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1. Introduction

Let M be a non-zero, finite module over a noetherian ring A. It is well
known that if 4 is a local ring with the maximal ideal m, then every permutation
of an M-sequence is an M-sequence. It seems to the author that this property
arises from the fact that the m-adic topology on M is a Hausdorff space. In
this paper we study modules M which satisfy the condition that the Aa-adic
topology on M is separated for every M-regular element a. As a tool in this in-
vestigation we consider the subset o#"(M) of 4 which consists of those elements a
with separated Aa-adic topology.

In section 2 we study some inclusion relations among the set " (M), the set
of all zero-divisors of M and the set of all M-regular elements. In section 3 we
establish a method of constructing modules M such that the sets (M) are as
large as possible. In section 4 we give some conditions equivalent to the assertion
that the sequence {b, a} is an M-sequence for every M-sequence {a, b}.

All rings are assumed to be noetherian, commutative, with unity, and all
modules are assumed to be of finite type, unitary.

Let A be a ring and M an A-module. We write (M) for the set of zero-
divisors on M. Let a be an element of A and let f, be the homomorphism
M —2, M, where f,(m)=am for meM. Then ae 2 (M) if and only if f, is not
injective. We denote by #(M) the set of M-regular elements. Note that ae
Z(M) if and only if f, is injective but not surjective. We let (M) denote the set
of all elements a in A such that f, are isomorphims. If M is a non-zero
module, it is clear that A4 is a disjoint union of the subsets Z(M),2(M) and %(M).
Further we use freely the terminologies in [2].

2. The set o' (M)

DErINITION. Let A be a ring, M an A-module. Then the set (M) is
defined to be the set of those elements a of A such that "%, a"M =0.

It follows easily from our definition that " (M)< 2 (M) U 2(M) for a non-
zero A-module M. In general #°(M) is not an ideal. Applying Krull’s inter-
section theorem, we have a basic proposition about " (M).
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PROPOSITION 2.1. Let A be a ring, M an A-module. Let a be an element
of A. Then ae X (M) if and only if Aa+p=+A for all peAss M.

Proor. By the intersection theorem (cf. [3], (3.11)), ae 4" (M) is equivalent
to the condition that if b—1€ Aa for be A, then b Z(M). Itis also equivalent
to the assertion that if be 2 (M), then b—1¢ Aa. Since Z(M) is the set-theoretic
union of the associated prime ideals of M, it occurs if and only if Ada+p+A4
for all peAss M.

COROLLARY 2.2. Let A be a ring and let q be a prime ideal of A. Let M
be a non-zero A-module. If every associated prime ideal of M is contained in
q, then q<= " (M).

COROLLARY 2.3. Let A be a ring, M an A-module. Then Z(M)< A4 (M)
if and only if p;+p;+ A for all p; and p; in Ass M.

REMARK 2.4. By prop. 2.1, we see well-known facts that if 4 is an integral
domain or a local ring, then #(4)=A—#%(A). Furthermore if A is a semi-
local ring, then its Jacobson radical is contained in J°(A).

Let A be a ring, M an A-module. We denote by #° (M) the subset of A con-
sisting of those elements a of A which satisfy the following condition: for every
prime ideal p in Ass M, there exists a prime ideal q in Ass M/aM such that p =q.

PROPOSITION 2.5. Let A be a ring, M a non-zero A-module. Then # (M)
< (M).

Proor. Let ae#'(M). Forevery peAss M, we can find a prime ideal q in
Ass M/aM with pcq. Since aeq, Ada+p<q. Thus Aa+p=+A, and prop. 2.1
implies a € X (M).

COROLLARY 2.6. Let A and M be as above. Then #(M)n Z(M)=
A (M) n Z(M).

PrOOF. Prop. 2.5 implies that #'(M)n Z2M)<t"(M)n #(M) and the
other inclusion follows from ([2], (15, d)).

PropPoSITION 2.7. Let A be a ring, M a non-zero A-module. Then the
following conditions are equivalent:

(i) HM)cz(M).

(i) There exists a maximal ideal of A which belongs to Ass M.

ProoOF. (ii)=>(i). Let m be a maximal ideal of A4 in Ass M. Assume the
contrary. Then we can find an element a of (M) with ae 2(M). Whence
aegm, and so da+m=A. It therefore followsfrom prop. 2.1 that a& K (M).

(i)=>(ii). It is sufficient to prove that if any maximal ideal does not belong to
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Ass M, then X" (M)d¢ £ (M). First we assume that A is a semi-local ring. Let
{m,,..., m,} be the set of the maximal ideals of A. Since every m; does not belong
to Ass M, there is an element a; of m;n 2(M) for 1Zi<t. Put a=a,--q,.
Then ae (M) by prop. 2.1; in fact, for every p e Ass M we find a maximal ideal
m; with pcm,, thus Aa+pcAda+m;cm;, and hence Ada+p=+A4. Onthe other
hand we see ae#(M) because aseZ(M) and A (M)cZ(M)U Z(M). We
therefore obtain that o' (M) ¢ Z(M).

We now procced to the general case. Let Ass M={p,,..., p,}. Since each
p; is not a maximal ideal, we find a maximal ideal m; with p,em;. Put S=
N(A—m,), 1<i<u. Then S is a multiplicative subset of 4 and Sc2(M)U
(M), whence the natural mapping M—S'M is injective. Note that
Assg-1,S"IM={p,S74,...,p,S714}. It also follows from the definition of
A (M) that if a/l € H# 5-1,(S™IM), then ae ' (M). Now, since S7!4 is a semi-
local ring which satisfies the condition that any maximal ideal does not belong
to Assg-14S”!M, the first arguments imply H g-1,(STIM)EZg-1,(S™IM).
Thus we may choose an element a /1 in X5-1,(S™'M) which is not contained in
Zs-1,4(S!M). Hence we see that ae (M) and a & % (M), which settles the
assertion.

COROLLARY 2.8. Let A be a ring, M a non-zero A-module. Then o' (M)=
Z(M) if and only if there exists a maximal ideal m in Ass M such that pcm
for all pe Ass M.

Proor. This is immediate from cor. 2.3 and prop. 2.7.

LEMMA 2.9. Let A be a ring and let M be an A-module. Then %#(M)=
A—Up, peSupp M.

Proor. We may assume that M is a non-zero A-module. We shall show that
any element a in (M) does not belong to any prime ideal in Supp M. Assume
on the contrary that there exists p e Supp M such that aep. Then M,=aM,.
By Nakayama’s lemma we see that M, =0. But this is a contradiction.

Conversely let a be an element of 4 which does not belong to any prime
ideal in Supp M. Then a& Z(M). We thus have an exact sequence

0— M- M—» MlaM —0.
Let p be a prime ideal of A. Then we get an exact sequence
0—‘-)Mp -4, Mp —»(M/aM)p —s 0.

If p& Supp M, then M,=0. Thus (M/aM),=0. If peSuppM, then acp
by hypothesis. It follows that M, =aM,, and this implies (M/aM),=0. Whence
M/aM =0, so a belongs to %(M).
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THEOREM 2.10. Let A be a ring and let M be a non-zero A-module. Then
the following assertions are equivalent:

(i) A M)=A—uM).

(ii) For every prime ideal p in Ass M and for every maximal ideal m in
Supp M, we have p cm.

(ili) Z2M)cH' (M) and p,+---+p,*+ A, where Ass M={p,,..., p,}.

PrOOF. (i)=>(ii)). We assume the contrary. Then we can find a prime ideal
peAss M and a maximal ideal m € Supp M such that pgm. We thus see that
m+p=A, and hence there exist an element aem and an element pep with
a+p=1. Thus Aa+p=A, consequently, in view of prop. 2.1, a& #(M). By
hypothesis we obtain a € #(M). It therefore follows from lemma 2.9 that agm,
a contradiction.

(ii))=(i)). We have only to prove that Z(M)U Z(M)c2¢"(M). Let a be an
element of Z(M)U #(M). Then, using lemma 2.9, there exists a maximal ideal
m in Supp M such that aem. Since m contains all associated prime ideals of
M, it follows from cor. 2.2 that mc " (M).. In particular a belongs to ' (M).

(i)=(iii). Since A-#(M)=2Z(M)U #2(M), it is clear that Z(M)< A" (M).
There is a maximal ideal m in Supp M, for M is a non-zero module. Thus, by
(i), p;+---+p,cm, and so' p;+--- +p,F A.

(iii)=>(i). It is enough to prove that Z(M)<#"(M). But this follows from
cor. 2.3, because p;+p;<=p; +---+p,+ A4 for all p; and p;.

ExAMPLE 2.11. Let R be a ring and let Ass R={p,,..., p,}. Suppose
p;+-+p,+R and . put S=1+p;+---+p,. Then S is a multiplicative subset
of R and it does not contain 0. Put A=S"!'R. Then A satisfies the equivalent
conditions of theorem 2.10 as an A-module.

LEMMA 2.12. Let M be a non-zero module over a ring A. We let Ass M=
{pss..., P,}. Suppose that p,+---+p,=A and Z(M)+@. Then Z(M)<E A (M).

Proor. We may assume that any p, is not maximal by prop. 2.7. First we
also assume that there exist p; and p; such that p;+p;=4. Without loss of
generality, we may suppose that there is an integer k with 2 < k <n which satisfies
the following conditions: p;+p,=4,..., p;+P=4, Py +Pes1F 4,..., P+, + A.
Thus p; +p,---pr=A4. We can therefore find an element p, € p, and an element
P2 €Dy, such that p,+p,=1. We can also find a maximal ideal m with
p,pem.  Since each p; for 1Si<n is not a maximal ideal, there exists an
element x e m which does not belong to any p;, Then y=p;x+ p, em, and this
implies y & #(M), since m € Supp M. v

We shall show that ye #(M). If yep,, then p, e p,, whence 1=p, +p, €p;,
and this is impossible. If yep, for 2<i<k, then p,xep,;. Since x€ p;, we have
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p1€P;.  Thus we also get a contradiction that 1=p, + p, € p;. Finally we assume
that yep; for k+1=<i<n. Then it follows from the relation p,(1—x)+y=1
that p; +p;=A, and it shows a contradiction. Using those results we see that
yeZ(M). However y& #'(M). Indeed, if n is a maximal ideal with Ay+p, <n,
then p, =n, whence p, e n. Therefore, since y=p,;x+p, and y e n, we see that
p2€n, and so 1=p,+p, en. This contradiction shows that Ay+p,=A4. Con-
sequently y & o (M) by prop. 2.1.

Next we assume that for all i and j with 1<, j<n, p;+p;+A4. Lett be the
smallest integer among integers u which satisfy a condition that there is a relation
P, +py,+ - +p;,=A. We may assume that p,+p,+---+p,=4. Then we
find elements p;ep; with p,+p,+:--+p,=1. Put y=1—p,. Then y&Z (M),
because if y e 2(M), then there exists some p; such that y e p;, and hence p,+
p;=A, which is contrary to our assumption. Since Ay+p;=A4, it follows from
prop. 2.1 that ye& o#(M). To prove that Z(M) ¢ 2" (M), it is sufficient to show that
ye&E#(M). Assume on the contrary that ye #(M). Then, in view of lemma
2.9, we find an element c € A and d € Ann M such that cy+d=1. We thus verify
the identity cp,+-:-+cp,-,+(cp,+d)=1. Since dep,, we get that p,+--+
p,= A, which contradicts the minimal property of the integer t. Accordingly we
see that y & #(M) and this completes the proof.

THEOREM 2.13. Let M be a non-zero module over a ring A. Assume that
A(M)*+@. Then ' (M)=A—u(M) if and only if Z(M)< 4 (M).

ProoOF. - We have only to show that if Z(M)< 2 (M), then o' (M)=A —#%(M).
But this follows from theorem 2.10 and lemma 2.12.

3. Modules M with ¥ (M)=A—%(M)

In this section we study a method of construction of A-modules M with
A (M)=A—-u(M).

DEerFINITION. Let A be a ring and let a be an ideal of 4. We denote by
S(a) the set of those elements a such that Aa+a=A.

Let ¢ be the natural mapping A—Afa. Then S(a)=¢ '(%(A/a)). We see
that S(a) is a saturated multiplicative subset of A and that 0 € S(a) if and only if
a=A.

PROPOSITION 3.1. Let A be a ring, and let M be an A-module. Let a be
an element of A. Then ae o' (M) if and only if aes S(p) for all p € Ass M.

Proor. This is an immediate consequence of prop. 2.1.

LemMMA 3.2. Let A be a ring, a an ideal of A and M an A-module. If
a>Ann M, then S(a)>%(M).
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ProOF. Let a be an element of A with ae&S(a). Then Aa+a= A, whence
there is a maximal ideal m with Aa+acm. Therefore me Supp M and aem.
By lemma 2.9, we have a & %(M).

PROPOSITION 3.3. Let M be a non-zero module over a ring A. Then
A (M)=A—U(M) if and only if S(p)=%(M) for all p e Ass M.

PrOOF. Assume that ¥ (M)=A—«(M). We shall show that for all
peAss M, S(p)=«(M). Assume the contrary. Then there exists some pe
Ass M with S(p)+#(M). It therefore follows from lemma 3.2 that S(p) 2 #(M),
and hence we find an element a € S(p) with a&#(M). By assumption, we have
ae X' (M). We thus get a required contradiction by prop. 3.1.

Conversely we assume that S(p)=#(M) for all peAssM. Let a be an
element of A with a&#(M). Then a< S(p) for all pe Ass M, and so prop. 3.1
shows ae ' (M). We therefore obtain that K4 (M)>A—#%(M). The other
inclusion is obvious.

LEMMA 3.4. Let A be a ring and let a be an ideal of A. Suppose that p
is a prime ideal of A. Then p n S(a)=g if and only if p+a+A.

PrOOF. Assume p N S(a)+@. Then we find an element p of p n S(a), whence
ap+b=1 for suitable elements ae 4 and bea, and so p+a=A4. We can easily
prove the “only if’” part in the same way.

PROPOSITION 3.5. Let M be a non-zero module over a ring A. We let
Ass M ={p,,..., p,} and put S=S(p,+--+p,). Then the following statements
are equivalent:

(i) pyt+--+p,=4.

(ii) S»s0.

(iii)) S~'M=0.

@iv) Snp;+@ for some p,

(v) Snp;*8 forall p,.

PrOOF. By lemma 3.4 and the definition of S we can easily prove this
proposition.

COROLLARY 3.6. Notation and assumptions being the same as in the
previous proposition, if p;+---+p,+ A, then

(i) SnzM)=g.

(ii) The natural mapping M—S~1M is injective.

(iii) Assg-1, S 'M={p,S"4,..., p,S"14}.

LeEMMA 3.7. Let M be a module over a ring A and let b be an ideal of A
with Ann Mcb. If S(b)=%(A), then S(b)=x(M).
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ProOF. We first show that every maximal ideal of A belongs to Supp M.
Let m be a maximal ideal of A. Assume that ba&m. Then m+b=4, whence
there exists an element yem such that Ay+b=A. Thus this yields y e S(b),
and so ye#(A). This contradiction shows bem, and hence me Supp M.
Now, in view of lemma 2.9, we obtain that #(M)=%(A), and so S(b)=#(M).

LEMMA 3.8. Let M be a non-zero module over a ring A. Let S=S(p,+

--«+p,), where p; runs through the set Ass M. Then Sg-1,(p;S™1A)=%(S"1A4)
for all p;e Ass M.

ProOF. We may assume that p, +---+p,+A. It is sufficientto show that
Ss-14(p;S"tA)c#(S1A) for all p,eAssM. Let ajs; be an element of
Ss-14(p;S™1A), where a€ A, s;€S and p;eAssM. Then we find elements
beA, s,, s3€8 and p;ep; with a/s,-b/s,+p/s3=1. Thes abs;s,+ p;S;5,5,=
§,5,535, for a suitable element s, of S. Since s;s,5;5, belongs to S, there exist
elements ce A and g € py + -+ +p, such that cs;5,535,+g=1. We therefore obtain
abcsys,+cp;S 18254 =0C515,535,=1—¢q, whence abcsys,+(cp;s;5,5,+q)=1. Since
CPiS1S354+q €D+ - +p,, this relation yields aeS. Thus we see that afs, e
#(S-1A4), and we complete the proof.

PROPOSITION 3.9. Let A be a ring. Let M a non-zero A-module with
associated prime ideals py,...,p,. Suppose that p,+:--+p,+A. Then
Hg-14(8M)=S"1A—Ug5-1,(S M), where S=S(p, +--- +p,).

ProoF. By prop. 3.3 and cor. 3.6, it is enough to show that Sg-1,(p;S™14)=
WUs-1,(5"'M) for all p;, However the assertion follows from lemma 3.7 and
lemma 3.8.

THEOREM 3.10. Assumptions being the same as in prop. 3.9, the following
conditions are equivalent:

(i) dXM)=A—-uM).

(ii) S=xM).

(iii) The natural mapping M—S~M is an isomorphism.

ProoF. (i)=>(ii). It is suffcient to prove Sc#(M) by lemma 3.2. Let s
be an element of S. Then as+g=1 for suitable elements a& 4 and gep;+--- +
p,. Let m be a maximal ideal in Supp M. Then gem by theorem 2.10, and
hence seem. This implies s € (M) by lemma 2.9. Thus S<#(M).

(i1 )=>(iii) is trivial.

(iii)=>( 1) follows from prop. 3.9. We complete the proof.

We continue with the assumptions of prop. 3.9. We set T=A4A—2(M). Then
it is clear that S< T, and hence the natural mapping S~'M—T~'M is injective.
We denote by P-the set of prime ideals of A which contain all p;. Since p, +---+
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p.*+ A, we know that P£g. Let q belong to P. It follows from lemma 3.4 that
ScA—qcT, and thus we may assume that S"!M <M, T !M. Consequently
we have S"1Mc n M, qeP.

PROPOSITION 3.11.  Let the assumptions be as above. Then S*M=nM,,
where q ranges over the set P.

Proor. It will suffice to show that S"'M> nM,. By properties of the
the localizations and cor. 3.6 we may assume that M=S"'M. For an element
xe NM,, we put b={ae Alaxe M}. Then b is an ideal of A with b>Ann M.
We want to show that b=A4, which implies x € M, and hence we get M> N M.
Assume on the contrary that b3 4. Then there exists a maximal ideal m such that
bem. If meP, then xe M,. Whence we can write x =m/t for suitable me M
and tem. Accordingly tx=m, and so teb. This contradicts our assumption
that bcm and it yields me& P. We therefore find some p; with p;cm. Itis
clear that p;+m=A, and there are elements p,ep; and aem with p,+a=1,
which implies aeS. But, since M=S"'M, theorem 3.10 implies a e #(M).
We now get a required contradiction by lemma 2.9, because a € m and m € Supp M.
This completes the proof.

4. Permutations of M-sequence

We consider permutations of M-sequences in this section. D. Taylor proved
the following assertion in [4]: If A possesses an A-sequence of length 3, and if
every permutation of an A-sequence is an 4-sequence, then A4 is a local ring. Now
we give some conditions which are equivalent to saying that {b, a} is an M-
sequence for every M-sequence {a, b}.

LEMMA 4.1. Let A be a ring and let M be an A-module. If {a, b} is an
M-sequence, then 0 1),yb<= na"M (n=1, 2,...), where 0: y,b={me M|bm=0}.

PrOOF. Let m be an element in 0: ,,b. Then bm=0=a0. Since {a, b}
is an M-sequence, we find an element m, € M with m=am,, and hence abm, =0.
Thus bm,; =0, for a& 2(M). Repeating this argument with m,, we can write
my=am, for suitable m, e M. Whence it implies m=a?m,. It thus follows
from these observations that me na"M.

COROLLARY 4.2. Let M be a module over a ring A. If {a, b} is an M-
sequence with a € A4 (M), then {b, a} is an M-sequence.

Proor. Since aes 2(M/bM) ([1], Theorem 117), we have only to prove that
be& Z(M). However the assertion follows from lemma 4.1.

COROLLARY 4.3.. Let M be a module over'a ring A. Suppose that Z(M)<
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A (M). Then {b, a} is an M-sequence for every M-sequence {a, b}.

PROPOSITION 4.4. Let M be a module over a ring A. Let a be an element in
A(M). Put N=na"M (n=1,2,...) and let M=M|N. Then:

(i) a is an element in 2(M) n 4" (M).

(ii) If {a, b} is an M-sequence, then {a, b} and {b, a} are M-sequences.

(iii) For a prime ideal p of A, peAssM if and only if peAssM and
pcq for some qe€ Ass M/aM.

PrOOF. (i) and (ii) are easily shown by elementary properties of M-sequences
and cor. 4.2.

(iii) We first note that if p is a prime ideal such that any associated prime
ideal of M/aM does not contain p, then pecAss M. Assume on the contrary that
peAss M. Then p=Ann () for suitable m e M, where m denotes the image of
m is M. Furthermore we find an element bep with be 2(M/aM). Thus
bm=0, whence bme N. In particular bmea"M for all positive integers n.
By the fact that 2(M/a"M)=2(M/aM) ([1], Ch. 3, Ex. 13), we have be& 2 (M/
a"M). It thus implies m e a"M, and so m e N, that is m=0. This is a required
contradiction. ‘

Now we are ready to prove (iii). We may only deal with a prime ideal p
which is contained in some qeAssM/aM. Then N,=0, because N W<
N.(a/1)*M,=0. Tt therefore follows that M,=M /N =M, Since peAss
M if and only if pA, € Ass,, M,, we thus know that p e Ass M if and only if
pA, € Ass,,M,, and it happens if and only if p € Ass M.

LEMMA 4.5. Let M be a module over a ring A and let p be a prime ideal in
Ass M. Leta be an element of Z(M). Then Aa+p =+ A if and only if there exists
an associated prime ideal q of M[aM with pcq.

PrROOF. The “if”” part is obvious. Suppose Aa+p=+ A4, Then we find a
maximal ideal m such that Aa+pcm. Thus pA, €Ass,, M, and aemA,.
Since ae #,,(M,,), it follows from cor. 2.6 that ae # ,,(M,), that is to say,
there is a prime ideal qA,, € Ass,,M,/aM,, such that pA,, =qA,. Thus we find
a required prime ideal q € Ass M/aM which contains p.

LEMMA 4.6. . Let M be a module over a ring A Let a be ‘a_n element of
A(M)— A (M) with Z(M[aM)+@. Then there exists an element b of Z(M)
such that {a, b} is an M-sequence.

PrOOF. By prop. 2.1, there exists a prime ideal p e Ass M with Aa+p=A4,
for a & A#°(M). It now follows from lemma 4.5 that p ¢ q for all qe Ass M/aM.
Since Z(M/aM)+ ¢, we find a maximal ideal m such that Aa+Ann M cm and
meAss M/aM. - Then we see that md q for all g€ Ass M/aM. It follows from
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these results that mnpd q for all qe Ass M/aM, and hence there is an element
bemnp which is not contained in any associated prime ideal of M/aM. Since
meSupp M and (a, b))M cmM, we see (a, )M +M. Consequently {a, b} is
an M-sequence with be 2(M).

THEOREM 4.7. Let A be a ring and M be an A-module. Then the following
conditions are equivalent:

(i) For every M-sequence {a, b} of length 2, {b, a} is an M-sequence.

(ii) For every ae Z(M)— (M), Z (M|aM)=g.

(iii) For every ae Z(M)—4(M) and every maximal ideal m in
Supp M/aM, depth,, M, =1.

Proor. (i)=>(ii) is an immediate consequence of lemma 4.6. (ii)=>(i) follows
from cor. 4.2.

(ii)<>(iii). Let a be an element of 2(M). Then, since Z(M/aM)=g means
that every maximal ideal in Supp M/aM belongs to Ass M/aM, we see that
Z(M|aM)=¢g if and only if for all maximal ideals m in Supp M/aM,
depth,,, M, =1.

ExAMPLE 4.8. We consider a quotient ring R=k[X, Y, Z]/(XY) of the
polynomial ring over a field k and we write R=k[x, y, z] as usual. Put n=
(x, ¥, z) and r=(x—1, y). Then n and r are prime ideals of R. Let A=S"'R,
m=nAd and q=rA4, where we put S=(R—n)n(R—r). Then A4 is a semi-local
ring with its maximal ideals m and q. Furthermore we see easily that Ass A=
{py, P}, where p;=Ax and p,=Ay. Since p, Up,=m, we know by cor 2.2
that m< 2£°(A), and this implies Z(4)— A4 (A)<=q. On the other hand it follows
from prop. 2.1 and the relation A(x—1)+p; =A that x —1 & #°(4), and so #(4)—
X(A)+8. We wish to show that A satisfies the equivalent conditions of theorem
4.7 as an A-module. This can be shown as follows. Let a be an element in
Z(A)— A4 (A). Then q is the only prime ideal which belongs to Ass 4/Aa, because
agmand ht q=1. We therefore conclude that #Z(4/4a)=g.
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