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§ 1. Introduction

Let D = {xeRp: xx>0} where x = (x1?..., xp) and p>2 and let dD be the
euclidean boundary of D. If u is subharmonic in D and 3; e dD, we define u(y) =
lim sup u(x), x->y, x e D. If u < 0 on dD and if sup u(x)lx± < oo, then it is known
that

u(x)/xl-^^9 x->oo, xεD\E, (1.1)

where the exceptional set E is minimally thin at infinity (cf. J. Lelong-Ferrand [8]).
This result is best possible in the sense that the property of minimal thinness at
infinity in D completely characterizes the exceptional set in question. If p > 3,
it is also known that

(wW-αx^/lxl^O, x-»oo, xeD\F, (1.2)

where the exceptional set F is rarefied at infinity in D (cf. Essen-Jackson [5b]).
In the present paper, we deduce precise descriptions of the geometrical

properties of the exceptional sets E and F which will be new when p = 2 and which
will be improvements of the results of Essen and Jackson on problems (1.1) and
(1.2) when p>3. Our Theorems 1, 2 and 3 are best possible of their kind and
contain the earlier of results of this type which are due to Ahlfors and Heins
[1], Hayman [6] and Azarin [2]. (For details on earlier work, we refer the
reader to the introduction in [5b]).

We shall say that a set EcD has a covering {ίπ, rπ, Rn} if there exists a
sequence of balls {Bn} with centers in D such that £c u Bn where rn is the radius
of Bn, Rn is the distance from the origin to the center of Bn and tn is the distance from
the center of Bn to dD.

It is known that the subharmonic function u can be uniquely decomposed as

u(x) = αx! - Gμ(x) - Pμ^x),

where α is defined in (1.1), Gμ is the Green potential of a mass distribution μ
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on D and Pμ± is the Poisson integral of a mass distribution μ^ on dD. Thus, it
will be sufficient to find exceptional sets E and F such that

, x->oo, xeD\E, (1.1')

0, x-»oo, x e D \ F . (1.2')

As examples of our results, we mention that, for each β>p — 2, there exists a
covering {tn, rn, Rn} of E such that

ΣWRWrJQ^n. (1.3)

Furthermore, for each β>p — 2, there exists a covering {fM, rn, £„} of F such that

n. (1.4)

In both cases, we have Q<rn<tn^/p for all n.
The associated results in Essen and Jackson [5b] in the case p>3 are that

for each β>p — 2, there exist coverings satisfying

Σ(tJRJ2(rnlR,y«χ>9 (1.3')

for £ and F, respectively. It is easy to check that the new results (1.3) and (1.4)
are stronger.

REMARK. In the present paper, we study directly the sets where Gμ(x) +
Pμι(x) is large. An alternative approach following the main ideas in [5b] is also
possible : the starting-point is to define the exceptional sets in terms of generalized
Wiener conditions. This potential-theoretic approach has other interesting
consequences which we shall pursue in a separate paper which will also give
details on rarefied sets when p = 2. We note that Theorems 1 and 2 below are
inspired by the form these results have when p = 2: this follows in a natural
way from potential-theoretic considerations in the plane. It is a surprising fact
that it carries over to higher dimensions in spite of the fact that the potential
theory in higher dimensions is rather different from the potential theory in the
plane.

§2. Notation

(i) As in §1, D denotes the half-space {xe Rp: x1>0}, where p>2.
(ii) By B = (t, r, R), we mean a ball of radius r, centre P = (f, x2,..., xp) where
t > 0 and R = \P\. We also introduce H to be the collection of all sets of the form

BΓ\D9 where 0<r<ίλ/p. This means that if Q<^D\JdD is a closed cube with
sides parallel to the coordinate axis, then the ball B, whose centre is at the centre
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of Q and whose diameter is that of β, is such that B n D e H.
(iii) LetSn = {xeDUdD:2»<\x\<2n+1}.

(iv) Let φp-2(M) = M2~p, P>3, and let φ0(\x\)= -log |x| be the fundamental
kernels on Rp, p>2. We also introduce

oW = ,
0, r = 0.

(v) If EciRp, welet£π = £nS M .

(vi) If x = (x1?..., xp), then x = ( —x1 ? x2,..., xp) shall denote the reflection of
x about the Euclidean boundary dD of D.

(vii) Let, for x and y in D, G(x, y) = φp-2(\χ — y\)~- ΦP-2(\χ~P\) be the Green

kernel for £>, and let Gμ(x)= \ G(x, y)dμ(y) be the Green potential at x of the

Radon measure μ whose support is S(μ). Let, for x e D and yedD, P(x, j;) =

Xi\x — y\~p be the Poisson kernel for D and let Pμί(x)=\ P(x, y)dμl(y) be
JdD

the Poisson integral of the Radon measure μί with support contained in dD.
(viii) If y e 6D, we define the cone Γ(y) = {xeD:2xl>\x-y\}.
(ix) If / and g are positive real-valued functions on a set X, we shall say that /
is comparable to g, and write f&g iff there exist constants A, B9 Q<A<B, such
thatAg<f<Bg onX.
(x) Coverings of the form {tn, rn, Rn} were defined in the introduction. We
shall say that a set E c RP has a covering {r,(, Rn} if there exists a sequence of balls
{Bn} in Rp such that £<= u Bn, where rπ is the radius of Bn and Pπ is the distance
between the origin and the centre of Bn.

§ 3. The main results

Let h: [0, oo)->[0, oo) be a continuous non-decreasing function such that

A(0) = 0.

THEOREM 1. Let u be as in the introduction. Let h be as above and assume
furthermore that

< oo. (3.1)

Then the exceptional set E in (1.1) can be covered by a sequence {Bn n D} in H
such

Σ (tn/Rn)ph(rn/tn) < °°> (3.2)

whereBΛ = (tH9rn9RJ,n = l929....

THEOREM 2. Let u and h be as in Theorem 1. Then the exceptional set
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F in (1.2) can be covered by a sequence {Bn n D} in H such that

Σ(tn/Rny-ίh(rJtn)<^, (3.3)

where Bn = (tn, rn, Rn), n = l, 2,... .

REMARK. If h(r)r2~p is non-decreasing on [0, ^~p]9 then for a = 0, 1, we have

(tn/Rny
+°h(rnIRn) < (tJRnY

+^h(rn/tn) . (3.4)

In Theorem 5.1 in [5b], Essen and Jackson proved that when p>3, these ex-
ceptional sets have coverings {Bn n D} in H such that

where we have a = 1 in the minimally thin case (1.1) and a = 0 in the rarefied case
(1.2). Thus, assuming that (3.4) holds, we see that Theorems 1 and 2 give us a
new result when p = 2 and an improvement of Theorem 5.1 in [5b], when p>3.

REMARK. In Section 8, we give an example showing that our results will
no longer be true if the integral in (3.1) is divergent.

We claim that the exponents p in (3.2) and p— 1 in (3.3) are sharp. To see
this, we note that if p>3 if {Bn} is a sequence of balls such that E= U Bn and if
BnaSn for all n, the set E is minimally thin or rarefied at oo in D if and only if

(cf. Theorem 4.1 in [5b]). Here Bn = (tn, rn, Rn), n = l, 2,... . For each ε>0,
there exists a function h satisfying (3.1) and a minimally thin set E which is such
that if E is covered by U B*, we have

We choose £= U Bn where Rn = 2n + ί , tn/Rn = n~Vp and rn/tn

π = 2, 3,... . We omit the details in the remaining cases.

COROLLARY 1. Let p>3. For each β>p-2, the exceptional set E in
Theorem 1 has a covering {Bn n D} in H such that (1.3) holds and the exceptional
set F in Theorem 2 has a covering {Bn n D} in H such that (1.4) holds.

PROOF. We choose h(r) = min(rβ, 1), r>0. Since (3.1) holds, we have
coverings according to Theorems 1 and 2. Let Σ' denote that we sum over those
indices where rjtn<l and let Σ" denote the remaining indices. For the set E,

since rn < tn^p, we have
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Σ" (tJRnY(rn/taY < pU* Σ" (tnIRnrh(rJtn) ,

and the claim follows for the set E. The set F is treated in exactly the same way.

COROLLARY 2. Let p = 2. For each β>l,the exceptional sets E in Theorem
1 and F in Theorem 2 have coverings {Bn Π D} in H such that

ltnγ <oo,

respectively.

PROOF. We choose h(r) = F0(r)β which satisfies (3.1) and argue in the
same way as in the proof of Corollary 1.

We have also got a new proof of Azarin's result [2] which says that the set F

in Theorem 2 has a covering such that Σ (rn/^Jp~1<0° (Just choose /ι(r) = rp~1

in (3.3)!). We have also got a little more.

COROLLARY 3. The exceptional set E in Theorem 1 has a covering {rn,Rn}

such that Σ(rJ

PROOF. Choose h(r) = rP in (3.2).

REMARK. These coverings are interesting only for the parts of the exceptional
sets which are close to dD.

Theorem 2 is a direct consequence of the following somewhat more precise
result.

THEOREM 3. Let μ and μ± be non-negative measures on D and dD,
respectively, which are such that Gμ-\-Pμί is a superharmonic function in D.
Let h be as in Theorem 1. Let

F = {xεD: Gμ(x) + Pμ1(x)>|x|} . (3.5)

Then there exist sets F± and F2 such that F<^F± U F2, and Fί and F2 can be
described as follows:
a) There exists an open set 0c=dD such that

\ (l-HxD^dx < oo, (3.6)
JO

and Fί = D\(\JyedmoΓ(y)). F± can be covered by a union of p-dimensional
balls {rn, Rn} with centres on dD such that
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ΣW/O'-^α). (3.7)

b) F2aD is an open set such that

x^(\x\ + iy-Pdx< oo, (3.8)

and can be covered by balls {Bn Π D] in H such that

Σ(tnIRn)*-ih(rnIQ<π, (3.9)

where Bn = (tn, rπ, Rn), n = l, 2,....

REMARK. In the proof of Theorem 1, we use a result of B. Dahlberg [4]
in a form given by P. Sjδgren [10] (also cf. Sjδgren [11] for the notion of "con-
volution set" used in [10]): Let

E = {xεD: Gμ(x) + Pμί(x)>xί} , (3.10)

where we use the notation of Theorem 3. Then we have

< oo. (3.11)

The corresponding property of the set F defined by (3.5) is (3.8). Sjδgren gives
an ingenious proof of Dahlberg's result and we use his ideas in the proof of
Theorem 3.

§ 4. A potential-theoretic lemma

When deducing covering results, we can work either with balls or with dyadic
cubes with sides parallel to the axis: the results are equivalent (cf. Section 5 in
Essen and Jackson [5b]).

In this section, it is convenient to work with cubes. Let us say that a cube
in Rp is half-open if it is of the form {xεRp; ai<x<ai + b, z = l, 2,..., p}.
Let Gn be a net of half-open cubes in D similar to those constructed in Carleson

([3], pp. 6-7) and let G= \JnGn. We recall that all cubes have their sides parallel
to the coordinate axis and that the length of a side of each cube in Gn is 2~w.
Furthermore, the cubes in Gn are obtained by dividing each side of every cube
in Gn-± into halves so that every cube in (?„_! will be divided into 2P equal
subcubes. In addition, we arrange each net Gn so that the first coordinate of
any vertex of each member of Gn is either 0 or of the form m2~n (mεN, nε N).

Let Λ:[0, oo)-»[0, oo) be a non-decreasing continuous function such that
/ι(0) = 0. For each cube Q ε G we define the premeasure
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where 2r is the side-length of Q and t is the distance from the centre of Q to dD
and a is p or p — 1 . When it is clear from the context what value of a we are using,
a will be suppressed.

Next, for each bounded subset E of D (J dD, we define

where the infimum is taken over all coverings of E with cubes from G. (For
details, we refer to a similar discussion in Essen and Jackson [5b], Section 5.)
Using the same argument as in the proof of Lemma 5.1 in [5b], we deduce

LEMMA 1. Let h and a be as above and let F be a compact subset of D Π
{xeRp: |x|<8}. Then, there exists a mass distribution v = vα supported by F
and constants C^ and C2 only depending on the dimension p such that

Xldv(x), (4.1)

{ x,dv(x) < C2σ°h(Q) for all QeG. (4.2)
JQ

§5. Proof of Theorem 1

Let us assume that, for each ε>0, we can find a covering of the set Eε =
{xeD: Gμ(x) + Pμί(x)>εxί} such that (3.2) holds. Then it is easy to see that
we can find a set E which has a covering satisfying (3.2) and for which (l.Γ)
holds, i.e., Theorem 1 is proved.

Thus, it is sufficient to study the covering problem for the set EE. Normal-
izing, we see that we can restrict ourselves to the study of the set E = Eί defined
by (3.10).

In the first part of the proof, we shall work with a collection {Qk} of disjoint
half-open cubes (which we shall call Whitney cubes) with sides parallel to the
axis which are such that if Q e {βj, we have

d(Q) = dist. (β, dD) > 2 diam. Q/JJ, (5.1)

(cf. e.g. Stein [12], p. 16). Furthermore, we have the following property: If
Q is the double of Q (i.e., β = {xe Rp: x — XQ = 2(y — xQ) for some yeβ}, where
xQ is the centre of β), QcD and there is a constant A only depending on the
dimension p such that β meets at most A cubes in the collection {Qk}. We also
assume that

dίam. g»d(δ) for βe{βj. (5.2)

We define,
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= G(X,y)dμ(y),xeQk,
S" k - 1 2 3/V — 1, Z,, J,...

J(x) = \ G(x, y)4u(j;) + PμΛx), x e
Jj9\2k

The functions I(x) and J(x) are defined everywhere in D and we put U(x)
7(x) + J(x). Thus, if

we have E n {x : |x| > 1} c: u (Ek U Fk).
By Harnack's inequality (cf. e.g. Hayman-Kennedy [7], p. 35) we have for

any k

J(x)/c0 < J(y) < c0 J(x), x, y e βfc,

where c0 depends only on the dimension p. It follows that if Fk=£0, we have

J(x)>Xι/(2c0) = c'x l5 xeβ f c. We obtain, with constants depending only on the
dimension p,

(1 + \x\Γpdx
{J(x)^c'Xί}

(l + \x\)-*dx< oo.
{f/(x)>c'Λ: 1 }

Here tk is the distance from the centre of Qk to 3D and Rk is the distance of this
centre from the origin. In the last step, we used the Dahlberg-Sjδgren result

quoted in (3.10) and (3.11). Since we have (5.2), we have obtained a covering
of the set U Fk which satisfies (3.2).

We now turn to U Ek. Let E'k = Ek/Rk, Q'k = Qk/Rk and tk = tk/Rk. From (5.1),
it is clear that Ek<={xeD: \x\<c(p)}. Here c(p) is a constant which depends
only on the dimension p. For a while, we shall consider a fixed k and we put
Q'k = W and t'k = t. Changing variables in 7(x), we see that

I(Rkx)/Rk = /'(x) = ( G(x, y)Rl-Pdμ(Rky) = \ G(x, y)dμ'(y) > xJ2, x ε E'k.
JW JW

We claim that

Lh(Ek) < Const. x^'(x) = Const. R^ x^μ(x) , (5.3)

where Lh = Lp

h is the "Hausdorff measure" defined in Section 4 and the constant
depends only on p and the value of the integral in (3.1).

To prove (5.3), it is sufficient to consider the case when F is a compact subset
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of the open set E'k such that Γ(x)>x1/2 on F and deduce that

Lh(F) < Const. ( Xίdμ'(x). (5.4)
Jw

According to Lemma 1, there exists a measure v supported by F such that (4.1)
holds. We obtain

Lh(F)<cΛ x,dv(x)<2cλ ( G(x, y)dμf(y)dv(x)
J F J F J w

Gv(y)dμf(y). (5.5)

To estimate Gv(y) on W, we need the following fact:

( xίdv(x) < C3tPh(4s/t), 0 < s < diam. W< tJ~p, yeW. (5.6)
J\χ-y\<s

To prove (5.6), we let l(W) be the sidelength of the cube W. The distance
from the centre of W to dD is t. We know that (cf. (5.1))

l(W) < 4ί/5, d(W, dD) < 3ί/5.

There are two cases to discuss:

a) 0<s<f/20. We cover {x: \x — y\<s} by at most 2P dyadic cubes from G,
all with side 2d, s<d<2s. For each such cube X, the distance from the centre
of X to dD is at least t/2. Thus we have (cf. (4.2))

C C2tPh(2d/t)< C2tPh(4s/t).

In this case, the left hand member of (5.6) is at most C22
ptPh(4s/t).

b) ί/20<s<ίλ/p. We cover {x: \x-y\<s} by dyadic cubes from G, all with

side 2d, where t/2Q<d<t. For each such cube X, we have (cf. (4.2))

x1dv(x) < C2t
ph(2).

The number of such dyadic cubes has an upper bound only depending on p.
We have proved (5.6). The constant C3 depends only on p and on the function
h. We note that we have worked with dyadic cubes from G and not with the

Whitney cubes from the first part of the proof.
We define H(s) = log (5t/s) if p = 2 and H(s) = s2~p, p > 2, s > 0. We have

G(x9y)ζH(\x-y\)9 yeW, xeQ'k.

Using these estimates, we obtain in a standard way that
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H(\x-y\)dv(x) < (2C3/ί)
F Jo

= C5ylt yeW

where the constants Q, 1 < z'<5, depend only on the dimension p and the function

h. Inserting this estimate into (5.5), we obtain (5.4) and thus also (5.3).

Since u(x) is not identically infinite in D, we must have

B = ( x1JD

Recalling the constant A giving an upper bound for the multiple coverings of

the doubled cubes {Qk}, we deduce from (5.3) that

Σ Lh(E'k) < Const. Σ { *ι(l + M)~pdμ(x) < Const. AB < oo,
JQk

where we sum (5.3) over all k such that Rk>l. This gives the desired covering
of the set U Ek by (not necessarily dyadic) cubes (for a similar discussion, see

p. 260 in [5b]). Dividing each of these cubes into 2Np identical cubes and taking

balls containing these smaller cubes we obtain the desired covering by sets from

Hif N is the smallest integer such that 2N>2^/p. Theorem 1 is now proved.

§ 6. Proof of Theorems 2 and 3

Arguing as in the beginning of the proof of Theorem 1, we see that it is suf-
ficient to study the set F defined by (3.5). Since Gμ + Pμx is not identically infinite,

we have

oo. (6.1)
JdD JD

We have F^{xeD: Gμ(x)>\x\/2} U {xεD: Pμ1(jc)>|x|/2}. We first study
. Let μί be the restriction of μ1 to {zedD: |z|>LJ where L t is a large

number to be chosen below. If x e Sn and z e dD n 5Λ, where \k — n\ > 1, we have

\x-z\ > \x\/4, k<n, \x-z\ > |z|/4, k> n.

Let μk be the restriction of μi to Sk, k>2. We now choose Lx so large that

Σ|*-.|>ι Pμk(*) < *p*ι J{ |z |^2} W-'dμM < \x\llO, xeSn. (6.2)

Let μί =μι — μi It is easy to see that there exists a number L2 > 16 such that

x,\x-z\-Pdμ'[(z)< \x\IW, \x\ > L2. (6.3)
dD
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From (6.2) and (6.3) we see that the set {xeD: Pμ1(x)>\x\/2>L2/2} is contained
in

Let us put dΛn(z) = 2-"P(dμn_ί + dμn + dμn+l)(2nz). If x = 2wx' and z = 2"z',
we see that the subset of Sn which we study, divided by 2", is contained in

where suppΛMc= {ze 8D: l/2<|z|<4}.

From (6.1), we see that Σ Mull <00> where || || denotes the total mass of the
measure. Let us for a while drop the n : s and the ' : s. Thus A is a non-negative
measure on {z e dD: l/2< |z| <4}. Consider the maximal function

NΛ(z) = sup PΛ(x), x e Γ(z) .

Let G = {zedD: NΛ(z)>3/10}. G is an open set. Let Ω = \J zeeΌ\GΓ(z).
To each z e Ω, there exists zedD\G such that x e Γ(z) and we have

PA(x) < NΛ(z) < 3/10.

We conclude that the set {x eD: PΛ(x)>3/10} is contained in D \ Ω.
It is well-known that there exists an absolute constant C such that

where | | denotes (p — l)-dimensional measure (cf. Theorem 1, p. 197 and Theorem
1, p. 5 in Stein [12]). We can cover G by (p — l)-dimensional Whitney balls
with raddi {rj in such a way that

Σ rΓl < C(p)\\Λ\\ .

This terminology means that we have r^d(Bi9 dG) for all i (cf. [12], p. 16).
(By C(p), we mean a constant which depends on p only. C(p) may have different
values in different formulas.) If (xl9 z )eD\ Ω and z e G belongs to a Whitney

ball of radius r, we have d(z, dG)<C(p)r and thus x1<λ/3C(p)r. Hence the
p-dimensional balls with centres at the centres of the Whitney balls and with

radii {>/3C(jp)r/} will cover D \ Ω. Returning to Sn and summing over n, we
find an open set Oγ = U (2"GΠ) which has a covering {ri9 R } by (p— l)-dimensional
balls such that

Σ (rJRύ*-* < C(p) Σ MJI < oo. (6.4)

Elementary calculations indicate that with the exception of finitely many indices
the centres of the Whitney balls used in the covering of G will have distance at
least 1/4 to the origin. In particular, (3.6) holds with O replaced by O±. Further-
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more, we see that the set {xeD: Pμ1(x)>|x|/2>L2/2} is contained in \J(D\ Ωn),
where D \ (Ωn/2n) is the exceptional set for PAn. (We note that the associated
^-dimensional balls will cover U (D \ Ωn) and that (6.4) holds for this covering.)

This concludes the first part of the proof.
To study the set {x e D: Gμ(x)> |x|/2}, we use the Whitney cubes of Section 5

and the decomposition

'/(*)=( G(x,y)dμ(y), xεQk,
Qk k-1 2K, — 1, Z,,... .

J(x)=\ G(x,y)dμ(y\ xεQk9
jD\Qk

We have Gμ(x)=/(x) + J(x). As usual, we see that the exceptional set for Gμ
is contained in the union of the two sets

{xeD:/(x)>|x|/4} and {xeD: J(x)>|x|/4} .

Let Hk = {x e Qk: /(x)> |x|/4}. If \Hk\ is the Lebesgue measure of Hk, we have

\Hk\ \x\ < Const, ( I(x)dx < Const. x?μ(βk), for x e Qk .Jζίk

In the last step, we used (5.6). If F2 = ( U Hk) n {|x| > 1}, it follows from (6.1) that

( xΓKl + M)1-^* < Const. ( Xl(l + \x\)-pdμ(x) < oo ,
JF2 JD

and we have proved (3.8).

To obtain the covering (3.9) fo F2, we use the same argument as in the proof
of (3.2) in Theorem 1. The only difference is that, when we apply Lemma 1,
we use the premeasure σ%~1(Q) = tp~ίh(r/t) and the 'Ήausdorff measure" Lp

h~
l.

We omit the details.

It remains to study {xeD: J(x)>|x|/4}. We shall use a trick of Sjogren
which will reduce the problem to a study of a Poisson integral which we can
handle by the first part of the proof. This idea of Sjogren can be found in his
proof of Dahlberg's result (3.11) (cf. p. 280 in [10]).

Let φ : D^dD be a measurable mapping such that

\x-φ(x)\ < 2x1? xeD, (6.5)

W«|φ(x) | , xeD. (6.6)

If x1<|x|/2, we can let φ be orthogonal projection onto δD. If x^lxl/2, we
can take φ(x) = (0, x2,..., xp_ι, XP + XI sgnxp). There are, of course, many
other possibilities to choose φ.

Let & be the class of continuous functions on dD which is such that
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Consider the linear functional

L(f)=\ f(φ(y))yίdμ(y),
JD

According to (6.6) and (6.1), we have

|L(/)| < Const. 11/11 ( yι(l + \y\rpdμ(y) < oo.
JD

We conclude in a standard way that there exists a measure v on dD such that

(6.7)
dD

oo.
JdD

We are going to compare J(x) to the Poisson integral Pv(x). If c>0 is given
and \x — y\>cxί9 we have, according to (6.5), that

\x-φ(y)\ < \x-y\ + 2y, < 3\x-y\ + 2x,

According to the definition of the Whitney cubes, we can find c>0 such that

J(x) < \ G(x, y)dμ(y) < Const. ( Xιyι\x-y\'pdμ(y) <
J\x-y\^cxi J\x-y\^cxι

< Const. x1 \ yι\x-φ(y)\~pdμ(y) = Const. *< \ \x-z\~Pdv(z).
JD JdD

In the last step, we applied the representation formula (6.7) to the function /(z) =
XI\X — Z\~P, zeD, where x e D is fixed. Thus, we have proved that

J(x)<CPv(x), xeD, (6.8)

where the constant C depends only on the dimension p. We have

{xeD: J(x)> |x|/4} c [xeD: Pv(x)>|x|/4C} .

Arguing as in the discussion of the set {xeD: Pμί(x)>L2/2}, we find an open
set O2<^BD such that (3.6) holds with O replaced by O2 and such that the set
{xεD: Pv(x)>|x|/4C} is contained in D\(\JzedD\θ2 Γ(z)) which has a covering
{rn, Rn} such that (3.7) holds. Defining O = O 1 U O 2 and taking the union of
the exceptional sets, we obtain Theorem 3.
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§ 7. Examples

In this section, we give examples of potentials and associated minimally thin
or rarefied sets (cf. (3.10) or (3.5)).

In the plane, we take a sequence of closed disks B(zw, rj = {z: |z — zM|<rπ},
n = l, 2,..., which are such that 2rn<xn and

Here zπ = xn + iyn9 zn-> oo . If μn = xπ(log (xjrjr *, then

is a convergent Green potential in D and

w(z) > μn log |(z + zπ)/rj > xw, z e B(zn, rπ) .

Hence there exists a constant c e (0, 1) such that

w(z) > ex, ze U £(zn, rπ),

and so U B(zn, rn) is minimally thin at infinity in D.
In the rarefied case, we take a sequence of disks such that

and use the same argument with μn= |zj(log (x^/O)"1-
When p>3, we need the following estimate (cf. Essen and Jackson [5b],

formula (2.3)):

-y\2-P\x-y\-2, x,yeD. (7.1)

In the minimally thin case, we take a sequence of closed balls

B(Pn, rj = [xeR*: |x-PJ<rπ}? n = 1, 2...

such that 2rn<tn, Rn-+co, and

^p<cx). (7.2)

is a convergent Green potential in D and

w(x) > μnG(x, PJ > cxl9 x e

and so U B(Pn, rw) is minimally thin at infinity in D.



On minimally thin and rarefied sets 407

In the rarefied case, (7.2) is replaced by

Σ tnr^R^ < oo, (7.3)

and we choose μn = Rnr%~2.
When p>39 the results that a sequence of balls satisfying (7.2) or (7.3) is

minimally thin or rarefied at infinity in D can be found in Theorems 4.3 or 1.1
in Essen and Jackson [5b]. There are also weak converse statements which
illustrate the precision of Corollaries 1 and 2.

§ 8. A counterexample

It remains to show that condition (3.1) is best possible for Theorems 1 and 2.
This is almost a consequence of a general result in Taylor (Theorem 3 in [13]).
Before stating Taylor's result, we need some notation. If h: [0, oo)->[0, oo) is
continuous and non-decreasing and such that /ι(0) = 0, we let

the infimum being taken over families of open balls which cover E.
If we only allow balls with radii at most r in this covering and then let r-»0 + ,

the limit of the infima will be the classical Hausdorίf measure Λh(E) (cf. [3, p. 6]).
Cap( ) will denote logarithmic capacity if p = 2 and newtonian capacity if p>2.
Taylor's result, specialized to our situation, can be stated as

THEOREM A. Let h be as above. Suppose that

(r)r^-Pdr = oo. (8.1)

IfE is a bounded Borel set with 0<ΛΛ(E)< oo and if at every point ofE the lower
spherical density D(x, E) with respect to h is positive, then Cap(E) = 0.

REMARK. D(x, E) = lim infr^0 + Λh(E(]{y: \y-x\< r})/h(2r).

The point of Lemma 2 below is to construct a set of Cantor type which
satisfies the requirements in Theorem A. Once we have this set, it is easy to find
examples which show that condition (3.1) is sharp. For simplicity, we shall
restrict ourselves to exceptional sets contained in a Stolz domain

THEOREM 4. Let ft:[0, oo)-»[0, oo) be continuous and strictly increasing
with /z(0) = 0, and suppose that (8.1) holds and that

h(r)rl~P is strictly decreasing in (0, 1]. (8.2)

Then, there is a polar set E^K^D which has no covering in H satisfying (3.2)

or (3.3).
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REMARK. A special example of this type is given in Remark 10 in [5a].

Since any polar set in D is both rarefied and minimally thin at infinity in D,
this is the required example.

LEMMA 2. Let h be as in Theorem 4. Then there is a Cantor set F in Rp~l

such that Cap (F) = 0 but Mft(F)>0.

This result is certainly not new. For p = 2, such a set was constructed by

R. Nevanlinna [9, Theorem 6, p. 157] and the procedure is similar if p>2 (cf.
[3, p. 35]). However, the details are not quite obvious and we give the proof of
Lemma 2 in full.

ί
i

<p0(r)d/z(r)=oo, where φ0 was defined
o

in Section 2. Now, put g(t) = h~ \tp~ l)9 0 < tp~l < /ι(l), so that

Γ φ0(r)dh(r) = (p- 1) ί'"1(1) φ0(g(t))tp-*dt.
Jo Jo

If επ = 0(2~π), «>n0, where n0 is the smallest integer such that 2~no^~1)</ι(l),
we deduce that

Σn%0^ofe)2-^-1) = Cχ). (8.3)

Also, for n>n0, h(εn) = 2p-ίh(εn+ί) and so, by (8.2),

επ + 1<επ/2, n>n0. (8.4)

We shall construct the Cantor set using the numbers In = εno+n9 n = 0, 1, 2,....
Let F0 be a closed cube in Rp~l of sidelength /0 and let Fl be the subset of F0

which consists of 2p~l closed cubes of sidelength / x each having a vertex in common
with F0. Note that Fx is a proper subset of F0 by (8.4). We can continue in

this way to construct a sequence of compact sets F0=>F1=>F2=>'-9 where Fn

consists of 2Π(P~1) closed cubes of sidelength /„, each of which has a vertex in

common with some cube in F π _ x . If F= ΛjLo ^«> then it follows from (8.3) and
[3, p. 31] that Cap (F) = 0.

The proof that MΛ(F)>0 depends on the following easily verified geometric
fact about the sets {Fn}: any ball of radius at most /„ can meet at most 5P of the
cubes in Fn.

Let {Bv} be open balls which together cover F. Choose a finite subcover
Bί,...,Bk with radii r1?..., rk and, whenever r7 </0, put «j = max {n: r<ln}.

If r7->/0, we put -̂ = 0. For j = l,..., fc, the ball Bj can then meet at most 5P of
the cubes in FΛJ. Also

Λ(ry) > h(lnj+ί) = 2-(-o+-.+D(P-i), j = i, 2,..., fe. (8.5)

If N — max {/i^: 7 = 1,..., k} and N^ denotes the number of cubes in FN which meet
BJ, then
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Nj < 5'2<N-"MP-l\ (8.6)

since each cube in Enj contains exactly 2(W~II > )<p~1> cubes in EN. Also

Σkj=ιNj>2«^\ (8.7)

since W j =1 Bj covers F.
Combining (8.5), (8.6) and (8.7), we obtain

Σ*=ι h(rj) > Σy=ι 2-<n°+nJ+ίHp-» = c(p9 h)2~N(P~V Σkj=ι 2W-nJKp-l>

> c(p, h)2-»(p-v Σ5=ι Nj > c(p, h).

It follows that Mh(F)>c(p9 /ι)>0 and the proof of Lemma 2 is complete.

REMARK. We do not use Theorem A in the proof of Lemma 2. The reason
is that Theorem A deals with Λh while Lemma 2 deals with Mh. It is shorter to
use a result from [3] than to modify Theorem A to a statement involving Mh.

To construct the set E described in Theorem 4, we position a copy of F in
the hyperplane {xt = 1} with its centre at (1, 0,..., 0). Call this set E0 and define

Em = {2mx: xe£0}, m = l, 2,... and £=w;=0£II1. Let {Bn} = {tn, rH9 Rn} be any
covering of E which consists of sets from H, and suppose that Bn Π E^09 n =
1, 2,... . It is clear from the definition of H that

tJRn>c(p)>0, π = l, 2,...,

and so, if (3.2) or (3.3) holds, we deduce that

In particular, rn/tn-*Q as n-»oo, which implies that all but a finite number of sets
from the cover meet exactly one of the sets Em. It is easy to check that

ΣBn«Ern*0 h(rJQ > c(p)Mh(F\ m = 1, 2,...,

and so we obtain a contradiction. Since £ is a polar set, this proves Theorem 4.
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