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1. Introduction and preliminaries

In the classical potential theory, it is well known that polar sets (or the sets
with null capacity) are removable for bounded, as well as Dirichlet-finite, harmonic
functions (see., e.g., [1; §VII, Theorem 1]). The purpose of the present paper
is to extend this result to solutions of semi-linear equations on harmonic spaces.

Let (X, %) be a harmonic space in the sense of [2] and let # be the sheaf of
functions which are locally expressible as differences of continuous superharmonic
functions. We assume that X has a countable base and 1€ #2(X). An open
set in X possessing a positive potential is called a P-set (cf. [2]) and a relatively
compact open set whose closure is contained in a P-set is called a PC-set (cf. [7],
[8]). Let .# be the sheaf of (signed) Randon measures on X and 6: Z—.# be a
measure representation (see, [6], [7], [9]). Let .#, be the image sheaf of .¢ and
consider a sheaf morphism F: #—.#, which satisfies the following two conditions
(cf. [8]):

(F.1) (Monotonicity): For any open set U, if f,, f, € Z(U)and f; < f, on U,
then F(f;)<F(f,) on U.

(F.2) (Local Lipschitz condition): For any PC-set U and for any M >0,
there is a non-negative measure m, ; on U such that o(py,y)=my,y for some
bounded continuous potential py, ;, on U and

F(fy) — F(fy) £ (fl—fl)nM,U on U,
whenever f;, f,e Z(U)and —MZ f,<fi<Mon U.
We are concerned with the semi-linear equation
¢)) o(u) + F(u) = 0.
For each open set U, let
HEHU) = {ue 2Z(U)| u satisfies (1) and is bounded on U},
HH(U) = {ue Z(U)| u satisfies (1) and 6,(U) < + oo0}.

Here 6, is the gradient measure of u as defined in [6], [7]. The value §,(U) is
regarded as the Dirichlet integral of u over U. Thus s£§(U) is the space
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of bounded solutions of (1) and s#£(U) that of Dirichlet-finite solutions of (1).

A set e in X is called polar if for any P-set U there is a potential p on U such
that p(x)=+ o forall xeen U.

As to the s#§-removability of polar sets, we obtain the following general
theorem:

THEOREM 1. Any closed polar set e in X is H#§-removable, i.e., for any
open set U and for any u e #5(U \ e), there is il € #5U) such that iy, =u.

This result is quite as expected in view of similar results for solutions of
elliptic and parabolic equations on euclidean domains (see e.g., [3; Theorem 3.1],
[10; IX, §8, Satz 21] for elliptic equations and [4] for parabolic equations).

In order to discuss s#}-removability, we restrict ourselves to the self-adjoint
case (cf. Remark 3 in section 6). By definition (cf. [6], [7]), a self-adjoint
harmonic space is a Brelot space having a consistent system of symmetric Green
functions. To such a system there corresponds a canonical measure represen-
tation o (see [6], [7]). We shall prove

THEOREM 2. Let X be a self-adjoint harmonic space and consider the
equation (1) with respect to a canonical measure representation o. Let e be a
compact polar set contained in a P-set. Then, for any open set U containing e
and for any ue #E(U\ e), there is it € #E(U) such that ii|y,=u.

With respect to linear elliptic equations on euclidean domains, we may
regard [10; IX, §8, Satz 20] as giving removability of polar sets for Dirichlet-
finite solutions; but it seems that no results are known for non-linear equations.

2. Lemmas on polar sets

In this section, let (X, %) be a general harmonic space. For an open set U
let RV denote the reducing operator on U, i.e.,

RYf = inf {u | hyperharmonic on U, u> fon U}.

LEMMA 1. Let e be a compact polar set contained in a P-set U and let p be
a potential on U such that p(x)= + o for all xee. Then, for any ¢>0 there is
a continuous potential p, on U such that p,=1 on a neighborhood of e and p,=
epon U.

Proor. Let V,={xeU]|p(x)>1/e}. Then V, is an open set containing e.
Choose a continuous function ¢, on U such that ¢,=1 on a neighborhood of e,
0<¢.,<lon U and ¢,=0on U\V,. Put p,=RYg,. Then, by [2; Proposition

2.3.1] (or [7; Propositions 2.6 and 2.7]), we see that p, is the required potential.
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LEMMA 2. Let e be a compact polar set contained in a P-set U. Then there
exists a potential p on U such that p(x)=+ o if xe€e, p(x)<+ o0 if xeU\e
and p is harmonic outside a compact set in U.

ProOF. By [2; Exercise 6.2.1], we can find a potential § on U such that
p(x)=+o00 if xee and p(x)<+ oo if xeU\e. Then p=RVU(Yp) serves our
purpose, where ¥ is a non-negative continuous function on U such that =1
on e and has a compact support in U.

3. Proof of THEOREM 1.

Given u e #E(U \ e), let u* and u, be functions on U which are equal to u
on U\e and

"*(,V) = lim Supx—w,xe(l \e U(X), u*(y) = liln infx-—w,xsu \e ll(X)

for yee. Let V be any PC-set such that V< U. We know that V is resolutive,
so that HY. and HY, are defined ([2; Theorem 2.4.2]). Since u* and u, differ
only on a polar set, we see that HY.=HY, on V (cf. [2; Corollary 6.2.4]). Then
HEV e s#%(V)-is defined from HY.=HY, as in [8; p. 476]. By [8; Theorem 4.2]
and its proof, we see that HE-V is also given by

HEY =inf 57 = sup £F.7,
where
FRY = {veR(V)|o(v) + F(v) 20 on V, liminf ¢ o v(x) Z u*(¢)
for all ¢edV},
Z5V ={weR(V)|o(w) + F(w) £0 on V, limsup,_, ,op w(x) < ux(£)
for all ¢edV}.

We shall show that u=HE-Y on V\e.

By (F.2), there is a bounded continuous potential g on V such that a(g)=
F(M)~ +Mo(1)~, where M=supy, |u|l. Put f=M+¢g and M'=2M +sup, g¢.
Let U’ be a P-set such that V< U’cU. By Lemmas 1 and 2, we can find a non-
increasing sequence {p,} of continuous potentials on U’ such that p,=1 on a
neighborhood W, of en V and p, | 0 (n—c0) on U'\(en V). Set

min (u+M'p,, f) on Vie
v, =

f : on Ve

Since u+M'p,Zu+M'2f on W,nV\e, we see that v,e (V). Furthermore,
since
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o(f) = Mao(1) + o(g) 2 — Ma(1)~ + F(M)~ 4+ Mo(1)~
2 —FM)z - F(f) on V
and
o(u+M'p,) 2 o(u) = — F(u) 2 — Fu+M’'p,) on Ve,

[8; Corollary to Theorem 3.3] implies that a(v;,)+F(v,,);0 on V. 1t is easy to
see that

lim inf, ;. 0,(&) = u*(§) for all &eaV.

Thus, v,e £57, so that v,=HEV. Letting n— o0, we conclude that u>HF.V
on V\e.

Similarly, letting § be the bounded continous potential on V such that
o(§)=F(—M)* + Mo(1)~, f=—M—g, M=2M +sup, § and considering

max(u—Mp,, f) on V\e
" f on Vne,

we can prove that u<HE'Y on V\e. Thus u=HEY on V\e. Since HE'V is
continuous on V, it follows that u*=u,=HE:Y on V. Since PC-sets V with V< U
cover U, u*=u, on U and it belongs to s#5(U).

4. Auxiliary properties of gradient measures

As preparations for the proof of Theorem 2, we give in this section some
properties of gradient measures. Thus, in what follows, we assume that (X, 5#)
is a self-adjoint harmonic space, {Gy}y.p—se; 1S @ consistent system of symmetric
Green functions, o is the associated canonical measure representation and J,, fe
2(U), are considered with respect to this 6. For a P-set U and a signed measure

i on U such that xHS Gy(x, y)d|ul(y) is continuous, let Gyu(x)=
U
S Gy(x, y)du(y). Then o(Gyu)=p by definition.
U
First we prove

LemMMA 3. Let U be a PC-set and e be a compact polar set in U. Then
there exists a sequence {f,} of functions in #(U) satisfying the following con-
ditions:

(a) f,=1 on a neighborhood of e for each n,

(b) O0=f,=<1o0n U foreach n,

() fix)—0(n—o0)if xeUle,

(d) 6,,(U)-0 (n—>o0).

ProoOF. For the given U and e, choose a potential p on U as in Lemma 2.
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By Lemma 1, we can find continuous potentials p,, n=1, 2,..., on. U such that
P»21 on a neighborhood of e and p,<min (p/n, p;) on U for each n. Putf,=

min (1, p,). Then f,e2(U) and satisfies (a), (b) and (c). Furthermore, by
[7; Corollary 4.7],

67,(U) S 8, (U) < Bu | padotpy)

< Lo paotp) = L p,do(r) < Lo ( pdacp)

n

with a constant ;=1 (see [7; p.72]). Since o(p) has a compact support in
U, S pido(p)< + 00 and (d) is satisfied.

Given an open set U and a function he £(U) which is positive everywhere
on U, the harmonic space (U, ) given by

‘#U,h = {‘;f(h)(V)}V:openCU5 ‘;f(h)(V) = {u/h l u E‘}f(V)}

is a self-adjoint harmonic space with a canonical measure representation
o™ eM(f)=ha(fh) for fe Z(V), and the correspondmg gradlent measure
oW =h25, for fe (V). : -

‘The rest of this section is devoted to the proof of the next proposmon Wthh
will be used to reduce the proof of Theorem 2 to the case 1 € s#(X).

PropoOSITION 1. Let U’ be a P-set, U a PC-set such that Uc U’ and e a
compact polar set in U. Let he Z(U’) be positive everywhere on U'. Then for
any ue Z(U’\ e) such that 5, (U \ e)< + 0, we have §#)(U \ )< + co.

For the proof of this proposition, we need a few more lemmas. The first
one is valid on a general harmonic space:

LeMMA 4. For any f, g € 2(U),
Opy = 2(f20,4+9%,) on U.
Proor. By [7; Theorem 3.2], it is enough to show
2(g0y .51 = 26, + %6,

which can be easily proved by using [7; Proposition 3.3] and the continuity of

19

LEMMA S. Let U be a P-set and suppose. there exists he s#(U) such that
m=infy h>0 and M=supy h< + 0. Let u be a non-negative measure such that
Gyp is bounded continuous on U. Then, for any
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fe2,(U) = {Gyv | Gylv| is continuous and g Gylvldlv| < + o0},
, Gl

2 M\?
| r2du = (2 supy Gun) 6,40
U m
ProOF. Since ¢(®)(1)=0, by [7; Lemma 4.12 and Theorem 4.3], we have

[, f2du = (supy G0 8P(),

where G{(x, y)=h(x)"'h(y)"'Gy(x, y). Since G{’u<m=2Gyu and P(U)=
S h?dé, < M?§,(U), we obtain the required inequality.
U

LEMMA 6. Let U be a PC-set and e be a compact polar set in U. Suppose
ueZ(U\e) and 6, (U\e)< +oo. Then, for any compact set K in U and for
any non-negative measure u on U such that Gyp is bounded continuous, we have

S udy < + 0.
K\e

Proor. Choose ¢ € Z(U) such that ¢=1 on a neighborhood W of KU e,
has a compact support in U and 0Z¢ =1 on U (cf. [7; Proposition 2.17]). - Let
{f,} be a sequence as is given in Lemma 3. For each />0, we consider the
function

u; = max (—1I, min (u, [)) on Ule.

Then, o(1—f,)u,e Z(U) if it is extended by O on e. Since ¢(1 —f,)u, has a compact
support in U, it follows that o(1—f,)u; € 2,.(U) ([7; Lemma 6.4]). Since U is a
PC-set, there is he s#(U) such that m=inf, h>0 and M =supy, h< + 0. Hence,
by the previous lemma,

@ a-foruidn s |t —fouddu < B(M Yo, 0),

where f=sup, Gyu. By Lemma 4,

54p(l —fn)ur é 2[(1 _fn)25¢u| + ((pul)zéf,,]
< 2[0,,, +1%,] on Ule.
Since 65 (U)—0 (n— ), it follows that
lim Sup 8.1 - £, (U) =1 Sup 8y s - 1, (Supp ¢ \ )
< 26,.,(Supp @\ e).
Hence, by (2), we obtain
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3) ( utau<28(2Y's,,(supp 0\ e).
Let W' be a relatively compact open set such that

Suppo\We W c W < Ue.
Since u is bounded on W',

04w, (Supp @ \ W) = 4,,(Supp ¢ \ W)

for large I. On W\ e, ou;=u,, so that §,,,,=4d,, <5,. Hence

puy

Opu(W\e) S 6(W\e).

Thus, letting [— oo in (3), we obtain
M 2
[ . u2dn < 2(2L) (6,u(Supp @\ W) + 3,W\ )} < + 0.
PROOF of PrROPOSITION 1. By Lemma 4 and [7; Theorem 3.3],
(h) 2 u?
8 = 18, S 2(8,4%78,) o Ule

Let V be a relatively compact open set such that ec Ve V< U. Since u/h is
bounded on U\ ¥V and 6,(U \ V)< + o, we have

u?

SU\V h?

On the other hand, u=h"24,|y is a non-negative measure such that G u is bounded
continuous. Hence, by Lemma 6,

dd, < + oo.

u?

gV\e h?

(u?/h?)dé, < + oo, and hence 6} (U \ )< + 0.
\e

dd, < + 0.

Therefore, S
U

5. Proof of THEOREM 2

By assumption, given an open set U containing e, we can find a P-set V’
such that ecV'cU. Therefore we may assume from the beginning that U is a
PC-set containing e and U is contained in a P-set U’ on which there exists he
s#(U’) such that h>0 everywhere on U’.

First, we reduce our problem to the case o(1)=0 on U’.  Consider the
harmonic space (U’, #y.,) and the sheaf morphism F,: 2|,.—.#|y. defined by

Fy(f) = hF(hf) on W
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for fe #2(W), W= U’. Then F, satisfies conditions (F.1) and (F.2) for the har-
monic space (U’, 5#y.,). If ue #5(U\ e), then

o™ (ufh) = ho(u) = — hF(u) = — F,(u/h) on Ule

and 6")(U \ e)< + oo by Proposition 1. Hence u/he #$’F(U\e). Obviously,
e is also polar for the structure 5. ,. Thus, if the theorem is true for the harmonic
space (U’, #y,), then there is & e #PF1(U) such that §|y.=u/h. Then, we
see that 4 =hi e #5(U) and ii|,.=u, and hence the theorem is proved. Since
a®(1)=0 on U’, this means that it is enough to prove the theorem in case 4(1)=0
on U'.

Thus, assume ¢(1)=0 on U’. By considering each component of U, we may
further assume that U is connected. Then there exists a regular domain V such
that ec Ve VU (cf. [5; Corollary 4.2]). By [8; Theorem 2.1], v=s#F" is
defined. Put w=u—von V\e. We shall show that w=0; then it suffices to let
ii=vone.

Suppose w#0 on V' \e. Since V'\e is connected (cf. [2; Proposition 6.2.5]),
[7; Theorem 5.4] implies that §,,#0 on V' \ e. Then there is >0 such that

4) o, ({xeV\e|a<|w(x)|<a+1}) > 0.

Choose a continuous function y on R such that y(£)>0if a<|tj <a+1 and y(f)=0
otherwise. Put x//(t)=St (t—s)x(s)ds. Then Y e €%R), y=0on [—a, a], y=0
0

everywhere, /' is bounded on R, y'(f)sgnt=0 for all te R and y”"=y. Since
w(x)—0 as x—¢ for all £ e 0V (cf. [8; Proposition 3.3]), there is a compact set K in
V containing e such that |w(x)|<a for all xeV\K. Choose ¢,€ 2(V) such that
po=1o0on K, 0=5¢,=<1 on V and ¢, has a compact support in V; let {f,} be a
sequence as is given in Lemma 3 for V and e. For each n, ¢o(1—f,) € Z(V) and
has a compact support in V\e. Since yowe Z(V\e) by [7; Theorem 3.3],
by Green’s formula [7; Theorem 5.3], we have

©®) Stvemati-rm(V\O = { | ool =fdopow).
By [7; Theorem 3.3],
o(ow) = — (W"ow)d,, + (Yow)a(w) on V\e.
Since u and v satisfy (1) on V'\ ¢, |
o(w) = o(u) — a(v) = — F(u) + F(v) = F(u—w) — F(u).
By (F.1), we see that (Y/'ow) {F(u—w)—F(u)}<0. Hence

o(Yow) = — (Y"ow)d,, = — (xow)d,,.
Thus, by (5)
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© Sivomoni -V \O = = | po1=1) (row)ds,.

Since yow=0 on V'\K and ¢,=1 on K, the right hand side of (6) is equal to

—S (1 —f£,) (xow)dé,,, which tends to —S \ (yow)dd,, as n—oo. Note that
K\e K\e

J,(K\e)< + oo and yow is bounded on K\e. On the other hand,

lé[lpow,(po(l —f,,)](V \e)| = |5wow,1 ~—j‘,.](K \e)|
S dyon(K\@)V2- 6, (K \ e)!/2

-0 (n—00),

where we used the fact that J,,,(K\ e)—g (Y'ow)2dé,, (cf. [7; Theorem 3.3])
Kle
which is finite since ¥’ is bounded and §,(K \ e)< +oo. Hence (6) 1mp]1es that
S (yow)dd,,<0. Since =0 and §,=0, it follows that S (xow)do,,=0.
K\e K\e

This is impossible in view of (4) and the choice of y. Hence w=0 and the proof
is completed.

6. Remarks

REMARK 1. Theorem 1 remains valid without the monotonicity condition
(F.1) for F; more precisely, if F satisfies only the condition (F.2) in which (iii)
is replaced by

(i) |F(fy)—F(IN=(fi—f2)nm,p on U, whenever fy, f,e2(U) and —M <
figfisMonU.

This is seen as follows. Let U be any PC-set and u € s#5(U \ e) be given.
For M =supy, |u|, we consider a linear perturbation of the original harmonic
structure on U so that the perturbed space (U, ) has a measure representation
¢ such that 6(f)=0(f)—fry y (cf.,e.g.,[11]). Then e is also polar for . Con-
sider the sheaf morphism F: 2|,—.#|, defined by

F(f) = F(max (—M, min (f, M))) + fry.p-

Then F satisfies (F.1) and (F.2) for the space (U, #). Since ue #{U\e)=
{v|v is bounded and &)+ F(v)=0 on U\ e}, Theorem 1 implies that u has
an extension & € #§(U). Since |#i| <M, it follows that i@ € #5(U). Then it is
easy to see that the assertion of Theorem 1 holds for any open set U.

ReMARK 2. The following simple example shows that the monotonicity
condition (F.1) cannot be suppressed for the validity of Theorem 2.

Let X be the unit ball in R” (n=3) with center at 0 and consider the classical
harmonic structure on X, so that o(f)= —A4f (in the distribution sense). Let
e={0}, which is a polar set. For a>(n+2)/(n—2), let F(f)=—|f|*m, where
m is the Lebesgue measure on X. Then F satisfies (i), (ii) of (F.2) and (iii)’ in
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the above Remark with my, , =aM*"!m. Let

— (x—1)? 2/(1-a)
u(x) 2(an—n—20a) ] ’

Then Adu(x)+|u(x)|*=0 for xe X\ {0}, so that o(u)+ F(u)=0 on X\ {0}. Fur-
thermore, by direct computation, we see

S Pul2dx < + o,
X\(0}

ie., ue #F(X\{0}). Since u(x)— + oo (x—0), u has no extension to a function
in #5(X).

REMARK 3. The self-adjointness condition in Theorem 2 may appear to be
too stringent. In fact, [10; IX, §8, Satz 20] suggests that Theorem 2 would
remain valid for non self-adjoint elliptic harmonic space. In non-elliptic case,
e.g., for parabolic equations on euclidean domains (even for heat equations),
there seems to be no known result on the removability of polar sets for Dirichlet-
finite solutions.
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