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§ 1. Introduction

Let HPn be the quaternionic projective space, and

. S4m -^HPl

m = HPl/HPm~l = S4m

be the inclusion to the bottom sphere in the stunted space. Then the purpose
of this paper is to investigate the induced homomorphism

(1.1) i, : πk.ΊίS4"1-") -> <._!(#/*_,) (n - r = m ^ /)

of i between the stable homotopy groups on (ImJ)2, where

(1.2) (ImJ)2 is the 2-primary component of the image of the stable J-
homomorphism J: π4r_1(S0)->π4l,_1(β00SGO) = πs

4n_l(S4(n-r)) (r ̂  1), and is
the cyclic group of order 23+v(r) by Adams [1] and Quillen [7].

Here and throughout this paper v(r) = v2(r) denotes the exponent of 2 in the
prime power decomposition of a positive integer r. Also, we put

/1 0\ / \ ίn + Λ L/ \(1.3) a(n, r) = ( 1, b(n, r) =

The main result is stated as follows:

THEOREM A. The induced homomorphism i^ in (1.1) satisfies the following
properties on (ImJ)2 in (1.2).

( i ) If I < «, then i^ is infective on (Im J)2.
(ii) Let I = n and r be odd^ 1. Then ^((Im J)2) is 0 z/ a(n, r) is odd,

Z/2 if b(r, r) is odd and r + n = 0 mod 4,

Z/4 if r > 1, b(n, r) is odd and n = r = 1 mod 8,
Z/8 ϊ/ r = 1 and n = 1 mod 8.

(iii) L^/ / = w ««rf r 6e ei ^w ^ 2, and assume thai b(n, r) is odd. Then

is

0 ,/ V(n) = v(r), Z/2 // v(n) > v(r).



344 Mitsunori IMAOKA

The connecting homomorphism d^ : πs

i(HPl

m + 1 ) -> πJ-^S4™) associated with

the cofibering S4m -> ///^ -> HPl

m + 1 often plays an important role in the study

of the stunted project! ve spaces; and Theorem A yields a partial result on d^..

Moreover, we have a similar result for the quaternionic quasi-projective

space Qn (cf. [5]) instead of HPn. In this case, we have the inclusion

ί: s
4m + * -+Ql

m = Ql+1/Qm = S4m + 3 Ue4m + 7 U -

to the bottom sphere and the induced homomorphism

(1-4) i,: πs

4/J + 2(S4("-r) + 3) — <B + 2(βί-r) (r £ 1, / £ n - r).

THEOREM B. i^ in (1.4) satisfies (i) and (iii) in Theorem A and the following

(ii)':

(ii)' Let l = n and r be odd ^ 1. Then ^((Im J)2) is 0 if a(n, r) is odd,

0 if a(n, r) is odd,

Z/2 if b(n, r) is odd and n = r = I mod 4,

Z/4 if b(n, r) is odd, n + r = 4 mod 8 and r = 1 or 3 mod 8.

These theorems are proved by applying the recent results given in [4].

To prove these theorems, we consider a finite CW- spectrum

(1.5) * = S°Ue 4 f l l U Ue 4 f l t Ue 4 r (1 g al ^ ••• ^ at < r)

in general, by noticing that Σ-4(n~r)HPn

n_r and Σ~4(n-r)-3Qn

n_r are such

ones. We define d(X) by

(1.6) dpi) = v (the order of Coker [ft: π4r(A:) — > H4r(X; Z)]),

where ft is the Hurewicz homomorphism. Then, by the theorem of Crabb and

Knapp [2] on the maximal codegree, we have the inequality

(1.7) d(X) g m(r), where m(r) is 2r if r is even and 2r + 1 if r is odd.

Now, consider the inclusion i : S° -> X and the induced homomorphism

(1.8) i,: *4r-i(S°) -> 1*4,- ι(X) for JT in (1.5).

Then we have the following results which yield Theorems A and B of above as

special cases, where

(1.9) jr denotes the generator of (Im J)2 = Z/23 + v(r) in (1.2).

THEOREM C. i^ in (1.8) satisfies the following properties:

( i ) If r is odd and d(X) = m(r) - ε for 0 ^ ε ̂  2, then 2εί^(jr) = 0.

(ii) If r is even and d(X) = m(r), then 22 + v(%(yr) = 0.

(iii) Put d = d(X) - d(X/S°), where d(X/S°) is defined similarly

to d(X) in (1.6). Ifd^2 + v(r), then 22 + v(r)~dί:,(jr) Φ 0.
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We prepare in § 2 some necessary properties for the proof of the theorems,

and prove Theorem C in §3 and Theorems A and B in §4.

§ 2. Preliminaries

To treat the spectrum X in (1.5) and its 4(r — l)-dimensional skeleton X' in

the next section, we consider the following 4m-dimensional finite CW-spectrum

in this section:

(2.1) y = S ° U e 4 α ι U Ue4f lk with 1 g a{ ^ ••• ^ ak = m.

For the spectrum V = Y or 5°, we will consider the mod 2 Adams spectral

sequence which has the E2-term

E?(V) = Ext^(tf *(^; Z/2), Z/2)

and converges to n^(V\ where A is the mod 2 Steenrod algebra. For 2 ̂  u

g oo, we denote by ESJ(V) the Eu-term of the spectral sequence. For the

generator jre(lmJ)2 = Z/23 + v(r) in (1.9), 23 + v(r )~ ίy r represents a unique element

(2.2) α2r/t.e£Γί''~ί+4r"1(5°) for 1 ̂  ΐ g 3

(cf. [6], [8]), where g = 2r + 2 or 2r + 1 if r is odd or even

respectively. Furthermore, for the homomorphism i^: £ '̂(5°) -^ES^(V) in-

duced from the inclusion i : S° -+V to the bottom sphere, we put 0α2r/I

= J*(α2r/t ). Then, by the similar way as in [3; Lemmas 3.6,3.9], we have the

following lemma for the spectrum Y in (2.1).

LEMMA 2.3. Assume that r > m.

(i) When r is odd, £S

2'
S+4|"1(7) = 0 if s ^ 2r + 2, and = Z/2{0α2r/i} if s

(ii) When r is even, Ey+4f~l(Y) = 0 if s ^ 2r + 1, and = Z/2{0α2r/1} //s

= 2r.

In fact, the elements 0α2r/I in Lemma 2.3 are non zero permanent cycles,

that is Oα2r/ί φ 0 in E^(Ύ\ by the following lemma.

LEMMA 2.4. If r > m, //ze« i#: π^.^S^-^π^.^Y) w ίnjective on (Im J)2.

PROOF. Let W= Y* be the S-dual of 7 with dim W=4m, and p: W

-> 54m the collapsing map to the top cell. Then by the same reason as in the

proof of [3; Prop. 2.1], it suffices to show the following:

(*) v(|p*(OI) = 3 + v(r) for p*(ι)eK04(m-r)(W\2)/Im(ψ* - 1).

Here, ιeKO4(m-r)(S4m) = Z is the generator, and φ3: KO \W\2) -* KO^W)^ is
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the stable Adams operation on the ΛΏ-cohomology groups localized at 2. But,
by the cell structure of W, we have an isomorphism

and we can take p*(ι)eKO4(m~r)(W) as one element in a basis of the free
part. Then we see that, for an integer c, cp*(ι)elm(ψ3 — 1) if and only if c is
divisible by 9r — 1. This implies (*), and we have the desired result. Q.E.D.

Assume that a map/: Sk~l -> Y with k > 4m is given for the spectrum Yin
(2.1). We denote the cofiber of/ by C(f) and the inclusion S° -> C(f) by i, and
we put e = d(C(f)) — d(C(f)/S°), where each d( ) is defined similarly as in
(1.6). Then we have the following lemma, in which all homotopy groups are
assumed to be cocalized at 2.

LEMMA 2.5. Ifi*(2ey) Φ 0 in πk^1(Y)for some yeπ^OS0), then i+(y) Φ 0 in

*t-ι(C(/))

PROOF. Consider the following commutative diagram:

π,(y/S°) -«-. ...̂ S") -i-. «„-,(?).

Here the homotopy groups are all assumed to be localized at 2, the horizontal
two sequences are the exact sequences associated with the respective cofiberings
and each j^ is the homomorphism induced from the canonical inclusion. By
the definition of e, we can take the generators x and y of the respective free
parts of πk(C(/)) and πk(C(/)/S°) to satisfy

q*(x) = 2ey + v for some torsion element υ.

Assume that ί^(y) = 0 in nk,v(C(f)\ Then y = d(ty + w) for some integer t
and some torsion element w, and thus 2ey = d(2ew — it;). Since any torsion
element of πk(C(f)/S°) is in Im(j'J, 1^(2^7) = 0 in πj^.^F), and thus we have the
desired result. Q.E.D.

§3. Proof of Theorem C

Let X be a C^-spectrum in (1.5). For a non zero element yeπt-s(X\ we
put F(y) = s if y represents a non zero element of ES£(X). That is, F(y) denotes
the mod 2 Adams filtration of y. Consider the S-dual of X, and apply
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Theorem 1 and Proposition 3.2 in [4] to it. Then we have the following
proposition, where h : π4r(X) -> H4r(X Z) is the Hurewicz homomorphism and
the image h(x) of an element xeπ4rpO is regarded as an integer through the
isomorphism H4r(X Z) ̂  Z.

PROPOSITION 3.1. Let ε(r) = 2 or 4 for even or odd r ^ 1 respectively. If
d(X) ^ 2r — ε(r), then there is an element x e π4r(X) satisfying v(h(x)) = F(x)
= d(X\

Let X' be the 4(r — l)-skeleton of X. Then we have the exct sequence

(3.2) ES

2~
1\X] -*-> Es

2-
l>t(S4r) -^ ES2\X') -**-» Esi\X) - * 0

for t — s = 4r — 1, where each Esi\ ) is the E2-term °f the spectral sequence as
in §2. Let h0eE^l(S°) = Z/2 be the generator. Then E2-

u(S4r)
_ £s-ι,s-ι^jθj = z/2{hSQ~1}, and we have the following proposition, where m(r)

is te integer in (1.7).

PROPOSITION 3.3. (i) If d(X) = m(r), then

d ( h \ > ) ϊ O f o r 1 ^ f ^ m ( r ) - 1.

(ii) // r is odd and d(X) = m(r) - ε for 1 ̂  ε ̂  2, then

Oα2r/ί = OeE?/-ί+2'6|-ί+1pO for ε = 1 and 1 ̂  ί ̂  2,

+1 6r(X) for ε = 2.

PROOF, (i) We put M = m(r) — 1. Suppose that <9(/io) = 0 for some 1
g i ̂  M. Then there is an element z€Eliί+4r(X) satisfying p^(z) = h^ by the
exactness of (3.2), and we have p^(h^~lz) = h%. We use Lemma 2.3 to the case
of 7 = X'. Then E¥(X') = 0 for s ̂  M + 2 and t - s = 4r - 1, and we have

= Q for the same s and ί by (3.2). Therefore we have /i j f 'WOe
), and v(Λ(y)) = M for an element yeπ4r(Jί) which represents h^~lz, where

Λ is the Hurewicz homomorphism and we regard h(γ) as an integer as in
Proposition 3.1. But this contradicts the assumption d(X) = M + 1, and thus
we have 3(/io) φ 0 for any 1 ̂  i ̂  M.

(ii) Since d(X) = 2r — ε + 1 for some 1 ̂  ε ̂  2 by the assumption, we
have ftor~ε + 1elm(p5|{) by Proposition 3.1. Then, using (3.2), we have Oα2r/ί + 0
in Ef-i+i.er-i+ipQ for i ^ i ̂  ε. Suppose that δ(^r~2) Φ 0. Then we have

d(hor~2) = oα2r/3 by Lemma 2.3. But it contradicts the above, since then Oα2r/ι
= 0 in E\r+l*r(X). Hence we have d(hlr~2) = 0, and so there is an element

yEE22r-2,βr-2(χ} satisfying p#(y) = fc2r-2 fey (3 2).

Now consider the case of ε = 1. We get the first required equality if we
show d2(j;)/0, because d2(y)eE^6r~1(X) ^Z/2{0α2r/2} and then d2(h0y)
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= oα2r/ι Suppose that d2(y) = 0. Then we have d2(h0y) = 0 also, and du(h0y)
= 0 for any u ̂  3 since it is an element of 0-group by Lemma 2.3 and

(3.2). Since p*(h0y) = h^'1, h0y cannot be the image of du for ay u ̂  2. Thus

h0y is represented by an element βeπ4r(X) with v(h(β)) = 2r - 1, and this

contradicts the assumption d(X) = 2r. Hence we have d2(y) φ 0, and the

desired result. For the case of ε = 2, we have d2(y) = 0 and d3(y) = Oα2r/ι by

the similar argument to ε = 1, and the second required equality. Q.E.D.

PROOF OF THEOREM C. (i) and (ii). Let 1 g ί ^ 3. Then the element

23 + v(r)-%(;r)eπ4,l_1(J*0 represents the element 0α2r/ί6£ΓI'''"ί + 4'"1(^X and
Es

2

s+4r~^(X) = 0 for any s ^ q, by Lemma 2.3 and (3.2), where q = 2r + 2 or 2r

+ 1 for odd or even r respectively. Thus to prove 23+v(r)~ίiJ|ί(7r) = 0 we may

show that oα2r/f = 0 for 1 ̂  t ^ z.
When d(X) = m(r) — ε for odd r and 1 ̂  ε ̂  2, the assertion follows from

Proposition 3.3 (ii). Now assume that d(X) = m(r). By Proposition 3.3 (i) and

Lemma 2.3, we have

d(hlr~i + l ) = Oα2r/i for odd r and 1 ̂  i ^ 3, and

5(Λo r ~ 1 )=o α 2rι for even r>

where d is the homomorphism in (3.2). Therefore, Oα2r// =

for odd r and 1 ̂  i ̂  3, and 0^2r/ι — θ6£2Γ'6r~1W f°r even r Thus we have
(i) and (ii).

(iii) We apply Lemmas 2.4 and 2.5 to the case of (C(/), Y9 e) = (X, X', d),
where d = d(X) - d(X/S°). Lemma 2.4 implies that 22 + v(r)ii|s(;r) / 0 in

π^-^Jf'X and t̂ 1118 we ^ave Λe desired result by Lemma 2.5.

§4. Proof of Theorems A and B

We will apply Theorem C to the spectra Γ"4(Π"r)7/^_r and

27~4 ( w~ r )~3<2"_ r. Recall the integers a(n, r) and b(n, r) defined for given

integers n and r ^ 1 in (1.3). Also, we put c(n, r) = ). Then by
\ r — 1 /

[4; Th.2, 3] we have the following:

LEMMA 4.1. (i) d(Γ~4(n-r)//^_r) - m(r) if and only if a(n, r) is odd.

(ii) Assume that r ^ 3 is odd. Then, rf(Γ"4(""r)/ίP^_r) = m(r) - 1 or m(r)

— 2 if the following (1) or (2) holds respectively:

(1) φ, r) + 1 = (a(n, r)/2) + ft(Λ, r) = 1 mod 2;
(2) φ, r) = 2 mod 4, φ, r) = 1 mod 2 and

(a(n, r)/2) + fe(n, r) + 2φ, r) = 2 mod 4.
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LEMMA 4.2. (i) d(Σ~4(n-r)-3Qn

n_r) = m(r) if and only if a(n, r) is odd.

(ii) Assume that r ^ Us odd. Then, d(Σ-4(n-r)~3Qn

n_r) = m(r) - 1 or m(r)
— 2 if the following (1)' or (2)' holds respectively.
(1)' α(n, r) = 2 mod 4;
(2)' a(n, r) = 4(1 + (n + l)φ, r)) mod 8.

Let i^ : π4π _ λ (S
4(π " r)) -* <n _ i ( W" - r) be the homomorphism in

(1.1). Then, by Theorem C and Lemma 4.1, we have the following theorem.

THEOREM 4.3. (i) If a(n, r) is odd, then ^((Im J)2) = 0 for odd r ^ 1, and
22 + v(r)i*(jr) = Q f o r even r^2.

(ii) For odd r ^ 3, 2i+(jr) = 0 or 4ί*(jr) = 0 //(I) or (2) in Lemma 4.1 holds

respectively.

Similarly, for the homomorphism i*: πs

4n + 2(S4(n~r) + 3)^>πs

4n + 2(Q"_r) in
(1.4), we have the following theorem by Theorem C and Lemma 4.2.

THEOREM 4.4. i^ satisfies (i) in Theorem 4.3 and the following (ii)' :

(ii)' For odd r ̂  1, 2^0',) - 0 or 4i+(jr) = 0 if (1)' or (2)' w Lemma 4.2

/z0/tffc respectively.

PROOF OF THEOREM A. (i) follows from Lemma 2.4 by applying it to the

case of 7 = Σ~4(n-r)HPl

n.r and m = I - n + r for / < n.
(ii) Let ΐ * : πs

4n_1(54(M"r))-^πs

4π_1(//P^_r) be the homomorphism in (1.1)
for / = n, and (Im J)2 c π4π_1(S4("-r)) as in (1.2). We put P = Σ~4(n-r)HPn

n_r

and d = d(P) — d(P/S°). Then, by the same reason to Lemma 4.1 (i), we have

(4.5) d(P/S°) = m(r - 1) if and only if b(n, r) is odd.

Assume that r is odd. If α(n, r) is odd, then ^((Im J)2) = 0 by Theorem 4.3 (i),

and we have the first case of the required result. For the case of r = 1, since

Σ~4n+4HPn

n_l is homotopy equivalent to S°U (M-1)ve
4, where veπ3(S°) - Z/24

is the generator, ^((Im J)2) is a cyclic group of order g.c.m.{n - 1, 8}. Hence

we have the desired result for r = 1. Now we assume further that b(n, r) is odd

and r ^ 3. Then we see that the condition (1) in Lemma 4.1 (ii) is equivalent to

that r + n = 0 mod 4. Thus, if r + n = 0 mod 4, then 2i+(jr) = 0 by Theorem
4.3 (ii), and i#(jr) Φ 0 by Theorem C (iii) since a — 2 by Lemma 4.1 (ii) and
(4.5). Hence we have the second case of the desired result. Similarly, the

condition (2) in Lemma 4.1 (ii) is equivalent to that n = r = 1 mod 8. Then,
under this condition, d = 1 by Lemma 4.1 (ii) and (4.5), and we have i^((lmJ)2)

= Z/4 by Theorem 4.3 (ii) and Theorem C (iii), which is the third case of the

required result.
(ii) Assume that r is even. Then, b(n, r) is odd if and only if d(P/S°) = 2r

— 1 by (4.5), and under this assumption we have the following:
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v(n) > v(r) if and only if a(n, r) is odd,

v(n) = v(r) if and only if d(P) = 2r - 1,

Hence, if b(n, r) is odd and v(n) = v(r), then 22 + v(r)is|e(;r) φ 0 by Theorem C (iii)

since a — 0 in this case, and thus Ker (ij Π (Im J)2 = 0. If both α(n, r) and

b(n, r) are odd, then 22 + v(r)ιs|t(;r) = 0 by Theorem 4.3 (i), and Ker (ij n (Im J)2

= Z/2 by Theorem C (iii) since d = 1 in this case. Thus we have completed

the proof. Q.E.D.

The proof of Theorem B is similar to that of Theorem A, by using Lemma

4.2 and Theorem 4.4 instead of Lemma 4.1 and Theorem 4.3.
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