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1. Introduction

The control of diffusion processes leads to the parabolic Bellman equation
of the type:

(1.1 sup {u, + Lu* — f*;0e A} =0 in Qr,
u=0 on 0,07,

where Q;=Qx(0, T) for a smooth bounded domain Q=R" and Te(0, o),
0,Qr denotes the parabolic boundary of Qr, 4 denotes a set of indices, and each
L= is a second order elliptic operator of the form:

L*u = — a¥(x, )0%u/0x,0x; + bi(x, )0u[0x; + c*(x, tu .

Here and in the sequel we use the summation convention.

In case that L* are uniformly elliptic operators and A is a finite set, L. C.
Evans and S. Lenhart [2] have shown that there exists a unique function ue
WZYQr) n C**2(Qy), for some 4> 0, solving (1.1).

In this paper we investigate the following problem

(1.2) u, + max{Lu — f,du — g} =0 ae. in Qp,
u=0 on 0,0r,

where f, g and d are given functions, and L is a second order uniformly elliptic
operator. We may regard (1.2) as a special degenerate case of (1.1), that is, a
couple of a nondegenerate operator, L, and a special degenerate one, d.

The plan of this paper is as follows:
Section 2 is devoted to state and prove our main results. The proofs are done
via elliptic regularization and penalization (see (2.10) below). The necessary a
priori estimates of solutions to the corresponding approximate problems are
obtained in Section 3. In Appendix we deal with the existence and regularity of
the approximate problems.

The time independent case of (1.1) has been studied by N. V. Krylov [6]
and P. L. Lions [7]. The time independent equation of (1.2) is called the obstacle
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problem in variational inequalities and has been investigated by many authors;
see e.g. R. Jensen [4], D. Kinderlehere and G. Stampacchia [5] and their re-
ferences.

Throughout this paper the letter C stands for various positive constants
depending only on known quantities. We use the notation: for a function u
and k=1, 2,3

Du = (0u/0x,,..., 0uldx,)
[D*u| = {Xay+-tan=k |05u[0F -+-0x3n|2} 1/2

[D¥u,| = {X4psotay=k |06 10)0x31.--0x201|2} 112,

2.  Main results

Consider the second order elliptic operator
Lu = — a;{(x, 1)0%u/0x;0x; + b(x, t)0u/0x; + c(x, tu.

We make the following assumptions on the coefficients of L:
2.1) aj(x,t)=a;(x,t) forall (x,0)eQr and 1<i,j<n
@2 ay(x, DEE; > 017 in O,
for some >0 and all £=(¢4,..., ¢,) € R", and
(2.3) a;, b, ceC¥Qr) for 1<i,j<n.
We also assume that
(2.4) d, f, g€ C¥Qy).
The boundary condition in (1.2) yields the following compatibility condition:
2.5) gx,)>0 for (x,1)edQ x (0, T).

THEOREM 1. Assume that the conditions (2.1)—(2.5) hold, and that there
exist functions {w*; ¢ > 0} = C¥(Qy) satisfying

(2.6) owe[0t + max {— €0?w?/0t? + Lw® — f, dw® — g} <0 in Qr,
wl=w*=0 on 9,0, and w° < w* in Qp for each ¢>0.

Then the problem (1.2) has a unique solution ue WH2([0, T); L*(2))n
L7 ([0, T); WH=(2) n Wi ().

THEOREM 2. In addition to the assumptions of Theorem 1, we also assume
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that

@7 a;;€ CX([0, T1; C3+(3Q))

Jor somea>0and 1<i,j<n. Then the solution of (1.2) belongs to L5, ([0, T);
W2=(Q)).

ReMARK 1.  Without loss of generality we can assume that A,=
max {AeR; c(x, t)>4 and d(x, )>4 for all (x, {)eQr} is a large number.
Indeed, apply the transformation v(x, t)=u(x, ) exp (—2401).

REMARK 2. Iff, g>0in Q, for all £¢>0 one can take we=0 in (2.6).

PrOOF OF THEOREM 1. We begin by constructing an auxiliary function which
will be needed to show W2:*-regularity of the solution near t=0. We define

h(x, ) by
2.8) h(x, 1) = S; {9(x, 5) — d(x, sW(x, 5) + s}ds.

Let  be a smooth nondecreasing function on R such that
2.9 Y(r)=0 for r<0,y(r)=r—1 for r>2,
Y' >0 for r>0 and ¢y" >0 in R.

For each 6€(0, 1), let us define y;, Bs€ C°(R) by ys(r)=y(r/d) and Bs(r)=
Y((r—0)/d) in R, respectively.

We approximate solutions of (1.2) by those of the following elliptic regulari-
zation and penalization:
(2.10) Lo + By(u+du—g) + yu—h)=f in Qr,

u=wt on 0Qr,
where L? denote —¢0d2/0t2+0/0t+ L. We also consider the semilinear equation:
2.11) Lov + y,(v—h)=f in Qr,
v=wt on 0Qr.
Now we state the existence of solutions of (2.10) and (2.11).

PROPOSITION 1. For each ¢, 6 and o€(0, 1), problems (2.10) and (2.11)
admit solutions u®%-° and v-°, respectively, which belong to W%;2(Qr) for all
pe(l, ). Here we denote that W%12(Qp)= n{W22(Q%); >0}, where Q%
is a smooth subdomain of Qr c_ontainin:q Q2x(a, T—o) and {(x,t)eQr; 0<
t<T—oand dis(x, 0Q)>a}. Furthermore there exists a constant C, independent
of &, such that
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(2.12) [v°°|| L=(@ry < C -

We will investigate the convergence of {v*?; 0 €(0.1)} to a solution of an
obstacle problem (see (2.13) below).

PrOPOSITION 2.  For each ¢€¢€(0,1), {v*°;0€(0,1)} converges in
W22(Qq), as 6—0, to the unique solution v¢ of
(2.13) max {L*v®* — f,v* — h} =0 in Qp,
v =wt on 0Qr.

The above two propositions will be proved in Appendix. The difficulty in

proving them is that Q, has a corner.
In order to prove Theorem 1, we need the following a priori estimtes of

solutions to the problem (2.10).

LemMMA 1. For suffciently small >0, there is a constant C>0 so that

(2.14) w22l L=(ro,1; L=y < Cs
(2.15) 422l Lo (o, T=ays w1 =y < C
(2.16) 2>l w 1. =0, T-ay; =) < C

and for each open set U with UcQ,
(2'17) ”us’é’allL“([O,T—a);Wz’“(U)) S C'

In view of the bounds obtained in the above lemma, there exist sequences
&(k)—0, 8(k)—0 and a(k)—0, as k—o0, and a function u e L ([0, T); W-°(£)
nWE2(Q) n WEE([0, T); L2(2)) n L*(Q) such that

loc

(2.18) Ut 8,000 gy as k —s o0,

weakly star in L ([0, T); Wh*(Q)n WE2(Q) n WEX([0, T); L*(Q)) and
strongly in L%,.([0, T); CY(Q)), for all pe(l, ). (2.18) and Mazur’s lemma
(see e.g. p. 120 in [9]) yield

(2.19) u,+du<g and u<h in Q.
By the comparison theorem and (2.6) we have

wo(x, ) < u®%9%(x,t) in Qr.
Thus (2.18) implies

wo(x, ) < u(x,t) in Q.
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By the first inequality of (2.19) we have
t
u(x, 0 < ] {g(x,5) = d(x, wOCx, 9}ds
0

Hence the definition of h (see (2.8)) implies
(2.20) u<h in Q.

On the other hand, (2.9), (2.10) and (2.18) yield
(2.21) u+ Lu<f ae in Qp.

Now we will show that u satisfies (1.2). For notational simplicity we write
u®, B and y instead of u*(®).0().c(0) B,,  and y,q,, respectively. We also omit
the argument u,+du —g of f and its derivatives and u —h of y and its derivatives.
In addition, we write simply u;;, u;, uy, a;;,, b;, etc. instead of 0%u/0x,0x;, ou/0x;,
0%u/0x;0t, Oa;;|0t, 0b;/0x, etc. For any nonnegative function ¢ e Cy(0, T), we
have

2.22) 0= g: Sn (Leut + B + 9 — f)} {us + dut — g)édxdt

T

= {00, rotire/2 + (- gust + (dut - gyust.}

+ {a;uj(u; + du® — g);£}

+ {b;ou®/0x; + cut — f} {ut + du® — g}¢&

+ {B+7y}{us + dut — g}&ldxdt.
The first term of the right hand side of (2.22) converges to 0 as ¢—»0. Indeed,
(2.14) and (2.16) yield

T
[, twres + @u—guie + (@ur—guigydxdt < C,
where C is a constant independent of &. The last term of the right hand side of
(2.22) converges to a nonnegative number as ¢—0. Indeed, (2.18) and (2.20)
T
yield that y—0 pointwise in @x[0, T) as &—0. Therefore S S P+
0JQ2

du?—g)édxdt converges to 0 as ¢—0, by the bounded convergence theorem.
Clearly the other part of the last term converges to a nonnegative number by the
monotonicity of .  We further calculate that

T T
(2.23) So Sga,-jufug,ﬁdxdt = — Xo Sa (a;;, uiusé + a;uiusé,)[2dxde,
T
V]

’ (u®)2¢ dxdt > Quiu, — u?)¢ dxdt.
bl bo b
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We combine (2.22) and (2.23) to obtain
T
(2.24) go Sa(u, + Lu — f)(u, + du — g)edxdt < 0.

In view of (2.19), (2.21) and (2.24) we see that u solves (1.2).

Now we prove the uniqueness of the solution of (1.2). Let u and v be two
solutions of (1.2). For any nonnegative nonincreasing function ¢ e C([0, T)),
z=u—v satisfies

g: Sﬂ (z+ Lz)(z,+ d2)édxdt < 0.
Noting Remark 1, we easily obtain
STS (22 + 2222)édxdt
o Jo
< SZ SQ ((C—10)|Dz]* + 22]2 + 22222} ¢dxdt .

Hence we get z=0in Q. Q.E.D.
PrOOF OF THEOREM 2. We need the following lemma:

LemMA 2. For sufficiently small o«>0, there exists a constant C,
independent of €, 6, 6 € (0, 1), such that

(2.25) 1222 L= g0, T-ay; w2, =(2)) < C -

The above lemma implies that there exist sequences &(k)—0, d(k)—0 and
o(k)>0, as k—oo, and a function ue L ([0, T); W2:>(Q))n W},2([0, T);
L*(Q)) such that u2®).0()e(0)y weakly star in L2 ([0, T); W2-°(Q)).
The remaining assertions of Theorem 2 are obtained in the same way as in the
proof of Theorem 1. Q.E.D.

J. 1. Diaz [1] has studied a simpler equation than that considered here and has
established the existence and the asymptotic behavior of solutions. We have
independently obtained a similar result on the asymptotic behavior of solutions
to (1.2). Our result as well as regularizing effects will be discussed in the forth-
coming paper.

3. Proof of Lemma 1 and 2

PrOOF' OF LemMA 1. By Proposition 1, wu®*%°ceW#2(Q;) and %€
W%2(Qy) for all pe(1l, o). The standard comparison theorem and (2.6) thus

loc

yield
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3.1) wl < usde < p5? in Qp.

Hence (3.1) and (2.12) yield (2.14).

Since 0Q is smooth, the uniform exterior sphere condition holds, i.e. there
exists a positive number p such that for each x,edQ we can choose £e R"\Q
satisfying {ze R"; |z—%|<p} N Q@={x,}. Let u, A>0 be numbers to be chosen
later and consider the barrier:

w(x) = A{exp (—up?) — exp (— ulx — %|»)}.
We can take 4, u>0 so large that the inequality
Lw(x) > || fllL=or)

holds in Q. By the comparison theorem and (2.6) we have

wo(x, t) < us?9(x, t) < w(x) in Qr.
Thus we find that there exists a constant C, independent of x,, such that
(3.2 | Du92(x,, t)| < C.

Similary, using the function

w(t) = A{exp (—p?) — exp (—|t+u»)},
where, A, u>0 are large numbers, we obtain

wo(x, ) < us%o(x, ) < w(t) in Qr.
We thus find that there exists a constant C, independent of x € Q, such that
3.3) juz-?9(x, 0)) < C.

We next prove estimates (2.15) and (2.16) for solutions of (2.10). The proof is
similar to that of Lemma 4.2 in [3]. For each T'e(0, T) we choose a non-
negative nonincreasing function £ € C*(R) such that

(3.4) &t)=1 for te[0, T'] and supp¢é = (—o0, T).

For simplicity we suppress the superscripts ¢, d and o of u®%:? in the following
calculations. We set

V= &4(|Dul? + u?) + pE¥(u+p)?,

where u is a positive number to be chosen later. Here and in the sequel we regard

u, and Du as one-sided derivatives on 9,Qr. Let (x,, f,) be a point in Qr such
that V(x,, to)=sup {V(x, 1); (x, )€ Qr}. By (3.2),(3.3) and (2.14) we can assume
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that (x,, o) € Qr; then the maximum principle applied to V gives
0< (L= o)V
< — 16e83& (uuy, + uuy,) — 46838, (|Dul? +u?)

— 8epll(u+wu, — 2epll,(u+p)? — 2eué?u?

— 2e8%(|Du,|* + uf) — 2£40(1D%ul? + |Du,|?)

— 20&2u|Du|? + 2&4(uLtu, + u,Léu,)

+ 28p(u+ p)L¥(u+u) — 2¢V, at (xq, to)-

Here we use the monotonicity of £. Since V/(x,, t,)=0, we have
3.5) Euy +uu,) > — w(u+wu, at (xq, to).
Differentiating (2.10), we have
(3.6) w Loy + uLu, = “kbiu + uD2u — w (B4 — u(B+y) + wefi + u.f;,

where Diu=3, <, 0fD*u, of bounded and D?u=3 ., 02D%, ¢ bounded.
Let u be a large number depending only on known qufintities. Then using (3.5)
and (3.6) we have

2cV < C + B'{— 2&4(|Du|* + u?) + CE*(|Dul? + u?) + C}
+{=28%(Dul> + u}) + C} at (xo, to).

By virtue of Remark 1 we have V(x,, t,)<C. Hence there exists a positive
constant C independent of ¢, §, g € (0, 1) such that

(3.7) 1€2Du| p=gry + 162Ul L=y < C.

This yields (2.15) and (2.16).

Next we will prove (2.17) in a similar way to the proof of the Theorem in [8].
For any open set U such that U=, we choose a function { e CP(Q) satisfying
{=1inUand {>0in Q. We will derive a bound of M = M(U)=sup {{*£4(|D?u|
+|eu,|)}, where £ is a nonnegative nonincreasing smooth function satisfying
(3.4). Putting {={¢&, we set

V= 30Dl + s2uz) + kMUEHB+7) + WEH(DUP? + ).

Let (xq, to) be a point at which V attains its maximum in Q. First assume
(%0, to) € 3Qr; then we can suppose that x, € supp { and t,=0 by the choice of (.
On the other hand (2.6), (2.8) and (2.13) yield

ov[ot(x, 0) < g(x, 0) for xeQ.
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Proposition 2 and the standard imbedding theorem yield that dv®:?/dt(x, 0)
converges to dv?/dt(x, 0) uniformly on supp , as 6—0. Hence for any ¢£€(0, 1)
there exists a function J(¢, o) such that (g, 6)—0, as 6—0, and

0v*:°[0K(x, 0) < g(x, 0) + (e, 0)
for any xesupp{. The above inequality and (3.1) imply
3.9) ou®%7/ot(x, 0) < g(x, 0) + o(¢, ) (6 = d(g, 0)).

Note that §(¢, 6) depends on supp . This is the reason why we can only obtain
the estimate (2.17) instead of (2.25). For notational simplicity we write J instead
of 4(¢, 6). By (3.8) and the boundary condition in (2.10), we have

(39 —eu,+ u,=f, 0*u/ox,0x; = Oufox;=u=0 for 1<i,j<n,
{4B+y) =0, on supp( x {0}.

Therefore in the case that (x,, to) € 0Qr, We see that there exists a constant C
such that M <C.

In the case that (x,, ;) € Qr, We apply the maximum principle to V. At
(xo, to) We have

0< — &V, — aVin + Vi + biVs.
A simple calculation using (2.2) yields
(3.10) 0 < — 2¢8{e(|D%u,|? +2u?,) + 6(|D3u|? +€2|Du,|?)}
+ 208{(u;;L*u;;+ e2u,L*u,) — c(|D*u|?+¢e%u?)}
— 2pL*{e(|Du,|* +u},) + 6(1D?u|?+|Du,|?)}
+ 2ul*{(u, L*u;+u,L?u,) — c(|Du|?>+u?)}
+ uME{B'(L*— o) (u,+du—g) + v'(L*—c) (u—h)}
— MO [e{B"(u, +du—g); + y"(u—h)?}
+ 6{B"|D(u,+du—g)|* + 7"|D(u—h)|*}]
— 8{7{el(|D%u|? +&%u},) + e{(ID%u|*+&%u}),
+ aulia(1D?u|? +e2uf,) + el (ID?u|? +e?u),
+ bilu(|D?u|* +e?uf,)}
— 4uM{el(B+7y) + el (B+7): + axelia(B+7)
+ al(B+7)s + blu(B+7)}
— 4ul3{el(ID,|> +u?) + el (|Dul*+u?),
+ aalis(1Du)? +u?) + a, ((IDul> +ud), — bl (IDul>+ud)}.
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Using Young’s inequality and Remark 1, and letting u sufficiently large, we have
(3.11)  3{e(ID%u|*+&%u},) + 0(1Dul>+&%|Duy|®)}
+ ul*{e(|Du,|> +u?,) + 0(1D%u|*+|Du,|?)}
+ 22{{3(ID2ul? +¢2u2) + ul*(Dul?+u?)}
< 20%u;;L*u;; + e*u,Lfu,)
+ 2ul*(u L*u, + u,Lu,)
+ uMEHB(L* — ) (u+du—g) + y'(L*—c) (u—h)}
— MO [e{B"(u, +du—g); + y"(u—h)7}
+ 6{B"|D(u; +du—g)|*> + y"|D(u—h)|*}]
— AuME{eli(B+7) + el (B+7): + arelia(B+7)
+ aldB+7)e + bl(B+7)}.
Since V,/{(xq, to) = Vi/l(x0, o) = 0, we have
(312)  puMEBB+y). = — {(ID%u|* +&%u?),
— 8L%C(ID?u|? +€?u},) — 4uME*((B+7)
— u3(1Dul® +uf), — 4l (|Dul*+u),
EMEB+y) = — '(ID?ul® + e2uf);
— 8L80(ID?ul? +uf,) — 4pMEG(B+7)
— p83(|Dul?+uf), — 4ul?G(1Dul> +ug).

By (3.12) and the convexity of B and 7, the last term of the right hand side of
(3.11) is estimated as

— 4pME{el (B+7) + el (B+7) + arlia(B+7)
+ aul(B+7)s + bil(B+7)}
< B{Cul*M|(u,+du—g)I} + y{Cul*M|(u—h)[}
— 4el,{— {'(|D?u|? +2u?,), — 8(6C(|D?u|?+e2u?,)
— 4uMEL(B+7y) — nl3(|Dul?+uf),
— 4ul2L(|1Dul> +u?)}
— 4a,,(i{ — ('(ID?ul? +&2u?,), — 8L°(,(|1D?ul* +&%uf,)
— 4uML(B+y) — pl3(1Dul*+u}),
— 4ul?{(IDul? +ud)} .
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Applying Young’s inequality to the right hand side of above yields

(3.13) — 4uM el (B+y) + el(B+7): + arolia(B+7)
+ a,G(B+7). + bildB+7)}
< B{CuCM|(u,+du—g)I} + y{Cul>M|(u—h)[}
+ 8{e(|D%u,|? + e*u?,) + 6(|D3u|? +&2|Du,|?)}/2
+ C{%{e(|D%ul? +&*u?) + (|D?u|*+e2u?)}
+ CuMZ{B'|(u,+du—g)| + v'|(u—h)}
+ ul*{e(|Duyl? + lugl?) + 6(1D%ul?+ |Du,|?)}/2
+ Cul*(|Dul*+u?).
In the fourth term of the right hand side of (3.13) we have used B(x)<pf'|x| and

y(x)<7’|x| which follow from the convexity of g and y. On the other hand,
differentiating (2.10) gives

(3.14) Loug; = 3 <3 €6, )D*u — (B+y); + £
Loty = 31 1<1,j01<2 € (O)D*0"u[0t" — (B+ ) + fu>
Lou, = 3 )4<2 e(ODu — (B+Yy), + fi,
Louy = 3 14<2 €¥(K)D*u — (B+7), + fr

where e*(i, j), e*(t), e*(t) and e*(k) are bounded functions. Using (3.7), (3.14)
and Young’s inequality, we estimate the first two terms of the right hand side of
(3.11) as

(3.15) 208(u;;Luy; + €2u, Louy,) + 2ul*(u, Leu, + u,Lfu,)
< (3(0ID3ul? + &|D%u,|?)/2 + ul*6|D?ul?/2
+ Cl*eu?, + C{*|D?u|? 4+ C(*|Du,j? + C
= 2083 (B+7)i; — 26 Bu(B+ 1)
= 2ul*u (B+ ) — 2ul*u B +7):,

where C is a constant independent of u. Substituting (3.13) and (3.15) into
(3.11) yields

(3.16)  2M{3(ID?ul? + eu},) + pl*(IDul* + u?)}
+ (*e(Mp — Celuy|) {B"(u, + du — g)? + y"(u—h})}
+ (“0(Mp — CID?ul){B"|D(u, + du — g)I*> + y"|D(u—h)|?}
< C(1+p)
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+ B{— 28u;(u,+du—g);; — 2e?(3u,(u,+du—g),
= 2ul*u(u,+ du—g), — 2ul*u(u,+du—g),
+ CMpyu + M{*(LE—c)(u,+du—g)}

+ y'{ — 20%;(u—h);; — 2e*(Bu,(u —h),
— 2ul*u(u—h), — 2ul*u(u—h),
+ CMu + pM{4(L*—c)(u—h)}.

We can assume that (Mu— Celu,|) and (Mu— C|D?u|) are nonnegative. Hence
the second and the third terms of the left hand side of (3.16) are nonnegative.
If the third term of the right hand side of (3.16) is positive, then we obtain

(8(|D%u|? + e2u?) (xq, to) < Cu(M +1).
Therefore,
M2 < 2sup {(V(x, 1); (x, ) eQr} = 2V(xq, to)
< 2Cu(M+1) + 2uM(C+CM)V/2 + C.
Thus we have
3.17) M < C(p).

We can therefore assume that the third term on the right of (3.16) is nonpositive.
If the second term of the right hand side of (3.16) is negative, then we have
(3.17) similarly. Hence we can assume that

(3.18) 208u;(u, + du — g);; + 2628u,(u, + du — g),
+ 2pltuy(u, + du — g), + 2ul*uu, + du — g),

< CMyu + uM{*L¥(u, + du — g).
Since V(x,, to)=0, we have

208(u;u;5 + 82Uty + 2uLH(uuy + uuy,)

+ 2uM{4(B+7), = 0.
Inserting the above inequality into (3.18) we have
AC{(ID?ul?+e%u?) + pl*(IDI>+ud)} < CUM +1),

where A is a constant in Remark 1. Hence similarly we obtain (3.17). Since u
is a large constant depending only on known quantities, we have proved the esti-
mates (2.17). Q.E.D.
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ProOF OF LEMMA 2. For any x,€0Q, we may assume that x,=0 and
Q n B, =B} by a smooth change of variables. Here we use the notation:

B, ={xeR"; |x| <r}, B} ={xeB,;x,>0}
and S,={xeB,;x,=0}, for r>0.
We may further assume that the coefficients of L satisfy
(3.19) a,(x,t)=0 for xeS;, and 1<i<n-—1.

Indeed, choose a smooth domain such that BY,=Q,< B} and functions ¢, €
C¥([0, T]; C3:%(09Q)) (1<k<n-—1) satisfying ¢,= —ay/a,, in Sy, x[0, T].
Let T*(x, t)(1<k<n—1) be the unique solution of the problem:
— AT¢F 4+ Tk=0 in Q, x [0, T]; 0T*/ov= ¢, on 09Q,,
and set
X, + TH(x, 1) — THX', 0, 1) x€Bj,,1<k<n-1
Yk(x» t) =
X, xeBj, k=n.
By a standard theory, we see that Y(x, )=(Y,(x, t),..., Y,(x, 1)) e C¥[0, T1];

C*%(Bf;)). It is easily checked that a,Y, ;=0 in S;,,x[0, T], 1<k<n-—1.
Making the change of variables: x— Y, we arrive at the situation (3.19).

To prove Lemma 2 we must choose &(¢, ¢) independently of supp { (see (3.8)).
In view of the argument used to derive (3.8) we need the following fact:

PROPOSITION 3.  As 00, {0v*?/dt(x, 0); ce€(0, 1)} converges to OJv?/
0t(x, 0) uniformly in Q.

The above proposition will be proved in Section 4. From compatibility
condition (2.5), (3.19) and Proposition 3, we have

(3.20) — Guthn + bty =f  on Sy, x [0, T].

We let ii,,=u,,—b,u,/a,,+f|a,, and let ii;;=u;; except for i=j=n.

Choose a nonnegative function { € C¥(B,) such that {(0)=1 and {,=0on S;.
Let £ be a smooth nonnegative function satisfying (3.4) and define {=¢. Set

V= {8ut; +e2u?) + (utM(B+y) + pl*(|Dul>+ud).
In view of (3.20) we have
(3.21) Vo = {8(ut)), + pl(1*Dul? +u?),

= 208 2121 tin{(btty — 1)/ apn}i + 208 *u,{(by— )| Apn}
>—-CV on S;xI[0,T].
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If (%, ) is a point attaining sup {exp (4x,)V(x, t); (x, £)€ Qr}, then (3.21)
implies that X € Q, for some A>0. Therefore we apply the maximum principle
to exp (A4x,)V to get

0<{— 4%,V —-231ta,V;+ (L*—c)V}exp (4%,).
Since V;=0 at (X, 7) for 1<i<n—1, we have
(3.22) 0< (Le—c)V+ CV.

The first term of the right hand side of (3.22) is calculated in the same way as in
(3.10)~(3.16). As in the proof of (3.17), (3.16) implies

AL8(|D%u|? + e2u?) < C + Cu + C(M2+uM).

In view of Remark 1, this inequality implies (3.17). Q.E.D.

4. Appendix

Proor oF ProrosiTiON 1. For small >0 there are unique functions u=
u®%:9:2 and v=v°*"% solving

Lou + Bs(u, + du — g) + y,(u—h) =f in Qf
. u=w* on 00Q%,
Lo + y,(o=h) =f in Qf

v=w on 00%,

respectively. For notational simplicity we write u* and v* instead of u®?:%:¢
and v®°-*, respectively.
The comparison theorem yields that

4.1) wl < wE<u*<v* in Q%,
We put
v* in Q%
e = o
we in  Qr\Qf,
[ u* in Q%
we in Qr\Q%.

Let (xo,t,) be a point in Qp such that V?(xq, to)—uto=sup {V*(x, t)—
ut; (x, tye Qr}, where p is a positive constant to be chosen later. If we suppose
that (x,, t,) € Q%, then we have

U =
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O LeVe—cVe—pu<f—cVe—p.

Since we can assume that u> | f| =, and ¥V*>0, the above inequality yields
that (xo, to) € Q7\Q%. Therefore we have

4.2) < C in Q%,

where C is a constant independent of ¢, 8, ¢ and «. Thus there exists a constant
C, independent of a, such_that

lyo—h)] < C in Q%.

Hence by the standard diagonal argument we can show the existence and its
regularity of solutions of (2.11) in Proposition 1. Also we have (2.12) by (4.1)
and (4.2).

Since 0Q is smooth, there exists a positive number p such that for each
(xo, to) €0Q% we can choose (%, ) e R"*1\Q% satisfying {(z, £) e R**1; |(z, 1) —
(% DI<p}n 0={(xo, t5)}. Let A, u>0 be numbers to be chosen later and
consider the barrier:

w(x, t) = A{exp (—pup?) — exp (— plt — |2 — plx — X|)}
+ wi(x, 1).
We can take A, >0 so large that the inequality
Liw > | f] + |Lew?|
holds in Q;. By the comparison theorem and (4.1), we have
wi(x, t) < us%or < w(x, ) in Q%.

In the same way as in (3.2) and (3.3) we find that there exists a constant C>0
independent of (x,, t,) and a, such that

4.3) |Dus-%-7-%(xo, to)l < C,
Iauz,é,d’“/at(xO, to)l <C.

Set V=|Du?|?2 +(u%)?+ p(u* — u)?, where u is a positive number to be chosen later.
Similarly to the argument used in deducing (3.7), we have

|Du®| + |uz| < C in Q%.
Therefore there exists a constant C, independent of «, satisfying
|Bu + du* — f) + y(u* — h)| < C.

Thus we can show the existence and regularity of solutions of (2.10) in Pro-
position 1. Q.E.D.
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PRrOOF OF PROPOSITION 2. In order to prove Proposition 2, we establish the
following a priori estimates of solutions to the problem (2.11). For each e€(0, 1)
there exists a constant &> 0 such that for all x € (0, &)

(4.4) [p(v*o* — b < C,

in Q%, where C is a constant independent of ¢ and «.

Let ¢ be a smooth function such that £ =1in Q% and & =0 near {(x, t) € 0Q¥2;
dis (x, 02)<&/2 and t€[0, &/21} U {(x, T); xe Q}. Set V=¢£2y, and let (x,, to)
be a point of Q% satisfying V(x,, to)=sup {V(x, 1); (x, t)€ Q%}. By the com-
patibility condition and our choice of £, we can assume that (x,, t,) € Q%. The
maximum principle yields

0 < (Le—o)V
= ' (LF—c)(v—h) — Ey"{0ID(v—h)|* + e(v—h)7}
— 2688y, — &(EDn — 2a;88y; — a;(EDiy
— 288y — 28bigiy.
Since V,/&(xo, to) = Vi/&(xo, to) = 0, we have
Ey, = — 28y, and &y = —2&y at (xq, to).
By making use of (4.5) and the convexity of y, we have
0 <y{¢¥L*—c)(v—h) + Cl(v—h)[}
=y{=¢*y +f—cvo—Lh) + Clv—h)}.
Since we can assume that V(x,, t5) >0, the third assumption of (2.9) implies
¢y < = &(f — cw — L*h) + Cl(v—h)|.
This implies (4.4). Q.E.D.

PrOOF OF PROPOSITION 3. It suffices to prove that there exists a constant C,
independent of o, such that

(4.6) 102051012 L axgo, 21 < C.
Indeed, simple calculation yields that
véi(x, 0) — v¥9(x, 0)
= (. e, 00) — vt 63d0 x 1

+ vi(x, 1) — v3(x, 1).
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If we let t=1/4C, for any small >0, (4.6) implies
1
H (v5:9(x, 0f) — vi,(x, 01)}d6 x t| <</2.
0

From Proposition 2 and the Sobolev imbedding theorem, it follows that there
exists a positive constant o, independent of x € Q, such that

|v8(x, T/4C) — v8:9(x, T/4C)| < /2

for all o€(0, 6,). Therefore the above considerations imply Proposition 3.
The estimates (4.6) are easily obtained by the same method as those for obtaining
the estimates in Lemma 1 and 2. We only note that y,(v**—h)=0 on 0,0;.
The same calculations as in the proof of Lemmas 1 and 2 imply that the same
estimate as (2.25) holds for v®°. Q.E.D.
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