
HIROSHIMA MATH. J.
15 (1985), 173-220

Positive solutions of linear and quasilinear elliptic
equations in unbounded domains

Yasuhiro FURUSHO

(Received September 5, 1984)

1. Introduction

Let Ω be an exterior domain in RN, N^2, with smooth boundary Γ = dΩ
and let ΐ) and B denote, respectively, an elliptic differential operator and a
boundary operator defined by

(1.1) B = Σϋ;= i a^eηδxβxj + Σ7=ι b^d/dx^ x ε Ω,

and

(1.2) J3 = oc(x)d/δj3 + (l-α(x))., xeΓ,

where d/dβ is the directional derivative in the direction of a vector β prescribed
on Γ. We are concerned with the following linear and quasilinear boundary
value problems :

(A) -Dw + c(x)u = λm(x)u in Ω, Bu = 0 on Γ,

(B) -Dw + c(x)u = λm(x)u? in Ω, Bu = 0 on Γ,

where c(x) and m(x) are given functions, A is a real parameter and γ is a nonzero
constant with y ̂  1. We allow Γ to be empty, in which case Ω is the entire space
RN and the boundary condition in (A) or (B) is void.

The objective of this paper is twofold. First, we study the existence and
asymptotic behavior of positive functions h which satisfy the differential inequality

(1.3) -Φfc + c(x)h ^ λm(x)h in Ω

and have minimal order of growth at infinity. Such an h is called a minimal
A-superharmonic function, and the totality of /Usuperharmonic functions is
denoted by SH(λ). An analysis of some particular cases of (1.3) ([10]) shows
that the asymptotic behavior of A-superharmonic functions is in general very com-
plicated. So, we restrict our attention to the situations in which (i) all h in SH(λ)
converge to zero as |x|-*oo; (ii) all h in SH(λ) are bounded both above and
below by positive constants; (iii) all h in SH(λ) tend to infinity as |x|->oo, and
attempt to obtain conditions for such situations to occur. For this purpose a
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crucial role is played by the concept and basic properties of the principal eigen-
value of the problem (A) which are given in Section 2. Explicit sufficient con-

ditions ensuring that the above cases (i)-(iii) actually hold are developed in Section
3 with the use of results on the existence and asymptotic behavior of positive
solutions for second order linear ordinary differential equations, and the recurrence
property of the diffusion process with the infinitesimal generator !C. The results
in Sections 2 and 3 extend considerably those obtained in [9, 10].

Secondly, we investigate the existence and asymptotic behavior of positive
solutions of (A) and (B). We were motivated by the observation that although
there is much current interest in positive solutions of semilinear elliptic equations
in unbounded domains (see e.g. [8, 9, 18, 19, 25, 28, 32, 33, 36]), most of the
literature has been devoted to equations of the form — Au + c(x)u = λm(x)uy and
very little is known about general equations of the form (B). We establish
existence theorems for (A) and (B) in Sections 4 and 6, respectively; more spe-
cifically, we find sufficient conditions under which (A) and (B) possess positive
bounded solutions, or positive unbounded solutions with specified order of
growth at infinity. The main tool is a generalization of the standard super-
solution-subsolution method (Lemma 4.2), which asserts that the existence of a
"generalized" supersolution ύ(x) and a "generalized" subsolution ΰ(x) of (A)
or (B) such that ΰ(x) ^ ύ(x) in Ω implies the existence of a solution u(x) of (A)
or (B) satisfying ΰ(x)^u(x)^ύ(x) in Ω. In each of the theorems in Sections 4
and 6 suitable "generalized" super solutions and subsolutions are constructed
explicitly with the aid of existence and asymptotic theory of second order ordinary
differential equations. Some of the recent results in [18, Theorems 2.3, 2.6],
[19, Theorem 1] and [36, Theorem 4.3] are covered by our theory.

In addition it can be shown that the supersolution-subsolution method
combined with the results of Section 3 yields various existence theorems for
positive solutions of semilinear equations of the form

(C) -T)M + c(x)u = λm(x)f(u)

defined in some neighborhood of infinity. These byproducts are presented in
Section 5.

2. Principal eigenvalues

2.1. Principal eigenvalues

Throughout this paper we assume that Ω is either an exterior domain in RN

of a simply connected bounded domain Ω0 with boundary dΩ — Γ of class C2+σ,
0«τgl, or Ω = RN, and the following conditions hold for the operators D and
B defined by (1.1) and (1.2).
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(AO atj = ajteC&^R"), b^C^R"), ij = 1, 2,..., N, c, meCfoc(Ω),
w(x) > 0, x e Ω.

(A2) Φ is uniformly elliptic in /?N, i.e., there exists a constant τc>0 such that

ΣL = ι fl,/x)«7 ^ κ|ίl2 for all x, ξ e R«,

where |£| denotes the Euclidean length of ξ = ( ξ ί 9 ζ29--, £#)•
(A3) α 6 C2+σ(Γ), and either α(x) = 0 on Γ or 0 < α(x) g 1 on Γ.

(A4) β = (βί9 β2,.-., βN)eC1+σ(Γ) is a unit vector satisfying Σ?=ι A^X) on Γ
for the outward (with respect to Ω) unit normal vector n = (n l5 n2,..., nN)

toΓ.
The following notation is employed:

B(x0, R) = {x: |x-x0|<£} for x0εRN,

GR = /?N\B(0, K) = {x: |x| >R} for R > 0.

We now proceed to define the principal eigenvalue of the problem (A).
Fix a nonnegative constant p such that Ω0c=β(0, p) if Ω = RN\Ω0 and p = 0 if

Ω = RN

9 and put

Ωk = Ω n 5(0, p + fc), Γk = {x: |x| = p + fe}

for /c^ 1. We first define the principal eigenvalue of the problem

— Dφ + c(x)φ = λm(x)φ in Ωfe,
(2.1)

Bφ = 0 on Γ (ifΓ*φ), φ = 0 on Γk.

Put C(x) = c(x)/m(x), x e Ω. Let ̂  = minjce^k ζ(x) and take a constant ζk such that
We denote by τk the principal eigenvalue of the problem

— Dφ + (ζ(x) — ζk)m(x)φ = τm(x)φ in Ωfc

(2.2)
Bφ = 0 on Γ (if Γ^0), <p = 0 on Γfc.

Since C(x) — C^^O in Ωk, τk exists and is positive, and there is a unique normalized
positive eigenfuction φk e C2+σ(Ωk) corresponding to τk (see e.g. [4, Theorem 4.3]).

We then define the principal eigenvalue of the problem (2.1) to be the constant
λk = ζk + τk, and denote the principal eigenfunction corresponding to λk by φk.
The value of λk is independent of the choice of ζk. In fact, if we let τk be the
principal eigenvalue of (2.2) with ζk replaced by Cfc, then τk + ζk - ζk is an eigenvalue
of (2.2) with the same positive eigenfunction, so that by the uniqueness of the

principal eigenvalue, we have τ f c-hC f c — ζk = τk and hence τfc + Cjk = τk-hζk. Letting
fc=l, 2,..., we obtain the sequence {λk} of principal eigenvalues of (2.1) for the
bounded domains Ωk.

We show that {λk} is a strictly decreasing sequence. For this purpose we



176 Yasuhiro FURUSHO

need the following Lemmas, in which we write G = Ωk, A = Γk and λ0 = λk.

LEMMA 2.1. Suppose that feCσ(G), gίeCl+σ(Γ) and g2eC2+σ(A), where
1 = 2 i/a(X)==0 on Γ and 1 = 1 ϊ/a(x)>0 on Γ, respectively. Then, for every
λ<λ0, the problem

-ΐ)u + (c(x)-λm(x))u =f in G,

Bu = #t on Γ (ifΓ*0\ u = g2 on A

has exactly one solution ueC2+σ(G). Furthermore, iff, g± and g2 are non-
negative and at least one of them is not identically zero, then u(x)>0 in G.

LEMMA 2.2. If there is a function w 6 C2(G) n C1(δ) such that w(x)>0
in G and

- Dw + c(x)w = λm(x)w in G,

Bw = Q on Γ (ifΓ*0), w = 0 on A,

then

These lemmas are proved by the same argument as in [4, Theorem 4.4] and
[7, Lemma 3.4] (cf. [10, Lemma 3.1]), so the proof will be omitted.

From Lemma 2.2 it follows that λk+ί=λk. Suppose that λk+ί=λk. Then,
u = φk+ίe C2+σ(Ωk) satisfies w(x)>0 in Ωk and

— Du + (c(x)-λkm(x))u = 0 in Ωk,
(2.3)

Bu = 0 on Γ (if Γ*r0), u = φk+i > 0 on Γk.

Let us now denote by S the solution operator of the problem

-l>ιι + (ί(x)-LM*)" =/ in Ωk,

Bu = 0 on Γ (if Γ*r0), u = 0 on Γk,

that is, u = S f i s the unique solution of this problem provided /e Cσ(Ωk). Then,
S has a unique extension 5, which is positive and maps C(Ωk) compactly into
Cί+σ'(Ωk), 0<σ'<l (see e.g. [3, Lemma 5.3]), and the operator T defined by
Tf=S(m(x)f) is a positive linear operator on C(Ωk) with a positive eigenvalue
τ^1 and a positive eigenfunction φk (see e.g. the proof of [4, Theorem 4.3]).
Let υ be the solution of

-Di; + (C(x)-£*)m(x)t> = 0 in Ωk,

Bv = 0 on Γ (if Γ*r0), t; = φΛ+1 on Γk
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and put w = φk+l— v in Ωk. Then, w is positive by the maximum principle and
satisfies the equation

(2.4) τj^w - Tw = TV.

On the other hand, it can be shown ([3, Lemma 5.3]) that T(Tv)(x)^Mφk(x)9

xeΩk, for some constant M>0. Hence, by [23, Theorem 2.16], (2.4) has no
positive solution. This contradiction implies that λk — λk+ί is impossible. Thus
we have λk+l<λk.

Let A* denote the limit

(2.5) A* = lim f c.α DA f c.

It may happen that A* = — oo. If A* is finite, we call it the principal eigenvalue
of the problem (A) (cf. [8, 9]).

REMARK 2.1. If liminf^i^ ζ(x)> — oo, then the principal eigenvalue A*

of the problem (A) does exist. For, choose a constant ζ^ such that Coo^C* for
all /c^l and set ζk = ζx in (2.2). Then, we have Afc = τJk4-ζ00, which implies A*^
ζ^ > — oo since τk > 0.

A characterization of the principal eigenvalue of the problem (A) is given
in the following theorem.

THEOREM 2.1. Let A* be the principal eigenvalue of the problem (A).
Then the following statements hold.

(i) // AgA*, then there exists a solution ueC2+σ(Ω) of the problem (A)

such that u(x)>Q in Ω.
(ii) // there exists a function u e C2(Ω) Π Cl(Ω) such that w(x)>0 in Ω and

-Dw 4- c(x)u ^ λm(x)u9 in Ω, Bu ̂  0 on Γ (t/Γ^0),

then A^A*.

PROOF. The proof is similar to that of Proposition 4.1 of [9].
(i) We prove the assertion in the case where Ω is an exterior domain;

the case where Ω = RN can be treated similarly.

Step 1. Since A<A f c , by Lemma 2.1 there exists a unique ukeC2+σ(Ωk)
satisfying wfc(x)>0 in Ωk and

— DWfc -f c(x)uk = λm(x)uk in Ωk,
(2.6)

Buk = 0 on Γ, uk = 1 on Γk

for every fc^l. Furthermore, for each compact subset KcΩ there exist an
integer fc0 ̂  1 and a constant Mx ̂  1 such that
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(2.7) MlX(x') ^ uk(x") ^ MlUk(x'\ x',x"eK, k ̂  k0.

(See Step 2 of the proof of [9, Proposition 4.1].)

Step 2. Fix an xί e Ωί and define the functions ύk by

ύk(x) = wfc(x)/Mjt(xι) for xeΩk; uk(x) = 0 for xeΩ\Ωk.

We will show that, for any bounded subdomain G of Ω, there exist an integer
&! ̂  1 and a constant M2 >0 such that

(2.8) l |β*ll2+σ,s^M 2 , fc^fcl9

where || • ||2+σ,G *s tne usual norm of C2+σ(G) and similar Holder norms are used
throughout this paper.

We first prove (2.8) in the case where GcΩ. Take k± ̂  1 such that Gcβfcι

and let x 0 e G and choose (5^0 so small that B(xθ9 3δί)^Ωkί and the Dirichlet

problem

— T>w 4- φc)w = Am(x)w in ,B(x0, 35^, u = 0 on

has no nontrivial solution ([30, p. 77]). Then, applying interior Lp estimates

to ύk regarded as a solution of the problem

(2.9) -Φfi + (c(x)-lm(λ:))M = 0 in B(xQ9 3(5X), u = uk on

we have

for some constant M3>0 independent of /c([l]), where || • \\2,P,G' an(i I I ' llo.p.G'
denote the norms of W2>P(G') and LP(G'), p^l, respectively. In what follows

we continue to use Mi9 z^4, to denote positive constants which are independent

of fc. By (2.7) with x' = xί and the definition of ύk we have

5t)} = M4 < oo,

which combined with (2.10) yields ||Mjkll2,p>B(jc0,2ίι)^^5 f°Γ aU k^k0. From this
with p> AT and Sobolev's imbedding theorem it follows that ||wj ltB(Λ.0t2^l)^M6 for

k^k0. Using this and the interior Schauder estimates for the solution of (2.9),

we have

(2.H)

for fc^fco- Since ^ is compact, (2.11) implies (2.8).
Next, suppose that Gf lΓ^0. Without loss of generality we may assume

that GaΩ1. Since {ύk} is uniformly bounded on Γί as proved just above, we put
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M9 = sup{wfc(x): xeΓ 1 ? fc-=l, 2,...}.

Now, we take a solution w e C2**^) of the problem

— £>w -f c(x)w = Λw(x)w in 'Ω\9

Bw = 0 on Γ, w = M9 on Γ j .

As λ<λl and M9>0, w exists and is positive in Ω t by Lemma 2.1. It is easy to
check that ^ = w — uk satisfies

— T)t;k -f c(x)yfc = λw(x)ι;k in Ω l 5

£t;Λ = 0 on Γ, vk^0 on Γί9 k^l.

Hence by the maximum principle we have uΛ(x)^0, i.e.,

(2.12) 0 < Mfc(x) g w(x) on β l9 fc £ 1.

Using the boundary Schauder estimates ([1, Theorem 7.3]) for ύk considered as
a solution of the problem

-T>w + (c(x)-λm(x))u = 0 in Q l5

Bw = 0 on Γ, u = wfc on Γ1?

we have

(2.13) \\uk\\2+σ,^ ^ Mlo(\\uk\\0ίSί

Since l lMkl^+^Γj is uniformly bounded as we have seen above, we see from (2.12)

and (2.13) that ||w fc | | 2+<τ,Ω l^Mιι- Thus (2.8) is proved.
Step 3. Since the sequence {ύk} is bounded in C2+σ(G) for any bounded

subdomain G of Ω by Step 2, using the Ascoli-Arzela theroem and the standard
diagonal process, we can find a subsequence {uk.} of {uk} and a function u e
C2+σ'(Ω), 0 < σ' < σ, such that

ll%-w| | 2 + σ %κ-»0 as 7^ oo

for any compact set KaQ. From (2.6) it follows that u is a solution of (A).
The proof of the positivity of u is as follows. Since u satisfies

-DM + (c-lw)+(x)w = (c-λm)-(x)u ^ 0, ίφc) ^ 0 in Ωk,

where (c — Am)+ (x) = max {c(x) — Ara(x), 0}, (c — λm)~ (x) = max { — (c(x) —
Am(x)), 0}, the maximum principle implies that either w(x) = 0 or w(x)>0 in Ωk

for every fc^ 1. The former case cannot occur, since uk(xι) = 1.
(ii) Since u satisfies all conditions of Lemma 2.2, we obtain λ^λk for all
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fc^ 1. Hence A ̂  A* follows from the definition of >l*. Thus the proof finishes.

2.2. Relation to elliptic oscillation

In this subsection we investigate the relation of the principal eigenvalue to

the oscillation theory ([2], [31], [38]) for the equation

(2.14) -Dw + c(x)u = λm(x)u in Ω.

In what follows we denote by λ*(R) the principal eigenvalue of the particular

exterior Dirichlet problem

(2.15) -Dw + c(x)u = λm(x)u in GΛ, u = 0 on ΓΛ

for every R>Q and define λ*(oo) by A*(oo) = limR^00 λ%R). Since Λ*(£) is
nondecreasing in #, the above limit exists. When λ*(R) cannot be defined, that

is, when lim*^ λk= — oo for the problem (2.15), we write conventionally λ*(R) =

λ*(oo)=-oo.

The equation (2.14) is said to be nonoscillatory at oo if there is no nodal

domain in GR for any R>0, or equivalently, if there is a positive solution

u e C2(GΛ) of

(2.16) -Φii + c(x)u = λm(x)u in GΛ

for some £>0; see e.g. [2], [31], [38]. Equation (2.14) is said to be oscillatory at

oo if every nontrivial solution of (2.14) has always zeros in any neighborhood of

infinity.

THEOREM 2.2. Equation (2.14) is nonoscillatory at oo if and only if λ^

Λ,*(oo), where the equality can occur only in the case where λ*(ao) — λ*(R)for some

R>0.

PROOF. Suppose that (2.14) is nonoscillatory at oo. Then, there is

ueC2(GR) satisfying (2.16) and w(x)>0 in GR for some R>0. From (ii) of

Theorem 2.1 it follows that AgA*(^)^>l*(oo). Tf ̂ =l*(oo), then (2.16) with A =

A*(oo) is nonoscillatory at oo, so that λ = λ*(oo)^λ*(R) for some jR>0 as shown

just above. This implies that λ*(co) = λ*(R).

Conversely, if >l<Λ,*(oo), we can choose R>0 so that λ<λ*(R)<*λ*(vc>).

Hence the prolbem (2.15) has a positive solution u e C2(GR) by (i) of Theorem 2.1.

This implies that (2.16) is nonoscillatory at oo. The same argument holds if we

assume that λ=λ*(ao)=λ*(R) for some R>0.

COROLLARY 2.1. Equation (2.14) is oscillatory at oo for any λe R if and

only ifλ*(co)= -co.
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3. Minimal Jl-superharmonic functions

3.1. Definition of minimal vZ-superharmonic functions

In this section we introduce the concept of λ-superharmonic functions minimal
at oo (cf. [8], [10]).

DEFINITION 3.1. For A e R we denote by SH(λ; Ω) the class of all functions
h € C2(Ω) satisfying the following conditions:

(i) h is positive and λ-su per 'harmonic in Ω9 i.e.,

(3.1) -DΛ(jc) + c(x)h ^ λm(x)h, h > 0 in Ω;

(ii) h is minimal at oo, i.e.,

(3.2) h(x) = 0(φ(x)) as |x| -> oo

for any positive A-superharmonic function φ in Ω.

We employ the notation :

; Ω) = {/ιeS#(λ; Ω): -ΐ)h + c(x)h = λm(x)h in Ω},

Throughout this section we assume that the coefficients atj and bt of D are
bounded on RN.

Next, we denote by X = (x(t), &t, Px), xe RN, the diffusion process on RN

with the infinitesimal generator D (see [16]). For a subset E of RN, let σ(E)
be the first hitting time for the set E (σ(E) = oo if the set E is never hit).

THEOREM 3.1. (i) {heSH(λ; Ω)Γ\C\Ω): Bh^O on Γ}^0 if and only
ifλ^λ*.

(ii) For any λ^λ* and any subdomain Ω' of Ω such that Ω'<^Ω9

^ on *0.

Furthermore, for each h e SH(λ; Ω) n H(λ; Ω') we have

(3.3) h(x) = £ψ(x(σ(δΩ')))exp (^^ \λm(x(s))-c(x(s)J)ds) :

xeΩ'.

The proof of this theorem is essentially the same as that of [10, Theorem 2.1].

COROLLARY 3.1. SH(λ) % 0 if and only ifλ£ λ*(R) for some R > 0.
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PROOF. (The "only if" part). If SH(λ)*0, then there exists an

with the property SH(λ; GR)*0. Hence λ^λ*(R) by (i) of Theorem 3.1.
(The "if" part). Since SH(λ; GR)*0 by (i) of Theorem 3.1, we have

The following theorem is a partial extension of [10, Theorem 2.2].

THEOREM 3.2. Let feCσ(Ω) and geCl+σ(Γ), where 1 = 2 if α(x)==0 and
I = 1 if α(x) > 0 on Γ. If λ< λ* and f satisfies

(3.4) f(x)lm(x) = O(h(x)) as \x\ -> oo

for some heSH(λ\ Ω), then for any h'eSH(λf', Ω) with λ<λ'<λ* there is a
solution u e C2+σ(Ω) of the problem

(3.5) -DM + (φc)-λm(x))u = /(*) in Ω, Bu = g(x) on Γ (ι/Γ^0)

satisfying

(3.6) w(*) = 0(h'(x)) as \x\ -> oo,

PROOF. The proof is similar to that of [10, (1) of Theorem 2.2] and will be
omitted.

3.2. Asymptotic behavior of minimal ^-superharmonic functions

This subsection is devoted to the study of asymptotic behavior of minimal
A-superharmonic functions.

DEFINITION 3.2. The class SH(λ) is said to be of type I, type II or type III,
according to whether any function h e SH(λ) satisfies

( I ) Hm|;cH

(II) 0 < l iminf jχ j^oo h(x) ^ limsup^i^^ h(x) < oo

or

(III) lim^^^/iίx) = oo.

Our purpose here is to give sufficient conditions for SH(λ) to be of one of the

types I, II and III. We note that there is a class SH(λ) whose type is different
from these three types (see e.g. [10, Proposition. 5.3]).

Before stating the main theorems we prepare two lemmas on the existence
and asymptotic behavior of solutions of the ordinary differential equation

(3.7) (p(r)y'γ + λq(r)y = 0, r > r0,

where ; = d\άry

 : λ e R and p and q satisfy the conditions
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, °°) and Xr) > 0 on [r0, oo),

q e C[r0, oo) and q(r) > 0 on [r0, oo) .

LEMMA 3.1. (i) Suppose that

(3.8) Γ drlp(r) = oo,
Jr 0

and

Then, the following statements hold.
(a) For any ξ^O and η>Q, there is a constant K>0 such that if

((r dslp(S))q(r)dr<x>.
r0 \Jr0 /

Γ°° ί Γr )
\ max <1, \ ds/p(s)>q(r)dr < K9
Jro v Jro )

then (3.7) has a solution y satisfying

y(r0) = ξ, /(r0) = ly, y'(r) > 0, r > r0,

lim^oo y(ir) / \ ds/p(s) = constant > 0.
' •/ ro

/n ί/iί? particular case where λ<0, (3.7) /zαs a solution with the above properties
even for ξ > 0 and η = 0.

(b) For any λ^O, (3.7) /ιαs α solution y satisfying λy'(r)>Q, r^r0 for

some r0 =
 ro» αn^ limr-»oo Xr) = constant >0.

(ii) /n addition to (3.8) suppose that

\ (\ ds/p(s))q(r)dr= oo.
^r0 Wro /

Then, for any A<0, (3.7) has a solution y satisfying y'(r)<Qfor r^r0/or some

LEMMA 3.2. (i) Suppose that

(3.9)
Jr

< oo.

If (3.1) is nonoscίllatory at oo, then (3.1) has a positive solution y on [r0, oo)/or

some r0^^*o sucn tnat y'(r)<Qfor r^r
(ii) /n addition to (3.9) suppose that
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Then the following statements hold.

(a) For λ > 0, there are r0 > 0 and η0>^ such that the solution y of (3.1) with
initial data

X?o) = 1» /(To) = -^ >/e(0, fo]

satisfies y'(r)<Qfor r^r0 and lim,..̂  j(r) = constant >0.
(b) For /l^O, the solution y of (3.7) wίί/ι /mί/α/ c/αfα χr0) = 0, /(r0)=l

satisfies y'(r)>Qfor r^r0 and lim,.^ Xr) = constant > 0.

The proofs of Lemmas 3.1 and 3.2 are easy and will be deleted (see e.g. [14],
[15]).

The following notation is used throughout this paper:

b(x) = (ΣίLi b{x)Xi+ ΣΪLi αt,(x)

fe^ίr) = min,,, =Γ b(x)/a(x)9 b*(r) = maxN==Γ b(x)/a(x) ,

c*(r) = min | j c, =r c(x)/a(x)9 c*(r) = max,,,, =r c(x)/a(x) ,

m*(r) = minw =r m(x)/α(x), m*(r) = max,.,, er

= exp φ(s)ds, p*(r) = exp

C* = lim inf,,,,.,,, ζ(x)9 ζ* = lim sup,,,^^ ζ(x) .

In what follows we treat the operator Φ satisfying one of the following
conditions :

(HO Γ A-/p*(r) = oo ,
Jr0

(H2)
Jr

oo .

We study the asymptotic behavior of h e SH(λ) by distinguishing the following
three cases :

(α) — oo < lim inf^i^^ ζ(x) ^ lim sup^,^^ ζ(x)< oo ;
(A) lim w_. «,£(*) = oo ;
(c) limw_0 0ζ(x)= -oo.

Γ/iβ case (a). In this case, we have A*(oo)^ζ#< In fact, for any A<£#, one
can choose a constant R > 0 such that
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c(x) - λm(x) = (ζ(x)-λ)m(x) ^ 0 in GR .

Then the function u(x) = 1 is obviously A-superharmonic in GΛ, and so by (ii) of
Theorem 2.1 we have λ^ λ*(K)^λ*(ao). This yields ζ* ^Λ*(oo) as desired.

THEOREM 3.3. Suppose that (a) holds. Then the following statements hold.
( i ) Assume that (Ht) holds and

(3.10) ("((' ds/p*(s)}p*(r)m*(r)dr<vo.
Jro \Jro /

Then A*(oo)= oo and SH(λ) is of type II for every λeR.
( ii) Assume that (Hλ) holds and

= oo .(3.11) P° (('
Jro \Jro

Then SH(λ) is of type I for λ<C* and of type III for C*<A<A*(oo) provided
C*<A*(oo).

(iii) Assume that (H2) /ι0/ds αncί

(3.12) J* (J J ds/p»(s)) p*(r)m*(r)dr < oo .

Γ/ien A*(oo)= oo and S//(A) is of type I /or eyery λ e #.

PROOF. In what follows let jR0 > 0 be a fixed constant such that

C« - l < ζ ( x ) < C * + l in GRo.

(i) Let A>ζH c . By (Hx), (3.10) and (i-b) of Lemma 3.1, for some
the equation

(3.13) (P*(r)yj + (A + l-C,)p*(r)m*(r)y = 0,

has a solution φ such that φ(r)>0 and <p'(r)>0 on [/?, oo) and <p(r)-»l as r->oo.
The function tι(x) = φ(|x|) on GΛ is positive and A-superharmonic in GR. For,
since φ satisfies

ψ"(r) + b*(r)φ'(r) + (λ+l-ζjm*(r)φ(r) = 0, r > Λ,

by (3.13), φ'(r)>0 and λ-ζ(x)<λ + l-ζ* in GR, we have

-ϊ)w(x) + (c(x)

= - a(X)φ"(\x\) -
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^ {(λ+l-ζ*)a(x)m*(\x\)^(λ-ζ(x))m(x)}φ(\x\)

) ^ 0 in GR.

From this and (ii) of Theorem 2.1 it follows that A^A%R)^U*(oo). Hence we
have Λ.*(oo) = oo by the arbitrariness of λ.

Now, we show that SH(λ) is of type II. First note that, using the fact that
A*(oo)=oo and (ii) of Theorem 3.1, for any λί>0 we can choose a constant R
with the property

SH(λ; GR) Π H(λ\ GR,)*0 for R' > R and λ < λt.

Let λ'>ζ# and h' e SH(λ' ', GR). Take the function w mentioned in the
above proof with λ — λ'. This u is bounded, positive and Λ/-superharmonic in
GR. Hence by (ii) of Definition 3.1 there is a constant M1 >0 such that

(3.14) 0 < ft'(x) ̂  M! in GΛ .

Next, let λ" < C* and h" e SH(λ" ; GΛ) n H(A" ; GΛ0. By (ii) of Theorem 3.1
we have for xeGR'

(3.15) h"(x)

> (minxeΓR. h"(x))Ex Γexp ([*'*'' (λ" - ζ(x(s»m(x(s» ds): σ(ΓR.) <
L VJo /

Now, we put for μ e R

(3.16) hμ(x) = Ex [exp(5*(ΓRf) Ai/w(:φ))ώ): σ((ΓΛ0 <oo], jceG Λ ,,

if the right hand side is finite. Since λ" - ζ(x) > λ" - ζ* - 1 in GR,, (3.15) gives

(3.17) /ι"(x) ^ (min^,, Aw(x))£A. _ ζ*_ , (x), x 6 GR,

We note that the diffusion process X with the infinitesimal generator T) is recurrent
by [16, Lemma 8.1]. So, using Schwarz's inequality, we have for μ e R

/ Γ /Γσ(ΓR>) \ "1V/2
(3.18) l ^ ( £ J e x p ( \ μm(x(s))ds): σ(ΓR>) < oo )\ i \ \ _ / jy

1/2
: σ(/Y) < a)])

Put ί = 2(C*+i)-r. Then, J>ζ* and I-C(x)^C* + l-A r / >0 in GR, so that
by (3.14) with λ' = /[ we have
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: <τ(/Y)<oo]

gM2, xeGR,,

which, in view of (3.18), leads to

fi^-P-tί*) ^ (ί.(A..^1)(x))-1 ^ MJV

This combined with (3.17) yields

(3.19) /τ"(x)^M3, xeGR,

for some M 3 > 0.

Let now λeR and /ι e S//01; GR). Take A' and A" such that

λ' > max {C*, A}, A" < min {ζ*, λ]

and choose Λ' € SH(λ' ; GΛ) and /ιr/ 6 SH(λ" ; Gκ) n H(λ" ; GΛ0- Then,

M4Λ"(jc)' ̂  Λ(x) g Msh'ίjc) in GR,.

Combining this with (3.14) and (3.19), we have

0 < lim,,!..̂  Λ(x) ^ limsup^j^oo /ι(x) < oo,

showing that SH(λ) is of type II.

(ii) Let λ<ζ# and choose a constant Λ0

>0 suc^ that

λ-ζ(x)<(λ-ζ*)/2<0 in GKo.

By (Hi), (3.11) and (ii) of Lemma 3.1, the equation

(3.20) (p*(r)/)' + --(A-C*)Λ(r)m*(r)3; = 0, r

has a positive solution φ satisfying φ'(r)<0 on [R0, oo) and φ(r)-»0 as >->oo.

The function u defined by w(x) = <p(|x|), x 6 GRo, is A-superharmonic in GΛo, because

= - a(x)(φ\\x\) + b

x|) ^ 0, xeGR o.

Here, we have used the relation <p" + b*(r)φ'= -2-l(λ-ζ*)m*(r)φ that follows

from (3.20). Therefore, for sufficiently large R^R0 and for any /ιeSH(A; GR),

we have
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0 < h(x) <: M6w(x) in GΛ,

where M6>0 is a constant. Since w(x)-»0 as |x|-»oo, /ι(x)-*0 as |x|-»oo and
hence SH(λ) is of type I.

Next, let ζ*<λ<λ*(ao\ heSH(λ\ GR) and put μ = (λ-ζ*)/2. Let/ί±μ be
the function defined by (3.16). Then, from the fact that h_μ is minimal — μ-
superharmonic in CΛo with φc)==0 and μ>0, it follows that /z_μ(x)->0 as |x|->oo
as proved just above. This combined with (3.18) shows that /ϊμ(x)-»oo as |x|->oo.
Choosing a constant R > 0 such that

n

we have by (ii) of Theorem 3.1

0 < hμ(x) ^ Mηh(x),

for some R'>R. This implies that /ι(x)->oo as |x|-»oo. Thus SH(λ) is of

type III.
(iii) Let λ>C* and choose a constant R0>0 such that

λ-C(x)<λ-C* in GRo.

By (H2) and (i) of Lemma 3.2, for some R>R0 the equation

= 0, r > £,

has a positive solution φ satisfying φ'(r)<Q on [#, oo) and φ(r)-*Q as r->oo,
since this equation is nonoscillatory at oo by (3.12). Then, the function u(x) =
φ(\x\), xeGR is A-superharmonic in GR. From this fact and the arbitrariness of
A>ζ*, it follows that A*(oo)=oo. It is obvious that SH(λ) is of type I. Thus
the proof is complete.

The case (b). In this case we see that A*(oo)= oo as in the case (α).

THEOREM 3.4. Suppose that (b) holds. Then the following statements
hold.

( i ) Assume that (H/) holds and

(3.21)

Then SH(λ) is of type II for every λ e R.
(ii) Assume that (HJ holds and

(3.22) Γ (T
JΓQ \Jro

oo.
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Then SH(λ) is of type I for every λeR.
(iiϊ) If (H2) holds, then SH(λ) is of type I for every λeR.

PROOF. By the assumption, for any λ e R there is an R > 0 such that

SH(λ; GR)*0 and

- 2c(x) ^ (λ - ζ(x))m(x) ^ - c(x)/2, x 6 GΛ.

( i ) Let /ιeS#(λ;GΛ) and /ι(x)>0 in GR. The function /io(x)Ξl on
GR is A-superharmonic in Gκ, so that we have

0 < h(x) <> Mj/ioίx) = Mί9 x e GΛ,

for some Mj > 0. On the other hand, proceeding as in the proof of (i) of Theorem

3.3, we have h(x) ^ M 2 in GR for some M2 > 0. This shows that SH(λ) is of type II.

(ii) Statement (ii) is proved in exactly the same way as in the proof of (ii)

of Theorem 3.3.
(iii) Since c*(r)>0, the equation

(3.23) (P,(r)/)' - y P*(r)c*(r)y = 0, r > Λ,

is nonoscillatory at oo. By (H2) and (i) of Lemma 3.2, (3.23) has a positive

solution φ satisfying <p'(r)<0 on [jR, oo) and φ(r)->0 as r->oo. The function

u(χ) = φ(\x\) on GΛ is /Usuperharmonic in GR and tends to 0 as |x| -> oo . It follows

that SH(λ) is of type I. This completes the proof.

The case (c). In this case, since c(x)<0 on GΛo for large R0>09 the

principal eigenvalue μ*(R) for the problem

(3.24) -Dψ = - μc(x)ψ in GR, ^f = 0 on ΓR

exists and μ%R)^;0 for R^R0. Hence μ*(oo) = lim/{^00 μ*(R) is well defined.

LEMMA 3.3. Let lim^j^^ ζ(x)= — oo. Then the following statements hold.

( i ) 7/μ*(oo)>l, ίΛβnλ*(oo)=cx).
(ii) //* μ*(oo) = μ*(jR) = l for some Λ>0, ί/i^n λ*(oo)^0, and if μ*(R)<

μ*(oo) = l/or αn.v large #>0, ί/ien A*(oo)^0.

(iii) 7/μ*(oo)<l, ί/iβn A*(oo)= — oo in the sense of the remark mentioned

in Section 2.2.

PROOF, (i) Let l<μ<μ*(oo). Then μ<μ%R) for some £>0. By (i)

of Theorem 2.1 there is a function p e C2(GΛ) such that φc) > 0 in GR and — Di; 4-

μc(x)ϋ = 0 in GΛ. Let A>0. Since μ>l, we can choose a constant Rf>R such

that

A - C(x) ^ - μC(x) in Gκ,
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From this it follows that v is Λ-superharmonic in GR,. Hence we have λ g λ*(R') g
/l*(oo) by (ii) of Theorem 2.1. Since λ is arbitrary, we obtain Λ*(oo)= oo.

(ii) Suppose that μ*(#) = μ*(oo) = l for some R>Q. Then, there is a func-
tion v e C2(GR) satisfying φc)>0 in GR and

(3.25) -T>v + c(x)v = 0 in GR.

That O^A*(R)^/l*(oo) now follows from (ii) of Theorem 2.1.
Next, if μ*(#)<μ*(oo) = l for any large #>0, then (3.25) and hence the

equation

(3.26) -Φii + c(x)u = λm(x)u in GR

is oscillatory at oo for any A^O. For, otherwise there is a positive function u
satisfying (3.26), so that we have λ*(R)^.λ^Q. Furthermore, since this u satisfies
— T)wg; — c(x)u in GR, (ii) of Theorem 2.1 implies that μ*(R)^ 1, a contradiction.

(iii) Assume that Λ,*(oo)> — oo. Then, for any A<Λ,*(oo) and 0<μ<l

there is an R0>Q such that λ — ζ(x)> — μζ(x) in GRo. Choose R^R0 satisfying
λ < λ*(R) ̂  λ*(oo) and h e SH(λ ; GR). We then have

-D/ί ^ (λ-ζ(x))m(x)h ^ -μζ(x)m(x)h = - μc(x)h in GR,

from which, in view of (ii) of Theorem 2.1, it follows that μ^μ*(oo), which leads
to μ*(oo)^ 1, since μe(0, 1) is arbitrary. This contradiction shows that /l*(oo) —

— oo.

THEOREM 3.5. Suppose that (c) holds. Then the following statements hold.
( i ) Assume that (Hi) holds and

(3.27) Γ ((' ds/p*(s))p*(r)c*(r)dr > - oo.
Jr0 \Jr0 /

Then λ*(ao) = oo and SH(λ) is of type II for every λ e R.
(ii) Assume that (Hi) holds and

(3.28) Γ (T dslpt(s))p*(r)c*(r)dr = - c».
Jr0 \Ji-o /

T/ien SH(A) is o/ Oφβ III /or /I < /ί*(oo).
(iii) Assume that (H2) /zoWs and the equation

(3.29) /' + bjr)y' - μc,(r)y = 0

is nonoscillatory at oo /or some μ>l. TΛen A*(oo) = oo a/iί/ SH(λ) is of type I

for every λe R.

PROOF. By the assumption, for any λe R there is an R0>Q such that
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(3.30) -c(x)/2 g λm(x) - c(x) ^ - 2c(x) in GRo.

( i ) Statement (i) can be proved as in the proof of (i) of Theorem 3.4 by using

(3.30)
(ii) Statement (ii) can be proved as in the proof of (ii) of Theorem 3.3 by

using (3.30) and the fact that -φc)/2>0 in GΛo.
(iii) For λ >0, take an R>Q such that

-φc) < (λ-C(x))m(x) ^ - μc(x) in GR

and (3.29) has a positive solution φ satisfying φ'(r)<0 on [R, oo) and <p(r)-»0
as r->oo. Then, since u(x) = φ(\x\) is Λ-superharmonic in GR, we have A^ A*(R)g
Λ*(oo). This means Λ*(oo) = oo by the arbitrariness of λ. Since u(x) tends to
0 as |x|-»oo, SH(λ) is of type I. This finishes the proof.

REMARK 3.1. Let £*, £*, C*, C*, M* and M* be locally Holder continuous
functions on (0, oo) with the properties

Af *(r) ^ m^r) ̂  m*(r) ̂  Af *(r) ,

and put

P*(r) = exp /!*(*)&, P*(r) =

It is easy to check that all the conclusions of Theorems 3.3, 3.4 and 3.5 remain
true if in the hypotheses of these theorems the functions p#, p*9 c*9 c*9 m* and m*
are replaced by P*, P*9 C*, C*, M* and M*, respectively.

3.3. Examples

We present some examples illustrating the results obtained in the preceding
subsection. The following is a direct consequence of Theorem 3.3.

EXAMPLE 3.1. Consider the equation

(3.31) -Δu+ c(x)u = λm(x)u in GR,

where Δ is the N-dimensional Laplacian. Suppose that

-oo < C* = liminf,,,^^ ζ(x) g limsup,,,^^ ζ(x) = C* < oo, ζ(x) = c(x)/m(x).
( i ) Suppose that N = 2. If

Λoo

\ r log r m*(r)dr < oo,
Λo
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then λ*(oo) = oo and SH(λ) is of type II for every λ e R.
(ii) Suppose that N = 2. If

Γ°°
\ rlogrra*(r)dr = oo,
Jro

then /Uoo^C* and S#(;.) is of type I for A<ζϊ |c, and of type III for ζ*<λ<λ*(ao)
provided C*<A*(oo).

(iii) Suppose that N ̂  3. If

(oo
\ rm*(r)dr < oo,
Jr0

then λ*(oo)= oo and SH(λ) is of type I for every λ e R.

EXAMPLE 3.2. Consider the equation

(3.32) -Au + μc(x)u = λm(x)u in GR, (R^ee),

where

( -(2|x|log|x|Γ2, if JV = 2,
c(x) = <

[ -(N-2)2/4|x|2, if N ^ 3 ,

[ (Wlogix|(log(log|x|)))-2, if N = 2,
m(x) = \

( (\x\ log |x|)-2, if N ^ 3.

In this case it is obvious that lim^i^ C(x)= — oo, where ζ(x) = c(x)/m(x).
Applying the oscillation theory ([17], [38]) and Theorem 2.2 to the equation

-Aψ=-μc(x)ψ in GΛ,

we see that μ*(oo)=l. Therefore, by Lemma 3.3 and the oscillation theory,
we obtain A*(oo)=oo if μ<l, A*(oo) = l/4 if /ι=l and A*(oo)=—oo if μ>l.
Furthermore, from Theorems 3.3-3.5 it follows that if Λ^^3, SH(λ) is of type I
for Λ<Λ*(oo) and that if N = 2, SH(λ) is of type I, II or III for A<A*(oo)
according to whether μ<0, μ = O o r O < μ g l .

EXAMPLE 3.3. Consider the equation

(3.33) -DM = λm(x)u in GΛ,

where D is as in Section 2 with bounded coefficients. Assume that there exist
M*, M^eCf^O, oo) such that 0<M*(|x|)^m(x)^M*(|x|), xeG Λ .

( i ) Suppose that

(3.34) lim sup,,!^ Σf-i bJMxJM < 0.
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If

(3.35) (β >Af*(r)dr<Qθ,
Jr0

then λ*(oo) = oo and SH(λ) is of type II for every λ e R.
(ii) Suppose that (3.34) holds and

= oo.

Then SH(λ) is of type I or II accoding as λ < 0 or λ = 0. If λ*(oo) > 0, then SH(λ)
is of type III for 0<A<A*(oo).

(iii) Suppose that

lim inf ,,,_>„, Σf=ι &iO)*i/W > 0.

If M* satisfies (3.35), then A*(oo) = oo and SH(λ) is of type I for every λ e R.

PROOF, (i) In view of (3.34) and the boundedness of aίj9 one can take a
constant τc*>0 such that the function B*(r)= — K* satisfies b*(r)^B*(r) for
rΞ>r0, provided r0>0 is sufficiently large. Since the function

P*(r) = exp(T B*(s)ds) = c*r**r (c = eιc*^)

satisfies by (3.35)

Γ dr/P*(r) = oo, Γ (I' ds/P*(s)}p*(r)M*(r)dr < oo ,
Jro J»"o V J r o /

the assertion follows from (i) of Theorem 3.3 and Remark 3.1.
Statements (ii) and (iii) can be proved similarly.

4. Global positive solutions of linear equations

4.1. Supersolutions and subsolutions

In this section we study the existence of positive solutions, with specified
asymptotic behavior, of the problem

(A) -DM + c(x)u = λm(x)u in Ω, Bu = 0 on Γ (i

More precisely, we want to obtain conditions guaranteeing the existence of
unbounded positive solutions satisfying

(4.1) 0 < lim inf,,,^ u(x)/( '*' dr/p*(r) ^ lim sup{xl^.u(x)/(M dr/p*(r) < oo,
I Jro I Jro
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if the condition (HJ holds, and the existence of bounded positive solutions
satisfying

(4.2) 0 < liminfμi^ u(x) ^ lim sup^a, u(x) < oo,

if the condition (H2) holds.
For this purpose we prepare two lemmas. In the first lemma we let G = Ωk

and A=Γk for some /c, and suppose that G is separated by an (JV— l)-dimensional
C2+<r-manifold Λ0 in two subdomains Gl9 / = !, 2, as follows:

G = G! U G2 U A09 Γ Γ) Λ0 = A n Λ0 = 0, dG^ = Γ U Λ0, 3G2 = Λ U Λ0-

Let us denote by v = (v l 9 v2,..., VN) the outward (with respect to G x) unit conormal
vector to A0 :

where n = (nί9 n2,...9 nN) is the outward (with respect to Gx) unit normal vector
to AQ. Furthermore, λ0 denotes the principal eigenvalue of the problem

— Dφ + c(x)φ = λm(x)φ in G,
(4.3)

Bφ = 0 on Γ, φ = 0 on A.

LEMMA 4.1. Let weC(G) and let ul = u\^l be the restriction of u on Gt.

Suppose that u1 eC2(Gt) n Cl(Gj, u2e C2(G2) Π C\G2 U Λ0) and 11,, 1 = 1, 2,
satisfy

(4.4) -Dw^ 4- φc)u, ̂  ylm^Mί in Gh I = 1, 2,

(4.5) duί(x)/dv-du2(x)/dv^Q on AQ,

(4.6) Bwj ^ 0 on Γ (i/Γ^0), w2 ^ 0 on /I.

If λ<λθ9 then w(x)>0 zn G unless u(x) = Q in G.
In case α(x)Ξ=0 on Γ the. regularity condition on ui may be replaced by

the weaker condition u^ e C2(GJ n Cί(Gl U A0).

PROOF. Suppose that w(x)^0 in G. Since A<10, the problem

— T)vv + c(x)w = Am(x)w in G,

Bw = 0 on Γ (if Γ^F0 and α(x)>0), w = 1 on Λ,

w = 1 on Γ U yl(if α(x)Ξθ)

has a solution w e C2+σ(G) satisfying w(x)>0 on G (cf. Lemma 2.1). Set ι? = w/w

and 1̂  = 1%, / = !, 2. Then, we have

(4.7) - Dι>, - 2W-1' Σf=ι (ΣJLi a^xydwldx^υjdx, ^0 in G/5 / = 1, 2,
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(4.8) dυάxydv - dv2(x)/dv = w(x)-1(3u1(x)/3v - du2(x)/dv) ^ 0 on Λ0,

(4.9) dvλ /dβ ^ 0 on Γ (if Γ ̂  0 and α(x) > 0),

(4. 10) v ! = 0 on Γ (if Γ ̂  0 and α(x) ΞΞ 0),

(4.11) r2 ^ 0 on A.

There is a point x 0 e G such that ι>(x0) = min^ v(x). Suppose that x0 is an
interior point of G. Then, applying the maximum principle to vh 1 = 1,2,

we have x0 e A0,

g 0 and dι;2(x0)/dv ^ 0,

and since ι;^0, at least one of the inequalities must be strict. This, however,
contradicts (4.8). Hence we have x 0 eΓ or x0eΛ. In the case where α(x) = 0
on Γ, we have φc0)^0 by (4.10) and (4.11). In the case where α(x)>0 on Γ,
by (4.7), (4.9) and the maximum principle, we see that x0<^Γ. Thus, xQeA and
so v(xQ) = Q by (4.11). Since v cannot take the minimum in G, we have u(x)>0,
and hence w(x) = v(x)w(x) > 0 in G. Thus the proof is complete.

We now consider a semilinear boundary value problem

(4.12) - Dw -K c(x)u = f(x, u) in Ω, Bu = g(x) on Γ (if Γ ̂ 0) .

First, we introduce the definition of a supersolution and a subsolution of (4.12).
Let G! be a bounded subdomain of Ω with boundary dGt =Γ U A0 e C2+σ

such that Γ n / t 0 = 0 and put G2 = Ω\G1, i.e., Ω = Gί U G2 U Λ0.
A function ύ E C(Ω) is said to be a supersolution of (4.12) if it satisfies the

following relations.

ώι = ώ|eι, / = !, 2, satisfy ή f e C2+<Γ(G,) n CKG^) and

(4.13) -Dfi, + c(x)fi, ^/(x, ώ f) in G^, / = 1, 2,

(4.14) Sήj/δv - dύ2/dv ^ 0 on A09

(4.15) Bύ

where v is the outward (with respect to G t) unit conormal vector to A0.
A subsolutίon ΰeC(Ω) of (4.12) is defined by reversing the inequality signs

in the above definition.

LEMMA 4.2. Assume that /eCfoc(Ωx I?) and geCl+σ(Γ), where 1 = 2 if
α(x)Ξθ on Γ and 1 = 1 z/α(x)>0 on Γ. Moreover, assume that for any compact
setG^Ω and finite interval I cR, there is a positive constant K such thatf(x9 u) +
Ku is nondecreasing in u el for any fixed x e G.

If there exist a supersolution ύ and a subsolution u o/(4.12) such that
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in β,

fften (4.12) has a solution u e C2(Ω) satisfying

(4.16) ΰ(x) ^ u(x) g ύ(x) in Ω.

PROOF. Let {Ωk} be a sequence of subdomains of Ω as mentioned in Section 2
such that G! cβi and Λ0 n Γl = 0.

For every fc^l, choose a constant cfc such that cfc^max{|φc)|: xeΩk}-+l
and/(x, u) + cku is nondecreasing in min^k i/rgwrgmax^ βk for any fixed xeΩk.

Consider the following iteration scheme :

- ΐ)Vj +. (c(x) + ck)vj = /(*, υj - j (*)) -f ckVj _ t(x) in βfc,

(4.17) βtfy = ^(x) on Γ (if Γ^0), ϋj = ώ(x) on Γk,

ι;0(x) = ϋ(x) on Ωk.

Since c(x)4-cfc^l on Ωk9 (4.17) has a unique solution Vj e C2+σ'(Ωk)9 0<σ'<σ,
with the property

(4.18) u(x)£vj+ί(x)^vj(x^ύ(xl xeΩk, j -1,2,...,

In fact, the existence of {vj} is well known (see e.g. [13, Theorem 6.31]) and (4.18)
is a consequence of Lemma 4.1 as follows. First note that the principal
eigenvalue of the problem (4.3) with replaced c(x) by c(x) + ck is positive. Put
w(x)=t;0(x) — ι>ι(x) on Ωk and w^wlc,, 1 = 1, 2, where G2 = ί2k\Gι. Then, w e
C(Uk\ w, e C2+σ'(G^ n C^G,), / = 1, 2, and wf satisfy

-Dw, -f (c(x)-f c^w; ^0 in G/5 I = 1, 2,

dwt/dv - dw2/dv = δίί/3v - d#/dv ^ 0 on y

jBWi ^0 on Γ (if Γ^F0), w2 = 0 on Γk.

From this and Lemma 4.1 it follows that

w(x) ^ 0, i.e., t;0(x) ^ ι>ι(x) in Ωfc.

The inequality ΰ^^v^x) in Ωk is proved similarly. An induction shows that
(4.18) holds.

By (4.18) the sequence {Vj} is uniformly bounded on Ωk9 and so proceeding
as in the proof of (i) of Theorem 2.1, we have a function uk e C2+ff"(Ωk),Q<σ"<
σ', satisfying

-ΐ>uk + c(x)uk =/(*, Mk) in Ωk,

Buk = g(x) on Γ (if Γ^0), uk = ύ(x) on Γk,

u(x) ^ uk(x) ^ ύ(x) in Ωk.
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Using the usual compactness argument for the sequence {uk}9 we obtain a desired
solution of (4.12). The details may be omitted. This completes the proof.

In what follows by a positive solution of (A) we mean a function u e C2(Π)
which is positive throughout Ω and satisfies (A).

Let us list up the conditions which are assumed from now on.

(H!) and (H2) are stated in Section 3.

(H3) Γ7 Λ/p*ωp*(r)(c*(r) + m*(r))dr < oo.

(H4) ΓV(r)-**(r)>/r<oo.
Jro

(H5) J* (£° ds/p*(sή p*(r) (c*(r) + m*(r))dr < oo.

(H5') There exists a function MeCσ(Ω) such that M(x)>0, |m(x)|^M(x),
x ε β, and

where M*(r) = maX|X | =l. M(x)/α(x).

4.2. Existence of unbounded positive solutions

THEOREM 4.1. Suppose that (H^), (H3) αnrf (H4) ΛoW and c(x)^0 in β.
, ffte problem (A) Λas a positive solution u satisfying (4.1) for every A<0.

PROOF. Taking r0>0 so that {x: |x|>r0}cβ, we put

G! = Ω n JB(0, r0), G2 = Q\δlf ΛQ = {x: |x| = r0} .

Since (HJ and (H3) hold and p*(r)(cs|t(r)-λm#(r))>0, by (i-a) of Lemma 3.1
the problem

- p r c φ r - m , r ) ^ = , r > r0,

has a positive solution φ such that φ'(r)>0 on [r0, oo) and

(4.20) lim^^ φ(r)/(r ds/p*(s) = constant > 0.
' Jro

Now, define a function ύ by

ti(x) = 1 for x e G! ; ώ(x) = φ(|x|) for x e G2.



198 Yasuhiro FURUSHO

Then we see that ύ is a supersolution of (A). In fact, it is obvious that ύ e C(Π),

ύ^ύ^eC^GύnC^Gλ / = !, 2,J3£1^0 on Γ-and.3ώ 1/3v = 3ώ2/3v = 0 on Λ0.
So, we prove that

-Φύ, + (c(x)-λm(x))ύl ^ 0 in Gh I = 1, 2.

For ώ l 9 this is obvious, and for w2, this is verified as follows:

-Ϊ)U2 + (c(x)-λm(x))ύ2

= -a(x)φ"(\x\) - b(x)φ'(\x\) + (c(x) - λm(x))φ(\x\)

= - a(x)(φ»(\x\) + b*(\x\)φ'(\x\))

) ^ 0, xeG 2 ,

where we have used the relations φ'(r)>Q and

φ"(r) + fc*(r)φ'(r) - (c^-λm^rMr) = 0

on (r0, oo), the latter being a reformulation of (4.19). Thus ύ is a supersolution

of the problem (A).

Before constructing a subsolution ΰ of (A) satisfying ΰ(x) ^ ύ(x) in Ω, we note

that (Hλ) and (H4) yield

oo,

and for some constant Mt >0

(4.21) Γ dslp*(s) ^ Γ ds/Λ(s) ^ M1 (f dslp*(s\ r ̂  r0.
J ro J ro J r0

We take the solution ψ of the problem

z" + ft^z' - (c*(r)-Am*(r))z = 0, r > r0,

z(r0) = 0, z'(r0) = l . '

Since (HO, (4.21) and (H3) hold, by (i-a) of 'Lemma 3.1, ̂ satisfies ^(r)>0 on

[r0, oo) and

lim^^ ψ(r) \ ds/p*(s) = constant > 0.
/ Jro

Combining this with (4.20) and (4.21) we have
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(4.22) M2 {' ds/p*(s) ^ M^(r) ^ φ(r\ r ^ rQ
Jro

for some positive constants M2 and M3. It is easy to see that the function ΰ
defined by

U(x) = 0 for x e G^ ; ΰ(x) = M 3^(|jc|) for x eG2

is a subsolution of (A) which satisfies ΰ(x)^ύ(x) in Ω by (4.22). From Lemma 4.2
it follows that the problem (A) has a solution u such that

(4.23) u(x) ^ u(x) ^ ύ(x) in Ω.

The positivity of u follows from the maximum principle, and the relation (4.1)
is a consequence of (4.21)-(4.23). This completes the proof.

As easily seen, Theorem 4.1 applies to the case where Ω=RN and guarantees
the existence of unbounded entire solutions of (A) with λ<0 (and with the
boundary condition deleted). However, the situation is different for (A) with

λ^.0. In fact, if A^O and φc) = 0, then there is no positive entire solution of (A)
satisfying (4.1) in RN, because such a solution becomes a positive constant by
the maximum principle, which is impossible. The existence of a positive solution
of (A) with A>0 in exterior domain Ω is given in the following theorem.

THEOREM 4.2. Suppose that Ω is an exterior domain such that OeΩ0 =
RN\Ω. Moreover, suppose that (H^, (H3) and (H4) hold, φc)^0 in Ω and
0:gα(x)<l on Γ. Then, there is a constant !>0 such that for every λ<l, the
problem (A) has a positive solution u satisfying (4.1).

PROOF. We need only to consider the case where
Let r0 > 0, Gt and G2 be as in the proof of Theorem 4.1. We shall construct

a supersolution of (A). First, we can choose A'>0 and U1 e C2Jrσ(G^) such that

w1(x)>0 on G! and

(4.24) -DU! + c(x)ύί ^ λ'm(x)ύί in Gl9

(4.25) Bύl ^0 on Γ, dύjdv > 0 on Λ0.

In fact, put

a* = min^ α(x), B = max {max^ b(x), 1}, 6 = E/2a*,

ά = max^j- α(x), K = (1 - ά)/ά, m = maxxee1 m(x)/a(x) ,

and for δ=(52-Am)1/2, Ae(0, 52/m), define φί by

9i(r) = e~Br(δ cosh δr + (δ + K) sinh δr)/5.
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Then, φt satisfies

φ\ + 2Sφ{ 4- λmφί = 0, r > 0,

Noting that

we can choose λ = λ' so that

φ\(r) > 0, φl(r) < 0, 0 < r ^ r0.

Define fi.i(x) = ̂ i(|x|), x e Gt. We then see that ύ^ e C2+<r(Gt), and

- DώΛx) + cWw^x)

|jc|) + 2fiφi(|x|)) + (2fiα(x)-&(x))φί(|x|) 4-

x^idxl) ^ λ/w(x)ώ1(x) in G l f

i(W) Σf=ι A^lxl + (1 -

ιc) ^ 0 on Γ (if α(x)>0),

tW = φι(|x|) > 0 on Γ (if α(x) = 0),

^/2 > 0 on A0,

where we have used the relation 0 < φ'ι(r)/φι(r) ^ Φi(0)/^ι(0) = ̂  for r ̂  r0. Thus,
the existence of Λ/>0 and #! 6 C2(Gt) satisfying (4.24) and (4.25) is proved.

Next, by (Hj), (H3) and (i-a) of Lemma 3.1, we can choose λ">0 so small that

y" 4- b*(r)y' + λ"m*(r)y = 0, r ^ r0,

has a positive solution <p2 satisfying φ'2(r)>Q on [r0, oo) and (4.20) with φ = φ2>

It is easy to see that U2(x) = φ2(\x\) satisfies ύ2 e C2+σ(G2) and

-Ϊ>ώ2 + c(x)ώ2 > A/ym(x)% in G2,

ώ2(x) = ώ.iίx), δίί2(x)/av = δίίiW/av on 4o-

Hence, the function ύ defined by

u(x) = ώj(x)-- for xeδ^-ώίλ) = ώ2(x). for xeG 2 ,
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is a supersolution of (A) for 0<λ<I, where I = min {λf, λ"}, and satisfies

Λ
\x\

ds/p*(s) = constant > 0.
rθ

To construct a subsolution of (A) for 0 < λ < I, we take a positive solution v
of the problem

- Dt; + c(x)v = - m(x)υ in Ω, Bv = 0 on Γ,

satisfying (4.1). This is possible by Theorem 4.1. Since both ύ and v satisfy
(4.1), we can choose a constant M>0 so that

Mv(x) ^ ύ(x) in Ω.

The function ΰ = Mv(x) is clearly a subsolution of (A) with the property ΰ(x) ^ ύ(x)
in Ω, and so, by Lemma 4.2 (A) has a desired solution u for every λ e [0, 1).
This completes the proof.

4.2. Existence of bounded positive solutions

THEOREM 4.3. Assume that (H2) and (H5) hold and φc)^0 m Ω. Then,
there is a constant ί>0 such that for every λ<%, the problem (A) has positive
solutions satisfying (4.2).

PROOF. First we consider the case where Λ<0. Let r0>0, G t and G2 be
as in the proof of Theorem 4. 1. By (ii-b) of Lemma 3.2, the initial value problem

z" + b*(r)z' - (c*(r) - Am*(r))z = 0, r > r0ί

z(r0) = 0, z'(r0) = l

has a positive solution ψ satisfying ψ'(r)>Q on [r0, oo) and lim,.^^ ψ(r) = constant
> 0. Define a function ΰ by

Γι(x) = 0 for xeG^'ΠOc) = ^(|x|) for xeG 2 .

Then, U is a subsolution of (A) and ύ(x)^\imr^^ φ(r) on Ω is a supersolution of
(A) satisfying u(x)^ύ(x) in Ω. Lemma 4.2 then implies the existence of a solution
u of (A) lying between U(x) and ύ(x) in Ω.

Next we consider the case λ^O. By (ii-a) of Lemma 3.2, there exist r0>0
and η0>Q such that Ω=>{x: |*|>r0} and

f + .b+(r)y' + m*(r)y = 0, r > rό,

y(r0) = 1, y'(r0) = -η0

has a positive solution φ satisfying φ'(r)<0 on [r0, oo) and lim^^ φ(r)— constant
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> 0. Put Gί = Ω n B(0, r0) and let λ± > 0 be the principal eigenvalue of the problem

— Dφ = λm(x)φ in G(,

dφ/dβ = 0 on Γ(ifΓ%0), φ = Q on Λό = {x: |x| = ?0} .

For O^A<A 1 , the problem

- Dw = Am(x)w in G'l9

du/dβ = 0 on Γ (if Γ^0), u = 1 on Λό

has a unique positive solution u = u(x; λ) e C2+σ(G\). Since, for Q^λ'<λ"<λi9

v(χ) = ι/(χ ; λ") — u(x ; λ') satisfies

- Dϋ - A"m(x)ι; = (A"-A')w(x)w(x; A') > 0 in G;,

dι;/dβ = 0, on Γ (if Γ^F0), v = 0 on Λ'0,

we have y(x)^0 by Lemma 4.1, and so

1 ^ M(X; A') ^ iφc; A"), x e G;, 0 g A r < Ar/ < A j . '

Using Lp estimates (p>N) and Sobolev's imbedding theorem for the solution
w(x ; A) = u(x ; A) — 1 of the problem

- £w = λm(x)u(x; A) in G;,

dw/dβ = 0 on Γ (if Γ^0), w = 0 on Λ'0,

we have

||w(. ; A)|U cί ^ M^W- ; A)||2 f p i C l ^ AM2 | |mw(. ; A)||0fp,ci

^ AM2 | |mw( - ; A")||0,p,Gi ^ M3A, 0 < A < λw,

where the constants My- are independent of A for 0<A<A". Hence for any

ε>0, we can choose a constant A ε>0 such that maxxe/lί) \du(x\ λ)/dv\^ε for any
0 ̂  A ̂  Aε. For the above η0 > 0, let

ε = ιy0 min^ {α(x)(Σ{Lι (Σ^i βιX

and define a function ύ by

u(x) = w(x; Aε) for x e G ί ; fi(x) = φ(\x\) for xeG^,

where G2 = Ω\Gi. Then, for every 0<A<I = min {Aε, 1}, the function ύ is a
supersolution of (A). To see this, .we need only check the required relation on

ΛO, since the other relations can be checked by the same argument as in Theorem
4.1. We obtain
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dύjdv ^ - ε,

dU2/dv = φ'(r0)α(x)(Σ?=ι (17=1 αlV(x)x,./|x|)2Γ1/2

M)2)"1'2 ^ - ε on ΛO-
This implies dύlldv — du2ISv^: — ε + ε = 0 on A'0.

As a subsolution ΰ of (A) we take a solution of (A) with λ= — 1 satisfying
(4.2) and w(x)^#(x) in Ω; such a w exists from the first part of the above proof.
Consequently, for every O^Λ,<I, there exists a solution u of (A) satisfying (4.2)
by Lemma 4.2. The proof is thus complete.

COROLLARY 4.1. Suppose that (H2), (Hf

5) hold and c(x)Ξ^O in Ω. Then,
there ίs a constant λ>0 such that (A) has a positive solution u satisfying (4.2)
provided \λ\ </ί.

PROOF. In view of Theorem 4.3, there is a I>0 such that for μ<%

(4.26) - Di? + c(x)v = μM(x)v in Ω, Bυ = 0 on Γ (if

has a solution v with the property (4.2). For |A|<I, let u and U be positive
solutions of (4.26) with μ = |λ| and μ= — |λ|, respectively, which satisfy (4.2) and
U(x)^u(x) in Ω. Then, since u and u are, respectively, a supersolution and a
subsolution of (A) with λe( — I, I), the assertion follows from Lemma 4.2.

4.4. Example

EXAMPLE 4.1. We consider the problem :

(4.27) - Δu + φc)w = Am(x)w in Ω, Bw = 0 on Γ (if

where c, m e Cfoc(Ω), and c(x)^0, m(x)>0 on Ω. We note that

c*(r) = maxμ, =r c(x), m*(r) =

(i) Suppose that Ω is an exterior domain in R2 such that 0 e R2\Ω and
α(x)<lonΓ. If

/-co

\ r log r (c*(r) -f m*(r))dr < oo,
Jro

then by Theorem 4.2 there is a constant !>0 such that for A<1, (4.27) has a pos-
itive solution u with the property

(4.28) 0 < liminfi*,^ ιφc)/log |x| ^ lim sup^,.^ w(x)/log |x| < oo.

In the case where A<Q, the same assertion holds for Ω = R2.
(ii) Suppose that N^ 3. If
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r(c*(r) + m*(r))dr < oo,

then by Theorem 4.3, there is a constant 1>0 such that for A<I, (4.27) has a
solution u satisfying (4.2).

REMARK. The special case of (4.27) in which Ω = RN,N^.3 and c(x) = 0
has recently been studied by Kawano [18].

5. Local existence of positive solutions of semilinear equations

In this section we consider the semilinear elliptic equation

(C) - X>u + c(x)u = λm(x)f(u) in GR, GR = {x e RN: \x\>R} ,

where £>, c(x) and m(x) are as in the preceding sections, A is a real parameter,

a n f / i s continuous on (0, oo). Our purpose here is to develop local existence
theorems for positive solutions of (C) on the basis of the results known for the
associated linear equation

(2.16) - DM + c(x)u = λm(x)u in GR.

By a local existence theorem for (C) we mean a theorem which guarantees the
existence of solution of (C), with specific properties, in a "small" neighborhood
of infinity, that is, in a domain GR for R sufficiently large.

We assume without further mention that the value of A*(oo) associated with
(2.16) is positive. Conditions on /are selected from the following list:

(FO /eCfoc(0, oo), 0<0<l,/(ιι)>0 on (0, oo), and for any finite subin-
terval / of (0, oo) there is a K>0 such that/(w) + Kw is nondecreasing
on /.

(F2) /( + 0) = 0 and /0 s limsup^ + o/(w)/w < oo.

(F3) Λo = limsup^^/ίwVM < oo.

THEOREM 5.1. Assume that (F^ and (F2) are satisfied. Then, the following
statements hold.

( i ) Suppose that 0<λ< λ*(oo)//0 and SH(μ) are of type I for all μ<λ*(oo).
Then, for any h e SH(λ') with λ' e(Λ/ό, A*(go)),- (C) has -a solution u .satisfying

(5.1) 0 < u(x) g Mh(x) in GR

for some constants M>0 and R>Q.
(ii) Suppose that 0<A<A*(oo)//0 and SH(μ) are of type II for all μe

[0, /i*(όo)). Then, (C) has a solution u satisfying
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(5.2) M g ιι(χ) g AT1 in GR

for some constants M>0 and
(iii) Suppose that SH(μ) are of type III for all μ e (0, A*(oo)). TΛen,

/or any A>0, (C) has no solution u satisfying (5.2).
(iv) Suppose that SH(μ) are of type I or II for all μ<0. Then, for every

A<0 and heSH(λ') with λ'<λf0, (C) has a solution u satisfying

(5.3) M/ι(x) ^ w(x) g M-1 in GR

for some constants M>0 and R>0.

PROOF, (i) and (ii) Let λ/0<λ'<λ*(oo) and heSH(λ'). Then there is an
#>() such that heSH(λ'ι GR) and /z(x)>0 on GΛ. Choose a constant MH ί>0
so that

0 < f(u)/u < λ'/λ for 0 < u g w*

and put M = Ms|l/supJC6GΛ Λ(x). Then, the function # defined by ύ(x) = Mh(x) on
GΛ becomes a supersolution of (C) with boundary values Mh(x) on ΓR. Next,
take a function w e H(0; GΛ) such that

0 < il(jc) ^ M Λ(x) in GΛ.

This w is obviously a subsolution of (C) and satisfies Tt(x)^ύ(x) in GΛ. From
Lemma 4.2 there exists a solution u of (C) satisfying i/(x)^w(x)gβ(x) in GR.

(iii) Assume that u is a solution of (C) with the property (5.2), and put
I = λ inf {f(u)/u : M^w^M~1}>0. Then, since w is positive and I-

superharmonic in GΛ, we see that !^λ*(R) and for any hεSH(λ; GΛ), /ι(x)^
MiW(x) in GR for some Λf t >0. This contradicts the hypothesis that SH(λ) is of

type III.
(iv) Let A<0 and heH(λ'',GR} with λ'<A/0. Letting u^ and M be as

in the proof of (i) and (ii), we have a subsolution w(x) = M/ι(x) of (C) with boundary
values Mh(x) on ΓR. Furthermore, as a supersolution u of (C) we can take

; GΛ l) such that

M/ι(x) ^ β(x) in GRl

for some R^>R. Hence the assertion follows from Lemma 4.2. This finishes

the proof.

THEOREM 5.2. Assume that (Fx) and (F3) are satisfied. Then, the following

statements hold.
( i ) Suppose that 0<>l< A*(oo)//00 and SH(μ) are of type II or III for all

μ e (0, l*(oo)). Then, for any h e SH(λ') with λ' e (λf^ A*(oo)), (C) has a solution

u satisfying (5.1).
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(ii) Suppose that liminfu_0/(w)/w>0 and SH(μ) are of type II (or of type

III) for all μe(0, Λ.*(oo)). Then, for any Λ>0, (C) has no positive solution u

satisfying

lim^i^ u(x) = 0 (resp. lim sup^,^ u(x) < oo) .

(iii) Suppose that A<0 and SH(μ) are of type II for all μ^O. Then, (C)
has a solution u satisfying (5.2).

PROOF, (i) Let λ/QO<λ/<λ*(oo) and choose an /ιeS#(λ';GΛ) such that
/ι(x)>0 on GR. Let w*>0 be a constant such that

0</(κ)/tt <λ'/λ for u ^ ii*.

Set M = u*/infxeGRh(x) and #(;c) = M/z(;c) on GΛ, and choose a function weH(0;
GK) satisfying ΰ(x)^ύ(x) in GΛ. Then, since u and ΰ become, respectively, a
supersolution and a subsolution of (C), the assertion follows from Lemma 4.2.

(ii) Let SH(μ) be of type II (or of type III) for all μ e (0, λ*(oo)) and assume
that (C) has a positive solution u satisfying

limμ,^ u(x) = 0 (resp. lim sup^^^ w(x)< oo) .

Putting τ = suρxeGκ M(X) and λ = λ inf {f(u)/u: 0<ugτ}>0, we see that u is
positive and 1-superharmonic in GR, and so we have !^A*CR)^/ί*(oo) and SH(%)
is of type I (resp. of type II). This contradicts the hypothesis.

(iii) Take λ'<λ^ and heH(λ'\GR\ Then, the function ΰ(x) = u*h(x)/
infxeGR h(x) is a subsolution of (C) with boundary values w*/ι(x)/infX6GR h(x) on
ΓR, where u* is the same constant as in the proof of (i). Furthermore, choosing
ύeSH(Q; GR) with the property ΰ(x)^ύ(x) in GR, we have a supersolution ύ.
The desired assertion now follows from Lemma 4.2 and the hypothesis that
SH(μ) are of type II for all μ^O. This completes the proof.

As an application of Theorems 5.1 and 5.2, we consider

(Cr) - Φii -f c(x)u = λm(x)u? in GΛ, y ?̂ 0, 1.

In what follows we assume that the coefficients atj and bt of D are bounded and

In addition to (H^ — (H^) mentioned in the preceding section, we need the
following conditions :

(H6) Γ(T Λ/Λ(s)Wr)(c,(r) + m+(r))dr = oo.
Jro \Jro /

(H7) " ds/p^ pjr)m*(r)dr < oo.
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EXAMPLE 5.1. Let γ > 1. Then the following statements hold,
(i) Suppose that A>0.
(a) If (Hj) and (H3) hold, then (C) has a solution u satisfying (5.2).
(b) If (Hj) and (H6) hold, then (C) has no positive solution u satisfying (5.2)

for any Λe(ζ*, /l*(oo)) provided C*<Λ.*(oo).
(c) If (H2) and (H5) hold, then for any h ε SH(λ\ (C) has a solution u sati-

sfying (5.1).
(ii) Suppose that A<0. For any h e SH(λ), (C') has a solution u satisfying

(5.3). Moreover, if (HJ and (H3) hold, then the above solution u satisfies (5.2).

PROOF, (i-a) By (H^, (H3) and (i) of Theorem 3.3 or (i) of Theorem 3.4,
SH(μ) are of type II for all μεR. Hence the assertion follows from (ii) of
Theorem 5.1.

(i-b) Since, by (ii) of Theorem 3.3, SH(μ) are of type III for all μe
(ζ*, λ*(oo)) provided ζ*<A*(oo), (iii) of Theorem 5.1 implies the assertion.

(i-c) Since, by (iii) of Theorem 3.3 or (iii) of Theorem 3.4, SH(μ) are of type
I for all μe R, the assertion is a consequence of (i) of Theorem 5.1.

(ii) Noting that sup^^ h(x)< oo for heSH(λ;GR), we have the first
assertion by (iv) of Theorem 5.1. Since SH(λ) is of type II by (HJ, (H3) and (i)
of Theorem 3.3, the second part is obvious.

EXAMPLE 5.2. Let γ < 1. Then the following statements hold,

(i) Suppose that λ >0.
(a) If (HO and (H3) hold, then (C') has a solution u satisfying (5.2). Fur-

thermore, (C') has no positive solution tending to 0 as |x|-+oo.

(b) Suppose that C*<Λ<A*(oo). If (Hx) and (H6) hold, then for any ft e
SH(λ), (C') has a solution u satisfying (5.1). Furthermore, any positive solution

of (C') cannot be bounded.
(c) Let 0<y<l. If (H2) and (H7) hold, then for any heSH(λ\ (C) has

a solution u satisfying

(5.4) Mft(x) g ιι(x) ^ M'1 ί°° ds/p*(s) in GR
J \ x \

for some constants M > 0 and R > 0.
(ii) Suppose that A<0. If (Hj) and (H3) hold, then (C') has a solution u

satisfying (5.2).

PROOF, (i-a) Since we see that SH(μ) are of type II for all μe R by (i) of
Theorem 3.3 or (i) of Theorem 3.4, the assertion follows from the proofs of (i)

and (ii) of Theorem 5.2.
(i-b) This follows from (ii) of Theorem 3.3 and (i) and (ii) of Theorem 5.2.

(i-c) In view of (H2) and (H7), for some R>Q the equation



208 Yasuhiro FURUSHO

y" + t*(r)/ + λm*(r)y> = 0, A > 0,

has a solution φ satisfying

0 < φ ̂  1, φ'(r) ^ 0, re ΓR, oo),
(5'5) /f

lim,,.̂  φ(r) \ ds/p*(r) = constant > 0

(see e.g. [4]). The function ύ(x) = φ(\x\) is a supersolution of (C) and is λ-
superharmonic in GR. Hence, for heH(λ; GR) we can choose a constant M>0

so that MΛ(je):gfi(*) in GR. Putting u(x) = MΛ(x), we have a subsolution iϊ of
(C') such that ΰ(x)^ύ(x) in GR. The assertion now follows from Lemma 4.2

and (5.5).
The statement (ϋ) is obvious (cf. (i-a)).

6. Global existence of positive solutions of quasilinear equations

The final section is devoted to the study of the existence of positive solutions
of the problem

(B) - DM + c(x)u = λm(x)u? in Ω, Bu = 0 on Γ (if Γ^0),

where y is a nonzero constant with y^l. We want to obtain explicit conditions

for (B) to have solutions satisfying (4.1) or (4.2). For this purpose we make

extensive use of results concerning the existence and asymptotic behavior of
solutions of second order ordinary differential equations. So, we begin with

an analysis of the ordinary differential equations associated with (B).

6.1. Preliminaries for ordinary differential equations

We consider the initial value problem

(p(r)yf)' - qι(r)y + q2(r)yi = 0, r > r0, y * 0, 1,
(6.1)

y(r0) = ξ, y'(r0) = η,

where p, q^ and q2 satisfy the conditions

peCl[r0, oo), p(r) > 0 on [r0, oo), qi} q2 e C[r0, oo), q±(r) ^ 0 on

[r0, oo), and either q2(r) > 0 or q2(r) < 0 on [r0, oo).

In addition we need some or all of the following conditions:

(6.2)
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(6.3) Γ max {1, f ' ds/^s^q^dr < 1,
J ro Jro

(6.4) d5/χS)V |β2(r)|ar < oo.

LEMMA 6.1. Suppose that q2(f)<® on Cro» °°) and (6.2)-(6.4) hold, and let
y>\ (resp. 0<y<l). Then, there are positive constants ξ0 and ηQ such that for

any ξ e [0, £0] and η e [0, ηQ~\ (resp. ξ e [ξ0, oo) and η e [η0, oo) U {0}), the
problem (6.1) has a solution y satisfying y'(r)^.Q and

(6.5)

where M is a positive constant.

PROOF. Suppose that y>l. Let # denote the locally convex vector space
of all continuous funjtions on [r0, oo) with usual metric topology. In what

follows we use the notation :

P(r) = (' ds/p(s), Φ(r) = max {1, P(r)}, r ^ r0,
Jr0

M , = Γ Φ(r)qί(r)dr, βί = (1 -M,)'1, M2 = Γ Φ(r)'|g2(r)|ίlr,
Jro Jro

(6.6) £0 = (22vjgvM2)-1/(v-D, ηo = Xr0)-^0.

For any fixed ξ e [0, £0] and ?; e [0, f/0], we consider the set

W = {̂  e V : ξ + Xr0)ιyP(r) ̂  Xr) ^ 2 jGT^ξ -I- p(rQ}ή)Φ(r\ r^r0}.

Clearly %/ is a closed convex subset of #. Define a mapping F: <&-+<% by

FXr) = ξ + pίrotoPίr) + J' ([

(6.7)

It is verified that (i) F maps ^ into itself; (ii) F is continuous on ̂ ; (iii) F<& is

relatively compact in # '. Since gi(r)^0 and <22(7)<0 on [r0, oo), it is obvious
that

Fy(r) ^ξ

Next, setting ή = p(r^)η for simplicity, by (6.6) and (6.7), we have for y e ̂
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(6.8) Fy(r) g ξ + ήΦ(r) + 2J&,« + ή) £ (J' ds/Xs)) 4!(τ)Φ(τ)dτ

)ί2(τ)Φ(τ)^τ

Thus, F maps ̂  into itself. The verification of (ii) and (iϋ) is routine, so we omit
it. By virtue of Schauder-TychonofΓs fixed point theorem, F has a fixed point
ye<&: (Fy)(r) = y(r), r^r0. This y is clearly a solution of (6.1) with the desired
properties.

To prove the assertion in the case where 0<y<l, we need only to note that
(6.8) is valid for ξ e [f0, oo) and η e [_ηQ, oo) U {0} with the same constants as (6.6).
This completes the proof.

LEMMA 6.2. Suppose that qι(r) = 09 <?2(
r)>0 on Cro> °°) and (6.2), (6.4)

hold, and lety>l (resp. 0<y<l). If*1o>Q is sufficiently small (resp. sufficiently
large), then for ^e(0, η0~] (resp.ηε\_η^ oo)), there is a positive constant ξQ =
ξ0(η) such that for £e[0, ξ0] (resp. ξe(0, ξ0]) the problem (6.1) has a solution
y satisfying y'(r)^Q and

(6.9) £ + 2-^(r0>/ ds/p(s)^y(r)^ξ + p(r0)η ds/p(sl r^r0.
Jr0 Jr0

PROOF. Suppose that 7 > 1 . For fixed ξ ̂  0, η > 0 let y be a local solution of
(6.1), and set

r* = sup {r: 0 < y(r) < oo in r0 < r < r} .

We claim that r* = oo. Integrating (6.1), we obtain

(6.10) y(r) = { + ή £ ds/p(s) - ̂  (£ ds/p(s)) q2(τ)y(τγdτ,

which implies

(6.11) y(r) ^ ξ + ήP(r\ r0 ^ r < r*,

where P(r) and ή are as in the proof of Lemma 6.1. On the other hand, using
(6.11) in (6.10), we have for r0^r<r* f

(6.12) Xr)^ί + W-2^Γ«2(τ)rfτ-2^Γ(ίτ ds/p(s) Y
Jro Jro \Jro /

Define
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no = p(/-0)-1(2^+2M1)-1/(ί-1), ίofo) = (2-<v+2>Mϊ V0o)>7)1/y, ιj > 0,

where

M, = Γ(T' ds/Xs)Y«2(τ)dτ, M2 = Γί2(s)ds.
Jro \Jro / Jro

From (6.12) we see that if ξ e [0, ζQ(η)~], η e (0, ?/0], then

(6.13) Xr) ^ ξ + flP(r)/2, r0 ^ r < r*.

The relations (6.11) and (6.13) shows that r* = oo and (6.9) holds. It is easy to
see that /(r)>0 for r^r0.

A similar argument holds if we assume that 0<y < 1.

REMARK 6.1. In the case where y> 1, from the above choice of ξ0(η) we may

assume that lim^o ^/ίo(^) = 0- This fact will be used in the proof of Theorem
6.2 below.

6.2. Superlinear equations

In this subsection we establish the existence of positive solutions of the
problem (B) in the case where y> 1.

In addition to the conditions (HJ-ίHJ) mentioned in Section 4, the following
conditions are employed :

(H8) Γ (7 ds/Λ
Jro \Jro

(H9) ( °° ( (Γ ds/ί>*(s)
Jro \ Jro /

r m r r < oo .

THEOREM 6.1. Let y>l. Suppose that (HJ, (H4), (H8) and (H9) hold
and c(x)^0 in Ω. Then, for any A<0, the problem (B) has infinitely many
positive solutions satisfying (4.1).

PROOF. First we choose rί >0 such that Ω=> {x: |x| > r j and

(6.14) J* max

Since λ<0, by (HJ, (H9) and Lemma 6.1, for sufficiently small £>0, the problem

(P*(r)yJ + λp*(r)m*(r)yv = 0, r > rl9

has a solution φ satisfying φ'(r)^0 and
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(6.15) ξ £ φ(r) ^ M,ξ max {l, £ ώ/p*(s)}, r ^ rl9

for some constant M! >0. We now define the function ύ by

w(x) = ξ, for x e Gj ; ώ(x) = φ(|x|) for x e G2,

where Gί=Ω n 5(0, r^, G2 = ί2\G1. In essentially the same way as in the proof
of Theorem 4.1, we see that ύ is a supersolution of (B).

To construct a subsolution, we note that φ satisfies <p'(n + 1)>0 and

(6.16) ξ + p*(rι + WO*! + 1) Γ ds/p*(s) ^ φ(r), r £ rx + 1.
Jn + l

Applying Lemma 6.1 again, we see that the problem

(p*(r)z')' - P*(r)c*(r)z + Ap*(r)m*(r)z? = 0, r > rx + 1,

z(r1 + l) = 0, 2^ + 1) = 17

has a solution ψ satisfying ^'(r)>0 and

Λ(ΓI + l)ιy Γ dslpt(s)£ψ(r)£M2p*(ri + l)ιy max j l, Γ
Jπ-u I J +i

for some constant M2>0, provided η>0 is sufficiently small. Combining this
with (6.15), (6.16) and using (4.21), we can take η small enough so that for r ̂  rί + 1,

(6.17) pΛ^ + l)* Γ dslpt(s)£*Kr)£q>(r)£M^m*x jl, Γ
J r j + l I Jr!

Then, the function ΰ defined by

ΰ(x) = 0 for xeG; = Ω n B(0, rl +1); w(x) = <A(|x|) for x e Ω\G't

is a subsolution of (B) which satisfies w(x)^w(x) in Ω. From Lemma 4.2 it
follows that (B) has a solution u such that ιl(x) <; w(x) ̂  ίί(x) in Ω. That w satisfies
(4.1) follows from (6.17) and (4.21), and that u is positive is a consequence of the
maximum principle.

From the above proof it is easily seen that there exist infinitely many positive

solutions of (B) satisfying (4.1). This completes the proof.

We now give an existence theorem which applies to the case Ag;0 in (B).

THEOREM 6.2. Let y>l . Suppose that Ω is an exterior domain such that

QeΩ0 = RN\Ω. Suppose that (Hj), (H4), (H8) and (H9) hold, c(x)^0 in Ω and
α(x)< 1 on Γ. Then, for any λ e R, the problem (B) has infinitely many positive
solutions satisfying (4.1).
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PROOF. It is enough to show the assertion for the case λ > 0. Furthermore,

replacing λm(x) by m(x), we may assume that λ = 1.
Let r0 and GJ9 j = 1, 2 be as in the proof of Theorem 4.1. We first construct

a supersolution of (B). As in the proof of Theorem 4.2, we can take a constant
λ'>0 and a function ύt e C^Gj such that

- £#! + c(x)ύί ^ λ'm(x)ύί9 ύ^x) > 0 in Gl9

(6.18) BU1 ^ 0 on Γ, ύ^x) > 0, dύ^/dv > 0 on Λ09

β1(x) = Φidxl), x e G i for some ^ such that φi(r) > 0 on [0, r0] .

Next, consider the problem

(P*(r)yj + P*(r)m*(r)^y = 0, r > r0,

X^o) = ί, /Oo) = ^7-

By Lemma 6.2 we can choose an η0 in such a way that for every η e (0, η0~] there

is a ξ0(η) such that for η and £e[0, £0θ7)] problem (6.19) has a solution φ2

satisfying φi(r)>0 and

(6.20) { + P*(r0)η ds/p*(s) g φ2(r) ̂  ί +.
^ J ro

Put now Θ = φ f

1 ( r 0 ) / φ ί ( r 0 ) and choose ^j e(0, f/0] satisfying

ξoίiyO ^ (λO^cv-D and fh/{ofoι) < β.

This is possible, since {0(^)~*0 anc^ '//ίoW-^O as ^/"^^ as noted in Remark 6.1.
Denoting by </>2(

r) the solution of (6.19) with ξ = ξί=ηί/Θ and η = ηί9 we define

for x 6 G t ; w(x) = φ2(\x\) for x e G2.

This ύ is a supersolution of (B). In fact, noting that 0<fl(x)^ί1 ^(λ')1/(y"1) and
so fi(x)y^λ'fl(x) in G t , we have by (6.18)

- Φfi(x) + c(x)fl ^ λ'm(x)ώ ^ m(x)fly in

and by (6.19) we have

- Dfi -f c(x)β ^ m(x)β^ in G2.

Furthermore, an easy calculation shows that

f=ι (Σ7-ι a^x)xjl\x\yri/2

on
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where βι = β|c|5 /=!, 2. Thus w is a supersolution of (B).
To construct a subsolution, we consider the linear problem

- Ito + φφ = 0 in Ω, βy = 0 on Γ.

Theorem 4.2 ensures the existence of a solution v e C2+σ(Ω) of this problem
satisfying (4.1). In view of (4.1), (6. 20) and the boundary condition on Γ, we can
choose a constant M > 0 such that Mv(x) ^ ύ(x) in Ω. Obviously, ΰ = Mv is a sub-
solution of (B) such that ΰ(x) <^ β(x) in £2, and the existence of the desired solution
follows from Lemma 4.2. The existence of infinitely many solutions is easily
verified. This finishes the proof.

In the following theorem we indicate a situation in which (B) possesses
bounded positive solutions.

THEOREM 6.3. Let y > 1. Suppose that (H2) and (H5) hold and c(x)§:0 in Ω.
Then, for any A e / ? , the problem (B) has infinitely many positive solutions
satisfying (4.2).

PROOF. We may assume that Λ,^0. We first note that by Theorem 4.3,
there is a constant μ>0 such that for every μ^μ

(6.21) - DM + c(x)u = μm(x)u in Ω, Bu = 0 on Γ (if

has a positive solution satisfying (4.2).
If A>0, let β and w be positive solutions of (6.21) with μ = μ andμ = 0, re-

spectively, which satisfy (4.2) and

0 < ΰ(x) ^ ύ(x) ^ (μ/λ)1^-1* in Ω.

Then ύ and ΰ are, respectively, a supersolution and a subsolution of (B), and the
assertion follows from Lemma 4.2.

If Λ<0, we set β(x)=l on Ω and let Π be a solution of (6.21) withμ = Λ sat-
isfying (4.2) and 0 < ΰ(x) ^1 on Ω. Since w is a supersolution and ΰ is a
subsolution of (B), we have a desired solution of (B) by Lemma 4.2.

6.3. Sublinear equations

THEOREM 6.4. Let 0<y<l, Ω=RN and suppose that (H^, (H4), (H8) and
(H9) hold and φc)^0 on RN. Then, for every λ<0, the problem (B) (with the
boundary condition deleted) has infinitely many positive solutions satisfying
(4.1).

PROOF. Without loss of generality we may assume that λ= — 1. Let rί >0
be such that (6. 14) holds, and put
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G t = 3(0, Γl), G2 = Λ^d ; G; = B(0, r t + 1), G2 = Λ"\Gί .

We take a unique solution i^ e C2+<τ(Gi) of

(6.22) - DM + (c(x) + w(x))w = 0 in G'l9 u = 1 on dG\ =? Λ^ .

From the maximum principle it follows that O<M I(X)^ 1 on G\. Next, by Lemma
6.1, there exist ξ0 and J70>0 such that for ξ e [£0, oo) and ή e p/0, oo) the problem

(pφ(r)z')' - P*(r)c*(φ - p*(r)m*(φy = 0, r > r t + 1,

has a positive solution z satisfying

(6.24) ξ + Pt(r\ + l)η (' ds/p*(s) ^ z(r)

, Γ ds/p*(s)l, r ^ rx + 1,
Jπ+i J

for some constant Mί>Q. Put M2 = max{|0, (min^^ WiW)"1}, and ΰi(x) =
M2Mi(x) on G x. Let ι/^ be a solution of (6.23) with ξ = M2, ί = ίι, which satisfies
(6.24), where

?! = max J/

and define the function ΰ by

ΰ(x) = ΰ^x) for x e G j ; ΰ(x) = ιA(|x|) for x e G 2 .

Denote by ϊ/7- the restriction of ΰ on G}, 7 = 1, 2. Then,

(6.25) - ΐ)ΰj + c(x)ΰ,. + m(x)U} ^ 0 in G}, 7 = 1, 2;

(6.25) for 7 = 1 follows from (6.22) and the relation uj(x);>l on G'l5 and (6.25) for
7 = 2 from (6.23). Furthermore, we have

— dΰ2(x)/dv

= dΰ^/dv - ihfl(x)(ΣΪLι (Σy-i atfr)xjl\x\)2rl/2 ^ 0 on Λ, .

It follows that ΰ is a subsolution of (B). Obviously, ΰ satisfies (4.1) by (6.24).
We now choose ξ0 > 0 so that for ξ e [£0, oo)

= 0, r>ri9
(6.26)

has a solution φ satisfying
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ξ £ φ(r) ^ M3ξ max l,

An integration of (6.26) from r\ to r, + 1 yields

and so from (6.26) we obtain

(6.27) φ(r) ^ ξ + M

(see (6.5)). In view of (4.21), for ξ = M2, ή = ή1 we can choose ^0^ίo sucrι

for ξ^Jo and r^Γi + l,

max jl, (' ds/p*(s)} ^ ξ + M& (' ds/p*(s) .
( Jrι + 1 J Jr t

From this, (6.24) and (6.27) it follows that \ί/(r)^φ(r) for r^^ + 1, provided
Let φ be the above solution of (6.26) with ξ such that

ξ ^ max {ί0, max {ΰ^x): x € G;}}

and define a function ύ by

β(x) = ξ for x e G! ; £(x) = φ(l^l) for x e G2.

It is easily verified that ύ is a supersolution of (B) satisfying (4.1) and ΰ(x)<>ύ(x)
in Ω. Therefore, by Lemma 4.2, (B) has a solution satisfying ΰ(x)^u(x)^ύ(x)
in Ω. It is not to hard to show that there exist infinitely many such solutions
u(x) of (B). This completes the proof.

THEOREM 6.5. Let 0<y<l and Ω be an exterior domain such that 0 e RN\Ω,
and suppose that (Ht), (H3) and (H4) hold, φc)^0 in Ω and α(x)<l on Γ.
Then, for every Λ>0, the problem (B) has infinitely many positive solutions
satisfying (4.1).

PROOF. From the proof of Theorem 4.1 there exists a constant I>0 and a
supersolution v of (6.21) with μ = ! which is positive throughout Ω and satisfies
(4.1). The function ύ(x) = (l/λ)l^1-^ϋ(x)/infxeΩϋ(x) is a supersolution of (B)
with the property (4.1). Next, let u be a solution of (6.21) with μ = 0 satisfying
(4.1), and take a constant M>0 such that Mu(x)<>ύ(x) in Ω. Then, ii=Mu is a
subsolution of (B) which satisfies (4.1) and ΰ(x)^u(x) in β, and so (B) has a
desired solution. Moreover, it can be shown that there exist infinitely many such
solutions of (B).

The following results establish the existence of bounded positive solutions.
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THEOREM 6.6. Let y<l and Ω = RN, and suppose that (H2), (H5) hold and
)^0 on RN. Then, for every λe R, the problem (B) has infinitely many pos-

itive solutions satisfying (4.2).

The proof is analogous to that of Theorem 6.3 and will be omitted.

COROLLARY 6.1. Let y^=0 and Ω=RN, and suppose that (H2), (H'5) hold
and φe)^0 on RN. Then, for every λε R9 the problem (B) has infinitely many
positive solutions satisfying (4.2).

Ify> 1, then the same conclusion holds even in the case where Ω is an exterior
domain.

PROOF. It suffices to consider the problems

— t>u + c(x)u = μM(x)u? in RN, for γ < 1,

and

- Du + c(x)u = μM(x)u? in Ω, Bu = 0 on Γ, for γ > 1,

with μ— ±|A|, where M(x) is the function in the condition (H'5). The assertion
for y> 1 or γ < 1 follows from Theorem 6.3 or Theorem 6.6.

THEOREM 6.7. Let 0<y<l and Ω be an exterior domain, and suppose that
(H2) and (H5) hold and φc)^0 on RN. Then, for every A>0 the problem (B)
has infinitely many positive solutions satisfying (4.2).

The proof is omitted, since it is essentially the same as that of Theorem 6.5
except that Theorem 4.3 is used in place of Theorem 4.1.

6.4. Example

Consider the equation

(6.28) - Au + c(x)u = λm(x)ut in Ω, Bu = 0 on Γ (if

where c, m e Cfoc(Ω) and c(x) ;> 0, m(x) > 0 on Ω, λ e R and y ̂  0, I .

EXAMPLE 6.1. (i) Let ΛΓ = 2 and Ω = R2. If

(6.29) \ r log r c*(r)dr < oo, \ r(log r)?m*(r)dr < oo,
Jro Jro

then for every A<0 and y>0, (6.28) has infinitely many positive solutions u
satisfying

(4.28) 0 < lim inf^i.,^ w(x)/log \x\ ̂  lim sup,^,^^ w(x)/log |x| < oo.

(ii) LetN^3andΩ = l?N. If
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(6.30) Γ r(c*(r) + m*(r))dr < oo,
Jro

then for every λeR and y^O, (6.28) has infinitely many positive solutions sat-

isfying (4.2).
(iii) Let N = 2 and let Ω be an exterior domain such that 0 e RN\Ω. Suppose

that α(x)<l on Γ.

(a) If y> 1 and (6.29) holds, then for every λ e R, (6.28) has infinitely many
positive solutions satisfying (4.28).

(b) I f O < y < l a n d

(00

\ rlogr(c*(r) + m*(r))dr < oo,
Jr0

then for every A>0, (6.28) has infinitely many positive solutions satisfying (4.28).
(iv) Let 7V^3 and let Ω be an exterior domain. Suppose that (6.30) holds.

Then, (6.28) has infinitely many positive solutions satisfying (4.2) for every λ e R
or for Λ,>0, according as y > l or 0<y<l.

PROOF, (i) The assertion follows from Theorems 6.1 and 6.4.
(ii) This is a consequence of Theorems 6.3 and 6.6.
The statements (iii-a) and (iii-b) follow from Theorem 6.2 and Theorem 6.5,

respectively.
(iv) Theorems 6.3 and 6.7 yield the assertion.

REMARK 6.1. The condition that m(x)>0 on Ω may be replaced by the
requirement that there exists a function MeCfoc[r0, oo) such that M(r)>0 and
|m(x)|^M(|x|) on β, in which case (6.30) should be replaced by

[°r(c*(r) + M(r))dr< oo.
Jro

REMARK 6.2. When φc) = 0 on RN, the assertions (i) and (ii) reduce to recent
results of Kawano, Kusano and Naito [19, Theorem 1] and Kawano [18,
Theorems 2.3 and 2.6], respectively. The assertions (iii-a) and (iv) include
Theorem 4.3 of Noussair and Swanson [36] for the case where y>l, c(x) = 0
in Ω and α(x) = 0 on Γ.
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