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1. Introduction

Let Q be an exterior domain in R¥, N>2, with smooth boundary I'=0Q
and let ® and B denote, respectively, an elliptic differential operator and a
boundary operator defined by

(1.1) D= 3VNo,a{(x)0%0x,0x; + XNy bi(x)0/ox;, x€Q,
and
(1.2) B = o(x)0/0f + (1 —a(x))-, xeT,

where 0/df is the directional derivative in the direction of a vector 8 prescribed
on I We are concerned with the following linear and quasilinear boundary
value problems:

(A) —Du +c(x)u=im(x)u in Q, Bu=0 on T,
(B) —Du + c(x)u = Aim(x)u? in Q, Bu=0 on I,

where c¢(x) and m(x) are given functions, A is a real parameter and 7 is a nonzero
constant with y=x1. We allow I' to be empty, in which case Q is the entire space
RY and the boundary condition in (A) or (B) is void.

The objective of this paper is twofold. First, we study the existence and
asymptotic behavior of positive functions h which satisfy the differential inequality

(1.3) —Dh + ¢(x)h = Am(x)h in Q

and have minimal order of growth at infinity. Such an h is called a minimal
A-superharmonic function, and the totality of A-superharmonic functions is
denoted by SH(A). An analysis of some particular cases of (1.3) ([10]) shows
that the asymptotic behavior of A-superharmonic functions is in general very com-
plicated. So, we restrict our attention to the situations in which (i) all h in SH(4)
converge to zero as [x|—oo; (ii) all h in SH(A) are bounded both above and
below by positive constants; (iii) all h in SH(4) tend to infinity as |x|— o0, and
attempt to obtain conditions for such situations to occur. For this purpose a
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crucial role is played by the concept and basic properties of the principal eigen-
value of the problem (A) which are given in Section 2. Explicit sufficient con-
ditions ensuring that the above cases (i)(iii) actually hold are developed in Section
3 with the use of results on the existence and asymptotic behavior of positive
solutions for second order linear ordinary differential equations, and the recurrence
property of the diffusion process with the infinitesimal generator . The results
in Sections 2 and 3 extend considerably those obtained in [9, 10].

Secondly, we investigate the existence and asymptotic behavior of positive
solutions of (A) and (B). We were motivated by the observation that although
there is much current interest in positive solutions of semilinear elliptic equations
in unbounded domains (see e.g. [8,9, 18, 19, 25, 28, 32, 33, 36]), most of the
literature has been devoted to equations of the form — Au+ ¢(x)u=Am(x)u? and
very little is known about general equations of the form (B). We establish
existence theorems for (A) and (B) in Sections 4 and 6, respectively; more spe-
cifically, we find sufficient conditions under which (A) and (B) possess positive
bounded solutions, or positive unbounded solutions with specified order of
growth at infinity. The main tool is a generalization of the standard super-
solution-subsolution method (Lemma 4.2), which asserts that the existence of a
‘““generalized’’ supersolution fi(x) and a ‘“‘generalized’’ subsolution i(x) of (A)
or (B) such that i#(x)<a(x) in Q implies the existence of a solution u(x) of (A)
or (B) satisfying #(x)Su(x)<#(x) in Q. In each of the theorems in Sections 4
and 6 suitable ‘“‘generalized’’ supersolutions and subsolutions are constructed
explicitly with the aid of existence and asymptotic theory of second order ordinary
differential equations. Some of the recent results in [18, Theorems 2.3, 2.6],
[19, Theorem 1] and [36, Theorem 4.3] are covered by our theory.

In addition it can be shown that the supersolution-subsolution method
combined with the results of Section 3 yields various existence theorems for
positive solutions of semilinear equations of the form

(@) —Du + c(x)u = Am(x)f(u)

defined in some neighborhood of infinity. These byproducts are presented in
Section 5.

2. Principal eigenvalues

2.1. Principal eigenvalues

Throughout this paper we assume that Q is either an exterior domain in RV
of a simply connected bounded domain Q, with boundary 0Q=1TI of class C?*,
0<0o<1, or Q=RN, and the following conditions hold for the operators D and
B defined by (1.1) and (1.2).
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(A) a;=a;eCli?(RY), b,eC{(RY), i,j=1,2,..,N,c, meCiJQ),
m(x) >0, xe@.
(A,) D is uniformly elliptic in RY, i.e., there exists a constant x>0 such that

T i=1008&; = k& for all x, £e RN,

where |¢| denotes the Euclidean length of £=(¢,, &,,..., &y).
(A;) aeC?*(I), and either a(x)=0on I’ or O<a(x)<1on .
(A B=(By; Bas---, By) € CHHo(I") is a unmit vector satisfying >, B;n,>0 on I'
for the outward (with respect to ©) unit normal vector n=(ny, n,,..., ny)
to I
The following notation is employed:

B(xg, R) = {x: |x—xy|<R} for x,€ RV,
Gr = RM\B(0, R) = {x: |x|>R} for R > 0.

We now proceed to define the principal eigenvalue of the problem (A).
Fix a nonnegative constant p such that Q,<=B(0, p) if Q=RMQ, and p=0 if
Q=RY, and put

Q. =Qn BO, p+k), I',={x:|x|=p+k}
for k=1. We first define the principal eigenvalue of the problem

- + c(x)p = Am(x)¢ in @,

2.1) .
Bp=0 onI'(ifI'x¢), ¢ =0 on I,

Put {(x)=c(x)/m(x), x€ Q. Let {,=min,, {(x) and take a constant {, such that
(£, We denote by 7, the principal eigenvalue of the problem

=D + ({(x)—{Im(x)¢ = tm(x)¢ in Q,

2.2) .
Bp=0 onT(fI'xg), ¢=0 onT,.

Since {(x)—{, =0 in Q,, 7, exists and is positive, and there is a unique normalized
positive eigenfuction ¢, € C2+7(Q,) corresponding to 7, (see e.g. [4, Theorem 4.3]).
We then define the principal eigenvalue of the problem (2.1) to be the constant
A={+1, and denote the principal eigenfunction corresponding to A, by ¢,.
The value of 4, is independent of the choice of {,. In fact, if we let 7, be the
principal eigenvalue of (2.2) with {, replaced by {,, then 7, + {; —{, is an eigenvalue
of (2.2) with the same positive eigenfunction, so that by the uniqueness of the
principal eigenvalue, we have 7, +{,—{, =1, and hence 7,+{,=1,+(, Letting
k=1, 2,..., we obtain the sequence {A,} of principal eigenvalues of (2.1) for the
bounded domains €.

We show that {A,} is a strictly decreasing sequence. For this purpose we
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need the following Lemmas, in which we write G=Q,, A=I"; and 1,=4,.

LemMA 2.1.  Suppose that fe C%(G), g, € C*°(I') and g, € C?**°(A), where
I1=2 if a(x)=0 on I' and I=1 if a(x)>0 on I, respectively. Then, for every
A<Ay, the problem

~Du + (c(x)—Am(x))u = f in G,
Bu=g, onT'(ifI'xg), u=g9g, on A
has exactly one solution u e C**9(G). Furthermore, if f, g, and g, are non-

negative and at least one of them is not identically zero, then u(x)>0 in G.

LEMMA 2.2. If there is a function we C*G)n CYG) such that w(x)>0
in G and
—Dw + c(x)w = Am(x)w in G,
Bw=0 on I (if'=xg), w=0 on A,

then A< Ay.

These lemmas are proved by the same argument as in [4, Theorem 4.4] and
[7, Lemma 3.4] (cf. [10, Lemma 3.1]), so the proof will be omitted.

From Lemma 2.2 it follows that A,,, <4,. Suppose that A;,;=4,. Then,
U=y, € C2*9(Q,) satisfies u(x)>0 in Q, and
—Du + (e(x)—Am(x))u =0 in Q,

2.3)
Bu=0 onI'(ifl'xg), u=¢ >0 on I,

Let us now denote by S the solution operator of the problem

—Du + ({(x)=Lom(x)u =f in Q
Bu=0 on I'(if '*xg),u=0 on I,

that is, u=Sf is the unique solution of this problem provided fe C?(&,). Then,
S has a unique extension S, which is positive and maps C(&,) compactly into
C1*9’(Q)), 0<a’'<1 (see e.g. [3, Lemma 5.3]), and the operator T defined by
Tf=8(m(x)f) is a positive linear operator on C(£,) with a positive eigenvalue
7! and a positive eigenfunction ¢, (see e.g. the proof of [4, Theorem 4.3]).
Let v be the solution of

—Dv + ({(x)—{Im(x)p =0 in Q,
Bv=0 on F(if.r#ﬂ), V= Qs ON Fk
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and put w=¢,,,;—v in Q,. Then, w is positive by the maximum principle and
satisfies the equation

(2.4) titw — Tw = T.

On the other hand, it can be shown ([3, Lemma 5.3]) that T(Tv)(x)=Mq@,(x),
x € §,, for some constant M>0. Hence, by [23, Theorem 2.16], (2.4) has no
positive solution. This contradiction implies that A,=41,,, is impossible. Thus
we have 4, ., <A

Let A* denote the limit

(2.5) * = limy. , A

It may happen that A*= —oco. If A* is finite, we call it the principal eigenvalue
of the problem (A) (cf. [8, 97).

REMARK 2.1. If liminf}, ., {(x)> —o00, then the principal eigenvalue A*
of the problem (A) does exist. For, choose a constant {, such that { <, for
all k=1 and set {,={, in (2.2). Then, we have 1, =1, +{,, which implies A* >
{,> — oo since 1,>0.

A characterization of the principal eigenvalue of the problem (A) is given
in the following theorem.

THEOREM 2.1. Let A* be the principal eigenvalue of the problem (A).
Then the following statements hold.

(i) If AZA*, then there exists a solution ue C**°(Q) of the problem (A)
such that u(x)>0 in Q.

(ii) If there exists a function u e C3(Q) n CY(Q) such that u(x)>0 in Q and

—Du + c(x)u = Am(x)u, in Q, Bu=0 on I (if =g),

then A< A*,

Proor. The proof is similar to that of Proposition 4.1 of [9].

(i) We prove the assertion in the case where Q is an exterior domain;
the case where Q= RN can be treated similarly.

Step 1. Since A<, by Lemma 2.1 there exists a unique u,e C2*(Q,)
satisfying u,(x)>0 in €, and

2.6) —Duy + c(X)u, = Im(X)u, in Q,,
Bu,=0 onl, u,=1 on I,

for every k=1. Furthermore, for each compact subset K<Q there exist an
integer ko=1 and a constant M, =1 such that



178 Yasuhiro FURUSHO

Q.7 M7luy(x") < u(x") £ Mau(x), x',x"eK, k= k.
(See Step 2 of the proof of [9, Proposition 4.1].)
Step 2. Fix an x; € 2, and define the functions i, by
(%) = up(x)u(x,) - for xe Q,; d(x) =0 for xeQ\Q,.

We will show that, for any bounded subdomain G of @, there exist an integer
k,=1 and a constant M, >0 such that

(2.8) likllz 406 = Mz, k2 ky,

where || - |5 +,,5 is the usual norm of C2+7(G) and similar Holder norms are used

throughout this paper. ‘
We first prove (2.8) in the case where G=Q. Take k, =1 such that G=Q,,

and let x, € G and choose ;>0 so small that B(x,, 36,)= €, and the Dirichlet
problem

—Du + o(x)u = im(x)u in B(xy, 36,), u =0 on 0B(xy, 36,)

has no nontrivial solution ([30, p. 77]). Then, applying interior L? estimates
to i, regarded as a solution of the problem

29 —Du + (c(x)—Am(x))u =0 in B(xq, 36;), u =i, on 0B(x,, 36,),

we have
(2.10 Il 2,p,B(x0,280) = M3lliillo,p,B(xo,350)
for some constant M;>0 independent of k([1]), where |-, ,¢ and |-lo,¢

denote the norms of W2:7(G’) and LP(G’), p=1, respectively. In what follows
we continue to use M;, i=4, to denote positive constants which are independent
of k. By (2.7) with x’=x, and the definition of @, we have

SUPy >, Max {f(x): x € B(xy, 30,)} = M4 < o,

which combined with (2.10) yields [|@l;,,p(xo,25,) =M for all k=k,. From this
with p> N and Sobolev’s imbedding theorem it follows that [|#[|; 5gz50 = M for
k=k,. Using this and the interior Schauder estimates for the solution of (2.9),

we have
(211) ”ak”2+a,B(xo,61) g M7“ak"0,B(xo,261) é MS

for k>k,. Since G is compact, (2.11) implies (2.8).
Next, suppose that G N I's@. Without loss of generality we may assume
that G Q,. Since {#,} is uniformly bounded on I'; as proved just above, we put
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My = sup {ii(x): xel'|, k=1,2,...}.
Now, we take a solution w € C2*9(Q,) of the problem
—Dw + c(x)w = Am(x)w in Q,
Bw=0 onTI, w=M, on ;.

As A<, and M4>0, w exists and is positive in Q, by Lemma 2.1. It is easy to
check that v,=w — i, satisfies

— Dy, + c(X)v, = Am(x)v, in Q,

By, =0 onl, v,=20 onrl,, k=1
Hence by the maximum principle we have v,(x)=0, i.e.;
(2.12) 0<i(x)Swkx) on Q, k=1

Using the boundary Schauder estimates ([1, Theorem 7.3]) for. #, considered as
a solution of the problem
—Du + (ec(x)—Am(x))u =0 in Q,,
Bu=0 onTl, u=i, onll,,
we have

(2.13) 1kl 246,0, = Mio(lliikllo,a, + ldkll24e,r,) -

Since [|#ll2+4,r, is uniformly bounded as we have seen above, we see from (2.12)
and (2.13) that ||#,/2+,,2,SM,,. Thus (2.8) is proved.

Step 3. Since the sequence {@,} is bounded in C2*7(G) for any bounded
subdomain G of Q by Step 2, using the Ascoli-Arzela theroem and the standard
diagonal process, we can find a subsequence {#,} of {#} and a function ue
C2+7'(Q), 0< o’ <o, such that

||'7k,-—“||2+a',l( -0 as j—o o

for any compact set K< Q. From (2.6) it follows that u is a solution of (A).
The proof of the positivity of u is as follows. Since u satisfies

—Du + (c—m)*(X)u =(c—im)"(x)u =20, u(x) =0 in Q,

where (¢ — Aim)* (x) = max {c(x) — Am(x), 0}, (¢ — Am)~(x) = max {— (c¢(x) —
Am(x)), 0}, the maximum principle implies that either u(x)=0 or u(x)>0 in Q,
for every k=1. The former case cannot occur, since @,(x,)=1.

(ii) Since u satisfies all conditions of Lemma 2.2, we obtain A< 4, for all
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k=1. Hence A=< A* follows from the definition of A*., Thus the proof finishes.

2.2. Relation to elliptic oscillation

In this subsection we investigate the relation of the principal eigenvalue to
the oscillation theory ([2], [31], [38]) for the equation

(2.14) —Du + ce(x)u = Aim(x)u in Q.

In what follows we denote by A*(R) the principal eigenvalue of the particular
exterior Dirichlet problem

(2.15) —Du + c(x)u =Aim(x)u in Gy, u=0 on I'y

for every R>0 and define A*(c0) by A*(c0)=limg_ , A*(R). Since A*(R) is
nondecreasing in R, the above limit exists. When A*(R) cannot be defined, that
is, when lim,_, , A4,= — oo for the problem (2.15), we write conventionally A*(R)=
A*(0)= — 0.

The equation (2.14) is said to be nonoscillatory at oo if there is no nodal
domain in Gi for any R>0, or equivalently, if there is a positive solution
u e C¥Gy) of

(2.16) —Du + c(x)u = im(x)u in Gy

for some R>0; see e.g. [2], [31], [38]. Equation (2.14) is said to be oscillatory at
oo if every nontrivial solution of (2.14) has always zeros in any neighborhood of

infinity.

THEOREM 2.2. Equation (2.14) is nonoscillatory at oo if and only if A<
A*(00), where the equality can occur only in the case where A*(c0) = A*(R) for some

R>0.

PrOOF. Suppose that (2.14) is nonoscillatory at oo. Then, there is
ue C¥Gp) satisfying (2.16) and u(x)>0 in G for some R>0. From (ii) of
Theorem 2.1 it follows that A< A¥(R)<A*(0). If A=1%(00), then (2.16) with A=
A*(o0) is nonoscillatory at oo, so that A=A1*(c0)<A*(R) for some R>0 as shown
just above. This implies that A1*(c0)=A*(R).

Conversely, if A<A*(c0), we can choose R>0 so that A<A*(R)<A*(0).
Hence the prolbem (2.15) has a positive solution u € C%(Gg) by (i) of Theorem 2.1.
This implies that (2.16) is nonoscillatory at co. The same argument holds if we
assume that 1=A4*(c0)=A*(R) for some R>0.

COROLLARY 2.1. Equation (2.14) is oscillatory at o for any A€ R if and
only if A*(c0)= — 0.
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3. Minimal A-superharmonic functions

3.1. Definition of minimal 2-superharmonic functions

In this section we introduce the concept of A-superharmonic functions minimal
at oo (cf. [8], [10]).

DEerINITION 3.1.  For Ae R we denote by SH(4; Q) the class of all functions
h e C*(Q) satisfying the following conditions:
(i) his positive and A-superharmonic in Q, i.e.,

3.1 —Dh(x) + ¢(x)h = Am(x)h, h >0 in Q;
(ii) his minimal at oo, i.e.,
(3.2 h(x) = O(p(x)) as |x| > o0
for any positive A-superharmonic function ¢ in Q.
We employ the notation:
H(A; Q) = {heSH(; Q): —Dh+c(x)h=Am(x)h in Q},
SH(A) =\Ugr>o SH(4; Gg).

Throughout this section we assume that the coefficients a;; and b; of D are
bounded on RN,

Next, we denote by X =(x(t), &, P,), x € R", the diffusion process on RV
with the infinitesimal generator D (see [16]). For a subset E of RV, let o(E)
be the first hitting time for the set E (6(E)= oo if the set E is never hit).

THEOREM 3.1. (i) {heSH(A; Q) nCYQ): Bh=0 on I'}x@ if and only
if ASA*,
(ii) For any .<)* and any subdomain Q' of Q such that Q' <Q,

{h: he SH(A; @) n H(i; @), Bh=0 on I'}%g.

Furthermore, for each he SH(1; Q) n H(A; Q') we have

a(0Q
0

(33) h(x) = E, [h(x(a(éﬂ’))) exp (S ? (Am(x(s)) - c(x(s)))ds) . o(0) < oo] :
x e,
The proof of this theorem is essentially the same as that of [10, Theorem 2.1].

COROLLARY 3.1. SH(A)x4d if and only if A< A*(R) for some R>0.
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Proor. (The “only if’’ part). If SH(A)=g, then there exists an R>0
with the property SH(1; Gg)=@. Hence A<2*(R) by (i) of Theorem 3.1.

(The ““if”’ part). Since SH(1; Gg)=x@ by (i) of Theorem 3.1, we have
SH(1) =g.

The following theorem is a partial extension of [10, Theorem 2.2].

THEOREM 3.2. Let fe C°(Q) and ge C'*(I'), where =2 if a(x)=0 and
I=1ifa(x)>00n . If A<A* and f satisfies

(34 f(X)m(x) = O(h(x)) as |x| >

for some he SH(4; Q), then for any h'e SH(A'; Q) with A<M’ <A* there is a
solution u € C2*9(Q) of the problem

3.5) —Du + (e(x)=im(x))u = f(x) in Q, Bu=g(x) on I (if [=@)
satisfying
(3.6) u(x) = O(h'(x)) as|x| » oo,

Proor. The proof is similar to that of [10, (1) of Theorem 2.2] and will be
omitted.

3.2. Asymptotic behavior of minimal 2-superliarmonic functions

This subsection is devoted to the study of asymptotic behavior of minimal
A-superharmonic functions.

DErINITION 3.2. The class SH(A) is said to be of type I, type 11 or type III,
according to whether any function h e SH(A) satisfies

(1) lim,, h(x) = 0,

(1) 0 < liminf,|,, A(x) < lim sup, ., A(x) < o
or

(1) lim, ., h(x) = oo.

Our purpose here is to give sufficient conditions for SH(Z) to be of one of the
types I, II and III. We note that there is a class SH(A) whose type is different
from these three types (see e.g. [10, Proposition. 5.3]).

Before stating the main theorems we prépare two lemmas on the existence
and asymptotic behavior of solutions of the ordinary differential equation

(3.7 (P(r)y’) + Aq(r)y.= 0, r > roy

where '=d/dr, Ae R and p and g satisfy the conditioris
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peCllryg, ©0) and p(r) >0 on [rgy, ),
qgeC[ry, ©) and g(r) >0 on [ry, o).

Lemma 3.1. (i) Suppose that

(3.8) St dr/p(r) = w,
and

Si (So dS/p(S)) g(r)dr < co.

Then, the following statements hold.
(@) For any £20 and n>0, there is a constant K>0 such that if

Sw max {1, S:o ds/p(s)}q(r)dr < K,

ro

then (3.7) has a solution y satisfying
Wro) =&, Y(ro)=n, y(r)>0, r>r

fim, ., y(r) / S ds/p(s) = constant > 0.

In the particular case where <0, (3.7) has a solution with the above properties
even for £>0 and n=0.

(b) For any Ax0, (3.7) has a solution y satisfying Ay'(r)>0, r=¥, for
some Fq=rq, and lim,_, , y(r)=constant>0.

(ii) In addition to (3.8) suppose that

X: (S:o ds/p(s) ) q(r)dr = .

Then, for any A<O0, (3.7) has a solution y satisfying y'(r)<O0 for r=¥, for some
Fo=ro and lim,, , y(r)=0.

Lemma 3.2. (i) Suppose that
(3.9) gw dr/p(r) < o.
ro
If (3.7) is nonoscillatory at oo, then’(3.7) has a positive solution y on [F,, ) for

some Fo =71, such that y'(r)<0 for r=#, and lim,_, ,, y(r)=0.
(ii) In addition to (3.9) suppose that

S: 6:0 ds/ P(S))q(r)dr< .
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Then the following statements hold.
(a) For A>0, there are #y>0 and no> 0 such that the solution y of (3.7) with

initial data
WFo) =1, y'(Fo) = —n, ne(0,nol

satisfies y'(r)<O for r=¥, and lim,_, ,, y(r)=constant>0.
(b) For A0, the solution y of (3.7) with initial data y(r,)=0, y'(ro)=1
satisfies y'(r)>0 for r2ry and lim,_ ., y(r)=constant > 0.

The proofs of Lemmas 3.1 and 3.2 are easy and will be deleted (see e.g. [14],
[15]).

The following notation is used throughout this paper:
a(x) = Ii\(j=1 aij(x)xixj/lxlzs
b(x) = (XX bi(x)x;+ XX, ai(x)—a(x))/|x|
b*(r) = minlxl =r b(x)/a(x)’ b*(r) = maX|x|=,. b(x)/a(x) s
cx(r) = min, -, e(x)/a(x), c*(r) = max, -, c(x)/a(x),
my(r) = min, -, m(x)/a(x), m*(r) = max =, m(x)/a(x),
pu(r) = exp ([ bu(s)ds), ) = exp ([ b*sras),
{(x) = e(x)/m(x),
{x = liminf}, |, {(x), {* = limsup ., {(x).

In what follows we treat the operator D satisfying one of the following
conditions:

(Hy) [ arfp) = <o

(Hy) gm dr/p«(r) < o .

ro

We study the asymptotic behavior of he SH(A) by distinguishing the following
three cases:

(a) — oo < liminfj, ., {(x) £ lim sup|,j. o {(x) <0}
(b) limlxl—’oo C(X) = ©0;
(C) limlxl-—’ao C(X) = — 0.

The case (a). In this case, we have A*(o0) 2 4. In fact, for any A<y, one
can choose a constant R>0 such that
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co(x) — Am(x) = ({(x)—A)m(x) =20 in Gg.

Then the function u(x)=1 is obviously A-superharmonic in Gg, and so by (ii) of
Theorem 2.1 we have A< A*(R)<A*(c0). This yields {, < 1*(o0) as desired.

THEOREM 3.3. Suppose that (a) holds. Then the following statements hold.
(i) Assume that (H,) holds and

(3.10) Sm (S ds/ p*(s) ) P*(P)m*(r)dr<oo .

Then A*(c0)=o00 and SH(4) is of type 11 for every A€ R.
(ii)) Assume that (H,) holds and

G.11) Si (S ds/p*(s)> PU(PM*P)dr = o .

Then SH(4) is of typel for A<, and of type lll for {*<A<A*(o0) provided
{* < A*(0).
(iii) Assume that (H,) holds and

3.12) S: (S:o ds/p*(s)) Px(r)m*(r)dr < o .

Then A*(o0)= o0 and SH(Z) is of type 1 for every A€ R.
Proor. In what follows let Ro>0 be a fixed constant such that
Lo —1<lx)<l*+1 in Gg,.

(i) Let A>{,. By (H,), (3.10) and (i-b) of Lemma 3.1, for some R>R,
the equation

(3.13) (P*(ry") + (A+1={)p*(r)m*(r)y = 0,

has a solution ¢ such that ¢(r)>0 and ¢'(r)>0 on [R, o) and ¢(r)—1 as r—oo.
The function u(x)=¢(|x|) on G is positive and A-superharmonic in G,. For,
since ¢ satisfies

@"(r) + b*(re'(r) + A+ 1-Lm*(e(r) =0, r> R,
by (3.13), ¢'(r)>0 and A—{(x)<A+1—{4 in Gg, we have
—=Du(x) + (c(x)—Am(x))u(x)
— a(x)¢"(Ix]) — b(x)e'(Ix]) — (4—{(x)Dm(x)e(|x])
= a(x)(@"(Ix[)+ b*(IxDe’(1xD) + (a(x)b*(1x]) — b(x))e'(Ix[)
— (A= {x)m(x)e(|x()

Il
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2 {(A+ L ={pa(x)m*(|x]) = (A= {(x))m(x)} (| x])
2 (A+1=8) (a(x)m*(|x]) —m(x))p(Ix]) Z 0 in Gp.

From this and (ii) of Theorem 2.1 it follows that A<A*(R)<A*(o0). Hence we
have A*(o00)= o0 by the arbitrariness of A.

Now, we show that SH(A) is of type 1I. First note that, using the fact that
A*(oo)=o00 and (ii) of Theorem 3.1, for any A,>0 we can choose a constant R

with the property
SH(4; Gg) n H(A; Gg)xg for R"> R and 1 < 4,.

Let A'>{, and h'e SH(1'; Gg). Take the function u mentioned in the
above proof with A=2". This u is bounded, positive and A’-superharmonic in
Gg. Hence by (ii) of Definition 3.1 there is a constant M, >0 such that

(3.14) 0<h(x)<M, in Gg.

Next, let A"<{* and h" e SH(1"; Gg) N H(A"; Gg.). By (ii) of Theorem 3.1
we have for x € Gy

(3.15) A'(x)
2 (minyery KGN E, [ exp (7 (= Lx(o)mx() ds): a(Ti) < oo |.

Now, we put for ue R
~ o(I'r’)
(3.16) h,(x)=E, [exp <SO ,um(x(s))ds): o((Cg) <oo], xe€Gg.,

if the right hand side is finite. Since A" —{(x)>1"—{*—1 in Gg., (3.15) gives
(3.17) h"(x) 2 (mineg ., K" _po_1(X), X € Ggo.

We note that the diffusion process X with the infinitesimal generator ® is recurrent
by [16, Lemma 8.1]. So, using Schwarz’s inequality, we have for pye R

(3.18) 1< (E [exp(gz(r"') ,um(x(s))ds): o(Fp) < oo])l/z

X <Ex [exp (S:rm - ,um(x(s))ds) :o0(lg) < oo])

= (R () V2(h-,(x))'?, x€Gpg. .

1/2

Put 2=2({*+1)—A". Then, 2>{, and 1—{(x)2{*+1—-1">0 in Gg, so that
by (3.14) with 2'=1 we have
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~ o(I
0

Rorr o) S Exf exp (S " (=t )Imx(o)ds ): o)< o0 |
<M, xeGyg,

which, in view of (3.18), leads to
Byr—geei(X) 2 (hogr—geo1) (X)L 2 M5!, x€Gpg.

This combined with (3.17) yields

(3.19) h'(x) =2 M;, xeGg

for some M;>0.
Let now Ae R and he SH(X; Gg). Take A’ and A” such that

A" > max {{4, 4}, A" < min {{*, 1}
and choose h' € SH(A'"; Gg) and h”" e SH(A"; Gg) n H(A"; Gg). Then,
M h"(x) £ h(x) £ Msh'(x) in Gg.
Combining this with (3.14) and (3.19), we have
0 < lim}y 4, h(x) < lim sup, .., h(x) < o,

showing that SH(Z) is of type II.
(ii) Let A<{, and choose a constant R,>0 such that

A—=0U(x) < (A={x)2 <0 in Gy,
By (H,), (3.11) and (ii) of Lemma 3.1, the equation

(3.20) (P«(r)y’) + %(A—C*)p*(r)m*(r)y =0, r>Ro,

has a positive solution ¢ satisfying ¢’(r)<0 on [R,, o) and ¢(r)—0 as r—co.
The function u defined by u(x)=¢(|x]), x € Gg,, is A-superharmonic in G , because

—Du(x) + (c(x)—Am(x))u(x)
= — a(x)(@"(Ix])+ b«(IxDe’(Ix]))
+ (a(x)bx(Ix]) = b(x))e'(Ix]) — (2 —{(Nm(x)e(Ix])
2 %(A—C*)(a(x)m*(lxn—m(X))(p(IxI) 20, xeGg,

Here, we have used the relation (p”+b*(r)qo’=.— 2“1(A—C*)m*(r)cp that follows
from (3.20). Therefore, for sufficiently large R=R, and for any h e SH(4; Gg),
we have
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0 < h(x) £ Mgu(x) in Gg,

where M >0 is a constant. Since u(x)—0 as |x|— o0, h(x)—0 as |x|]>o0 and
hence SH(A) is of type 1.

Next, let {*<i<A*(0), he SH(A; Gg) and put u=(A—{¥*)/2. Letﬁi,, be
the function defined by (3.16). Then, from the fact that E_u is minimal — u-
superharmonic in Gg, with ¢(x)=0 and u>0, it follows that h —u(x)—0 as |x|— 00
as proved just above. This combined with (3.18) shows that Eu(x)—»oo as |x|— 0.
Choosing a constant R>0 such that

A—={(x) 2 (A=0*)/2 in Gy,
we have by (ii) of Theorem 3.1
0 < h,(x) £ Myh(x), x€Gp.

for some R'’>R. This implies that h(x)—oco as |x|—»co. Thus SH(A) is of

type III.
(iii) Let A>{, and choose a constant R,>0 such that

A=l(x) <A —1{4 in Gg,
By (H,) and (i) of Lemma 3.2, for some R> R, the equation
(Px(r)y) + (A=L)ps(r)m*(r)y =0, r >R,

has a positive solution ¢ satisfying ¢'(r)<0 on [R, ) and ¢(r)—0 as r— oo,
since this equation is nonoscillatory at co by (3.12). Then, the function u(x)=
o(|x|), x € Gg is A-superharmonic in Gz. From this fact and the arbitrariness of
A>{,, it follows that A¥(c0)=oc0. It is obvious that SH(A) is of type I. Thus
the proof is complete.

The case (b). In this case we see that 1*(c0o)= o0 as in the case (a).

THEOREM 3.4. Suppose that (b) holds. Then the following statements
hold.
(i) Assume that (H,) holds and

(3.21) St (So ds/p*(s)> PHP)cH(Pdr < .

Then SH(A) is of type 1l for every A€ R.
(ii) Assume that (H,) holds and

(3.22) Sw (So ds/p*(s))p*(r)c*(r)dr = co.
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Then SH(4) is of type 1 for every A€ R.
(iiiy If (H,) holds, then SH(J) is of type I for every A€ R.

Proor. By the assumption, for any A€ R there is an R>0 such that
SH(A; Gg)=¢ and

—2¢(x) £ (A-{(xPm(x) = —c(x)/2, x€Gp.

(i) Let heSH(4; Gg) and h(x)>0 in Gg. The function hy(x)=1 on
Gy is A-superharmonic in Gy, so that we have '

0 < h(x) £ Mjho(x) = M,, xeGy,

for some M, >0. On the other hand, proceeding as in the proof of (i) of Theorem
3.3, we have h(x) = M, in G for some M, >0. This shows that SH(A) is of type II.
(ii) Statement (ii) is proved in exactly the same way as in the proof of (ii)
of Theorem 3.3.
(iii) Since c*(r)>0, the equation

(323) (1Y) = 5 PuP)*()y =0, r> R,

is nonoscillatory at co. By (H,) and (i) of Lemma 3.2, (3.23) has a positive
solution ¢ satisfying ¢'(r)<0 on [R, o) and ¢@(r)—0 as r—o0. The function
u(x)=¢(|x|) on Gy is A-superharmonic in G and tends to 0 as |x|—c0. It follows
that SH(A) is of type I. This completes the proof.

The case (¢). In this case, since ¢(x)<0 on Gg, for large R,>0, the
principal eigenvalue p*(R) for the problem

(3.24) —DY = —uc(x)y in Gg, ¥y =0 on Iy
exists and u*(R)=0 for R=R,. Hence pu*(o0)=limg_ ,, u*(R) is well defined.

LemMa 3.3.  Let lim,,., {(x)=—o00. Then the following statements hold.

(i) If u*(o0)>1, then A*(o0)= 0.

(i) If p*(0)=p*(R)=1 for some R>O0, then A*(0)=0, and if py*(R)<
u*(c0)=1 for any large R>0, then 1*(0)<0.

(iii) If p*(0)<1, then A*(c0)= — o0 in the sense of the remark mentioned
in Section 2.2.

Proor. (i) Let 1<pu<p*(c0). Then u<u*(R) for some R>0. By (i)
of Theorem 2.1 there is a function v € C%(Gy) such that v(x)>0in Gg and —Dv+
ue(x)py=0in Gg. Let A>0. Since u>1, we can choose a constant R’> R such
that

A—={(x) £ — pl(x) in Gg.
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From this it follows that v is A-superharmonic in Gg.. Hence we have A<A*(R') <
A*(o0) by (ii) of Theorem 2.1. Since A is arbitrary, we obtain A*(o0)= 0.
(ii) Suppose that u*(R)=pu*(o0)=1 for some R>0. Then, there is a func-

tion v € C%(Gp) satisfying v(x)>0 in G and
(3.25) —-Dv+ ¢e(x)p =0 in Gq.

That 0= A*(R) < A*(o0) now follows from (ii) of Theorem 2.1.
Next, if u*(R)<u*(0)=1 for any large R>0, then (3.25) and hence the

equation
(3.26) —Du + c(x)u = im(x)u in Gy
is oscillatory at oo for any A=0. For, otherwise there is a positive function u
satisfying (3.26), so that we have A*(R)=1=0. Furthermore, since this u satisfies
—Du= —c(x)u in Gy, (ii) of Theorem 2.1 implies that u*(R)=1, a contradiction.

(iii) Assume that A*(o0)> —oo. Then, for any A<A*(o0) and O<u<l1
there is an Ry>0 such that A —{(x)> —pu{(x) in Gg,. Choose R=R, satisfying
A<A*¥(R)<A*(o0) and he SH(A; Gg). We then have

=Dh 2 A-{x)m(x)h 2 —pl(x)m(x)h = — pc(x)h in Gy,

from which, in view of (ii) of Theorem 2.1, it follows that u < u*(o0), which leads
to u*(o0)=1, since p e (0, 1) is arbitrary. This contradiction shows that A1*(c0)=

— 00.

THEOREM 3.5. Suppose that (¢) holds. Then the following statements hold.
(i) Assume that (H,) holds and

(3.27) Sw (S ds/p*(s))p*(r)c*(r)dr > — .

Then A*(o0)= o0 and SH(A) is of type 11 for every 1€ R.
(ii) Assume that (H,) holds and

(3.28) Sw (S ds/p*(s)) P(PCH(Pdr = — .

Then SH(A) is of type 111 for A <A*(c0).
(ili) Assume that (H,) holds and the equation

(3.29) V' + by(r)y — pey(r)y =0

is nonoscillatory at © for some u>1. Then A¥*(c0)=00 and SH(A) is of type I
for every A€ R.

Proor. By the assumption, for any 4 € R there is an Ry >0 such that
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(3.30) —c(x)/2 £ Im(x) — c(x) £ — 2c(x) in Gy,

(i) Statement (i) can be proved as in the proof of (i) of Theorem 3.4 by using
(3.30)

(ii) Statement (ii) can be proved as in the proof of (ii) of Theorem 3.3 by
using (3.30) and the fact that —c(x)/2>0 in Gg,.

(ili) For A>0, take an R>0 such that

—o(x) < (A={(x)Im(x) £ — pe(x) in G

and (3.29) has a positive solution ¢ satisfying ¢'(r)<0 on [R, o) and ¢(r)—0
as r—o0. Then, since u(x)=¢(|x|) is A-superharmonic in Gz, we have A< A*(R) <
A*¥(co). This means A¥*(c0)=o00 by the arbitrariness of A. Since u(x) tends to
0 as |x|—> o0, SH(A) is of type I.  This finishes the proof.

REMARK 3.1. Let By, B*, C,, C*, M, and M* be locally Holder continuous
functions on (0, c0) with the properties

By(r) = bu(r) = b*(r) < B*(1),
Cu(r) = culr) = c¥(r) £ CH(),

My (1) £ my(r) = m*(r) £ M*(r),

and put

Py(r) = exp (S B*(s)ds>, P*(r) = exp <S B*(s)ds).

It is easy to check that all the conclusions of Theorems 3.3, 3.4 and 3.5 remain
true if in the hypotheses of these theorems the functions py, p*, ¢4, c*, m, and m*
are replaced by P,, P*, C,, C*, M, and M*, respectively.

3.3. Examples

We present some examples illustrating the results obtained in the preceding
subsection. The following is a direct consequence of Theorem 3.3.

ExaMPLE 3.1. Consider the equation
(3.31) —A4u + c(x)u = Am(x)u in Gy,

where 4 is the N-dimensional Laplacian. Suppose that
— 0 < Ly = liminfi -, (%) < lim supy, - {(x) = £* < 00, {(x) = e(x)/m(x).
(i) Suppose that N=2. If

Sw rlog r m*(r)dr < oo,

r
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then A*(c0)= o0 and SH(A) is of type II for every A€ R.
(ii) Suppose that N=2., If

Sw rlog r m*(r)dr = ,

T

then A,(c0)={, and SH(4) is of type I for 1 <{,, and of type III for {* <1 <Ai*(c0)
provided {* <A*(o0).
(iii) Suppose that N=3. If

Sw rm*(r)dr < oo,

then A*(o0)=oc0 and SH(A) is of type I for every 1€ R.
ExaMpLE 3.2. Consider the equation

(3.32) —Adu + pe(x)u = Am(x)u in Gg, (R=e®),

where

—(2|x| log |x])~2, if N=2,

co(x) = [
—(N—2)*/4|x|?, if N2z3,

[ (Ix| log |x|(log (log [x)))~2,  if N =2,
m(x) =

(x| log |x])~2, if N2=3.

In this case it is obvious that lim ., {(x)=—oc0, where ((x)=-c(x)/m(x).
Applying the oscillation theory ([17], [38]) and Theorem 2.2 to the equation

—dy = —pc(x)y in Gg, (Rze°),

we see that u*(oco)=1. Therefore, by Lemma 3.3 and the oscillation theory,
we obtain A*(c0)=o00 if u<l1, A*¥(0)=1/4 if u=1 and A*(0)=—oc0 if u>1.
Furthermore, from Theorems 3.3-3.5 it follows that if N>3, SH(A) is of type I
for A<A*(o0) and that if N=2, SH(A) is of typel, II or IIl for A<A*(o0)
according to whether u<0, u=0or O<u=1.

ExampLE 3.3. Consider the equation
(3.33) —Du = Am(x)u in Gy,

where D is as in Section 2 with bounded coefficients. Assume that there exist
M*, M, € C§,(0, o) such that 0 <M .(|x]) < m(x) < M*(|x|), x € Gpg.
(i) Suppose that

(3.34) lim sup 4o 21 bi(x)x;/Ix] < 0.
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If

(3.35) Sw M*(r)dr < oo,

r

then A*(o00)=o00 and SH(A) is of type II for every A€ R.
(ii) Suppose that (3.34) holds and

gm M (rdr = .

Then SH(A) is of type I or II accoding as A<0 or A=0. If A*(c0)>0, then SH(A)
is of type III for 0 <A <A*(0).
(iii) Suppose that

liminfj, ., X, b(x)x/|x| > 0.
If M* satisfies (3.35), then A*(o0)=0c0 and SH(A) is of type I for every A€ R.

PrOOF. (i) In view of (3.34) and the boundedness of a;;, one can take a
constant k*>0 such that the function B*(r)= —k* satisfies b*(r)<B*(r) for
rr,, provided ry>0 is sufficiently large. Since the function

P*(r) = exp(S:o B*(s)ds) = ce™*'" (c=e*'To)

satisfies by (3.35)
S‘” dr| P*(r) = o, §°° (S ds/P*(s))P*(r)M*(r)dr <o,

the assertion follows from (i) of Theorem 3.3 and Remark 3.1.
Statements (ii) and (iii) can be proved similarly.

4. Global positive solutions of linear equations

4.1. Supersolutions and subsolutions

In this section we study the existence of positive solutions, with specified
asymptotic behavior, of the problem

(A) —Du+c(x)u=Aim(x)u in Q, Bu=0 on I (if I'*g).

More precisely, we want to obtain conditions guaranteeing the existence of
unbounded positive solutions satisfying

@4.1) 0<liminf,.., u(x)/Sm dr/p*(r) < lim sup,., u(x)/gm dr/p*(r) < co,
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if the condition (H,) holds, and the existence of bounded positive solutions
satisfying

4.2) 0 < lim infy . o, u(x) < 1im sup|y -  u(x) < o0,

if the condition (H,) holds.

For this purpose we prepare two lemmas. In the first lemma we let G=Q,
and A =TI for some k, and suppose that G is separated by an (N — 1)-dimensional
C2?+9.manifold A, in two subdomains G,, [=1, 2, as follows:

G=G, UG, UAy, ' NAg=ANnA;=8, 0G, =T U Ay, 0G, = A U A,.
Let us denote by v=(v,, v,,..., vy) the outward (with respect to G,) unit conormal
vector to Ag:

V; = (lev=1 aij(x)n,-)(Zi-"=1(Z’}’=1 aij(-x)nj)z)_”z’ i=12,.,N,
where n=(ny, n,,..., ny) is the outward (with respect to G,) unit normal vector

to A,. Furthermore, 4, denotes the principal eigenvalue of the problem

—Do + c(x)¢p = Am(x)ep in G,
4.3) _
Bp=0 onI', ¢=0 on A.
LEMMA 4.1. Let ue C(G) and let u;=ulg, be the restriction of u on G,
Suppose that u,;e C*G,)nCYG,), u,e C(G,)NCY G, U Ay) and u, I=1, 2,
satisfy

4.4) —Du, + e(x)u; = Am(x)u, in G, 1=1,2,
4.5) Ou,(x)[0v—0uy,(x)[ov =2 0 on A,,
4.6) Bu; 20 on T (if’'xg@g), u, =0 on A.

If A<y, then u(x)>0 in G unless u(x)=0 in G.
In case a(x)=0 on I' the regularity condition on u; may be replaced by
the weaker condition u, € C¥(G,) n CX(G, U Ay).

ProOF. Suppose that u(x)=0in G. Since 1<4,, the problem
—Dw + e(x)w = Aim(x)w in G,
Bw=0 on I (if 'xgand «(x)>0), w=1 on 4,
w=1 on I' U A (if a(x)=0)

has a solution w € C2*°(G) satisfying w(x)>0 on G (cf. Lemma 2.1). Set v=u/w
and v, =vlg, I=1, 2. Then, we have

@47 =D, =2wtIE (N a,(x)0w[dx;)dv,/0x; =0 in G, 1 =1, 2,
J J J
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(4.8)  0v,(x)[0v — Ov,(x)[0v = w(x)~1(Ou,(x)/0v — du,(x)/0v) = 0 on A,
(4.9) 0v,/0f =0 on I (if I'xg and a(x)>0),

(410) v, =20 on I'(if I'xg and a(x)=0),

(411) v, =20 on A.

There is a point xo€G such that v(xo)=min, s v(x). Suppose that x, is an
interior point of G. Then, applying the maximum principle to v, I=1, 2,
we have x4 € A,

0vy(x0)/0v =0 and 0Ovy(xg)/dv = O,

and since v=0, at least one of the inequalities must be strict. This, however,
contradicts (4.8). Hence we have x,el” or x,€ A. - In the case where a(x)=0
on I', we have v(xy)=0 by (4.10) and (4.11). In the case where a(x)>0 on I,
by (4.7), (4.9) and the maximum principle, we see that xo&I'. Thus, x, € A and
s0 v(xo)=0 by (4.11). Since v cannot take the minimum in G, we have v(x)>0,
and hence u(x)=uv(x)w(x)>0in G. Thus the proof is complete.

We now consider a semilinear boundary value problem
(4.12) —Du + ¢c(x)u = f(x,u) in Q, Bu = g(x) on I (if [ xg).

First, we introduce the definition of a supersolution and a subsolution of (4.12). -
Let G, be a bounded subdomain of @ with boundary 0G,=I"U A,€ C2*°
such that I' n Ao =¢ and put G,=Q\G,, i.e., =G, U G, U 4,.
A function @ € C(2) is said to be a supersolution of (4.12) if it satisfies the
following relations.

o, =1l|g, I=1, 2, satisfy #,€ C2*?(G)) n C}(G,) and

(4.13) =D, + (), = f(x,8) in G, =12,
4.14) 0l /0v — Oii,/0v 2 0 on A,
(4.15) Bii, = g(x) on I (if I'*g),

where v is the outward (with respect to G,) unit conormal vector to Aj.
A subsolution ii € C(Q) of (4.12) is defined by reversing the inequality signs

in the above definition.

LEMMA 4.2. Assume that fe C{,(2x R) and ge C"*o(I'), where 1=2 if
a(x)=0o0nT and l=1if a(x)>0 on I'.  Moreover, assume that for any compact
set G= Q and finite interval I = R, there is a positive constant K such that f(x, u)+
Ku is nondecreasing in u el for any fixed xeG.

If there exist a supersolution @i and a subsolution i of (4.12) such that
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(x) < (x) in Q,
then (4.12) has a solution u € C%(Q) satisfying
(4.16) a(x) S u(x) L 4(x) in Q.

Proor. Let {Q,} be a sequence of subdomains of Q as mentioned in Section 2
such that G, =Q, and A, n T, =¢.

For every k=1, choose a constant ¢, such that ¢, =max {|c(x)|: xe G} +1
and f(x, u)+cu is nondecreasing in ming, # <u<maxgz fi, for any fixed xe Q.
Consider the following iteration scheme:
—=Dv; + (c(x)+c)v; = f(x, v;_1(X)) + v;—4(x) in
“4.17) Bv; =g(x) on I' if '*g), v;=40(x) on I},
vo(x) = fi(x) on &Q,.
Since c¢(x)+c¢,21 on &, (4.17) has a unique solution v;e C?*7'(3;), 0<o’'<a,
with the property
(4.18) U(x) S v;44(x) Svx) S 0Ux), xeQ, j=1,2,..,
In fact, the existence of {v;} is well known (see e.g. [13, Theorem 6.31]) and (4.18)
is a consequence of Lemma 4.1 as follows. First note that the principal
eigenvalue of the problem (4.3) with replaced c(x) by c(x)+¢, is positive. Put
w(x)=vo(x)—v,(x) on &, and w,=wlg, =1, 2, where G,=Q,\G,. Then, we
C(8)), w,e C**7'(G) n CY(G), 1=1, 2, and w, satisfy -
-Dw, + (e(x)+cw, =20 in G, I=1,2,
Ow,[/0v — 0w, [dv = 0i|dv — O6ifdv 2 0 on A,
Bw; 20 on I'(if I'xg), w,=0 on I,
From this and Lemma 4.1 it follows that
w(x) =0, ie., vy(x) 2 v,(x) in Q.

The inequality #(x)<v,(x) in , is proved similarly. An induction shows that
(4.18) holds.

By (4.18) the sequence {v;} is uniformly bounded on Q,, and so proceeding
as in the proof of (i) of Theorem 2.1, we have a function u, e C2*9"(Q,),0<0” <
o', satisfying

=Duy + c(X)u, = f(x, w) in Q
Bu,=g(x) on I (f I'%xg), u,=10(x) on I,,

u(x) £ u(x) = 4(x) in Q.
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Using the usual compactness argument for the sequence {u,}, we obtain a desired
solution of (4.12). The details may be omitted. This completes the proof.

In what follows by a positive solution of (A) we mean a function u e C%(Q)
which is positive throughout Q and satisfies (A).
Let us list up the conditions which are assumed from now on.

(H,) and (H,) are stated in Section 3.

) [7(1, dstp*®) ) e+ m¥rdr < co.
(H) | *0)=bu()dr < co.

o) ({7 dsipu®) putr) )+ m*ar < eo.

(H5") There exists a function M € C*(Q) such that M(x)>0, |m(x)|<M(x),
x€Q, and

S: (S:n dS/P*(S)) Dx(r) (c*(r)+ M*(r))dr < oo,

where M*(r)=max|,, -, M(x)/a(x).

4.2. Existence of unbounded positive solutions

THEOREM 4.1. Suppose that (H,), (H;) and (H,) hold and c¢(x)=0 in Q.
Then, the problem (A) has a positive solution u satisfying (4.1) for every 1<0.

Proor. Taking ro>0 so that {x: |x|>r,} =Q, we put
Gl =Qn B(O, ro), G2 = Q\GI, AO = {XZ |x|=r0}.

Since (H,) and (H;) hold and p*(r)(c,(r)—Am,(r))>0, by (i-a) of Lemma 3.1
the problem

(p*()y’) — p*()(ca(r)=Amy(r))y =0, r>r,,
yro)=1, y(re)=0

has a positive solution ¢ such that ¢’(r)>0 on [r,, ) and

(4.19)

(4.20) lim,., ,, @(r) / S’ ds/p*(s) = constant > 0.
ro

Now, define a function @ by
i(x) =1 for xeG;0(x)=9¢(x]) for xeG,.
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Then we see that # is a supersolution of (A). In fact, it is obvious that @i € C(Q),
f,=1|5,€ CX(G)nCY(G), I=1,2, B, 20 on I' and 0fi,/dv=06,/0v=0 on A,.
So, we prove that

— D, + ()= Am())8, 2 0 in G, I=1,2
For 4,, this is obﬁous, aﬂd for @,, fhis is verified as follows:
=D, + (c(x)—Am(x))d,
= —a(x)e"(Ix[) — b(x)¢"(Ix]) + (c(x)—Am(x))e(|x])
= — a(x)(¢"(Ix]) + b*(IxDe’(Ix]))
+ (a(x)b*(Ix]) — b(x)e'(Ix]) + (e(x) — Am(x))e(|x])
2 (e(x) —Am(x) — a(x)cx(Ix]) = Amy(Ix]))e(Ix]) 2 0, x€ G,
where we have used the relations ¢'(r)>0 and
@"(r) + b*(r)e'(r) — (cxlr) —Amy(r))e(r) = 0

on (ry, ), the latter being a reformulation of (4.19). Thus # is a supersolution

of the problem (A).
Before constructing a subsolution # of (A) satisfying ii(x) <#(x) in 2, we note
that (H,) and (H,) yield

im . ([, i) )
= tim, . p*()/pa(r) = exp (| (6%(5) = bu(9)ds) < o0,
and for some constant M, >0
(4.21) [ astp*) < [ asipu() s M, [ dsip*o). rz o

We take the solution y of the problem

2" + by(r)z' — (c*(r)—Am*(r)z =0, r > rg,

2(ro) =0, z'(ry) = 1.
Since (H,), (4.21) and (H;) hold, by (i-a) of Lemma 3.1, np satisfies ¥’(r)>0 on
[0, o©) and

lim, ., l//(r)/Sr ds/p4(s) = constant > 0.

Combining this with (4.20) and (4.21) we have
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422) M | dslp¥s) S Myb(r) S o), 21

for some positive constants M, and M;. It is easy to see that the function &
defined by ;

ii(x) =0 for xeG,;; iu(x)= Ms¥(x|) for xeG,

is a subsolution of (A) which satisfies #(x) <@(x) in 2 by (4.22). From Lemma 4.2
it follows that the problem (A) has a solution u such that

(4.23) u(x) < u(x) < a(x) in Q.

The positivity of u follows from the maximum principle, and the relation (4.1)
is a consequence of (4.21)—(4.23). This completes the proof.

As easily seen, Theorem 4.1 applies to the case where Q= R and guarantees
the existence of unbounded entire solutions of (A) with A<0 (and with the
boundary condition deleted). However, the situation is different for (A) with
A20. Infact, if A1=0 and ¢(x)=0, then there is no positive entire solution of (A)
satisfying (4.1) in RY, because such a solution becomes a positive constant by
the maximum principle, which is impossible. = The existence of a positive solution
of (A) with A>0 in exterior domain  is given in the following theorem.

THEOREM 4.2. Suppose that Q is an exterior domain such that 0e Q,=
RMQ. Moreover, suppose that (H;), (H;) and (H,) hold, ¢(x)=0 in Q and
0<a(x)<1 on I'. Then, there is a constant 1>0 such that for every A<1, the
problem (A) has a positive solution u satisfying (4.1).

Proor. We need only to consider the case where 4=0.

Let ro>0, G, and G, be as in the proof of Theorem 4.1. We shall construct
a supersolution of (A). First, we can choose 2'>0 and #, € C2*?(G,) such that
f1,(x)>0on G, and

(4.24) =D, + e(x), = I'm(x)4, in Gy,
(4.25) Bit;, =20 on I', 06i;/0v>0 on A,.
In fact, put
ay = min,g, a(x), b = max{max,g, b(x), 1}, b = b/2a,,
& = max, ro(x), k¥ =(1—a)/&, M = maX,g m(x)/a(x),
and for 6=(b2—Am)!/2, Ae (0, b2/m), define ¢, by
@(r) = e5( cosh 6r + (b + ) sinh 7)/8.
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Then, ¢, satisfies
@7 + 2boy + Amgp, =0, r>0,
0,000 =1, 5(0) = «.
Noting that
lim,_q k6/(b2+Kxb—62) = 1,
lim, o (526 + 26k —3) /(B3 + b2k — 626+ 6%k) = 1,
we can choose A=4" so that
?1(r) >0, ¢i(r) <0, 0<r=r,.
Define 4,(x)=¢,(|x]), xe G,. We then see that &1, € C2*7(G,), and
— Diy(x) + c(x)i,(x)
—a(x) (@(Ix) +2be3(1x]) + 2ba(x)—b(x))¢i(1x]) + c(x)¢,(Ix])
Ama(x)e(Ix]) 2 A'm(x)a,(x) in Gy,
a(x) (@i(Ix]) Ziy BixilIx| + (1 —a(x))e,(Ix])/ex(x))
a(x) (= 1(1x]) + (1= D¢, (1x[)/@)
«(x)p1(1x)) (= @i(IxD/@1(Ix)+x) 2 0 on I (if (x)>0),
Bfiy(x) = ¢,(Ix]) > 0 on I (if a(x)=0),
00, (x)[0v = @i(ro)a(x) (Xy (]~ aij(x)x;/1x)))712 > 0 on A,

[\

Bt (x)

v -

where we have used the relation 0<¢1(r)/@,(r) £ ¢1(0)/¢,(0)=k for r<r,. Thus,
the existence of A’>0 and i, € C*%(G,) satisfying (4.24) and (4.25) is proved.
Next, by (H,), (H;) and (i-a) of Lemma 3.1, we can choose A" >0 so small that

Y+ b¥(r)y' + 'm*(r)y =0, r = r,,
W(ro) = @4(ro), y'(ro) = @i(ro)

has a positive solution ¢, satisfying ¢5(r)>0 on [ry, 00) and (4.20) with ¢=¢,.
It is easy to see that #,(x)=¢,(|x|) satisfies fi, € C2*°(G,) and

=-Dh, + (x)fi, = ’'m(x), in G,,
fi,(x) = fiy(x), 0fiy(x)/0v = 0fi,(x)/0v on A,.
Hence, the function i defined by
fi(x) = ,(x) for xeG,; i(x) = fi,(x) for xeG,,
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is a supersolution of (A) for 0< /<, where 1=min {A’, A"}, and satisfies
limy ﬁ(x)/SIxI ds/p*(s) = constant > 0.
ro

To construct a subsolution of (A) for 0<A< 4, we take a positive solution v
of the problem

—Dv+cex)v=—-m(xpv in Q, Bv=0 on T,

satisfying (4.1). This is possible by Theorem 4.1. Since both fi and v satisfy
(4.1), we can choose a constant M >0 so that

Mu(x) £ G(x) in Q.

The function # = Mu(x) is clearly a subsolution of (A) with the property #(x) <(x)
in ©, and so, by Lemma 4.2 (A) has a desired solution u for every ie[0, 1).
This completes the proof.

4.2. Existence of bounded positive solutions

THEOREM 4.3. Assume that (H,) and (Hs) hold and ¢(x)=0 in Q. Then,
there is a constant >0 such that for every A<1, the problem (A) has positive
solutions satisfying (4.2).

Proor. First we consider the case where A<0. Let r,>0, G, and G, be
as in the proof of Theorem 4.1. By (ii-b) of Lemma 3.2, the initial value problem

2" + by(r)z' — (c¥(r) — Am*(1)z =0, r > ry,
Z(rg) =0, z'(rg) =1

has a positive solution ¥ satisfying '(r)>0 on [r,, o) and lim,_, , ¥(#) =constant
>0. Define a function # by

i(x) =0 for xeG,; ii(x) = Y(|x]) for xeG,.

Then, ii is a subsolution of (A) and #fi(x)=lim,_ , Y(r) on @ is a supersolution of
(A) satisfying i#i(x) <fi(x) in Q. Lemma 4.2 then implies the existence of a solution
u of (A) lying between #(x) and fi(x) in Q. ‘
Next we consider the case 1=0. By (ii-a) of Lemma 3.2, there exist #,>0
and 5o>0 such that Q> {x: |x|>#,} and
Y+ b(r)y + m¥*(r)y =0, r>F,
W) =1, ¥'(Fo) = —no

has a positive solution ¢ satisfying ¢’(¥) <0 on [#,, ) and lim,_, ., ¢(r)=constant
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>0. Put Gi=Qn B(0, 7,) and let 1, >0 be the principal eigenvalue of the problem
— D =Am(x)p in Gy,
0@lop =0 on I (if F%@), ¢ =0 on Ag={x:|x|=Fo}.
For 0</ < 4,, the problem
— Du =im(x)u in Gj,
oufop=0 on I'(ifI'xg), u=1 on A,

has a unique positive solution u=u(x; A)e C**9(G}). Since, for 0=’ <A"<1,,
v(x)=u(x; A")—u(x; A') satisfies

— Do — A'm(x)p = (A" =A)m(x)u(x; A’) >0 in G},
j0f =0, on I'(if'sg), p=0 on A,
we have v(x)=0 by Lemma 4.1, and so
I =Sulx; A)Sux; "), xeGy, 051 <A’ <iy.

Using L? _estimatc_:s‘ (p_>N) and Sobolevi’s imbedding theorem for the solution
w(x; A)=u(x; A)—1 of the problem
— Dw = im(x)u(x; 1) in G},
ow/ofp=0 on I if 'xg),w =0 on A,

we have

lw(- s M, ¢, = M [[w(-; A)“Z,p,Gi < AM,|lmw(- l)“o,p,c’.
< AM,|mw(-; AMo,pei S M3d, 0<i< A,

where the constants M; are independent of A for 0<A<A”. Hence for any
¢>0, we can choose a constant 4,>0 such that max,,, |Ou(x; 1)/0v|<e for any
0<AZ1,. For the above 5,>0, let

€ = No min, 4, {a(x) (XX (X ai;(x)x;/|x])?) 12},
and define a function @ by
i(x) = u(x; 4,) for xeGy; ti(x) = ¢(|x]) for xeG),

where G,=Q\G;. Then, for every 0<A<i=min {4, 1}, the function @ is a
supersolution of (A). To see this, we need only check the required relation on
Ag, since the other relations can be checked by the same argument as in Theorem
4.1. 'We obtain,
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ol /ov = — &,
0li,/0v = @'(ro)a(x) (X iy ()= ay(x)x;/|x[)?)~1/2
~ 10a(x) (T (Th=y a;(x)x;/Ix)H) 712 < — & on A,
This implies i, /0v—0i1,/0v= —e+e=0 on Aj,.
As a subsolution & of (A) we take a solution of (A) with A= —1 satisfying
(4.2) and u(x)=<#(x) in Q; such a i exists from the first part of the above proof.

Consequently, for every 0< 1</, there exists a solution u of (A) satisfying (4.2)
by Lemma 4.2. The proof is thus complete.

COROLLARY 4.1. Suppose that (H,), (Hs) hold and c¢(x)=0 in Q. Then,
there is a constant 1>0 such that (A) has a positive solution u satisfying (4.2)
provided || < 7.

PROOF. In view of Theorem 4.3, there is a >0 such that for u<1
(4.26) — Do+ c(x)p=puM(x)v in Q, Bv=0 on I (if [ =g)

has a solution v with the property (4.2). For |i] </, let # and # be positive
solutions of (4.26) with u=|A| and y= —|A|, respectively, which satisfy (4.2) and
#(x)=fi(x) in Q. Then, since # and # are, respectively, a supersolution and a
subsolutlon of (A) with 1 e(—1, ), the assertion follows from Lemma 4.2.

4.4. Example
EXAMPLE 4.1.  We consider the problem:

4.27 —Adu + c(x)u =Am(x)u in Q, Bu=0 on I (if I*g),
where ¢, me C§,(9), and ¢(x)=0, m(x)>0 on Q. We note that
c*(r) = max, -, c(x), m*(r) = max; -, m(x).

(i) Suppose that Q is an exterior domain in R? such that 0e R?\Q and
ax)y<lonrl. If

gw rlog r (c*(r)+ m*(r))dr < o0,

then by Theorem 4.2 there is a constant A>0 such that for A</, (4.27) has a pos-
itive solution u with the property

(4.28) 0 < liminf, ., u(x)/log |x| < lim sup,,, ., u(x)/log |x| < co.

In the case where A <0, the same assertion holds for Q= R2.
(ii) Suppose that N=3. If
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Swr(c*(r) + m*(r))dr < oo,

r

then by Theorem 4.3, there is a constant >0 such that for A</, (4.27) has a
solution u satisfying (4.2).

REMARK. The special case of (4.27) in which Q=RN, N=3 and ¢(x)=0
has recently been studied by Kawano [18].

S. Local existence of positive solutions of semilinear equations

In this section we consider the semilinear elliptic equation
©) — Du + c(x)u = im(x)f(u) in Gz, G = {xe R": |x|>R},

where D, c¢(x) and m(x) are as in the preceding sections, A is a real parameter,
anf f is continuous on (0, ©0). Our purpose here is to develop local existence
theorems for positive solutions of (C) on the basis of the results known for the
associated linear equation

(2.16) — Du + c(x)u = Aim(x)u in Gg.

By a local existence theorem for (C) we mean a theorem which guarantees the
existence of solution of (C), with specific properties, in a ‘“‘small’’ neighborhood
of infinity, that is, in a domain Gy for R sufficiently large.
We assume without further mention that the value of A*(o0) associated with
(2.16) is positive. Conditions on f are selected from the following list:
(F,) feC§,(0, o), 0<O<1, f(u)>0 on (0, o0), and for any finite subin-
terval I of (0, oo0) there is a K> 0 such that f(u)+ Ku is nondecreasing
on I.

(Fy) f(+0)=0 and f, =lim SUp, - 4 0.f(u)/u < co.
(F3) fm = lim Supu—mof(u)/u < .

THEOREM 5.1. Assume that (F,) and (F,) are satisfied. Then, the following

statements hold.
(i) Suppose that 0< i< A*(0)/f, and SH(u) are of type 1 for all p<A*(c0).
Then, for any he SH(A) with A e(Afs, A*(c0)); (C) has-a solution u satisfying

(5.1) 0 < u(x) £ Mh(x) in Gg

for some constants M >0 and R>0.
(ii) Suppose that 0<Ai<A*(0)/fy and SH(u) are of type I for all pe
[0, A¥(%0)). Then, (C) has a solution u satisfying
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(5.2) M =u(x) S M™' in Gg

for some constants M >0 and R>0.

(iii) Suppose that SH(u) are of typeIll for all ue(0, A*(c0)). Then,
for any A>0, (C) has no solution u satisfying (5.2).

(iv) Suppose that SH(u) are of type 1 or 11 for all u<0. Then, for every
<0 and he SH(X') with )’ <Af,, (C) has a solution u satisfying

(5.3 Mh(x) S u(x) £ M™! in Gy
for some constants M >0 and R>0.

PrOOF. (i) and (ii) Let Afy<A'<A*(c0) and he SH(X). Then there is an
R>0 such that he SH(A'; Gg) and h(x)>0 on Gz. Choose a constant u, >0
so that

O0<f(wfu <A for 0 <u £ uy

and put M =u,/sup,.c, h(x). Then, the function @ defined by fi(x)=Mh(x) on
G becomes a supersolution of (C) with boundary values Mh(x) on I'y. Next,
take a function # € H(0; Gg) such that

0 < ii(x) £ Mh(x) in Gg.

This  is obviously a subsolution of (C) and satisfies ii(x)<fi(x) in Gg. From
Lemma 4.2 there exists a solution u of (C) satisfying #(x) <u(x) <fi(x) in Gg.

(iii) Assume that u is a solution of (C) with the property (5.2), and put
I=2inf {f(u)/u: MSu<M~1}>0. Then, since u is positive and I-
superharmonic in G, we see that I<A*(R) and for any he SH(1; Gg), h(x)<
M u(x) in Gg for some M,>0. This contradicts the hypothesis that SH(1) is of
type I1I.

(iv) Let A<0 and he H(X'; Gg) with A'<Af,. Letting u, and M be as
in the proof of (i) and (ii), we have a subsolution i1(x) = M h(x) of (C) with boundary
values Mh(x) on I'y. Furthermore, as a supersolution ## of (C) we can take
i e SH(0; Gg,) such that

Mh(x) £ i(x) in Gg,

for some R;>R. Hence the assertion follows from Lemma 4.2. This finishes
the proof.

THEOREM 5.2. Assume that (F,) and (F,) are satisfied. Then, the following
statements hold.

(i) Suppose that 0< i< i*(0)/f,, and SH(u) are of type Il or 111 for all
pe(0, A*(0)). Then, for any h e SH(A") with A’ € (Af,,, A1*(0)), (C) has a solution
u satisfying (5.1).
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(ii) Suppose that liminf,_ o f(u)/u>0 and SH(u) are of type Il (or of type
IID) for all pe(0, A*(0)). Then, for any >0, (C) has no positive solution u

satisfying

lim, ., u(x) =0 (resp. limsup, ., u(x) < ©).

(iii) Suppose that A<0 and SH(y) are of type 1l for all u<0. Then, (C)
has a solution u satisfying (5.2).

PrOOF. (i) Let Af, <A'<A*(o0) and choose an he SH(A'; Gg) such that
h(x)>0 on Gg. Let u*>0 be a constant such that

0 <f(wfu <A for u = u*.

Set M =u*/inf, . h(x) and 2(x)=Mh(x) on Gg, and choose a function i € H(0;
Gp) satisfying i(x)<{(x) in Gg. Then, since # and & become, respectively, a
supersolution and a subsolution of (C), the assertion follows from Lemma 4.2.

(ii) Let SH(u) be of type II (or of type III) for all ue (0, 1*(c0)) and assume
that (C) has a positive solution u satisfying

lim, ., , u(x) = O (resp. limsup ., u(x)<0).

Putting T=sup,.g, 4(x) and A=Ainf {f(u)/u: 0<u<t}>0, we see that u is
positive and A-superharmonic in G, and so we have 1< A*(R) < A*(c0) and SH(1)
is of type I (resp. of type II). This contradicts the hypothesis.

(iii) Take A’'<Af, and he H(A'; Gg). Then, the function @(x)=u*h(x)/
inf, ., h(x) is a subsolution of (C) with boundary values u*h(x)/inf, ¢, h(x) on
Iy, where u* is the same constant as in the proof of (i). Furthermore, choosing
fie SH(0; Gg) with the property ii(x)<@(x) in Gg, we have a supersolution 4.
The desired assertion now follows from Lemma 4.2 and the hypothesis that
SH(u) are of type II for all u<0. This completes the proof.

As an application of Theorems 5.1 and 5.2, we consider
) — Du + c(x)u = Am(x)u” in Gg, 7y =0, 1.

In what follows we assume that the coefficients a;; and b; of D are bounded and
¢(x)=0 on RY

In addition to (H;)—(Hs) mentioned in the preceding section, we need the
following conditions:

(Ho) (7(1. dstpa(s) pu(r) (cat) + my(rr = co.

(Hy) [2(5; astpu®) petrymerrar < oo.
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ExAMPLE 5.1. Let y>1. Then the following statements hold.

(i) Suppose that 1>0.

(a) If (H,) and (Hj;) hold, then (C’) has a solution u satisfying (5.2).

(b) If (H,)and (Hg) hold, then (C’) has no positive solution u satisfying (5.2)
for any 4 e ({*, A*(o0)) provided {* <A*(o0).

() If (H,) and (Hs) hold, then for any he SH(4), (C’) has a solution u sati-
sfying (5.1).

(i) Suppose that A<0. For any he SH(A), (C’) has a solution u satisfying
(5.3). Moreover, if (H;) and (H;) hold, then the above solution u satisfies (5.2).

PRroOOF. (i-a) By (H,), (H;) and (i) of Theorem 3.3 or (i) of Theorem 3.4,
SH(u) are of type Il for all ue R. Hence the assertion follows from (ii) of
Theorem 5.1. ‘ '

(i-b) Since, by (ii) of Theorem 3.3, SH(n) are of type III for all ue
(¢*, A*(o0)) provided {* < A¥(o0), (iii) of Theorem 5.1 implies the assertion.

(i-c) Since, by (iii) of Theorem 3.3 or (iii) of Theorem 3.4, SH(u) are of type
I for all ue R, the assertion is a consequence of (i) of Theorem 5.1.

(i) Noting that sup,., h(x)<oo for heSH(A; Gg), we have the first
assertion by (iv) of Theorem 5.1. Since SH(4) is of type II by (H;), (H;) and (i)
of Theorem 3.3, the second part is obvious.

ExaMPLE 5.2. Let y<1. Then the following statements hold.

(i) Suppose that 1>0.

(a) If (H,) and (H3) hold, then (C’) has a solution u satisfying (5.2). Fur-
thermore, (C’) has no positive solution tending to 0 as |x|— oo.

(b) Suppose that {*<A<Ai*(c0). If (H;) and (Hg) hold, then for any he
SH(2), (C’) has a solution u satisfying (5.1). Furthermore, any positive solution
of (C’) cannot be bounded.

(c) Let O<y<l1. If (H,) and (H,) hold, then for any he SH(X), (C') has
a solution u satisfying

(5.4) Mh(x) < u(x) < M- ST" ds/py(s) in Gg

for some constants M >0 and R>0.
(i) Suppose that A<0. If (H,) and (H;) hold, then (C’) has a solution u
satisfying (5.2).

PRrOOF. (i-a) Since we see that SH(u) are of type II for all ue R by (i) of
Theorem 3.3 or (i) of Theorem 3.4, the assertion follows from the proofs of (i)
and (ii) of Theorem 5.2.

(i-b) This follows from (ii) of Theorem 3.3 and (i) and (ii) of Theorem 5.2.

(i-c) In view of (H,) and (H), for some R>0 the equation
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V' 4+ by(r)y" + Am*(r)y? =0, 1> 0,
has a solution ¢ satisfying

O0<op=1 ¢'(r =0, re[R, o),
(5.5)

lim, ., , @(r) / Sw ds/p4(r) = constant > 0

(see e.g. [4]). The function fi(x)=¢(]x|) is a supersolution of (C’) and is A-
superharmonic in Gg. Hence, for h e H(A; Gg) we can choose a constant M >0
so that Mh(x)<f(x) in Gg. Putting ii(x)=MAh(x), we have a subsolution ii of
(C) such that ii(x)<f(x) in Gg. The assertion now follows from Lemma 4.2
and (5.5).

The statement (ii) is obvious (cf. (i-a)).

6. Global existence of positive solutions of quasilinear equations

The final section is devoted to the study of the existence of positive solutions
of the problem

(B) — Du + e(x)u = Am(x)u’ in Q, Bu=0 on I (if I x9),

where y is a nonzero constant with y=1. We want to obtain explicit conditions
for (B) to have solutions satisfying (4.1) or (4.2). For this purpose we make
extensive use of results concerning the existence and asymptotic behavior of
solutions of second order ordinary differential equations. So, we begin with
an analysis of the ordinary differential equations associated with (B).

6.1. Preliminaries for ordinary differential equations

We consider the initial value problem

(p(r)y") — q:(r)y + q,(r)y* =0, r>r, yx0,1,

6.1) )
Wro) =&, y'(ro) =n,
where p, g, and g, satisfy the conditions

Pecl[rOs CO), P(") >0 on [rOa w), 41, qZEC[rO’ w), ql(r) g 0 on

[ro, ), and either g,(r) > 0 or q,(r) <0 on [ry, ).

In addition we need some or all of the following conditions:

(6.2) S: dr/p(r) = o0,
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(6.3) Sw max {1, S ds/p(s)}q,(Pdr < 1,

r

(6.4) ST,(SO ds/p(s))y lg2(Pldr < .

LEMMA 6.1. Suppose that q,(r)<0 on [r,, o) and (6.2)(6.4) hold, and let
y>1 (resp. 0<y<1). Then, there are positive constants &, and 1, such that for
any Ce[0, o] and ne[0,no] (resp.le[&o, 0) and nelny, ) U{0}), the
problem (6.1) has a solution y satisfying y'(r)=0 and

65) &+prom || dslp©)SynSME+prommax {L, [ dsip©)}, rzro,

where M is a positive constant.

PrOOF. Suppose that y>1. Let ¥ denote the locally convex vector space
of all continuous funjtions on [ry, o) with usual metric topology. In what
follows we use the notation:

PO) = || dsip(9), @) = max {1, PO}, r 2 7o,

M, = S: ®(r)q,(Ndr, M;=(1-M)™!, M,= S: &(r)’|q,(rdr,

(6.6) Eo = Q2 MIM,)~ V0D, g = p(re)~ 1.
For any fixed £ e [0, &,] and n e [0, n,], we consider the set
Y = {ye€: &+ p(ronP(r) £ y(r) < 2M,(E+ pram@(r), 2 ro}.

Clearly % is a closed convex subset of €. Define a mapping F: ¥ —»% by

r

Fy() = &+ plromP(r) + |
6.7)

Cromeree

ro

- S' (S: ds/p(s) > q,()y(z)¥dr.

ro

It is verified that (i) F maps & into itself; (ii) F is continuous on #'; (iii) F# is
relatively compact in . Since q,(r)=0 and ¢,(r})<0 on [rq, o), it is obvious
that

Fy(r) = & + p(romP(r), yed.

Next, setting 7= p(ry)n for simplicity, by (6.6) and (6.7), we have for y e &
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68 Fy)s¢+q00) + 20, +) | ({dsip) a,0e@ar
= @ityc+iy || (§ dsip) ax0e@rdr
< [E+7+2M M (E+7)+ My (2M )& +7)7]9(r)
< [(L+2M M) G +7) + 22 MM (& +77)]9(r)
< 21+ M My) (E+MP(r) = 2M ((E+M2(r).
Thus, F maps % into itself. The verification of (ii) and (iii) is routine, so we omit
it. By virtue of Schauder-Tychonoff’s fixed point theorem, F has a fixed point

ye¥: (Fy)r)=y(r), r=ry. This y is clearly a solution of (6.1) with the desired
properties.

To prove the assertion in the case where 0 <y <1, we need only to note that
(6.8) is valid for £ € [£,, o0) and 5 € [1,, o) U {0} with the same constants as (6.6).
This completes the proof.

LEMMA 6.2. Suppose that q,(r)=0, q,(r)>0 on [ry, ) and (6.2), (6.4)
hold, and let y>1 (resp. 0<y<1). Ifne>0 is sufficiently small (resp. sufficiently
large), then for ne(0, no] (resp.ne€[ny, ©)), there is a positive constant &,=
Eo(n) such that for £€[0, &,] (resp. £€(0, &y]) the problem (6.1) has a solution
y satisfying y'(r)20 and

69)  &+27prom || dslp©=y)SE+prom || dsip), rzre

Proor. Suppose that y>1. For fixed £=0, #>0 let y be a local solution of
(6.1), and set

r¥*=sup{F:0< y(r)< oo inro<r<F¥}.

We claim that r*=o00. Integrating (6.1), we obtain

6100 )=+ | dstps) = | ([ dstn(o)) asomoye,
which implies
(6.11) yr) = E+AP@T), rosr<r¥

where P(r) and # are as in the proof of Lemma 6.1. On the other hand, using
(6.11) in (6.10), we have for ro=r<r*,
612 yzE+ii-2¢ " g@de-2m (" (1 dsip0)) a0a1p0).

ro ro ro

Define
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flo = p(ro) ™' (27" 2M)~V07D, Lo(n) = 27 DMZ ' p(ron)'/?, n>0,

where
My =7 (( astp®) ax@an, Mz = | ax(01s

From (6.12) we see that if £ € [0, £y(n)], n€(0, no], then
(6.13) ) 2 &+ iP(r)2, rosr<r*

The relations (6.11) and (6.13) shows that r*=o00 and (6.9) holds. It is easy to
see that y'(r)>0 for r=r,.
A similar argument holds if we assume that 0<y<1.

REMARK 6.1. In the case where y> 1, from the above choice of £,() we may
assume that lim,_ o 7/o(n)=0. This fact will be used in the proof of Theorem
6.2 below.

6.2. Superlinear equations

In this subsection we establish the existence of positive solutions of the
problem (B) in the case where y> 1.

In addition to the conditions (H,)-(Hs) mentioned in Section 4, the following
conditions are employed:

(Hy) [7(5,. dstput) Jpatrrc=ydr < oo

(Hy) S:(g:o ds/p*(s))y p*(rym*(r)dr < .

THEOREM 6.1. Let y>1. Suppose that (H,), (H,), (Hg) and (Hy) hold
and ¢(x)=0 in Q. Then, for any 1<O0, the problem (B) has infinitely many
positive solutions satisfying (4.1).

ProoOF. First we choose r; >0 such that @>{x: |x|>r,} and

(6.14) g“’ max {1, S ds/p*(s)} P(Pr)dr < 1.

ri

Since 1< 0, by (H,), (Hg) and Lemma 6.1, for sufficiently small £ >0, the problem

(*()y') + Ap*(rmy(r)y? =0, r>ry,
r)=2¢ y(ry=0

has a solution ¢ satisfying ¢’(r)=0 and



212 Yasuhiro FURUSHO

(6.15) ¢S o) s Migmax {1, S dsp*)f vz

for some constant M, >0. We now define the function # by
A(x) = ¢, for xeGy; (x) = ¢(|x]) for xeG,,

where G;=Qn B(0, r,), G,=2\G,. In essentially the same way as in the proof
of Theorem 4.1, we see that 4l is a supersolution of (B).
To construct a subsolution, we note that ¢ satisfies ¢’(r; +1)>0 and

616 ¢+ pr Do+ D[ dsir e S 00), rzr L
ri+1
Applying Lemma 6.1 again, we see that the problem
(p(NZ')" = pu(r)e¥(r)z + Aps(r)m*(r)z” =0, r>ry +1,
z2(ry+1) =0, Z'(ri+1) =1

has a solution ¥ satisfying ¥’(r)>0 and

pa(r+ { ds/py(5) SUN S Mapy(ry + Dy max {1, S L dslpa@)f 2L,

r
ri+ r

for some constant M,>0, provided #>0 is sufficiently small. Combining this
with (6.15), (6.16) and using (4.21), we can take 5 small enough so that forr=r, +1,

617 puri+n | dslpu)sUISerSM & max {1, {7 ds/po)} .
Then, the function & defined by
i(x)=0 for xeG;=Q n B, ry+1); ii(x) = y(|x]) for xeQ\G;

is a subsolution of (B) which satisfies ii(x)<fi(x) in Q. From Lemma 4.2 it
follows that (B) has a solution u such that &i(x) < u(x)<fi(x) in Q. That u satisfies
(4.1) follows from (6.17) and (4.21), and that u is positive is a consequence of the
maximum principle.

From the above proof it is easily seen that there exist infinitely many positive
solutions of (B) satisfying (4.1). This completes the proof.

- We now give an existence theorem which-applies to the case 1 =0 in (B).

THEOREM 6.2. Let y>1. Suppose that Q is an exterior domain such that
0eQ,=RMQ. Suppose that (H,), (Hy), (Hg) and (Hy) hold, c(x)20 in Q and
a(x)<1lonI. Then,for any A€ R, the problem (B) has infinitely many positive
solutions satisfying (4.1).
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PrROOF. It is enough to show the assertion for the case 1>0. Furthermore,
replacing Am(x) by m(x), we may assume that A=1.

Let ro and G;, j=1, 2 be as in the proof of Theorem 4.1. We first construct
a supersolution of (B). As in the proof of Theorem 4.2, we can take a constant
A’>0 and a function it; € C2*9(G,) such that

— D, + c(x)t; = Am(x)a,, 6,(x)>0 in Gy,
(6.18) Bii, 20 on I, fi(x)>0, 06,(x)/dv>0 on A,
fi,(x) = @,(|x]), xe G, for some ¢, such that ¢(r) > 0 on [0, r,].
Next, consider the problem
P*(My) + p*(r)m*(r)y? =0, r>r,,
Wro) =&, y'(ro) = n.

(6.19)

By Lemma 6.2 we can choose an 7, in such a way that for every n € (0, o] there
is a &o(n) such that for n and &€ [0, &y(n)] problem (6.19) has a solution ¢,
satisfying ¢,(r)>0 and

620) &+ 3 p0om, dslp*®) < 00 S €+ pCom || dslp*), rzre.

Put now =¢1(ro)/¢,(ro) and choose 1, € (0, no] satisfying

Eo(ny) = (A)VO=H and  n,/E(ny) < 0.

This is possible, since £o(n)—0 and n/Ey(n)—0 as n—0 as noted in Remark 6.1.
Denoting by ¢,(r) the solution of (6.19) with {=¢&,=7,/0 and n=n,, we define

a(x) = &;0,(IxD/@4(ro) for Xeéx; fi(x) = @,(|x]) for xeG,.

This fi is a supersolution of (B). In fact, noting that 0<#i(x)< &, <(A)/0~D and
so fi(x)? = A'li(x) in G,, we have by (6.18)

— Di(x) + c(x)a = Am(x)d = m(x)a? in G,,

and by (6.19) we have
— Db + o(x) = m(x)a? in G,.

Furthermore, an easy calculation shows that
0y [0v = &,0a(x) (X1 (Ef=y aif(x)x;/1x[)?)~1/?
= na(x) (X% (Zf=1 a;j(0)x;/1x])?)~1/2
= 3(ro)a(x) (T (Zf=1 a:;j(x)x,/|x)*) 712 =00(x)/0v on A,
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where &, =1z, [=1, 2. Thus @ is a supersolution of (B).
To construct a subsolution, we consider the linear problem

~Dv+ce(x)pr=0 in Q2 Bv=0 onl.

Theorem 4.2 ensures the existence of a solution ve C?*?(Q) of this problem
satisfying (4.1). In view of (4.1), (6.20) and the boundary condition on I", we can
choose a constant M >0 such that Mv(x) <#(x) in Q. Obviously, il =Muv is a sub-
solution of (B) such that #(x)<#(x) in Q, and the existence of the desired solution
follows from Lemma 4.2. The existence of infinitely many solutions is easily
verified. This finishes the proof.

In the following theorem we indicate a situation in which (B) possesses
bounded positive solutions.

THEOREM 6.3. Let y>1. Suppose that (H,) and (Hs) hold and ¢(x)=0 in Q.
Then, for any A€ R, the problem (B) has infinitely many positive solutions
satisfying (4.2).

Proor. We may assume that Ax0. We first note that by Theorem 4.3,
there is a constant >0 such that for every u< i

(6.21) —Du+c(x)u =pum(x)u in Q, Bu=0 on I (if I x9)

has a positive solution satisfying (4.2).
If >0, let i and # be positive solutions of (6.21) with y=j and u=0, re-
spectively, which satisfy (4.2) and

0 < ii(x) < a(x) < (FHVO-Y in Q.

Then @ and # are, respectively, a supersolution and a subsolution of (B), and the
assertion follows from Lemma 4.2.
If 1<0, we set fi(x)=1 on Q and let ii be a solution of (6.21) with u=21 sat-

isfying (4.2) and O<#@(x)<1 on Q. Since & is a supersolution and & is a
subsolution of (B), we have a desired solution of (B) by Lemma 4.2.

6.3. Sublinear equations

THEOREM 6.4. Let O<y<1, Q=RN and suppose that (H,), (H,), (Hg) and
(Hy) hold and c(x)20 on RN. Then, for every 1<O0, the problem (B) (with the
boundary condition deleted) has infinitely many positive solutions satisfying
4.1).

Proor. Without loss of generality we may assume that A=—1. Let r;>0
be such that (6.14) holds, and put
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G, = B0, ry), G,=RMG,; Gy =B0r+1), G;=RMG,.
We take a unique solution u; € C**9(G}) of
(6.22) —Du + (c(x)+m(x)hu =0 in G}, u=1 on Gy =4,.

From the maximum principle it follows that 0<u,(x)<1on G;. Next, by Lemma
6.1, there exist &, and 7, > 0 such that for £ € [, o) and #j € [#jo, o©) the problem

(6.23) (P(NZ') = pu(c*(r)z — pu(r)m*(r)z? =0, r>r; + 1,
) Wry+1) =& 2@+ =7

has a positive solution z satisfying

(6.24) £+ p*(r,+1>ﬁ§ L dsIpal9) < 2()

r
ry

< My €+ pury + D) max {1, S

r

dS/p*(S)}, r 2 rl + 1)
+1

for some constant M,;>0. Put M,=max {&;, (ming, u,(x))"'}, and i,(x)=
M,u,(x)on G,. Lety bea solution of (6.23) with E=M,, fj=1,, which satisfies
(6.24), where

fly = max {fjo, max,4, {10, (x)/ov|a(x)" (X} (T ai(x)x;/|1xD?)H2}},
and define the function # by |
ii(x) = ii,(x) for xeG}; ii(x) = Y(|x|) for xeG).
Denote by i; the restriction of & on G, j=1, 2. Then,
(6.25) — Dil; + c(x)i; + m(x)a} <0 in G, j=1,2;

(6.25) for j=1 follows from (6.22) and the relation ii,(x)=1 on G}, and (6.25) for
j=2 from (6.23). Furthermore, we have

O (x)/0v — Oiiy(x)]/0v
= 0ily(x)/0v — Y'(ry + Da(x) (T, (XN=y aif(x)x,/|x)?)~1/2
= 01 (x)/0v — fa(x) (X q (X)=1 aij(x)x,/1x))*)"2 < 0 on 4, .

It follows that i is a subsolution of (B). Obviously, i satisfies (4.1) by (6.24).
We now choose &,>0 so that for & e [£,, o)

(p*(r)y") — p*(rmy()y? =0, r>ry,
yrp=¢ y@)=0

has a solution ¢ satisfying

(6.26)
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¢ o s Mgmax {1, " dsprof. rzr.

An integration of (6.26) from r, to r, +1 yields

ry+

p*(ri+De'(ri+1) 2 EYS ' P*(s)my(s)ds = M &7,

and so from (6.26) we obtain
(6.27) oz e+ M| dslps), rzr 41
ri+1
(see (6.5)). In view of (4.21), for E=M,, fj=#, we can choose &, =&, such that
for é=&, and r=r, +1,

M E+pari+ D max {1, |7 dsipu(o)f = &+ Mgt [ dstpcs).

ry

From this, (6.24) and (6.27) it follows that Y(r)<¢(r) for r=r,+1, provided
E2&,. Let ¢ be the above solution of (6.26) with ¢ such that

¢ = max {&o, max {ii,(x): xe G}}}
and define a function 4 by _ -
(x) = ¢ for xeG,; t(x) = @(|x|]) for xeG,.

It is easily verified that & is a supersolution of (B) satisfying (4.1) and #(x) <fi(x)
in Q. Therefore, by Lemma 4.2, (B) has a solution satisfying it(x) < u(x) < i(x)
in Q. It is not to hard to show that there exist infinitely many such solutions
u(x) of (B). This completes the proof.

THEOREM 6.5. Let 0<y<1 and Q be an exterior domain such that 0 e RM\Q,
and suppose that (H,), (H;3) and (H,) hold, ¢(x)=0 in Q and a(x)<1 on T.
Then, for every A>0, the problem (B) has infinitely many positive solutions

satisfying (4.1).

PrOOF. From the proof of Theorem 4.1 there exists a constant >0 and a
supersolution & of (6.21) with u=/ which is positive throughout © and satisfies
(4.1). The function fi(x)=(I/A)"1=Vd(x)/inf o0(x) is a supersolution of (B)
with the property (4.1): Next, let-u be a solution of (6.21) with u=0- satisfying
(4.1), and take a constant M >0 such that Mu(x)<4(x)'in Q. - Then, i=Mu is a
subsolution of (B) which satisfies (4.1) and #(x)<f(x) in @, and so (B) has a
desired solution. Moreover, it can be shown that there exist infinitely many such
solutions of (B).

The following results establish the existence of bounded positive solutions.
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THEOREM 6.6. Let y<1 and Q= R", and suppose that (H,), (Hs) hold and
¢(x)=0 on RN. Then, for every A€ R, the problem (B) has infinitely many pos-
itive solutions satisfying (4.2).

The proof is analogous to that of Theorem 6.3 and will be omitted.

COROLLARY 6.1. Let yx0 and Q= RN, and suppose that (H,), (Hs) hold
and ¢(x)=0 on R¥. Then, for every A€ R, the problem (B) has infinitely many
positive solutions satisfying (4.2).

Ify>1, then the same conclusion holds even in the case where Q is an exterior
domain.

Proor. It suffices to consider the problems
— Du + c(x)u = uM(x)u” in R¥, for y < 1,
and

—Du + co(x)u = puM(x)u” in Q, Bu=0 on I, for y>1,

with = +]4|, where M(x) is the function in the condition (H5). The assertion
for y>1 or y<1 follows from Theorem 6.3 or Theorem 6.6.

THEOREM 6.7. Let 0<y<1 and Q be an exterior domain, and suppose that
(H,) and (Hs) hold and ¢(x)=0 on RN. Then, for every 1>0 the problem (B)
has infinitely many positive solutions satisfying (4.2).

The proof is omitted, since it is essentially the same as that of Theorem 6.5
except that Theorem 4.3 is used in place of Theorem 4.1.

6.4. Example

Consider the equation
(6.28) — du + co(x)u = Am(x)u? in Q, Bu=0 on I (if xg),
where ¢, me Cf,.(Q) and ¢(x)=0, m(x)>0on Q, 1€ R and y=0, 1.

ExaMPLE 6.1. (i) Let N=2and Q=R2 If
(6.29) Sw rlogrc*(r)dr < oo, Sw r(log r)*my(r)dr < oo,

then for every A<0 and y>0, (6.28) has infinitely many positive solutions u
satisfying

(4.28) 0 < liminf, ., u(x)/log|x| < lim sup,,..,, u(x)/log|x| < co.

(i) Let N=3and Q=RN. If



218 Yasuhiro FURUsHO

(6.30) Sw He*(F) + m*(r))dr < o,

then for every Ae R and y=0, (6.28) has infinitely many positive solutions sat-
isfying (4.2).

(iii) Let N=2 and let Q be an exterior domain such that 0e RMQ. Suppose
that a(x)<lon I.

(a) If y>1 and (6.29) holds, then for every 4 € R, (6.28) has infinitely many
positive solutions satisfying (4.28).

(b) If0<y<1 and

Sw rlog r (c*(r)+ m*(r))dr < o0,

ro

then for every 41>0, (6.28) has infinitely many positive solutions satisfying (4.28).
(iv) Let N=3 and let Q be an exterior domain. Suppose that (6.30) holds.

Then, (6.28) has infinitely many positive solutions satisfying (4.2) for every A e R

or for A>0, according as y>1 or O<y<1.

Proor. (i) The assertion follows from Theorems 6.1 and 6.4.
(ii) This is a consequence of Theorems 6.3 and 6.6.
The statements (iii-a) and (iii-b) follow from Theorem 6.2 and Theorem 6.5,

respectively.
(iv) Theorems 6.3 and 6.7 yield the assertion.

REMARK 6.1.  The condition that m(x)>0 on Q may be replaced by the
requirement that there exists a function M e C¢,.[ry, ) such that M(r)>0 and
|m(x)| < M(|x|) on @, in which case (6.30) should be replaced by

Sw He*(r) + M(P)dr < oo.
ro

REMARK 6.2. When ¢(x)=0 on RN, the assertions (i) and (ii) reduce to recent
results of Kawano, Kusano and Naito [19, Theorem 1] and Kawano [18,
Theorems 2.3 and 2.6], respectively. The assertions (iii-a) and (iv) include
Theorem 4.3 of Noussair and Swanson [36] for the case where y>1, ¢(x)=0
in Q and a(x)=0on I.
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