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In the course of giving a counter-example to a problem of Zariski, D. Rees
[6] proved the following theorem: Let p be a prime ideal of a two-dimensional
noetherian normal local domain with ht(p)=1. If the graded ring @, p™ is
noetherian, then p(? is a principal ideal for some d>1.

The aim of this note is to give a generalization of this theorem, which is
stated as follows:

THEOREM. Let p be a prime ideal of a noetherian normal Nagata local
domain R. Assume that dim (R/p)=1 and R, is regular. Then the graded
ring @, P™ is noetherian if and only if £(p®)=dim (R)—1 for some d=1.
Here we denote by 4(I) the analytic spread of an ideal I. (Concerning Nagata
domains, see [3].)

Throughout this paper, let R be a commutative ring and let I be an ideal of
R. We denote by S=R—Zg(R/I) the set of R/I-regular elements of R, and for
an R-module M, we put M;=M;. If R is a noetherian domain, then we have
R;=Neassrr/nRy-  For an integer n20, we define the n-th symbolic power
I™ of I by I™=I"R; n R={xeR; tx e R for some R/I-regular element ¢t € R}.

PROPOSITION 1. (1) Zg(R/I™)=Z(R/I) for all n=1.

2) IM=I, rad(IM)=rad (I), I™MIMc]m*m) gpd [t M@ for qll
m, n21.

(3) Assume that R is noetherian and Assg(R/I)=Ming(R/I). Then
Assg (R/I™M)=Ming (R/I) for all n=1. In particular, Zg(R/IM)=Z(R/I)
for all nz1. Also, we have 1™ =[m® for all m, n=1. Here we denote by
Ming (R/I) the set of minimal prime ideals of I.

PrOOF. (1) Assume that te R is R/I-regular and txeI™ for some x € R.
Then we have s(tx) e I" for some R/I-regular element se R. Hence st is R/I-
regular and (sf)x e I*. This implies that x e I(™,

(2) We prove the inclusion I™" <] ™  Take an element x of Imm,
Then for some R/I-regular element teR, we have txeIm I  Since t is
R/I™-regular by (1), we have x € [(m(),

(3) If peAssg(R/IM), then pcZi(R/IM)cZ(R/I). Hence Icpcq
for some qeAssg(R/I)=Ming (R/I). Therefore we have p=gqeMing(R/I).
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Let x be an element of I™(, Then for every pe Assg (R/I™)=Assg (R/I),
we have x/1 € I™"R, =(I™R,)"=(I"R,)"=I""R,. Therefore x eI,
Q.E.D.

 We define the symbolic Rees algebra of I by RS(I)=@®,5I™. This ring
can be identified with the graded subring @,>,I™X" of R[X], and we have
Rs(I)=R(I); n R[X] and R(I);=R(IR;), where R(I)= ®,50 I".

PROPOSITION 2. Assume that R is a noetherian normal domain.

(1) Rs(I) is normal if and only if R(IR,) is normal for all p € Assg (R/I).

(2) If G(IR,) is reduced for all p e Assg (R/I), then RS(I) is normal. In
particular, if I is a radical ideal which is generically a complete intersection,
then R5(I) is normal. Here we denote by G(I) the associated graded ring
@pzo I"/I"*1 of L.

(3) Let p be a prime ideal of R such that R, is regular. Then R%(p) is
normal.

Proor. (1) We have Rs(I)=R(I);nR[X] and Rs(I);=R(I);. Hence
Rs(I) is normal <>R(I); is normal <>R(I), is normal for all p € Assg (R/I).

(2) follows from (1) and the following fact (cf. Barshay [1]): If G(I)
is reduced, then R(]) is integrally closed in R[X]. Q.E.D.

PROPOSITION 3. The following conditions are equivalent:

(1) Rs()=R(), i.e., IM=]I" for all n=0.

(2) G() is a torsion-free R/I-module.
Moreover if R is a locally quasi-unmixed noetherian ring, Assg (R/I)=Ming (R/I)
and R(I) is integrally closed in R[X], then the above conditions are also equi-
valent to each of the following conditions:

(3) A*(I)=Ming (R/I), where A*(I)=\U, 5, Assg (R/I").

(4) ¢(IR,)<ht(p) for all prime ideals p of R such that poI and p&
Ming (R/I).

(5) (Assume that R is local and dim (R/I)=1) ¢(I)= ht(I).

ProOF. (1)<R/I">R/I" @ R, is injective for all n=0<«I"/I"1—]["[["*1
®g R; is injective for all n=0<G()-»G(I) ®x R; is injective«(2). (1)<«
Z(RI"Y<Z(R[I) for all n=1<>Assg (R/I")=Ming (R/I) for all n=>1<(3)
(note that we have I"=I" by the assumption). For the equivalence of (3) and
(4), see [4], [5]. (4)=>(5)isclear. (5)=>(4): Assume that poI, p&Ming (R/I),
and take qeMing(R/I) such that p2q>1. Then we have 4(IR,)=¢(I)=
ht(q) < ht(p). Q.E.D.

THEOREM 4. Assume that R is a locally quasi-unmixed noetherian normal
domain, Assg (R/I)=Ming (R/I), and R(I) is normal. If Rs(I) is noetherian,
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then for some d2 1, we have 4(I'PR,) < ht(p) for all prime ideals p of R such that
p>I and p&Ming (R/I). Moreover the converse also holds if R is a Nagata
domain. Note that if R is local and dim (R/I)=1, the above condition is equi-
valent to the condition 4(I¥)=dim (R)—1.

Proor. If Rs(I) is noetherian, then Rs(I)(=R(I®) for some d, where
Rs(I) denotes the d-th Veronesean subring of R5(I). The converse also holds
if R is a Nagata domain (see Lemma 5 below). Now Rs(I)@ =R(I®)<>]04M =
IOn for all nZ0=I@™ =" for all n20 (cf. Prop. 1, (3))<4(I‘DR,)<ht(p)
for all prime ideals p of R such that p oI and p¢ Ming (R/I) (cf. Prop. 3). Q.E.D.

LeMMA 5. Let A=@®,304, be a graded ring with A,=R. Assume that
R is a Nagata domain, A is reduced and A@ is noetherian for some d=1.
Then A is also noetherian.

Proor. We may assume that A is an integral domain. In fact, since A
is noetherian, Min (4) is a finite set, and it is easy to show that Min (4) is also
a finite set. Put Min(4)={P,,..., B,}. Since (A4/P)@P=AD/P® is noe-
therian, A/*B; is noetherian by the assumption. Therefore A<=]]5-; A/B; is
a finite extension and [ ]}, A/B; is noetherian. This implies that A is noetherian.

Now let 4 be an integral domain and let *Q(A) be the “graded quotient
field” of A, ie., *Q(A)={a/be Q(A4); a, b are homogeneous elements of A}.
Then it is well-known that *Q(A4)=*Q(A4),[x, x~1] for some x=a/b, and *Q(A4),=
*Q(A@),. Put B=A@[a, b]. Then we have Bc AcQ(B) and A is integral
over B. Since R is a Nagata domain, A is finite over B. Therefore A is noe-
therian. Q.E.D.

Let Q=0Q(R) be the total quotient ring of R, and for an R-submodule J of
Q, put J-1=(R:J),. For the ideal I, put I=(I"*)"1. If R is a noetherian
normal domain and I is a non-zero ideal of R, then I=1I (or equivalently, I is a
reflexive R-module) if and only if Assg (R/I)=Ht, (R)={p € Spec(R); ht(p)=1}.
We call the graded ring R(I)= @uzo I" the divisorial Rees algebra of I. If R
is a noetherian normal domain, then the ring R(I) is also a normal domain and
it is easy to see R(I)=Rs(I).

COROLLARY 6. Assume that R is a locally quasi-unmixed noetherian
normal domain. If R(I) is noetherian, then for some d=1, we have Z(ﬁRp)<
ht (p) for all prime ideals p of R such that p>1I and ht(p)=2. The converse
also holds if R is a Nagata domain.

COROLLARY 7. Assume that R is a two-dimensional noetherian normal
domain.

(1) If R() is noetherian, then I¢ is invertible for some d=1. The converse
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also holds if R is a Nagata domain.

(2) Assume moreover that R is a Nagata local domain. Then the following

conditions are equivalent:

(@) R(I) is noetherian for every ideal I of R.
(b) D,z P™ is noetherian for every p € Ht (R).
(c) The divisor class group CI(R) of R is a torsion group.

For the assertion (1) of Cor. 7, we need the following

LemMA 8 (cf. Cowsik and Nori [2]). Let R be a noetherian local ring

which satisfies the Serre’s condition (S,.,). If ¢(I)=ht(I)=n and I is gene-
rically a complete intersection, then I is generated by an R-regular sequence.
In particular, if R is a noetherian normal local domain and 4(I)=1, then I is
a non-zero principal ideal.
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