..., ay and By, By,..., By, where te[—1,
1] and Ti(?) is the Chebyshev polynomial of degree k. For (5.1), corresponding
to (3.3), we are concerned with the equation

dx;t(t) = Py_1 X(x5x(), 1),

(.2) Ed_zd}‘vf(l—) = Py 1(Xi(xn (D), ) ZN(0), Zn(2) = 1,

STun] = (9'(xy)[ZyD)*g[xn] =0, uy = (xy, Zy)eDx U,

where Py _, is the operator which expresses the truncation of a Chebyshev series
of the operand by discarding the terms of the order higher than N—1. A finite
Chebyshev series uy(t) satisfying (5.2) is called an N-th order Chebyshev-series-
approximation to a solution of the given boundary value problem (3.3). For
the details of numerical methods refer to [10] and [5].

Throughout this section, coefficients of the Chebyshev series of a function
b(1) are called Chebyshev coeflicients of b(t) for simplicity.

5.2. A sample problem
Let us consider the differential equation

2 .
(5.3) ”étg—s%—uyu , 0<t<l.

By the transformation

t=2t -1,



Numerical solutions to problems of the least squares type 491
the equation (5.3) can be reduced to the following

d’y _ady _ 5.0 _ —r_
2 3~ =0, teJ=[-11]

Let x, =y and x,=dy/dt. Then this is reduced to the system

(5.4) -‘;Tx=X(x,t)E( r2 ) x=<xl>.

3x2+43x, X,

We consider the following least squares condition:

(5.5 glx] = (@x(t)) —dy, Ox(t5) —dy,..., OX(t,) —dy)*,

where Q=(1, 0), m=11 and tj=0.2(j41)—1 (j=1,2,..., m), that is, the func-
tional v[x] in (2.2) is given by

(5.6) v[x] = (g[xD*g[x] = X7, (x,(t)—d;)?
and d; (j=1, 2,..., m) are shown in Table 1.

Table 1.

J 1 2 3 4 5 6 7 8 9 10 11

d; 0.83129 0.74012 0.66559 0.60372 0.55172 0.50764 0.47017 0.43862 0.41305 0.39476 0.38727

In the boundary value problem in Section 3, the functional f[u] in (3.1)
can be expressed as follows:

(5.7 flul = (g'(\)2)*g[x] = Z7=1 (QZ(;)*(Qx(t;) —d;).

In this example we take t,=0. Thus

0 1
a;l—tZ=X1[x]ZE< )Z
6x, 3

with Z(ty)=Z(0)=1, where X,[x]=X(x(?), t).
Now let u(®=(x(®, Z(®) be the approximate solution of this problem ob-
tained by numerical computation such that

(5.8)

xEO)(t) = &oi + ZII¢V=1 5kiTk(t) (i = 1’ 2)’

)=

290 = % Bou + X I;k'ika(t) @j=12),

where N=27. Then the Chebyshev coefficients of u(® are shown in Table 3.
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5.3. Estimation of a posteriori error bounds

From now on, let the symbol | - || denote the Euclidean norm of vectors or
the Frobenius norm of matrices. In applications of Theorem 3, we take
X, [x®] as A(f) and Z© as &.

For u=(x, Z)e D! and w=(h, V) e W1[J] we have

0 O)
h,

6z, O
S'(W) = f(wh + f(u)V,
Sdwh = 271 (QZ(2)*(Qh(t)),
L)V =27 (QV(E))*(Qx(t)—d)) .

We choose the operators Y, [, I, and I, as follows:
Y= X,u®), I[w] = L,[h] + 1,[V],
I = f@®), I = f,(u®).

For simplicity put

. . 00
5=<¢11 <P1z>’ 51=<¢1 lpz), c(;):(é,(t)(l 0>5(t))*,

0 o

Xz(u)h = (
6z, .0

P21 P22 21 Vo
1 ¢, 1 1<,
o,(, 5) = o,(t, 5) =
0 t<s, 0 1>s.

Then we have
(5.9) o[8] = X7 (QB(1,)*(QE(1))),
1,EYh = 1,[8(t) g; & ,(5)Y(s)h(s)ds],

(5100 LEY[®] = £7-,6 [ C6) (01101, 9126)DAs@BU)* (1) ).

Hence by (3.15), (4.3), (5.9) and (5.10) we can obtain G. Suppose that det G#0.
Then since

5.11) 8§, = &G,
(5.12) S,EV=8,1,EV="8o(t) T, (Q8(t)) So’ & ,(s)V(s)ds)*(x{O(t))—d))

it follows that
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1/2

13 ISEL S IS0l {25 1) bu02+ by a5t
where

ay; = @)XV —d), az; = ¢1a(1) (1)) —d)),

buss) = auhus(s) + axian(s), bafs) = aun(s) + @z aae)

(j=12,...,m).
It also follows that
(5.14) IE1. < max,, (¢ 1808 0)12ds) ",
(5.19) IEY] < 6 max (] 180 C*I2ds) "

By (4.4) we see that
FIO = E - go(loE + llEYE).

Since t;,_;=—t;(j=17, 8,..., m), by some manipulations we have
0
(5.16) Hoh = S’ Hoy(t, s)h(s)ds + S Ho,(t, )h(s)ds  for heC[J],
0 -1

where for t,_, <s=t, (k=7,8,..., m)
Hy,(t, s) = $()[0,(1, S)I—G—I{Z'}'ﬂ (Qi(tj))*(Qé(t]))

+ T6(" COEI BU)* (<) - )87 dr

=6{  c@ (e @B 0 - d,)0F()d118,(s),
and for —t, <s<—t,_, (k=7,8,..., m)

Hy,(t, s) = — & ()[o,(t, s)I+ G_I{Z'}'=1 (Qa(_tj))*(Qi(_tj))

-t

+ 26 [ D@ @B ) P~ 1) — dip- QB (@t

—ti-1

-6 SS C(t) (X7 (Qa(_tj))*(x(lm(—tj) - d12—j))Q§(T)dT}]5I(S)'

—tk-1
Hence it follows that

617 ol < maxes (] 170, 9)l12as)

1/2

0
+ max,.y (S._l I|Hoz(t, .s")AIIst>
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As is readily seen, it follows that

(5.18) 1X,[X] =A@, < 6]x—x©, < 6p3 = i,
(5.19) Ifw)=loll £ 1| Z—Z@||, < 1196 = pso,
(5.20) If) =1 = 11fx—x@|, = 11pd = p21,
(5.21) PHao + qiay = 22pqgd = p,,

(5.22) 1X,) =Y, < 61Z—Z©|, < 696 = pq.

In (4.5) we take ¢ =Fu(®. Then we see that

_dx9(@)
T dt

d=f[u®],e=2Z0(@) — I

- X, 9, P=2Z20 _ x [x0120),

Thus by (5.9)-(5.17) we have

/88.110421---  85.460166---
(5.23) G =<

85.460166--- 105.72547---
(5.24) det G = 2012.0--- #0,

[Holl, = 10.889, S|l = 0.43829, |S,E||. = 7.1237 x 1078,
IE|, = 15.719, |EY||. = 353.06, ||Sol.ld] = 1.1437 x 10714,
|S,Pe|. = 4.1676 x 1072°, | r|. = 3.7950 x 107'3, ||P||, = 1.1686 x 107!,
[Bel, = 3.3179 x 10-13, |§,|, = 15.342, ||§,]. = 0.065150,
[Rll. = 1.3771 x 1077, [R,]|l. = 1.3771 x 107".
Let 5o and n, be the quantities such that

no = [HollIrl. + 15:El. + 18l Idoll + 15;Pell..,
(5.25) -
ny = IEY|mno + |Pl. + | Pell,

respectively.
Then for L,;F(©® =(h, V), by (4.5) we have

lhlle = 1o, Ve < 14
In this case, we obtain
(5.26) No = 4.1438 x 10712, 5, = 1.4817 x 107°.

If we put n=max (p~ 50, g"'n,), then we have
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(5.27) IL;Fu©],, < n.

Now we apply Theorem 3 to this problem summarize the results in Table 2.
From Table 2 we have the error estimates

[%—x©], < A(1.0,372.0) = 4.1590 x 10712,
(5.28)
1Z—Z©], < 4(0.0028,1.0) = 1.4817 x 10~°.

REMARK. When we choose p=1, g=1 and §=10"%, form Table 2 we have
k>1. Therefore it is impossible to obtain the error bounds.

5.4. A local minimum

For the quantities which are necessary for applying Theorem 2, we have the
following values:

| ®|. = 43.480, |B,|. = 63.376, ||r|. = 1.1280 x 107!,
|E|l, = 15719, |Y|. = 69.908, |EY|. = 353.06, |lof = 13.923,
1,1l = 1.4865 x 105, ||I,| = 13.928, |A|, = 5.9058,
& = Apin (G) = 11.005.
In (3.11) we choose v and o as follows:
(5.29) v=1075 ¢ = 1075,
Then by Lemma 2 and (3.29)-(3.35), we have

p =10, py=p,=060x 1075 p,o =, = 1.1 x 1074,
usz = 59059, pB;=0.16534, B, =10"5 p, = 10.255,
B = 0.12846, o, = 5.5857.

Since a>a,, by Corollary 2 to Theorem 2, the exact solution £ in our example
is an isolated one which minimizes (5.6) in D,
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Table 2.
0=10"° 6=10"*

p 10 1.0 0.0028 1.0 1.0 0.0028

qg 1.0 372.0 1.0 1.0 372.0 1.0

¢ 6.0000 <107¢ 6.0000 < 107¢ 1.6800x< 10~ | 6.0000x 10™*  6.0000 < 10~* 1.6800 x 10~¢
22 2.2000x 107 8.1840 1072 6.1600:x 107® | 2.2000:< 107> 8.1840x 10~ 6.1600x107¢
1ta 6.0000 1076 2.2320 X 107> 6.0000 x 107¢ | 6.0000>10"* 2.2320:< 10~! 6.0000x 10~*
ko 7.4976107° 3.6523 x107* 2.7511x107® | 7.4976 x10~* 3.6523 x10~* 2.7511 %10~
Ky 2.6660x107? 1.3597 x10°  1.0241 x107% | 2.6660 x 10° 1.3597x10*>  1.0241 x 1072
k2 2.1217x107¢ 5.4503 x107° 1.4887x107% | 2.1217x107% 5.4503x10"¢ 1.4887 x10~®
k3 7.4923x107* 1.9755x 1073 5.3939x107¢ | 7.4923 x10™* 1.9755x107* 5.3939x10°¢
£ 2.7409 x 1072 3.6603 X 107* 1.5635x 1075 | 2.6667 x 10° 3.6551 x 10" 1.0295x10"*
7 1.4817x107° 4.1438 X 107'2 1.4817x107° | 1.4817x 107 4.1438x 107! 1.4817 % 10™°

A(p, @) 1.5235<107° 4.1590 % 1012 1.4817 x 10-°

Undetermined 6.5309 x 107!% 1.4832x10~*

Table 3.

The Chebyshev coefficients of u‘® =(x©, Z©)

n an An2
0 1.111398193054442 —0.460598568498370
1 —0.217631518410970 0.226760729208123
2 0.050660320523359 —0.025335531676430
3 —0.004595698555427 0.024119447114688
4 0.002754838066751 0.002238659656131
5 0.000190936637394 0.002080742580677
6 0.000163023562428 0.000329293282189
7 0.000022137520758 0.000124459831539
.8 0.000007443581263 0.000019367991581
9 0.000001030733805 0.000005362531333
10 0.000000257699672 0.000000814783088
11 0.000000035427113 0.000000208537885
12 0.000000008311300 0.000000035386592
13 0.000000001294288 0.000000009066686
14 0.000000000308834 0.000000001735100
15 0.000000000055105 0.000000000419346
16 0.000000000012537 0.000000000081955
17 0.000000000002308 0.000000000018154
18 0.000000000000484 0.000000000003472
19 0.000000000000088 0.000000000000723
20 0.000000000000017 0.000000000000137
21 0.000000000000003 0.000000000000028
22 0.000000000000001 0.000000000000005
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Table 3. (Continued)
23 0.000000000000000 0.000000000000001
24 0.000000000000000 0.000000000000000
25 0.000000000000000 0.000000000000000
26 —0.000000000000000 0.000000000000000
27 0.000000000000000 0.000000000000000
n I; ni1 I;n 12
0 5.042456200446825 3.434548420592477
1 1.775770970216703 3.581548722704508
2 1.817191541478525 2.095483522794581
3 0.744168521784874 1.068491700814619
4 0.323585582416798 0.414304904052059
S 0.100533169018054 0.137165769344503
6 0.029124140848576 0.038068665990039
7 0.006947404231829 0.009361035436103
8 0.001562927105899 0.002053275820570
9 0.000314592693841 0.000422220416536
10 0.000063437214493 0.000083514625184
11 0.000012513040227 0.000016764952245
12 0.000002627589324 0.000003469191064
13 0.000000559146049 0.000000747607217
14 0.000000123256041 0.000000163192653
15 0.000000026609776 0.000000035504631
16 0.000000005691868 0.000000007547266
17 0.000000001175208 0.000000001565815
18 0.000000000238657 0.000000000316670
19 0.000000000047316 0.000000000062991
20 0.000000000009337 0.000000000012395
21 0.000000000001829 0.000000000002434
22 0.000000000000360 0.000000000000479
23 0.00000000000007 { 0.000000000000095
24 0.000000000000014 0.000000000000019
25 0.000000000000003 0.000000000000004
26 0.000000000000001 0.000000000000001
27 0.000000000000000 0.000000000000000
n 5»21 anz
0 9.125101753868796 15.084749194958971
1 10.233282797850009 12.187808104518284
2 5.573559813435393 7.921651749549957
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Table 3. (Continued)

3 2.964516631935914 3.805874013339966

4 1.108548682726151 1.510701544662247

5 0.375831972601526 0.491434780923489

6 0.103216992545608 0.139043851217208

7 0.026342282418620 0.034610789043020

8 0.005953333299996 0.007989355111768

9 0.001335448724235 0.001758375913897
10 0.000290664810865 0.000389387614119
11 0.000066704434377 0.000088083410223
12 0.000015377925877 0.000020558664724
13 0.000003642290604 0.000004822824687
14 0.000000840128613 0.000001120877079
15 0.000000191121470 0.000000253430404
16 0.000000041835338 0.000000055738159
17 0.000000008981692 0.000000011917900
18 0.000000001878256 0.000000002500454
19 0.000000000390031 0.000000000517784
20 0.000000000080245 0.000000000106784
21 0.000000000016565 0.000000000022000
22 0.000000000003413 0.000000000004541
23 0.000000000000705 0.000000000000937
24 0.000000000000145 0.000000000000193
25 0.000000000000030 0.000000000000039
26 0.000000000000006 0.000000000000008
27 0.000000000000001 0.000000000000002
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