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§1. Introduction

Let R be a compact Riemann surface of genus greater than one. Let H be
the upper half plane with the Poincaré metric. Then R=H/I' where I' is a discrete
torsion-free subgroup of SL(2, R), acting freely on H via fractional linear trans-
formations. In the well known paper [10], A. Selberg constructed a function
Z associated with R for which the location and order of the zeros of Z gave us
information about the topology of R and the spectrum of the Laplace-Beltrami
operator on R. After that, in 1977, R. Gangolli showed how to attach a Selberg’s
type zeta function to a compact quotient of symmetric space of rank one in his
paper [2].

By the way, these zeta functions can be thought of as providing information
about the class one spectrum of G on L2(G/I"), where G is a semisimple Lie group
of real rank one. Namely, we decompose L%(G/I') into a direct sum of G-invariant
irreducible subspaces and investigate those irreducible subspaces that contain a
unique (up to scalar multiplication) K-invariant function. Here K is a maximal
compact subgroup of G.

Let M be the centralizer in K of the split component of a minimal parabolic
subgroup of G. Then the class one spectrum of G is contained in the representa-
tions induced from the trivial representation of M. D. Scott paid attention to
this fact in [9]. Let & be an irreducible representation of M. Asfor G=SL(2, C),
he constructed a zeta function Z . which gave information about those principal
series representations induced from & that appeared in the spectrum of G on
L2(G|I).

In the present paper, we consider the analogues of those results when G=
SU(n, 1). That is, we construct the zeta functions Z,, of Selberg’s type for
compact quotient of G, associated with the one dimensional representations t of
K=U(n+1)nG. The purpose of this paper is to show that these zeta functions
have almost all the properties possessed by Selberg’s one. Our main results
are collected in Theorem 4.11.

In §2, we deal with preliminaries.

Making use of the trace formula, we will define the series #,, the logarithmic
derivative of our zeta function. On that occassion, we use the suitable function
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belonging to €!(G, t) (see §2). That was the reason why we came to necessity of
the characterization of €!(G, t) under the t-spherical Fourier transform. So we
mention about this subject in §3. Also, we will apply this result to a certain
function in (G, 7) and we shall obtain some consequence connected with the
multiplicities of the discrete series representations in L2(G/T).

The first half of §4 is devoted to studying nr,. That is, we investigate the
analytic continuation of #nr,. The functional equation of #, . is derived there.
In the latter half, we define the zeta function and study its various properties which
are derived from the first half of this section. Lastly we refer to the product
expansion of Z ..

§2. Preliminaries

Let G=SU(n, 1) (n>2). Recall that SU(n, 1) is the group of elements in
SL(n+1, C) leaving invariant the Hermitian form Y 2., |zj*—]z,+/%. Let
g be the Lie algebra of G.

We take K=U(n+1)n G, the maximal compact subgroup of G. The Lie

algebra of K is f={[‘g SJ} with X an n by n skew hermitian matirx and y

a complex number such that tr (X)+y=0. If p= {[ ,OZ OZ]} with Z an n-

dimentional colume vector, then g=f@®p is a Cartan decomposition of g with
respect to the involution #. Here 6 is given by 8(X)=—'X (X eg). The sub-
group T of diagonal matrices in K is a compact Cartan subgroup of G. The Lie
algebra of Tis denoted by t.

1---0
We denote this subalgebra by a,.
Set

0---1
If H¢,=[§ 0 E}eg, then RH, is a maximal abelian subalgebra of p.

cotht O sinht?
A, = {a,=exp tH, = 0 I1,., O ; teR} .
sinhz O cosht

ezl)
Let M be the centralizer of 4, in K. Then M= [[ u ]] where ue U(n—1)
ei0

and e?*det(u)=1. Let A, be the subgroup of diagonal matrices in M. The
Lie algebras of M and A, are written by m and a, respectively. Then A=4,4,
is a Cartan subgroup of G and the pair (T, 4) is a complete set (up to conjugacy) of
Cartan subgroups of G.

Let a be the Lie algebra of A. Namely,
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iu, t
iu2 tr(H) = 09

a=1{ H= H(t,iu,,..., iu,) = ; .
: . iu, teR, uj;eR

l_ t iu,
The complexification a; of a consists of matrices of the same type as H with
complex elements ¢t and u;. This is a Cartan subalgebra of gc=sl(n+1, C), the
complexification of g.
Let ¢, be the linear function on a. defined by

ei(H) =iu, +1,

ens1(H) = iuy — t,
Then

@ ={t(e—ej,y) 1 <i<j<n}
is the root system of g, with respect to a;.. We choose an ordering so that the
positive roots are
O ={o; ;1 =€ — €3 1 <i<j<n}.

Let

P, ={aec®*;a#00nq,}, P_.={xe®*;a=00na,}.
Then we have
Py={oy;+5 1 <j<n}U{ouesl<i<n}uU{a;,.}.

Put p=2"13Y,p,a. For ae®*, let X, be a root vector belonging to a,
and put ne=3,.p, CX,. Then if n=ncng, we have the Iwasawa decom-
positions g=f@a,®n, G=KA,N, where of course N=expn. For any sub-
algebra [ of g, we denote by [* the dual of I.

Let X be the set of restrictions to a, of elements of P,.. If 28 is the restriction
of a; 41 to a,, then the restrictions of all other elements of P, are f. Hence we
have Z={B, 28}. We note that B(H,)=1, and n=g,®gq,,. Here g5 and g,
are given by

0 'X O j 0 y J=—y
gﬂ={ -X 0 X|; XeC""}, 92ﬂ={ 0 0 04; }
0 X 0 5 o y| ¥e€

Throughout this paper, we will denote by p, the number p(H,)=2"'{2(n—1)
+2}=n.
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Let dt be the standard Lebesgue measure on R. We take a Haar measure
dh on A, by dt, when h=a,=exptH,. For any puea}, we put v=v(u)=u(H,).
Then v is a parameter on ay, and maps a¥ isomorphically onto R. Let dv be the
Lebesgue measure on R. Then dv/2n is the measure on R dual to the measure
dt on R. We denote by du the measure on af that we obtain from dv/2n. Then
dh, du are dual in the sense of Fourier transforms.

Let dk and dm be the normalized Haar measures on K and M respectively.
On N we fix a Haar measure normalized by the following condition: Let
n=0(n"') for neN, and for any xe€G, let H(x)ea, be defined by x=
Kk(x) exp H(x)n(x), k(x)e K, n(x)e N. The measure dn is to satisfy the condition
SN exp (—2p(H(n))dn=1. Having fixed the above measures on K, A4,, N, we

fix the Haar measure dx on G given by
dx = exp 2p(log h)dkdhdn.

For any subgroup L of G, let L be the set of equivalence classes of irreducible
unitary representations of L. If ve C(~(a,)¢) and e M, let H ¢ denote the space
of functions

frK—E; (& EJe?),
fkm) = &(m)~!f(k) and SK If(R)2dk = || fl|I* < 0.

If fe Hg' let f(kan)=exp(—(iv+p)t)f(k), keK, teR, neN. Set
(e (x)f)(kK)=f(x"'k). Then (m,, Hy) is a representation of G. If veR
(=~af) then this representation is called a (unitary) principal series representation
of G. On the other hand, for ve iR, the representation =, is called a comple-
mentary series representation of G whenever it is unitarizable. Such a repre-
sentation appears when ve i[ —p,, p,]-

The unitary dual T of T can be identified with a lattice L, in it*. The set of
regular elements will be denoted by L. The Weyl group of G relative to T acts
on Ly. Let L} be a fundamental domain for this action. It is known that L}
uniquely parameterizes the so-called discrete series representations of G, cf. [4].

If fe C(G), we define the Abel transform F, by

F,(ma,) = exp(tp,) Sx f(kmank=")dndk (m eM).

xN

Let ©,,=0,,, (e M, ve C) denote the character of 7g,. Then itis known
that

.1 O (f) = SM SR F;(ma,) ti &(m) exp (itv)didmi,
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Applying the Fourier inversion formula and the Peter-Weyl theorem we have
Q.2) Fr(ma) = (127) Leem SR O () exp (—itv) tr Em)dv.

Now let I' be a discrete torsion free subgroup of G such that G/I" is compact.
Then every element y € I' is conjugate in G to an element of the Cartan subgroup
A=A;A,. Choose an element h(y) of A to which y is conjugate, and let h(y)=
he(y)h,(y). We then define u,=p(logh,(y)). Though u, will depend on the
choice of h(y), its absolute value |u,| depends only on y.

An element ye I, y#e is called primitive if it can not be expressed as ",
for some n>1,eI". We denote the set of primitive elements of I" by P.. It is
known that every y#e is equal to a positive power of a unique primitive element
6. The integer j(y) is defined by y=4/( [1].

Fix a G-invariant measure dx on G/I' by requiring that for each fe C(G)
we have

[ rux = (SerfGas.
G G/T

We denote the volume of G/I" in the invariant measure dx by vol (G/T).

Let C, be the set of representatives in I" for the I'-conjugacy class of elements
of I'.

Let (T, E;) be a finite dimensional unitary representation of I' with character
tr- Let LAG/I', T) denote the set of functions f: G— E; such that

fx)=THHf(x) forall xeG and yerl
and

S 1f()lI2d% < oo
G/T

where || - || is the norm on E;.
Because G/I' is compact the left regular representation U of G on L*(G/I', T)
splits into a direct sum of irreducible unitary representations of G and we can write

U= ZneG ml"(n)n'

Here m(n)=m (n) is the number of summands of U which lie in the class
neG.

In this paper, our chief tool is Selberg’s trace formula. The notion of an
admissible function (for the trace formula) is defined as usual, cf. [3], and one
has the trace formula

(2.3) T eee Mr,(m)O(f) = x1(e) Vol (G/T) f(e)
+ Zsecr = o k1) 1, L)L CRO)F (h(2)) .
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which was derived in [14]. Here ©,(f) stands for the character of ne G, and
C(h) is a positive function depending only on the structure of G. The number
C(h(y))F ;(h(y)) depends only on the G-conjugacy class of y. The value C(h(y))
is given by

Clh(y) = eChNE,(hy ()" IT (4 = &Lh(y)™ )7

Here, for any pe€(a,)g, ¢, stands for the character of 4 defined by ¢,(h)=exp-
u(log h), and e(h) is, for he A, equal to the sign of 1 -¢,, . (h)~L.

Let © be the universal enveloping algebra of G. Let o(x)=(2(n+1)-tr-
X?)12 where x=k-exp X, x € p is the polar decomposition of x € G.

For any one dimensional unitary representation t of K, let

$(v, x) = SK w(k(xk))e(R) exp (— (ip+ p) (H(xk))dk

where v=u(H,). We call ¢*(v, x) the t-spherical function.
Let #1(G, 1) be the set of smooth function f on G for which

(I) vp, (f)=sup,e {(1+0(x))Z~%x)|Df(x)|} <+ for any ne Z and any
Ded,

(D f(kxk)=w(k)f(x)x(k’)  for k, k'eK.
Here Z(x) is equal to the zonal spherical function ¢!(0, x).
It is known that €(G, 7) is a Frécht space with v, as seminorms.

§3. The result of P. C. Trombi [11] and its applications

Let K , be a subset of )¢ consisting of one dimensional representations. For
k=<3 3,) eK (ueU(n), we C and det(u)w=1) and ge Z, we define t,(k)=

det (u)?. Then K, is parametrized by Z.

In this section, we shall describe the result of Trombi concerning the chara-
cterization of ¥1(G, 1) under the z-spherical Fourier transformation.

For each e K,, we define the one dimensional representation t™ of M by
restricting T to M. It is known that the Plancherel measure p(v)=p? (v) at (tM,v)
is given by u (v)=(c(v)c(—v))"'. Here c/v) is given by

A o e () o (n— D@ /DTGv/2+3)
(") = €)= Ty G+ v+ ) IO (n+ v =D)T2)

when t=1,. Here I'(-) is the classical gamma function [7].
Let V' denote the following set:

Ve={veC;v=ir,r <0 and c,(v)=0_}.
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If t=1,, then we observe

Ve = [ g (empty) if |q| < n,
vi=iZj+n—lq); 0<j <(ql—=m)/2} if |q| > n.

Put #(p,)={ve C; |Imv|<p,=n} and Vi=V*n F(p,).
For a moment, we consider the case |q|>n. Let m=min {n, |q|—n}. Then
we see that

k: even if |g| = n mod2
Vie=1 —ik; 1 <k<m, .
k:odd if |g| # n mod2

Let ¢%(v, x) (x€G) be the t-spherical function corresponding to ve C.
These t-spherical functions possess the properties that ¢*(—v, x)=¢%(v, x) and
¢'(¥, x)=¢*(v, x). Since ¢*(ik, x) are linearly independent over C, we can
choose «; € C¥(G, t,) (j € iVie) such that

SG a Dk, )dx = 85 (keiVis)

Suppose that F(&, v) is a function defined on M x C, differentiable on
Int (#(p,)) with respect to v. Let S denote the algebra of differential operators
on C. For each ueS and aeR, let v,,(F)=5sup,cinuspo)),cem [F(E, v; )l
(a+ph= R '

Let #4(G, 7) be the linear space of all functions F(&, v) on M x C which
satisfy the following properties: (1) F(&, v)=0 if £ M, (2) F(&, v) is holomorphic
in veInt(F(p,)), (3) F(¢, —v)=F(¢, v) and (4) for all ue S and a € R, v, (F) are
finite.

It is easy to see that ¥4(G, 1) is a Fréchet space under the seminorms v,
(ueS, aeR).

Next, we set Li(t)={leL#; [w(})|g: t]x#0}. Here w(1) (€G) is the
discrete series representation corresponding to 4 as in Section 2.

Let #1(G, ©) denote the linear space of functions H on L} such that H(1)=0
unless Ae L#(t) and p(H)=sup,+(1+|A])*|H(A)| are finite for all ae R.
Here | - | denotes the norm introduced by the Killing form on g.

Topologize #1(G, 1) by the seminorms y, (x€ R), we see that #XG, 1) is a
Fréchet space. _ o _

If |gI<n, then we put ¥4G, 1) =%4(G, 1) x ¢4G, 1,). On the other
hand, if |g|>n, let €1(G, t,) be the linear subspace of ¥4(G, 1,) x €4(G, 1,) of
those functions F =(F ,, F;) which satisfy the following:linear relation;

Fr(4) = Zjeivl“ @m(x)(aj)FA(Tf;", ij)
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for all A€ L# such that w(1)& G'. Here G! denotes the set of equivalence classes
of irreducible unitary representations of G whose K-finite matrix coefficients
belong to LY(G). Give #4(G, 1) x 4G, 1) the product topology and #(G, 1)
the induced topology. Then #(G, 1) is a closed subspace of product space.
Hence it is a Fréchet space.

If fe €'(G, 1), we define two maps as follows: ~ ZF,(f)(&, v)=0,(f) and
Fr(f)N=0,,(f) forall Ee M, ve C and L€ L}.

PROPOSITION 3.1. (Trombi [11]) There is a linear isomorphism €'(G, 1)
onto €\(G, ©) under the map F =(%,, Fr).

For the purpose of applying the trace formula for fe €1(G, 1), we need the
following fact mentioned in [1].

PROPOSITION 3.2. The elements of €YG, t) are admissble.
Making use of the above two propositions we obtain

PrROPOSITION 3.3. Let w(4) (A€ L¥) be the discrete series representation of
G and d(w(1)) its formal degree. Suppose that w(l) has a one dimensional
K:-type 1, (i.e..[w(A)|g: 1,1k #0) for.some g € Z and w(A) € G!. Then we have

my,r(@(2)) = xr(e) vol (G/I)d(e(2))
for our normalization of Haar measure.

PrOOF. Let A,eLf. If w(4,) €G!, then we need not consider the linear
relation in the definition of ¥1(G, 7). So we may take the element F=(F,, Fy)
of €1(G, 1) such that F,=0, F(1,)=1 and F(A)=0 for all A1#4,. Proposition
3.1 says that there is a function fin € '(G, 1) such that #(f)=F. Applying the
trace formula to this admissible function f, we get

mp,{((2,))0 ., )(f) = x1(e) vol (G/T) f(e)
= 21{(€) vOl(G/I) X 1.3 d((2)O o 1(f)
= xr(€) vol (G/T)d(aX(4,))0 (1.,(f) -

REMARK 1. Applying Trombi’s result in the general situation, namely,
without restriction about the dimension of the representation of K, we obtain the
same result as in Proposition 3.3 for any element of G!.

REMARK 2. Suppose that 7 is in G*. Then, as a consequence of the above
consideration, we find that the quantity m (r)/xr(e) is independent of the choice
of the finite dimensional unitary representation T of I
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§4. The Zeta function

In this section, we should like to define the logarithmic derivative n, 1 . of
Z; 1., and study its analytic continuation. ‘

Let ¢,>0 be a fixed real number and let g be a real valued function in C*(R)
such that (1) g is even, (2) g vanishes in some neighborhood of zero, (3) g is
constant, equal to ¢ for |x|>¢, and (4) 0<g<ec. Such functions surely exist.
The value of ¢ and ¢, will be chosen conveniently later on.

We now put &(j)=4((—1)"*4*/ +1). For each t,eK,, we define a
polynomial P,=P,_ as follows:

1 if Jgl<n
Pq(V) = . -~ . .
f],"=l (V2+.]2)6q(.]) lf “I‘ > n,

where m=min {n, |q|—n}.
Let D, be a differential operator on R whose Fourier transform is P,.
For any complex number s, define a function ,#, on M4, by

(4.1) dma) = H(m D g(t) exp (p,—3)t))  (meM).

Since g vanishes in a neighborhood of zero, ;% is a smooth function on M4,.
Let H(r)=g g'(x)exp (irx)dx (re C). Because of the properties of g, we
0

see that g’ is in CP?(R) and g'(x)=0 if |x|>¢,. Hence an application of the
classical Paley-Wiener theorem gives us the following lemma as in [2].

LeMMA 4.1. H is an entire function. Moreover, for any integers n>1 and
m >0, we can find the constant C,, ,>0 such that we have the estimates

ld"H(r)/drm| < [ Conllrl+1)7" if Imr>0,
Cm,n(lrl + l)_" exp (ﬁollm I'I) ’f [m r< 0

Using this function H, we can calculate the Fourier transform ,Z (¢, v) of
%, at the character (y., v) of MA,.

LEmMMA 4.2. For Re(s—2p,)>0, we have
0 | if &#l,

42) Z.& v = Hs— 0. — ) H(i(s—
a _Pq(v){ (ls(ipfi)iv v) o (;(ipfi)i:rﬂ} i

M
’Z‘L'q.

'

The proof of this lemma is similar to that of Scott [9, p. 181]. So we omit it.

PROPOSITION 4.3.  Suppose that Res>2p,. Then there exists a function
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s in €4G, t,) such that @gyv(qgs)=q{?s(é, v) and ©,;)(,9,)=0 for all EeM
and L€ L%.

PROOF. It is clear that ;@& v)=0 if %M and G (¢ —v)=,4,& v). If
Res>2p,, then (s—p, +iv)~! have all their derivatives bounded in a strip [Im v|<
p,+& where O<e<Re(s—2p,). From Lemma 4.1 P (v)H(i(s—p,)tv) are
holomorphic and rapidly decreasing functions of v in any strip {Imv|<b. Con-
sequently q{?s is an element of ¥ 4(G, T,).

Next, we shall show that (&, 0) is an element of & (G, 7,). Since
0e# LG, 1,), it suffices to show that the linear relation holds for (q{?s, 0). But
we can easily check it directly as follows. In the case |g| <n, we see that Vie=g.
Therefore we need not consider the linear relation in the definition of (G, T,).
Next, suppose that |q|>n. Then, since P(ij)=0 for all j (1< j<m), one finds
that qés(t’;’ , if)=0. Hence it is clear that the linear relation holds.

On account of Proposition 3.1 we have the desired result in any case.
For each 7,€ R, Proposition 4.3 and (2.2) say that
4.3) Foos = Fs

By the assumption on I, it is known that the numbers {luyl; ye Cr—{e}} are
bounded away from zero [2]. If we choose and fix g, so small that it is smaller
than all of these values, we have

4.4 g(u,) =c  (yeCr—{e}).

If we restrict the function g to the region {t; |t| >¢,} on which g(f)=c holds,
then we are able to show that

4.5) D(g(t) exp (p, —5)|t]) = cP(i(p,—5s)) exp(p,—s)|t],

by the direct calculations.

Put n,,=m.um .. If g=n (mod2), |q|>n, then it is known that the represen-
tation =, is reducible. Moreover, for such q, we have n, o~n} (@®n,. Here
my o (resp. my o) is so-called the limit of discrete series representation of G satisfying
[n3 olks 1,]=0 for g<O0 (resp. [n7 olk; 7,]=0 for ¢>0) (cf. [5], [6]). Hence
we see that

(*)  mp(ng 0)07 o(9s) + m(n7,0)07 o(gs) = ( mp(n} 0)O% o(,9s) if g>0,
L mp(ng0)070(,9,) if q<0.

So, with the idea of giving ourselves the least possible.trouble, we make a change
in the definition of n, o to the following effect;
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71’,1,0 = ( n;,o ]f q > 0,
. Mo if g<0O.

Then we have

(*) = mr(nq.O)@q,O(qgs) .

Remark that n,, is irreducible if g#n (mod2). Let Q,={ne G;ne LG, T)
and @,(,9,)#0}. Define two subsets Q! and Q2 of C by

Q! ={ieR*;mn,;€G and n,,eL3G/T, T)},
Q2= {;eiR*—{0}; m,,e€G and n,, € L3G/T, T)}.

Since the definition of 7, implies that n, , is equivalent to =, _,, Q, is parametrized
by the set Q! U Q2 under the convention for the definition of n,,. Hereafter, we
are looking on Q, as Q! U Q2.

Now we define

(4.6) Aq(s) = Zzeqq m(q’ i)ﬁs(fﬁl’ A).

Here we put m(q, A)=mg(n, ;).
The following result is proved by Wallach [13].

PROPOSITION 4.4. There is a real number o, such that for any € K and all
o>a,

2ree [7lx; O1mp(m) (1 +|n(Q))™* < + o
where Q is the Casimir operator on G.
Making use of Proposition 4.1 and 4.4, we obtain

PROPOSITION 4.5.  The function A/(s) has a meromorphic continuation to
the whole complex plane. The poles of A, occur at the points s=p,+ il (A€ Q,).
These poles are all simple and the residue at s=p,+il is m(q, )P (A)H(0).
Here, if P,(1)=0, then we interpret that there is no pole at s=p,+il.

By Proposition 3.2, the function g, is admissible if Res>p,. So we get,
with the help of (4.3), (4.4) and (4.5),

As) = xr(e) vol (G/T'),g(e)
+ cP(i(p, - S))yecg_(e)xT(v)luyIj(v)"‘C(h(v))T‘q“(h;(v)" exp (p, —s) fu,|.

4.7

For Res>2p,, we define #jr, 1 . (s) by the second term on the rieght side of
(4.7). For simplicity we put 7,(s)=fjr, 1,.,(5)-
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Since g, is admissible, the sum is absolutely convergent and it is readily seen
to be absolutely and uniformly convergent in any half plane Re s>2p,+¢ with
£>0. Hence 7j,(s) is holomorphic in the half plane Re s>2p,.

We will now consider the term y;(e) vol(G/I'),g,(e) and show that it is
meromorphic with respect to s. By the Plancherel theorem, we have

) 940) = (147) T et | Oc(ig )y

= m) |y HECZPAEN )0y

by virtue of (4.3) and the evenness of the functions P, and y, (see §3).

We now shift the integration into the complex plane by using rectangular
contour as in [2]. The function y, is meromorphic in the upper half plane, and
can only have simple poles which are listed below.

TABLE 1. r="r,; the pole of u, (ke Z)
dy=4x; the residue of p, at the pole r,
Po=n
Fe d,

(=1 ‘
re=1i(p, + 1| +2k) iy ="zi=r (n+ 1l +26)

lal=n (k=0) +lgl+ k-1 +k—1
> n - n+k-—
< ;11-1 )( n—1
_ k+1 <(|q|+n)/2+k )
re=2i(k+1) -
lgl>n | (0<k<(lgl—n)2—-1) <(|ql+n)/2 k—2
q=n

(mod 2) Tt (lql-n)/2
id,

(k>0) idk+(|ql—n)/2=< in the case Iqlgn)
=i(p,+1q|+2k)

id, = k(k+%)<(|q|+n—1)/2+k>
re=i2k+1) k= n—1
lgl>n 0<k<(lgl—n-1)2 <(|q|+n—1)/2—k—1
a#n n—1

(mod 2) | Fes(q)-n+1)2

(k>0) ld’““("l' ”+1)/2—<m the case |q|£n>
=i(p,+|q| +2k)
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The same argument of [2] shows that

(49) 00 =i Dano TEEZLIE) P r)d, (Res>2,)

by the residue theorem.

PROPOSITION 4.6. The series on the right side of (4.9) covnerges absolutely
and uniformly for s in any compact set disjoint from the numbers {p,+ir.},
and defines a meromorphic function of s in the whole complex plane. This
function has simple poles at the points p,+ir k>0, ke Z) and has the residue
iH(O)P (ry)dy at s=p,+iry.

The second assertion of Proposition 4.6 is proved by using Lemma 4.1.
But since the proof is similar to that of [2, Proposition 2.6], we omit the proof.

Note that the value ixz(e) vol (G/I')H(0)P (r,)d, is real since d, is pure imag-
inary. As seen in [2], under our normalization of measure, it turns out that
vol (G/I') is a rational multiple of the Eular-Poincaré characteristic E of the mani-
fold K\G/I'. Also, Table 1 shows that id, is a rational number and we are able
to choose the denominator of the residue of the function y(e) vol (G/T'),g(e) so
that it depends only on G and not on k and q. Hence there is a positive integer
k=x(G) such that i vol(G/I')d,=e,E/x, where e,=¢,, is an integer. Note that
e,E and id, have the same sign.

Recall that, in defining 7,(s) we had used a constant ¢, with g(f)=c when
t>¢,. We now take x for c. Then we see that H(0)=« and since P (r,) is an
integer, the residues of the function y;(e) vol (G/I'),g(e) are all integers.

By means of Proposition 4.5, 4.6 and the definition of the function #(s),
we get the following proposition.

PropOSITION 4.7. For any rquZI, 7i,(s) has meromorphic continuation to
the whole complex plane, via the relation #(s)=A/s)— xr(e) vol (G/I'),ge).
The poles of 7 (s) are all simple, and are as follows:

Pole Residue
s=p, ik kmp(q, A)P (1) (e Q)
s =p, +ir, — e Exr(e)P(r)) (k>0,keZ).

Here, if for some A€ Q, there is k such that 2=r,, then we understand the residue
at this pole is (kmi(q, 1) — e Exr(€))P(r). Also, if A=0 is in Q,, the residue
at this pole is 2km(q, 0)P,(0). Of course, if P(u)=0, then s=p,+iu is not a
pole.

To show that 7, satisfies a functional equation, it is convenient to perform the
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change of variable r=—i(s—p,) and let #,(r)=7(ir+p,) =7 (s). If Res>2p,,

that is Im r< —p,, then

(4.10)  7,(r) = kPy(r) CZ( }xT(Y)Iuylj(v)“C(h(?))Tf,”(hr()’))" exp (—irlu,|)
yeCr—{e

and the sum is absolutely and uniformly convergent in any half plane Imr<
—p,—0(6>0). By Proposition 4.7 we get

H(-r=7) H(—r+l)}
r

(4.11) ﬁq(r)——-"iZAqum(q"l)Pq('l){ ny) oy |

— (€} ol (G/T) Sizo 2T H1) p 1)

ry

The residues of 7,(r) at r=11(1eQ,) (resp.r=r, k>0) are —ixkm(q, A)P (1)
(resp. ie Exr(e)P(ry)).
Now let
D (1) = Kkxr(e) vol (G/T)P (it)u,(it) .

In order to prove the functional equation, we need the following lemma.

LEMMA 4.8. There is a sequence {x,}—o0 (m—o0) so that for any y>0
there is a polynomial P such that

sup {7 (r)P(IrD~"; [Imr| < y, £ Rere{x,}} < + .

The proof of this lemma is a slight extention of that of [9, Proposition 4.14],
making use of Proposition 4.4. We omit the proof.

PROPOSITION 4.9. For t,e R, we have a functional equation:
(4.12) i(s) + ,(2p,—s) + D (s—p,) = 0.

PrROOF. Put @, (r)=®,(s—p,). To prove (4.12), it suffices to show that the
following equation holds:

(4.13) fg(r) + f,(—r) + D (r) = 0.

Because of (4.11), the meromorphic function #,(r)+#,(—r) has only simple
poles at r= +r, with residues +ie,Eyr(e)P(r,) respectively. On the other hand,
the poles of & (r) are at r, and —r,, and the residues are —ieEx1(e)Py(r,) and
iexExr(e)P(ry) respectively. It follows that the left side of (4.13), say G,(r), is
an entire function. We will show that g ,(r)=0.

Fix ¢>0 and let b be an even holomorphic function that is rapidly decreasing
in the strip {z; |Im z| <p,+2¢e}. Let y=p,+¢and for any positive real number x
such that +xe&Q,, let O, be a rectangular contour in the complex r-plane with
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vertices +x+iy. Let E (resp. E_,) be the side from x—iy to x+iy (resp. —x+iy
to —x—iy) and let B} (resp. B;) be the side from x+iy to —x+iy (resp. —x—iy
to x—iy). Note that the function b is holomorphic inside of O,. Thus by the
residue theorem, we have

X b(r)if (r)dr
0x

= 2ni{iys(e) Z|n,|s,;,, e EP (r)b(r,)
+ K X aegqnint0x (—1) m(q, HP(A)(b(A)+b(— 1))}

Put O, =lim,__ O,. Then, since b is even we get

@19 | by

= — 2my(@)E X\rii<p, &Po(ridb(ry) + 4nx T 50, m(q, )P (A)b(2).
On the other hand, the evenness of b and the relation —#,(—r)=1,(r)+
® (r)—q,(r) imply that

S b(r)i (F)dr = 2S b dr + S _b(N® (r)dr
O Bx Bx

~SB; b(r)G (P dr + SE,, b(r)i (r) dr + SE bV rr.

Combinning Lemma 4.8 with the fact that b is rapidly decreasing, we conclude

lim, ., qu b(r)ii,(r)dr = 0.
Exx

Therefore we have
(4.15) SO b(r)ii(r)dr

- 2S b(rYi (P)dr + S b(r)® (r)dr — S b(rG (rdr
L-, L.y L-,

where L_, denotes the line in the complex plane t—iy as t goes from — oo to 0.
From (4.14) and (4.15), we can write

(4.16)  — 27" (OE Xy i<p, Po(rdb(r) + K 3 se0, m(g, HP(A)b(A)

=(l/2n){SL b(r)ﬁq(r)dr+2‘lg b(r® (r)dr

— -1 SL_y b(r)ch(r)dr} .
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On the line L_,, the series (4.10) that defines 7, converges absolutely and
uniformly, so we have

(4.17) (1/2n)SL b(r)ii(dr

=K Xyecr—e X1(¥) 1,1 J ()T Ch) T (he()) 7!

x (1/27) SL P ()b(r) exp (— irlu,|)dr.

Since P,(r)b(r) exp (—ir|u,|) is holomorphic and b is rapidly decreasing, we may
shift the contour of integration to the real line. Hence we have

(4.18) SL_ P (rb(r) exp (—irlu,|)dr = SR P (rb(r) exp (—ir|u,|)dr.

Now we define a function B in ¢!(G, t,) by

B(é,r)={0 if &1,
P(r)b(r) if &=~1M.

Then applying Proposition 3.1, we see that there is a function f in (G, 1,)
such that #(f)=(B, 0). The Fourier inversion formula on M4, implies

“4.19) ™(hy(y))"1(1/2m) gn P (r)b(r) exp (—ir|u,|)dr

= (128) Seon | _tr EODBE, ) exp (= irlu,dr
= Fy(h(y).-

Since ®,(r) is atempered function and & is rapidly decreasing, using the
residue theorem again we may shift the contour of the integration to get

(4.20) (1/471)SL b(r)® (rdr

= (1/4n) SR b(r)® (r)dr + (i/2) {ixr(e)E Lryi<p, B(— )P (r)}
= xx2(¢) Vol (GIT)f(e) = (1/11(€)E ruisp, B(ridecP (1) -

The last equality is the Plancherel theorem.
From the equalities (4.16)—(4.20) we obtain
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@21) (1/4n) SL

= k{xr(e) vol (G/T1)f(e) + Xyecr-(ey Xr(¥) |, J(?) ™ C(h(Y)F ; (h(¥))
— X ieg, M4, Ab(DP (D)} .
Applying the trace formula to the admissible function f, it is clear that the right

side of (4.21) is equal to zero. Therefore, by shifting the contour of integration
from L_, to R, we get

b(r)q (rydr

(4.22) [ b0y =o.

Since b is arbitrary even holomorphic and rapidly decreasing function in the
strip [Imr|<p,+2¢, and g, is an even function, one deduces from (4.22) that
d,r)=0o0n R. But g, is entire, hence §,=0, and Proposition 4.9 is proved.

Now put ,
(4.23) 15(5) = () (Py(i(s = p, )™
and
D(s) = — Dy(s—po) (P(i(s—p,)"!
— kyr(e) vol (G/Du(i(s—p,)) -

Suppose that |g|>n. Then P (i(s—p,)=ITm {—(s—p,)*+j2}5,(j). In
this case, s=p,+ j (j€iV}9) is not a pole of #,(s) by means of Proposition 4.7.
Thus n3(s) can have additional simple poles at s=p,+ j, jeiV . Now let

i

r‘:lt(]) = Res s=potj 'loq(s) (.Ie iV;q)'

Then the functional equation n3(s)+7%(2p, —s) = ¢3(s) implies that

ra(D) —ry() =dj)  (jeiVss).

Here we put

dq(]) = Ress=po +Jj ¢Z(S) (.] € iVotq) .
We now define the following two functions:
0 if |gl<n,
F) = {Zm { ra(j)

j=1

rq(Jj . . .
ol el D) iz,
(4.24)

0 if |q|<n,

G«“):{ do(j) d,(j)
' Zj:l {S"—pa_j —S_pa+j

} 5()  if lgl>n.
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Moreover we define

(4.25)

and

14(5) = ny(s) — F(s)

Py(s)

Put J,={AeQ,; P,(A)#0}.
marize these observations.

= ¢5(s) — G(9).

Note the fact that Q1=Q,. We now sum-

ProrosITION 4.10. For tqelzl, n, is a meromorphic function with simple
poles. The (non-trivial) poles of n, are located at s=p, +il\ (A€ Qq) with residues
kmq, A) for any q. Apart from these poles, there exist a series of the (trivial)
poles as follows:

TABLE 2.
T, Pole Residue (—vxid,‘x1(e) vol(G/I"))
(=" .
(k>0) <n+’|ql+1k—l><n+k1—1)
n— n—
—(lql+2k) same id, as in the case |q|<2n
lal>2n (k>0)
q=n 1d-——k+1 (Iql+n)/2+k>
(mod 2) n—2(k+1) n—1
([n/2]1<k<(lql—mn)/2-1) <(|¢I|+")/21—k—2
n—
—(lql+2k) same id, as in the case |q|<2n
\al>2n (k>0)
g#n | n—(2k+1) id, = _k(k+%) (|ql+n—1)/2+k
(mod 2) | ([(n+1)2]<k< 2
(lgl=n—=1)/2) ("‘1'“““/2 D

The poles described above are the only poles of n,.
Furthermore n, satisfies the functional equation:

REMARK 1.

n48) + 1,2p,—5)

= ¢,(5).

If g #0, then Table 2 shows that the trivial poles are all negative.
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REMARK 2. If ¢=0 and s=0 is a non-trivial pole of #,(s) (that is ip, € Qq),
then we understand that the residue of the pole at this point is kmy0, ip,)—
Kidgy(e) vol (G/I).

REMARK 3. If OGQ,, then, of course, the residue at the point s=p, is
2km(q, 0).

Since the function n,(s)=n r,,(s) has only simple poles with integer residues,
we can find a meromorphic function Z(s)=Z; r . (s) such that (d/ds) (log Z(s))=
n.s). The function Z, will be defined up to multiplicative constant. Hence we
can choose a point s,€ C with Res,>2p, and a constant ¢, which normalizes
suitably Z, such that

Z(s) = c,exp (Ss n,,(z)dz).
We now come to our main result.

THEOREM 4.11. For each rqekl, the function Z, has following properties.

(A) Z, is holomorphic in a half plane Res>2p, and has a meromorphic
continuation to the whole complex plane.

(B) The following functional equation holds:
Z42p,-5) = crexp( || —4,(2)dz)Z,(5)
where ¢y =Z(2p,— 5,)Z,(s,)"".

(C) Z, satisfies a sort of modified Riemann hypothesis. Namely, the non-
trivial zeros of Z, lie on the line {se C; Res=p,} except for the finite ones.
These finite exceptional values are, provided that they exist, all real and lie in the
interval [0, 2p,] symmetrically about p,. The corresponding representations
are all in the complementary series. Moreover, the order of the non-trivial
zerosof Z,at s=p, il (L€ Qq, A#0)iskmiq, A). IfOe Qq then the order of the
zero at the point s=p, is 2km(q, 0). If q=0 then the point s=0 is somewhat
special (see (E bis)).

(D) Z, has the trivial zeros and poles at s=p,+ir, , with the order |e, E -
xr(e)| =|kid, ,x1(e) vol (G/I")| (see Proposition 4.10) listed below,
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TABLE 3.
\ T, Potiry, zero or pole
n: odd zero
q#0 —(lql+2k) (k=0)
q=0 -2k (k=1
pole
0<lql<2n| —(lql+2k) (k=0)
|ql>2n —(lq)+2k) (k=0) pole
n: even
q: even n—2(k+1) (n/2<k<(lq|—n)/2—-1) zero
lgl>2n —(lq|+2k) (k>0) pole
q: odd n—Q2k+1) (n2<k<(lq|—n—-1)/2) zero

(Ebis) Suppose that q=0. If n is odd, then n,s) has the zero at s=0
with the order km(0, ip,)—eq oExr(e). -On theother hand, if n is even, then 1,(s)
has the zero (resp. pole) at s=0 if and only if the sign of the number km (0, ip,)—
eo,0Exr(e) is positive (resp. negative). One way or the other, the order of the
zero or pole at this point is |km (0, ip,)—eq oExr(e)l.

(F) Enumerate the roots in P, as ay,...,a,. Let L be the semi lattice in
a} defined by L={>t., mo;; m;>0, m;e Z}. For A€ L,definem,tothe number
of distinct ordered t — tuples (my,..., m;) such that A=3%\%i_, mga;. For any
yerl, y#e, we now further demand that h(y)=h,(y)h(y) be chosen so that h,(y)
lies in A, ={a,; t>0}. We now put

19 = exp | (= F (2,

for Res>2p,. Since the residues ri(j) at the poles z=p,+ j (1< j < min {n,
|g| —n}) of the meromorphic function F (z) need not be integers, f(s) is only well
defined in C\(— 0, 0]. Therefore we take and fix a particular path in the half
plane Re s>2p,, when the above integral is interpreted as a contour integral.
With these understood, the function Z, has an infinite product representation in
the half plane Re s>2p,, that is, there is a non-zero constant C such that

Z()=Cf8) Isep - I Taer (det (I — T(8)7g! (hi(8)) ™ E2(h())™" exp (— suy))y™s .

Here I is identity matrix and det means determinant.
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PrOOF. The assertions (A) and (B) follow from the definition of Z, and the
functional equation of n,. Also, Proposition 4.10 implies (C). As to the judge-
ment of the trivial zero or pole, we will make use of the results of Table 2. If
the sign of the number —e, E (or —id, ) is positive (resp. negative), then Z, has
zero (resp. pole). This implies the properties (D) and (E bis).

The proof of (F) proceeds from the formula

(426) ’14(3) =K ZyeCr—{e) XT(’Y) |uy|](y)'IC(h(y))‘cfl"(h,(y))‘l exp (po - S)Iu.,' _Fq(s)

for the logarithmic derivative of Z,, valid for Re s>2p,. Beacuse of our special
choice of h(y), we see that e(h(y))=1, and u,>0, and we find that

C(h() = Ep(hy (M) Taep, (1= &A™
Thus (4.26) can be written as
(d/ds) log Z (s)
(4.27) =K Lsepr 2jz1 {Ar(0us [acp, (1 =E(h(8))) 2} (hy(0)) ™
X exp (—sjus} — Fs).
Now expand (1—¢&,(h(8))~/)~! as a power series,
‘ Zmzo E(h(8))Im.

This series converges because ,(h,(6))"! <1 by our choice of h(d). Next multiply
together these series for the various a € P, then we find that the product

ITacp, (1=&(h(0))™) ™" = Tsep maa(h(5)).
Therefore (4.27) becomes, with a rearrangement,
(4.28) (d/ds)log Z(s) = K Lsepr LacL 2j21
usm;xr(8)E(h(8)) ™ 7y (he(8)) ™7 exp (— sjus) — F(s).
If £,(9), &,(0),..., €4(9) are the eigenvalues of T(5), then
x1(67) = Ty (& (9)).

Hence we can write

(d/ds)log Z,(s) = KX {-t Xsepr LaeL Milks

% X2 €0)71(A(9)) T Ty (h(8)) 7 exp (—sjus) — Fyls)
= K Xfe1 Xsepr LaeL Mills

£;(0)¢,(h(9))1t¥ (hy(6))~! exp (—su;) —F.(s)
1—£;(0)E:(h(0)) " 75! (h(0)) ™  exp (—su;) 177
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These manipulations are valid because of the absolute convergence of the
series (4.26) for n,(s). Integrating this logarithmic derivative, we find that

Z,(5)=Cfo()TT=1 T Tsep, [Tacr (1 —&,(8)E,(A(S))!

X TM(hy(5)) 7" exe (—suy))ma*

where C#0. This is exactly the assertion of (F).
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