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Introduction

Let G be connected semisimple Lie group, ¢ an involutive automorphism
of G and H an open subgroup of fixed points of 6. Then G/H is called a
semisimple symmetric space and the tangent space at the origin of G/H is
identified with a complement q of b in g, where g and b are the Lie algebras
coresponding to G and H, respectively.

In this paper, we consider spherical hyperfunctions on q that are H-
invariant and simultaneously eigen hyperfunctions on q. There have appeared
several papers dealing with spherical functions on q ([1], [2], [3], [5], [9],
[10]). In his paper [2], van Dijk listed up spherical distributions for the rank
1 case. On the other hand, in his paper [1], Cerezo determined the dimension
of O(p, q) (or SO, (p, q)) invariant spherical hyperfunctions on R”*?, where R?*¢
can be regarded as the tangent space of the semisimple symmetric space;
SO,(p + 1, q)/SO4(p, q9). However, studying spherical hyperfunctions, the
author found interesting phenomenon. That is; if f is an H-invariant eigen
hyperfunction then f is H-invariant, where H is the connected component of
the Lie group of all non-singular transformations T on q such that p(Tx)
= p(x) for any H-invariant polynomial p and xeq. In fact, H is “large”
(if G=SLm+ 1, R) and H = GL*(m, R), then dim H = m®> and dim H
=2m? —m). It seems that this phenomenon is independent of the category
of functions but is dependent on H or H orbits structure on q. In his paper
[8], Ochiai deals with this problem as Z2-module structure generated by the Lie
algebra b or j which is the Lie algebra corresponding to H.

In this paper, we prove that for “generic” eigen values if f is an H-
invariant eigen hyperfunction then f is H-invariant (see Theorem 5.1 in
§5). From Cerezo’s result and Theorem 5.1, we can determine the dimension
of spherical hyperfunctions on q when rank q = 1 and eigen value u # 0 (see

§5).
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§0. Notations and preliminaries

Let g be a real semisimple Lie algebra with Killing form B and ¢ an
involutive automorphism of g. Denote g =) + q the corresponding decompo-
sition on g into +1 and —1 eigenspaces of 6. In this paper, we denote by ¥
the complexification of V, for any R-vector space V. Then o can be extended
uniquely to the involutive automorphism (over C) of g¢ and g¢ = bh¢ + q¢ the
corresponding decomposition on g¢ into +1 and —1 eigenspaces of extended
og. Let G be the connected adjoint group of g and H the connected Lie
subgroup of G with the Lie algebra adl). Then H acts on q by the adjoint
action. This action is analytic and can be extended uniquely to the
holomorphic action on q¢c. Let P(q¢) and S(q¢) be the polynomial ring and the
symmetric algebra on qc, respectively. Denote by Pg(qc) and Sg(gc) the
subalgebras of all H-invariant polynomials on qc and H-invariant elements in
S(q¢), respectively.

We denote by #(q) the vector space of all hyperfunctions on q. Let GL(q)
be a Lie group of all non-singular linear transformations on q. Then GL(q)
acts on q naturally. Let 4 be a subgroup of GL(q). We denote by %#“(q) the
subspace (of 4 (q)) of all A-invariant hyperfunctions. For each 1€ qc, put y;,(e)
=v(e)(4) (for the definition v, see §2), for eeSy(qc). Conversely, for any
character y of Sy(qc), there exists Aeqc such that y, =y Indeed, the
map; A—(p, (4),--,p,(4)) is of gc onto C', where p,,---,p, are homogeneous H-
invariant polynomials on gc and Py(qc) = C[p,, -, p;] (that is a polynomial
ring and see [7]).

For each ieqc, We denote by %,(q) the subspace (of #(q)) of all
hyperfunctions f such that (de) f = v(e)(4) f for any ee Sy (qc) (for the definition
of 0, see §2). For each subgroup 4 of GL(q) and Aeqc, denote %4 (q)
=#,(q)N%A*(q). An element f in %%(q) is called an A-invariant eigen
hyperfunction.

§1. Regular elements

In this section, we give two definitions of regular elements in two different
ways and consider about their relations.

Let g be complex semisimple Lie algebra. Let t be an indeterminate and
consider the polynomial;

det(t —adX)=t"+ 4, (X)t" "1 + -« + 44 (X),

where N =dimg and det A is the determinant of A. Then 4, is a
homogeneous polynomial function on g with degree k. Let m be the smallest
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integer such that 4,, is not identically zero. It is well known that N —m
coincides with the dimension L of a Cartan subalgebra of g. Put 4 =4,,
=Ady_.. Let 9?9 be the set of all elements X eg such that 4(X) # 0.

On the other hand, for any X eg, let g* be the centralizer of X in g and %,
the set of all elements X eg such that dim g*¥ < dim g* for all Yeg. That is
sim g* = L. Then we have the following assertion.

ProPOSITION 1.1. .@g < R,.

Proor. For each Xeg, set §¥ = {Yeg; (adX)*Y =0 for some k}. It is
well known that for any X e #,, §* is a Cartan subalgebra of g. Furthermore,
for any Xeg, ¢¥ = §*. Hence dim §* =dim ¢* =L and Xe%,. Therefore
R, < R,

REMARK. It is not always true that 5?9 =R, If g=sl(2, C) then 4(X)

1 1
= x? + yz, where X = [: yx:|' Let e = [ 1 _1]. It is easily seen that
A(e) =0 and dim g° = 1. Hence e¢ég, but ec Z,.

Let o be an involutive automorphism of g such that ¢ # 1 and let g =1}
+ q be the decomposition as in §0. Put 9?“ = {;i’gnq. For each Z eq, let q% be
the centralizer of Z in q and £, the set of all elements that dim g% < dim q for
all Yeq. That is; dim ¢* = rank q = if and only if Ze%,.

PROPOSITION 1.2. %, = &,.
Proor. For any Zeq, we can prove that
dim § — dim §? = dim q — dim %

by the similar way in Kostant-Rallis [7], where h?Z is the centralizer of Z in
h. On the other hand, for any Zeq, dim g% = dim hZ + dim g%, since g% = h?
+ q%. Hence dim gZ =dim ) — dim q + 2dim ¢ for any Zeq. It implies
that dimgZ=L if and only if dimg?=1 1t follows that £

~ q
= R,Nq. Therefore Z, = A, from Proposition 1.1.

§2. Polynomial differential operators

Let V be a vector space over R of finite dimension n. We consider the
symmetric algebra S(Jg) over the complexification ¥; of V. For any XeV, let
0(e) denote the differential operator on V given by

CEN@=2] Jatie  (xeVfeCr), teR).

t=0
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Then it is well known that the mapping e — 0(e) can be extended uniquely to
the algebraic isomorphism of S(¥;) (over C) into the algebra of differential
operators on V. Now suppose there is given a real non-degenerate symmetric
bilinear form B(u, v)(u, veV) on V. We extend this form B on J; by its
linearity. Let P(¥;) be the algebra of all polynomial functions on ¥, and v
denote the linear isomorphism of ¥ into P (V) given by v(e)(z)=Ble, z)(z, ecl;).
Then it is obvious that the mapping e — v(e) can be extended uniquely to the
algebraic isomorphism of S(J;) onto P(¥;). For each non-negative integer m,
we denote P™(J;) the subalgebra of all homogeneous polynomial functions of
the degree m on ¥V, and S™(J;) the inverse image of P™(¥;) by v.

Let 2(V) be the algebra of all differential operators on V. Then 2 (V)
> C*®(V) and therefore P (V) and 0(S(J;)) are both subalgebras of 2 (V). Let
25(V) denote the subalgebra of 2 (V) generated by P(lg)uad(S(¥;)). The
elements of 2, (V) will be called polynomial differential operators on V.

Now, we consider differential operators on ¥;. We define the differential

d
operator 0" on J; such that (0'(e)f)(z) = 7 f(z + te) for any eel;, zel,
t=0

feC®(V) and teR. Then, for eV, &'(e) is a first order C®-differential
operator on V. So we can define a C*-differential operator d(e) on ¥, such

~ 1 ~
that 6(e)=§(6’(e)—6’(ie)) for eeV, where i=.,/—1. Then 0J(e) is a

holomorphic differential operator on J; for each ee V. Indeed, for each ze I,
let Hol,(V;) be a subspace (of T.f(¥)) of all elements v such that J,(v) = iv,
where T (V) is the complexification of the tangent space T, (V) of ¥, at z in I
and J, the canonical complex structure. It is easily seen that (0 (e)), € Hol, (V),
for any zeV;. Then it is obvious that the mapping e — d(e) can be extended
uniquely to the algebraic isomorphism of S(¥;) (over C) into the algebra of
holomorphic differential operators on ¥.. Let Z,(¥;) denote the subalgebra of
the algebra of holomorphic differential operators on ¥, generated by P (¥;)U
3(S(%)). Then we can identify 2,(V) with 9,(¥) by the algebraic
isomorphism defined by pd(e)— pd(e), for peP(¥) and eeS(¥). In this
paper, under the above identification, we use the same notation 0. That is if f
is a C®-function on ¥, we write (d(e))f instead of (5 (e)f.

Let X (V) be the Lie algebra of all C®-vector fields on V. Then 2 (V)
> X(V). We put Xp,(V)=2,(V)nX(V). Then Xp(V) is a Lie subalgebra of
X(V). Let E denote the Euler’s vector field over V, that is,

Ef(x):% fx+tx) (feC®(V), xeV,teR).

t=0

We denote by X2 (V) the Lie algebra of all vector fields X (e X,(V)) such
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that [E, X]=0, where [D,, D,]=D,;D, —D,D,. Indeed, if X, YeZS(V)
then

[E, [X, Y]] =[X,[E Y11+ [[E X], Y1=0  (Jacobi’s identity).

Hence [X, Y]eX3(V).

Let X3(V; R) denote the Lie subalgebra (over R) (of X3(V)) of all vector
fields X eX3(V) such that Xf is a real-valued function for any real-valued
function f. Then it is clear that X¥3(V; R) is a real form of X3 (V).

Let gl(V) be the Lie algebra of all linear transformations of V into
itself. We define a mapping ¢; gl(V)—-> 2(V) by

((p(T)f)(X)=% flx—tT(x))  (Tegl(V), xeV,feC®(V)).

t=0
PROPOSITION 2.1. ¢ is a Lie algebra isomorphism of gl(V) onto X3(V; R).

Proor. Choose a basis v,---,v, of V. For each Tegl(V), let M(T) be a
matrix representation of T with respect to this basis {v,,--,v,}; That is M(T)
= (a;;(T)), where Tv, =Y a;;(T)v;. We identify ¥ with R" by the mapping;
X =Xy0y + - + X,0,>(xy,++,X,). Under this identification, we have the
following expression;

a1 (T) - a,, (T) 0/0x,
(p(T)= '—(xh""xn) |i : } \: : ] .

aln(T) ann(T) a/axn
The above expression may be written simply
0
o(T)= —x'M(T)—.
0x
It is easily seen that ¢ (T)e X3(V; R) and ¢ is a linear map. Moreover if ¢ (T)
=0 it is obvious that T=0. Hence ¢ is injective. Since dim gl(V) = n? and

dim X3 (V; R) = n?, it follows that ¢ is bijective. Finally, we shall show that ¢
is a Lie algebra homomorphism. Indeed, for S, Tegl(V),

O[S, T1) = —x'M([S, TT)5- = ~ (M () M(T) ~ M(T) M () +-

0 0 0
=x['M(S), M(T)] 5= [— x'M(8)5-s = X'M(T)&] = [¢(S), o(T)].

Since the above proof is independent of the choice of a basis, the proposition is
proved.
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RemMARk. Let gl(V)c be the complexification of gl(V). But, whenever
convenient, we can regard an element of gl(V), also as a C-linear
transformation on V.. We recall that X3(V) is the complexification of
X3(V; R). Thus ¢ can be extended uniquely to a Lie algebra isomorphism
(over C) of gl(V)c onto X3(V). Under the identification of 2, (V) with @P(VC),
we regard X e X3(V) as a holomorphic vector field on V.

For each eeS(Jg), let u, be the derivation of Zp(V) given by u.(D)
=[0(e), D] (D€2Pp(V)). On the other hand, for each ge P! (J), there exists
unique derivation J, of S(J) such that 6,(v) = v, q> (velg), where (v, q)
=v(v)(q)(0). Let m be a positive integer, then we have

ProposITION 2.2. If q;€ P (Vp) (1 <j <m) then

”'Z'(ql qm) =m! a(6q1 (e) 6qm(e))s
for any e€S (V).

Proor. We shall prove the proposition by induction on m. Let 3 be a
subalgebra (of 2p(V)) of all polynomial differential operators D such that
[0(v), D] =0 for any vel;. It is obvious that 0(S(W)) = 3. Conversely, if
De3 there exist g;eP(}) and e;eS/(V) such that D=3 g;d(e) and
Y.dv(g;)0e; = 0 for any ve¥.. Hence dv(q;) =0 for any ve }; (for any j such
that e; # 0). Then g;e P°(¥) (= C), for any j such that e; # 0. Therefore 3
=0(S(%))-

Let veV;, qe P* (V) and eeS(¥) then

[0v, [Oe, 1] = [0e, [dv, q11 + [[dv, de], q] = [, <v, ¢>]1=0.

Hence [Oe, q]€3. Therefore [de, q]€d(S(V)) for any eeS(¥) and ge P* (V).

Let m = 1. From the above argument, for each ge P (¥;), we can define a
linear map 1, of S () into itself such that t,(e) = 0! [de, g]. Moreover 1, is a
derivation of S(V). Indeed, since 07 !'[de,e,, q] =0""{de, [e,, q]
+ [dey, g 0e,} = e, 07! [De,, q] + €,07 ' [Oey, q], we have 1 (e e;) =e;7,(es)
+ e,7,(e;) for any ey, e;€S(¥).

On the other hand, 7,(v) = 7' [dv, q] = <v, q) for any ve¥;. Therefore
1, =0, for any qe P' (V). It follows that [de, g] = 05, (e), for any geP' (V).

Now, let q,,--*,q.€ P* (V) and eeS!(¥), we have

“:zn(ql qm)= Z (;:l)”ek(ql“'qm—l)”em_k(qm)9
0<k<m

from the Leibniz rule for derivations. But, if m > 2 then

He'(@y - qm-1)=0 and py %@, =0 for 0<k<m-2,
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because '~ (gy - m-1) = (m — 1)13(3,,(€) -+ 6,,,_, (&) and p,(g,) = 05,,(c)
by induction hypothesis. Hence
1y Gm) = mpe ™ (@1 Q1) He (qm) = M1 33, (€) - 8, ().
Therefore the proposition is proved.
Let v,,---,v, be a basis of ;. Since B is a symmetric non-degenerate
bilinear form, we can choose a basis u,,--,u, such that B(v;, u;) =, ;, where

d;,; is the Kronecker’s o.
Put

L

u;v;€ 8% (V).

i<n

N —
-
A

This element w is independent of a choice of a basis and is called the Casimir
element. Then we have the following

LemMA 2.3. If qe P™(V) then ul(q) = m!0(v_(q)).

Proor. First we will show that 6, (w) = v~ !(g) for any ge P* (V). From
the definition of d,,

V8,(@) = 2% (8 ), + 3, 0)}

= 3% (Cu @) V(0 + <o ) V).
Hence
18,(0)(2) = 3 ¥ {a(4) B, 2) + 4(0) B, 2}
- %q(Z{B(vi, 2)u; + B(us, 2)07)).
But Y B(, 2)u; =Y B(u;, 2)v;=z. Therefore 0,(w)=v"'(q) for any

qeP'(V;). Next, from Proposition 2.2, we have

Ho(@) = H5(qy - gm) =m!o(v" ' (q1) v (gn) =m! 00" (9),

for g =q; - gm(@:€P* (W), 1 <i<m).
This shows that if ge P™(V,), then uli(q) =m!d(v~'(g)).

REMARK. Under the identification of 2, (V) with @,.(VC), we have

B2(dy - qm) = m!0(3,,(¢) -+ d,,.(e) and 5(q) =m!I(v~"(9)),
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where fi, is the derivation of 9p(¥) such that f,(D) = [Je, D].

§3. Analytic solutions

Let 8 be a Cartan involution of g such that 8o = o6 (see §0, for the
notations g, b, g, 6). Then h=hnt+ hnp (direct sum) and g =qnp + qni
(direct sum), where = {Xeg;0X =X} and p={Xeg:0X =—X}. It is
clear that

be=bnt+bnp +ihnf+ihnp (direct sum as real vector spaces),
gec=qnf+aqnp +ignf+iqnp (direct sum as real vector spaces).

Set ¥ =hnt+ihnp, p’=qnp +iqnfand g’ = ¥ + p?. Let G (or G¢) be the
connected adjoint group of g? (or g¢) and K (or K¢) the connected Lie
subgroup of G? (or G{) with Lie algebra ad ¥ (or ad ), respectively. It is
known that the pair (G¢, K% is a Riemannian symmetric pair with the Cartan
involution ¢ and the Killing form of g? is the restriction of the Killing form B of
gc- We define the linear map ¢ (over R) of g¢ into g& such that

(e®a)=e®a for eehnt+ qnp, aeC
(e ® a) = (ie) ® (—ia) for eehnp + qni, aeC.

Then it is easily seen that ¢ is a linear isomorphism (over C) of g¢ onto g&. By
restricting this map &, we have the linear isomorphisms (over C) of b onto f&
and of q¢ onto p¢. Moreover, it is obvious that this map ¢ can be extended
uniquely to the algebraic isomorphism (over C) of S(qc) onto S(pf) and the
map ¢ of b onto £ induces a Lie group isomorphism of Hy onto K¢. One
can easily see that for any helb¢ and ee S(q¢) E([h, e]) = [E(h), £(e)]. Hence
the restriction of ¢ to Sg(g¢) is an algebraic isomorphism (over C) of Sy (q¢)
onto Sga(pl). Indeed, if eeSy(qc) then E(e)eSga(pd) by the above
equality. Conversely, if eeSga(pd) then ¢ '(e)eSy(qc) by the above
equality. Let u be the algebraic isomorphism of Sg.(pl) onto Pya(p%) defined
by the same way as the map v. Then it is easily seen that for any ee Sy (q¢)
and Aleqgc we have v(e)(1) = u(&(e))(£(4)), because B(£(e), £(A)) = B(e, A) for
any eeqc and Aeqc.

Let ¢ (or ¥) be the Lie isomorphism (over R) of gl(q) (or gl(p?)) onto
X2(q; R) (or X3(p?; R)) defined in §2, respectively. Then we have the Lie
isomorphism ¢ (or ¥) (over (C) of ad b (or ad ¥) onto ¢ (ad b¢) (or Y (ad t2))
whose restriction to ad b (or ad ) is a Lie isomorphism (over R) of ad b (or
ad 1) onto ¢ (ad b (or Y (ad %), respectively.

Let V be a real vector space and a is a Lie subalgebra of gl(V). We
denote by « (U) the vector space of all analytic functions on U which is an open
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subset of V and «°(U) the vector space of all ¢, (a)-invariant analytic functions
on U (where ¢, is defined by Proposition 2.1). Let A be a connected Lie
subgroup of GL(V) corresponding with the Lie algebra a. If U is A-invariant
(that is, axeU for any aeA and xeU), we denote by *(U) the vector
subspace (of «(U)) of all A-invariant analytic functions on U.

Let U be an open subset of qc. Then &(U) is an open subset of p&. Let
O (U) (or O(£(U))) be the vector space of all holomorphic functions on U (or
£(U)), respectively. Then it is obvious that &* is a linear isomorphism of
O(E(U)) onto O(U), where (E*F)(z) = F(¢(z)) for any Fe@(£(U)) and zeU.

LEMMA 3.1. For any hebc, FeO(E(U)) and ze U, we have
(¢ (adh)(E* F))(2) = (Y (ad £(h)) F)(E(2)).

Proor. From the definition of ¢ (or ¥), we have

d
(@ (adh)(C*F)) (&) = -

(Fed)(z—t[h,z])

t=

=Gl Fe-em, (o
= W (ad ERF)EE),

for any helbe, FeO(£(U)) and ze U, since F is holomorphic. This implies the
lemma.

For each Aeqc (or A epf) and an open subset U of q (or p?), we denote by
a,;(U) (or a, (U)) the vector space of all analytic functions f such that for any
e€Sp(ac) (or eeSxa(pe)) (Ge)f =v(e)(A)f (or (Ge)f = u(e)(A)f), respectively.
Set 2,"(U) = 2,(U)na"(U), 25" (U") = 2 (UNn2*(U"), a}(U) = a,(U)
Na®(U) and &5 (U") = 2, (U")na"(U"), for each open subset U of q and U’
of p?.

It is well known that if fea(q) then there exist a domain U of q. and
unique holomorphic function Fe®(U) such that Unq=q and f is the
restriction of F to q. Set F = (¢"!y*F. Then F is a holomorphic function on
E(U). Set W= ¢E(U)np?. Then Wis an open subset of p? and 0e W, Let g
be the restriction of F to W. Then g is an analytic function on W, In this
section we call that g is a pure imaginary analytic continuation of f.

LeMMA 3.2. If feall(q) then gealy (W).

ProOOF. Let fea'(q). Then ¢@(adh)f =0 on q, for any hebh. It is
obvious that ¢ (adh)F =0 on U for any heb,. Here ¢(adh) is regarded as a
holomorphic vector field (see Remark of Proposition 2.1). From Lemma 3.1,
we have ¥ (ad £(h)) F =0 on &(U) for any hebe, where F = (6"")*F. Hence
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Y(adk)F =0 on &(U) for any kef’, since ¢ is bijective. It implies that
¥ (adk)g =0 on W for any ketl. Therefore ge 2" (W).

Let fea;(q). Then (de) F = v(e)(A)F on U for any eeSy(qc). Here de is
regarded as a holomorphic differential operator (see §2). Indeed, the restricted
function of d(e) F — v(e)(4) F to q is zero on q, since (de) f = v(e)(1)f on q. But
0(e)F —v(e)(A) F is holomorphic on U. Hence (0e)F —v(e)()) F =0 on U
from the identity theorem for an analytic function. On the other hand, it is
easily seen that for any e S(qc) and ze U we have (de)(£* F)(z) = 0 (¢e) F (¢ (2)).
Hence, for any eeSy(qc) and zeU, we have d(&e)F(¢(2)) = v(e)(A) F (£(2)),
since F = (67Y)*F. Therefore, by restricting the above equality to &(U)np?,
we have 0(Ce)g=v(e)(4)g on W for any ecSy(q¢). This implies that gea, ;) (W),
because v(e)(4) = u(ée)(£4) and & is bijective. Therefore the lemma is proved.

Let B be the restricted Killing form of p?. It is easily seen that B is a
positive definite symmetric bilinear form on p?. Since 0e W and W is an open
subset of p?, there exists a positive number r such that if B(x, x) < r and xep?
then xe W. We fix r. But r is dependent on a given analytic function f, since
Wis so. Let W, be a (connected open) subset (of W) of all elements x e p? such
that B(x, x) <r. Then W, is a K%invariant open subset, since B is K°-
invariant. We have the following lemma by the usual way in the analysis of
Lie groups (see [6] or [11]).

LEMMA 3.3. For any nep?, we have

a'(Wo) = ok (W) and  dim 24" = 1.

Proor. For each eeS(pd), set p(e) =j ke dk, where dk is the normalized
K4

Haar measure of K¢ such that j dk = 1. Then p is the projection of S(pf)
K4
onto Sya(pd). Let ueaX’(W,). Then for any eeS(p?),

t(p(€)u(0) = (@(p(e) u)(0) =J (Ly°deoLy-1)u(0) dk
Kd

_ J ((6)) (0) dk = (0¢)u(0),
Kd

where (L, u)(x) = u(k”*x)(xep?. This implies that if u(0) =0 then u =0 on
W,, since W, is connected. Therefore dim af"(Wo) <1 for any nepd. It is
obvious that 2X*(W,) < af'(W,). But if ueal (W) then ucay" (Wy). Indeed,
for any Xet! and xeW,,
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iu(e’x x) = 4 u(e*e* x) = (Y (adX)u)(e* x) = 0.
dt ds|;_,
1q
Hence u(e* x) — u(x) = f Ezu(Ad(e‘x)x)dt =0 for any X et and xe W,. This
0

implies that u is K%invariant, since K¢ is connected. Thus we have ' (W)
= aX*(W,) for any nepi.
For any nepl and wepé, set

¥, (w) =J eBlw:m g,
Kd

Then it is clear that ¥, is an entire holomorphic function of p¢ such that ¥, (0)
= 1.Moreover ¥, is Ké-invariant. Indeed it is trivial that ¥, is K%invariant.
But, for each wep¢, it is obvious that the function ¥, (kw) — ¥, (w) of K¢ is an
entire holomorphic function on K¢, since the adjoint action of K¢ on pg is
holomorphic. Hence ¥, (kw) — ¥,(w) =0 for any wep¢ and ke K¢ from the
identity theorem for an analytic function. Therefore ¥, is K¢-invariant.
Moreover, it is easily seen that (0e)e®*"™ = B (ke, 1) e2**? for any eepf and
keK? Thus if e€ Sxa(pé) then (de)e*™ ™ = pu(e)(n)e* ™. Therefore (de) ¥,
= u(e)(n) ¥, for any ee Sxa(pg). Let g, be the restriction of ¥, to W,. Then
it is obvious that g,,(:‘af,‘d(WO) and g,(0) =1. Hence the lemma is proved.

Now we have the following.
THEOREM 3.4. dim 2% (q) =1 for any Aeqc.

Proor. Let f;eaf(q)(i =1,2). Then there exist K%invariant open
connected subset W, (i =1, 2) of p? and analytic functions giea‘é"u,(Wi) such
that 0e W, and g; is the pure imaginary analytic continuation of f; (i = 1, 2).
Putc; = fi(0) (= 9:(0) (i=1,2), f=c2fy — ¢1f2, g =291 — 19, and W= W,
NW,. Then it is obvious that feazf(q), g is the pure imaginary analytic
continuation of f and gEa‘;m(W). But g =0 on W, since g(0) =0. From
the identity theorem for an analytic function, we have f=0 on q. It implies
that dim 2% (q) < 1 for any Aeqc.

Set @, = ¢*¥,, where 1 =¢71(n) (see Lemma 3.3, for the notations 7,
¥,). Then @, is an Hc-invariant entire holomorphic function of q¢ and (de) @,
=v(e)(4) D, for any eeSy(qc). Indeed, for any zeq., we have

D,(2) = J eBKE@),EA) gl
Kd

Since ¥, is K¢-invariant and ¢ (hz) = ¢(h)E(z) for any he He and zeq, it is
clear that @, is Hc-invariant. By the same way as Lemma 3.3, we have (de) @,



412 Atsutaka KowaTa

=v(e)(4)D; on qc, for any eeSy(qc). Let f; be the restriction of @, to
q. Then it is obvious that f, e« (q) and f,(0) = 1. Therefore the theorem is
proved.

Note that the technique described in this section is based on Flested-
Jensen’s idea in [4].

§4. The definition of H and §

We consider a real semi-simple symmetric pair (G, H). We recall that g
= b + g and H is acting on g by the adjoint action. Let Py (q¢) (or Sg(q¢)) be
a subalgebra of P(q¢) (or S(q¢)) of all H-invariant polynomials (or H-invariant
elements) on qc as the above H-action. Then from Chevalley’s theorem,
Py(a¢) = C[p;, -, p,], where p; is a homogeneous polynomial and C[p,, -, p,]
is the polynomial ring (/ = rank q). Pute;=v '(p) (1 <i<I). Then Sy(qc)
is generated by 1, e, --,e,.

Let GL(q) be the Lie group of all non-singular linear transformations on
q. Then the Lie algebra of GL(q) is gl(q). Let H’ be the subgroup of GL(q) of
all non-singular linear transformations T of q such that P(Tx) = P(x) for any
xeq and PePy(qc). It is obvious that H' is a closed subgroup of GL(q).
Thus H' is a Lie group. We denote by H the connected component of the
Lie group H'. Let Ad(H) be the Lie subgroup of GL(q) of all non-singular
transformations Ad(h) (he H). Then the Lie algebra of Ad(H) is ad h which
is a Lie subalgebra of gl(q) of all linear transformations adx (x€l). We assume
H is connected. Then the definition of H implies that Ad(H) is a connected
subgroup of H. Let § be the Lie subalgebra of gl(q) of all elements X such
that ¢ (X)p = 0 for any pe Pg(qc), where ¢ is defined in §2. Then it is clear
that b is the Lie algebra corresponding to H (or H') and § > ad b.

Under the identification of Zp(q) with @P (qc) (see §2), the mapping
i,; er—(de), is a linear isomorphism (over C) of q. onto Hol,(q¢) for any
zeqc. Let [z, hc] be the subspace of q. of all elements [z, w] (web) for each
zeqc and Hol,(qc; I) the subspace of Hol,(qc) of all elements v such that (dp),v
=0 for any pe Py(qc). Then we have the following.

PROPOSITION 4.1. If ze R, then i, gives a linear isomorphism of [z, hc]
onto Hol,(qc¢; I).

Proor. It is trivial that the map i, is linear and injective. But, it is
obvious that dim¢ [z, hc] < n — 1 for any zeqc and dim¢ [z, hc] =n — 1 if and
only if ze #,., where n = dim¢ g, [ = rank q. Indeed, for each zeq¢ the map;

be/beaw + be— [z, wlelz, bl



Spherical hyperfunctions on the tangent space of symmetric spaces 413

is well defined and a linear isomorphism of h¢/hz onto [z, hc] (for the notation
be, see §1). By the similar proof of Proposition 5 in [7], we have dim¢bo/bz
=dimcqc/gz for any zeqc. Hence dimg[z, hc] =n — dimgqgi for any
zeqe. Thus we have the assertion from the definition of %, (see §1). On the
other hand, dim¢ Hol,(q¢; I)>n—1 for any zeqc and if ze4,. then
dim¢ Hol,(qc; I) = n — 1. Indeed, we can easily see that

Hol (ac; 1) = {ve Hol.(ac); (dp;)(v) = 0 for any j (1 <j< 1)}

from the definition of Hol,(qc¢; I), where Py (q¢) = C[py,--+,p.]. By the similar
proof of Theorem 13 in [7], we have that if ze %, then (dp,),,--,(dp), are
linearly independent. Thus we have the assertion. This implies that the map
is surjective. So the proposition is proved.

For each zeqc, we define the linear map (over C) ¢, of gl(q¢) into
Hol, (qc) such that ¢,(X)=(¢(X)), for Xegl(q)c. Then we have the
following.

ProPOSITION 4.2. (1) ¢, (he) = Hol,(q¢; I) for any zeqc,
() If z€Raes ¢.(ad be) = Hol (ac; ).

PrOOF. For any X eb, zeqe, pePy(qc), we have
(dp). (¢ (X)) = @(X)(p)(z) = 0.

This implies (1). From the definition of ¢, for any zeqc, and wel,, we have
@ (adw), = (0[z, w]),. By Proposition 4.1, if ze %, then for any ve Hol,(qa¢; I)
there exists webe such that i,([z, w])=v. Hence ¢,(adw)= ¢ (adw),
= (0[z, w]), = i,([z, w]) = v. This implies (2).

Let P(q¢) @ (ad b¢) be the Lie subalgebra (of Zp(q¢)) of all elements D such
that D =Y p;p(X; for some p,eP(qc) and X;ead h,. Indeed, we have
[pe(X), g (Y)]eP(ac) ¢ (ad bc) (for p, g€ P(ac), X, Yead b), because

[pe(X), qo(Y)] = pqo([X, Y]) + pe(X)(@) ¢ (Y) — g (Y)(p) ¢ (X).

Then we have the following.

LEMMA 4.3. For any X eb¢ and 2€ Rq., there exist a polynomial pe P(q¢)
and a domain W< qc such that zeW, pw)#0 for any weW and
P9 (X)€ P(ac) ¢ (ad be).

ProOF. Choose a basis (over C) v,,---,v, of q¢c which is a basis (over R) of
g. So we identify g with C" by the mapping;

GcDdZ =210y + - + 2,0, —> (24, -, 2,) € C".
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Under this identification, for any X egl(q)c, we have

0
p(X).,= ) gj(z;X)<5> for any zeqc,

1<j<n j

where g;(z; X) = — Y a;;(X)z; (1<j<n) (see Proposition 2.1). From
1<i<n

Proposition 4.2, if z,e %, then there exist H,,---,H,eb¢ (t =n — ) such that
¢(ad Hy),,,---,¢(ad H)),, is a C-basis of Hol,, (q¢c; I). That is,

g1(z;ad Hy)---g,(z; ad H,)
rank [ : : =t

9:1(z;ad H) --- g,(z; ad H))
Since g;(z; ad H;) (1 <j <n, 1 <i<t)is a continuous map on qg, there exists a
domain W of q such that zoe W and for any ze W, rank(g;(z; ad H)) = t.
Thus for any ze W, ¢(ad H,),,---,(ad H,), is a C-basis of Hol,(qc; I). Since,
for any X e and ze W, ¢(X),€ Hol,(q¢; I) from Proposition 4.2, there exists
hi(1 <i<t)eC™(W)such that o(X),= ) h(z)¢(ad H), for any ze W. So

s <i<t ;
lgjlsngj(z; X)<5‘;j>z = Y g;(z;ad Hi)h‘(z)<éz_>

<ist ji/z
<j<n

for any zeW. Hence g;(z; X)= ) g;(z;ad H)hi(z) (1<j<n) for any

1<i<t
ze W. This implies that there exists ge P'(qc) such that gh;e P(q¢) (1 <i<1t)
and g(z) # 0 for any ze W, since rank (g;(z; ad H;)) =t for any ze W. Hence

9@ X).= Y g(@h(z)¢(ad H), for any ze W.
1<i<t

Since gh;e P(qc), we have go(X)eP(qc)@(ad he). Thus g is a desired

polynomial. Therefore the lemma is proved, because the above argument is

independent of a choice of a basis.

For each Lie subalgebra a of gl(q)c and an open subset U of qc, we denote
by 0,(U) a vector space of all holomorphic functions on U such that ¢ (X)f
=0 for any Xea. Then it is obvious that Os(U) < Quap.(U). But we have
the following.

COROLLARY 4.4.  For any domain U of q¢, Og(U) = Oaap.(U).

Proor. Let U is a domain of q¢. Since it is well known that %, is an
open dense subset of qc, Zq.NU # ¢. From Lemma 4.3, for any X e, and
zo€ U there exist a polynomial pe P(qc) and a domain W of g¢ such that z,e W,
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p(z) # 0 for any ze Wand po (X)eP(qc) ¢ (ad be). Hence for any f€ Oy, (U),
we have p(z)(¢(X)f)(z) =0 for any Xebh. and ze UnW. But since pw)#0
for any weW, (¢(X)f)(z)=0 for any Xebh, and zeUnW. Since f is
holomorphic on U, ¢(X)f is so. Hence, from the identity theorem for an
analytic functions, ¢ (X)f =0 on U. This implies that f €05.(U). Thus the
corollary is proved.

§5. H-invariantness
In this section, we prove the following theorem.
THEOREM 5.1. If /leéqc, then
A (a) = B (@).

ProoF. From the definition of %% (q) and %1 (q), it is obvious that %4 (q)
> gé’f (q). Thus we must show that £ (q) @f (q). For any element X €b,
we denote by Py(qc) the ideal of all polynomials peP(qc) such that
po(X)eP(qc) @ (ad he). Let V; be the algebraic subvariety of q. defining by
Py(qc). That is; W is the set of all elements zeqc such that p(z) = 0 for any
pePx(qc). If there exists an element ze Vx N %,,., then p(z) = 0 and ze A, for
any pePy(qc). This contradicts Lemma 4.3. Thus W%n#,=¢. From
Proposition 1.2, we have

Ve © ac\ B = ac\ae = {z€0c; 4(2) = 0}.
By Hilbert’s Nullstellensatz,

\/(A_) SRV Py(qc),

where (4) is the ideal of P(qc) generated by 4 and \/Z is the radical of an ideal
a of P(q¢) that is; pe P(q¢) then pe\/a— if and only if p*e = for some positive
integer k. Therefore for any X ef) there exists a positive integer k such that
4“ePy(qc). That is; 4@ (X)eP(ac) ¢ (ad by).

We consider the following system of differential equations on g, for fixed A
and k.

(Ge)u=v(e)(A)u for any eeSy(ac),
It
u=0.

We put m=k(N — L) (see §1, for N and L). From Proposition 2.2, for any
ecS%(qc) there exists unique element D (e, 4%)eS™“@~V(qc) such that um(4%)
= 0D (e, 4%, since deg 4*=m. Let eeSy(qc) such that dege=d. Then
U™ (4%) is obviously an H-invariant differential operator on q. So D (e, 4%) is
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H-invariant. When u is a solution of the above differential equations (#), it
is easily seen that uT(4")u = (e —v(e)(A))"4*u=0. So d(D(e, 4))u=
v(D (e, 4%)(A)u = 0. Hence, if there exists a homogeneous element ee Sy (q¢)
for fixed Aeqc and keN such that v(D(e, 4%)(4) #0, then u=0. From
Lemma 2.3, when e = w(w is the Casimir element), we have v(D(w, 4%))(4)
= A*(A). Therefore if Ae.gi’qc, then any solution u of the differential equations
(#) is zero.

Finally, for any fe %% (q) and X €b, we put g = ¢ (X)f. Then there exists
a positive integer k such that 4*e P (q¢) and g is a solution of the system of the
differential equations (#), because @(ad h¢)f =0 and [de, ¢ (X)] =0 for any
eeSy(q¢c). Hence if Ae,@%, then g =0. Thus f egﬁ’f (q9). This proves that
B (q) < Q?f’ (q) for any /165?%. Therefore the theorem is proved.

We consider Theorem 5.1 in the case when [ =rank q = 1. In the case,
the polynomial 4 is a homogeneous polynomial of g, such that the
homogeneous degree of 4 is dim g — rank g (see §1). Since rank g = dim [
— dim q + 2rank q, dim g — rank q = dim ) + dim q — rank g = 2 (dim q
—rank q) = 2(dim q — 1). On the other hand, 4 is a polynomial of the
Casimir polynomial w, because 4 is an H-invariant polynomial (we may use the
same notation o for the Casimir element w in S?(qc)). Hence there is a non
zero constant ¢ such that 4 = cw?™971, Let 4" be the variety of all elements
zeqc such that w(z) =0. Then we have the following.

COROLLARY 5.2. When rank q =1, if A¢ N, then
ZHOEEACY
ReMARK. In this case, the system of differential equations
(@e)f =v(e)(A)f  for any eeSy(ac)

are written simplify so that (0w) f = uf, where we set u = v(w)(4). Under the
new parametrization (ue C), Corollary 5.2 can be rewritten such that;

If u+# 0, then 2% (q) = #7(q).

On the other hand, we consider about H. In this case, any H-invariant
polynomial is a polynomial of the Casimir polynomial . We can choose a
basis X,,---,X,,---,Y;,---, Y, of q such that X;efnqg, Y,epng, B(X;, X;)=
—0;; and B(Y;, Y)) =6, ;. Then the Casimir polynomial is written as such;

0(X) =+ 4 xE - yi - -2,

where X = Y x,X;+ Y Y. Then from the definition of H, we have A

1<i<p 1<i<gq
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~SO0,(p, g). On the other hand, in [1], Cerezo proved the following
assertion;;

()  p=g=1 case, dim 27 (q) = 4,

(2 p=1or g=1 case, dim g?f (q) = 3,
(except for case (1))

(3) p>2and g>2case, dim #i(q) =2,

for any complex number u.
Therefore we have the following.

THEOREM 5.3. When rank q =1, if u #0, then
1) p=gq=1 case, dim %] (q) = 4,

2 p=1orq=1 case, dim %/ (q) = 3,
(except for case (1))

3) p>2 and q> 2 case, dim 27 (q) = 2,
where p = dim (qnf) and q = dim (qNnp).

ReMARK. In [2], Van Dijk listed up the dimension of invariant eigen
distributions. Since 2 4 (q) = 8% (q) (see [2] for the definition of 2} (q)), it
is clear that dim 2 ,(q) < dim %#%(q). But from Theorem 5.3 and [2], if
A #0, then we have 2; ,(q) = %% (q).
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