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1. Introduction

The control of diffusion processes leads to the parabolic Bellman equation

of the type:

(1.1) sup{wf + L u α - / α ; α e Λ } = 0 in Qτ,

u = 0 on dpQτ,

where QΓ = Ωx(0, T) for a smooth bounded domain Ω<=Rn and Te(0, oo),

dpQτ denotes the parabolic boundary of β Γ , A denotes a set of indices, and each

Lα is a second order elliptic operator of the form:

Lau = - afj(x9 ήd^/dXidxj + bf(x, ήdu/dXi + cα(x, t)u.

Here and in the sequel we use the summation convention.

In case that Lα are uniformly elliptic operators and A is a finite set, L. C.

Evans and S. Lenhart [2] have shown that there exists a unique function u e

W%ι(Qτ) Π Cλ^2(Qτ), for some λ>0, solving (1.1).

In this paper we investigate the following problem

(1.2) ut + max {Lu -f,du-g} = 0 a.e. in Qτ,

u = 0 on dpQτ,

where /, g and d are given functions, and L is a second order uniformly elliptic

operator. We may regard (1.2) as a special degenerate case of (1.1), that is, a

couple of a nondegenerate operator, L, and a special degenerate one, d.

The plan of this paper is as follows:

Section 2 is devoted to state and prove our main results. The proofs are done

via elliptic regularization and penalization (see (2.10) below). The necessary a

priori estimates of solutions to the corresponding approximate problems are

obtained in Section 3. In Appendix we deal with the existence and regularity of

the approximate problems.

The time independent case of (1.1) has been studied by N. V. Krylov [6]

and P. L. Lions [7]. The time independent equation of (1.2) is called the obstacle
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problem in variational inequalities and has been investigated by many authors;

see e.g. R. Jensen [4], D. Kinderlehere and G. Stampacchia [5] and their re-

ferences.

Throughout this paper the letter C stands for various positive constants

depending only on known quantities. We use the notation: for a function u

and ik = l, 2, 3

Du = (duldxl9r..9du/dxn)

\Dku\ = {Σ α i + . . . + α n =Jδ^/^-^H 2 } 1 / 2

\D"ut\ = { Σ ^ +Λn=k\dk+ίulδxr -dx^dt\ψ^

2. Main results

Consider the second order elliptic operator

Lu = — atj{x9 t)d2uldXidXj + b((x, t)δu/dxi + c(x, t)u.

We make the following assumptions on the coefficients of L:

(2.1) dijix, t) = ajΊ(x, i) for all (x, t) e Qτ and 1 < i, j < n

(2.2) atjx, tyξέj > Θ\ξ\2 in Qτ,

for some 0 > O and all ξ = (ξl9...9 ξn)eRn, and

(2.3) aip bi9 ceC2(Qτ) for 1 < i, j < n .

We also assume that

(2.4) d9f9geC*(Q;).

The boundary condition in (1.2) yields the following compatibility condition:

(2.5) g(x, t) > 0 for (x, t)edΩ x (0, T) .

THEOREM 1. Assume that the conditions (2.1)-(2.5) hold, and that there

exist functions {wε; ε > 0}cC 2 (Q r ) satisfying

(2.6) dwε/dt + max {- εd2wε/dt2 + Lwε -f, dwε -g}<0inQT9

w° = vvε = 0 on dpQτ, and w° < wε in Qτ for each ε > 0.

Then the problem (1.2) has a unique solution u e W\>0™(\Q, T) L°°(Ω)) Π

THEOREM 2. In addition to the assumptions of Theorem 1, we also assume
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that

(2.7) α o .eC 2 ([0,Γ];C 3 ' α (3Ω))

for some α > 0 and l<ίj<n. Then the solution of (1.2) belongs to Lfoc{[Q, T);

REMARK 1. Without loss of generality we can assume that Ao =

max {λeR; c(x, t)>λ and d(x, t)>λ for all (x,t)eQτ) is a large number.

Indeed, apply the transformation v(x, t) = u(x, t)Qxp( — 2λof).

REMARK 2. If/, g > 0 in Qτ, for all ε > 0 one can take wε = 0 in (2.6).

PROOF OF THEOREM 1. We begin by constructing an auxiliary function which

will be needed to show W2*00-regularity of the solution near ί = 0. We define

h(x,t) by

(2.8) h(x, t) = [ {g(x, s) - d(x, s)w°(x9 s) + s}ds.
Jo

Let φ be a smooth nondecreasing function on R such that

(2.9) φ(r) = 0 for r < 0, φ(r) = r - 1 for r > 2,

ιA; > 0 for r > 0 and ^" > 0 in /? .

For each <5e(0, 1), let us define γδ, βseC^R) by yδ(r) = φ(r/δ) and βδ(r) =

ψ((r — δ)/δ) in I?, respectively.

We approximate solutions of (1.2) by those of the following elliptic regulari-

zation and penalization:

(2.10) LEu + βδ(ut + du-g) + γσ(u -h)=f in Qτ,

u = wε on dQτ,

where Lε denote — εd2/dt2 + d/dt + L. We also consider the semilinear equation:

(2.H) Lεv + γσ(v-h)=f in Qτ,

v = vvε on δ 2 r

Now we state the existence of solutions of (2.10) and (2.11).

PROPOSITION 1. For each ε, δ and σe(0, 1), problems (2.10) and (2.11)

αdmΐί solutions uε>δ>σ and vε'σ9 respectively, which belong to W2i

o

p

c(Qτ) for all

pe{\, oo). Here we denote that W2>O

P

C(QT)= n {W2>P(Q$); α>0}, w/î rg βf̂

is α smooth subdomain of Qτ containing Ωx(α, T—α) and {(x, t)eQτ;O<

t<T—(xand dis (x, dΩ)>cc}. Furthermore there exists a constant C, independent

of ε, such that
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(2.12) \\vε>σ\\L~(Qτ)<C .

We will investigate the convergence of {vε*σ; σe(O.l)} to a solution of an

obstacle problem (see (2.13) below).

PROPOSITION 2. For each εe(0, 1), {vε>σ; σe(0, 1)} converges in

)> a s σ~*®> t° the unique solution vε of

(2.13) max {Lεvε - f, vε - h} = 0 in Qτ,

vε = wε on dQτ.

The above two propositions will be proved in Appendix. The difficulty in

proving them is that Qτ has a corner.

In order to prove Theorem 1, we need the following a priori estimtes of

solutions to the problem (2.10).

LEMMA 1. For sujfciently small α>0, there is a constant C>0 so that

(2.14) ll«ε'aΊlL~([O,T);L~(β))<C,

(2.15) \\uε>δ>σ\\L~ao,τ-a);wi>~m) < C,

(2.16) l|wε'^1l^.~([0,T-α);L~(β)) < C,

and for each open set U with ΪJczΩ,

(2.17) l |w ε^ΊlL~([o,r-α );^,~(i/))<C.

In view of the bounds obtained in the above lemma, there exist sequences

ε(fc)->0, (5(/c)->0and σ(fc)->0, as fc-»oo, and a function ueLfoc{\_0, T); W^"(Ω)

n wii?(O)) n wh?([p, T)\ L°(Ω)) n L°°(ρΓ) such that

(2.18) ue(k),δ(k)Mk) >Uy a s fe > o o ?

weakly star in L£c([0, T); W^{Ω) n Wfif(Ω)) Π Wh?([0, T); L°°(Ω)) and

strongly in L?oc([0, T); C^Ω)), for all pe(l, oo). (2.18) and Mazur's lemma

(see e.g. p. 120 in [9]) yield

(2.19) ut + du<g and u < h in Qτ.

By the comparison theorem and (2.6) we have

w°(x, 0 < uε>δ>σ(x, t) in Qτ.

Thus (2.18) implies

w°(x, t) < u(x, t) in β τ .



A degenerate parabolic Bellman equation 255

By the first inequality of (2.19) we have

<χ, 0 < Jo

Hence the definition of h (see (2.8)) implies

(2.20) u<h in Qτ.

On the other hand, (2.9), (2.10) and (2.18) yield

(2.21) ut + Lu<f a.e. in Qτ.

Now we will show that u satisfies (1.2). For notational simplicity we write
uε, β and γ instead of ue<*> *<*> σ<*>, β^k) a n ( j ^ ( f c ) j respectively. We also omit
the argument ut + du—g of β and its derivatives and u — h of γ and its derivatives.
In addition, we write simply uip uh uit, aijt9 bUk etc. instead of d^jdxβxp du/dxh

d2u/dxidt, ddij/dt, dbjdxk etc. For any nonnegative function ξ e CQ(0, T), we
have

(2.22) 0 = [T [ {Vu* + β + γ-f} {u\ + duε - g}ξdxdt
Jo JΩ

+ {du*-g\u\ξ + (du*-g)u\ξt}

{flyiιf(ιιf + duε - g)jξ}

cuε - / } {uε

t + dw

{MJ + ̂ wε - g}ξ']dxdt.

The first term of the right hand side of (2.22) converges to 0 as ε->0. Indeed,
(2.14) and (2.16) yield

Γ \ {(u*yξtl2 + (du*-g)tu*tξ + (du*-g)u*ξt}dxdt < C,
Jo JΩ

where C is a constant independent of ε. The last term of the right hand side of
(2.22) converges to a nonnegative number as ε-»0. Indeed, (2.18) and (2.20)

yield that y-»0 pointwise in Ωx[0, T) as ε->0. Therefore \ \ γ(uf +
Jo J Ω

duε — g)ξdxdt converges to 0 as ε->0, by the bounded convergence theorem.
Clearly the other part of the last term converges to a nonnegative number by the
monotonicity of β. We further calculate that

(2.23) ^^atjulu jtξdxdt = - {^ Jβ {aijitu\u^ 4-

Γ f (uε)2ξ dxdt > Γ ί (2uει/r - u2)ξ dxdt.
Jo JΩ JO JΩ
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We combine (2.22) and (2.23) to obtain

(2.24) Γ ( (ut + Lu -f)(ut + du- g)ξdxdt < 0 .
JO JΩ

In view of (2.19), (2.21) and (2.24) we see that u solves (1.2).
Now we prove the uniqueness of the solution of (1.2). Let u and v be two

solutions of (1.2). For any nonnegative nonincreasing function ξeCo([09 T)),
z = u — v satisfies

[ ( )(t + dz)ξdxdt<0.
O JΩ

Noting Remark 1, we easily obtain

z2 + λ2z2)ξdxdt

{(C-A0) \Dz\2 + z2β + λ2z2/2}ξdxdt.

Hence we get z = 0 in Qτ. Q. E. D.

PROOF OF THEOREM 2. We need the following lemma:

LEMMA 2. For sufficiently small α>0, there exists a constant C,
independent of ε, δ, σe(0, 1), such that

[ (
o JΩ

Γ [
o JΩ

(2.25) \\uε>δ>σ\
L~ao,τ-«);W2,~(Ω))

The above lemma implies that there exist sequences ε(fc)-»0, <5(fc)->0 and
σ(fc)->0, as /c->oo, and a function ueL?oc([0, T); W2'CO(Ω)) nW^fdO, T);
L°°(fl)) such that u^'δ^^k^u weakly star in Lfoc(\Q, T); W2>™{Ω)).
The remaining assertions of Theorem 2 are obtained in the same way as in the
proof of Theorem 1. Q. E. D.

J. I. Diaz [1] has studied a simpler equation than that considered here and has
established the existence and the asymptotic behavior of solutions. We have
independently obtained a similar result on the asymptotic behavior of solutions
to (1.2). Our result as well as regularizing effects will be discussed in the forth-
coming paper.

3. Proof of Lemma 1 and 2

PROOF OF LEMMA 1. By Proposition 1, uε'δ'σ€Wf£(Qτ) and vε>σe
W2όPc(Qτ) f°r aM P e(l> °°) The standard comparison theorem and (2.6) thus
yield
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(3.1) w° < uε>δ>σ < vε>σ in Qτ.

Hence (3.1) and (2.12) yield (2.14).
Since dΩ is smooth, the uniform exterior sphere condition holds, i.e. there

exists a positive number p such that for each xoeδΩ we can choose xeRn\Ω
satisfying {zeRn; \z-x\<ρ} ί)Ω={x0}. Let μ, λ>0 be numbers to be chosen
later and consider the barrier:

w(x) = A{exp(-μp2) - exp(- μ\x - x\2)}.

We can take λ9 μ>0 so large that the inequality

Lεw(x)> | | / | | L - ( Q τ )

holds in Qτ. By the comparison theorem and (2.6) we have

w°(x, 0 < uε>δ>σ(x, t) < w(x) in Qτ.

Thus we find that there exists a constant C, independent of x0, such that

(3.2) \Du*>*>°(xo,t)\<C.

Similary, using the function

where, λ, μ>0 are large numbers, we obtain

w°(x, 0 < uε>δ>σ(x, t) < w(t) in Qτ.

We thus find that there exists a constant C, independent of x e Ω, such that

(3.3) | u f ' ^ ( x , 0 ) | < C .

We next prove estimates (2.15) and (2.16) for solutions of (2.10). The proof is
similar to that of Lemma 4.2 in [3]. For each T'e(0, Γ) we choose a non-
negative nonincreasing function ξ e C°°(R) such that

(3.4) ξ(t) = 1 for ίe[0, Γ'] and supp£ c (-oo, T).

For simplicity we suppress the superscripts ε, δ and σ of uε>δ>σ in the following
calculations. We set

where μ is a positive number to be chosen later. Here and in the sequel we regard

ut and Du as one-sided derivatives on dpQτ. Let (x0, t0) be a point in Qτ such

that V(x0, to) = sup {F(x, ί); (^, 0 e Qτ}. By (3.2), (3.3) and (2.14) we can assume
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that (x0, to)eQτ; then the maximum principle applied to Vgives

0 < (Lε - c)V

< - 16εξ*ξt(ukuki + ututί) - 4e

- Sεμξξt(u + μ)ut - 2εμξξtt(u + μ)2 - 2εμξ2u2

- 2εξ\\Dut\
2 + u2

t) - 2ξ*θ(\D2u\2 + \Dut\
2)

- 2θξ2μ\Du\2 + 2ξ\ukVuk + utUut)

+ 2ξ2μ(u + μ)U{u + μ) - 2cV, at (x0, t0).

Here we use the monotonicity of ξ. Since Vt(x0, to) = 09 we have

(3.5) ? ( ¥ f e + ¥ « ) > -μ(u + μ)ut at (x o^o)

Differentiating (2.10), we have

(3.6) ukUuk + utUut = ukD
2u + utD

2u - uk(β + y\ - ut(β + y), + ujk + Mf/f,

where Dlu = lL\a\£2 σkD*u> σί bounded and 5?M = Σ|α |<2 σ?Dαw, σ? bounded.

Let μ be a large number depending only on known qufintities. Then using (3.5)

and (3.6) we have

2cV< C + β'{- 2ξ*d(\Du\2 + u2) + Cξ\\Du\2 + u2) + C}

+ γ'{-2ξ\\Du\2 + u2) + C} at (x o ,ί o ).

By virtue of Remark 1 we have V(xθ9 tQ)<C. Hence there exists a positive

constant C independent of ε, δ, σe (0, 1) such that

(3.7) \\ξ2Du\\L-iQr)+\\ξ*ut\\L-iQτ^C.

This yields (2.15) and (2.16).

Next we will prove (2.17) in a similar way to the proof of the Theorem in [8].

For any open set U such that ϋcΩ, we choose a function ζ e CQ(Ω) satisfying

ζ = 1 in U and C>0 in Ω. We will derive a bound of M = M(L/) = sup {ζ*ξ\\D2u\

+ lβw«l)}> where ξ is a nonnegative nonincreasing smooth function satisfying

(3.4). Putting ζ = ζξ, we set

F = ζ\\D2u\2 + ε2u2

t) + μMζ\β + y) + μζ\\Du\2 + u2).

Let (x0, ί0) be a point at which V attains its maximum in Qτ. First assume

(x0, ί0) e d β Γ ; then we can suppose that x0 e supp ζ and ίo = 0 by the choice of ζ.

On the other hand (2.6), (2.8) and (2.13) yield

dvεldt(x, 0) < g(x, 0) for x e Ω.
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Proposition 2 and the standard imbedding theorem yield that dve "ldt(x, 0)
converges to dυ*/dt(x, 0) uniformly on supp ζ, as σ-*0. Hence for any ε € (0, 1)
there exists a function <5(ε, σ) such that <5(ε, σ)-»0, as σ->0, and

dv° <Ίδt(x, 0) < g{x, 0) + <5(ε, σ)

for any x e supp ζ. The above inequality and (3.1) imply

(3.8) du°>ό <Ίdt(x, 0) < g{x, 0) + δ(ε, σ) (δ = δ(ε, σ)).

Note that <5(ε, σ) depends on supp ζ. This is the reason why we can only obtain

the estimate (2.17) instead of (2.25). For notational simplicity we write δ instead

of <5(ε, σ). By (3.8) and the boundary condition in (2.10), we have

(3.9) — εutt + u, = / , d2ujdxidxj = duldx( = u = 0 for 1 < i, j < n,

O, on suppζ x {0}.

Therefore in the case that (x 0 ) ί0) e dQτ, we see that there exists a constant C

such that M<C.

In the case that (x0, ί0) e Qτ, we apply the maximum principle to V. At

(x0, t0) we have

0 < -εVtt-aklVki + Vt + bkVk.

A simple calculation using (2.2) yields

(3.10) 0 ^ - 2ζ»{ε(\D2u,\2+ε2ult) + 0(|D3u|2+ε2 |Du«|2)}

2μζ*{(ukL°uk+u,L°ut) - c(.\Du\2 + uf)}

μMζ*{β'(L*-c)(ut + du-g) + y'(V-c)(u-h)}

μMζ*lε{β'Xut+du-g)2 + y"(u-h)2}

+ θ{β"\D(ut+du-gψ + y"\D(μ-hψn

εCt(|D2«|2+ε2u2

ί)i

4μMζ*{εζtt(β + y) + εζt(β + γ)t + aklζkl(β + γ)

Kζk(β+y)}

+ εζt(\Du\> + u2)t

) + aklζk(\Du\2 + u2)t - bkζk(\Du\2
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Using Young's inequality and Remark 1, and letting μ sufficiently large, we have

(3.11) ζ*{ε(\D2u,\

\2 + u2

t) + θ(\D2u\2 + \Du,\2)}

2λ{ζ\\D2u\2 + ε2u2

t) + μζ\\Du\

< 2C8(uyL
εMfj + ε2ultL°uιt)

+ μMζ4-{β'(L°-c)(u,+du-g) + y'{U-c){u-h)}

- μMζ*lε{β"(ut + du-g)2 + y"(u-h)2}

+ θ{β"\D(ut+du-g)\2 + y"\D{u-h)\2}-]

- 4μMζ>{εζt,(β + γ) + εζt(β + γ)t + aklζkί(β + y)

Since Vt/ζ(x<» *o) = Vklζ(x0, t0) = 0, we have

(3.12) μMζ3(β + y), = - ζ\\D2u\2 + ε2u2

t\

- Sζ%(\D2u\* + ε2u2

t) - 4μMζ2ζ,(β + y)

- μζ\\Du\2 + u2)t - 4μζ2ζt(\Du\2 + u2),

ε*u2

t) - 4μMζ2ζk(β + y)

- μζ\\Du\2 + u2)k - 4μζKk{\Du\2 + u2).

By (3.12) and the convexity of β and γ, the last term of the right hand side of
(3.11) is estimated as

- 4μMζHεζtt(β + γ) + εζ,(β + y)t + aklζkl(β + y)

β'{Cμζ3M\(ut + du-g)\} + y'{Cμζ3M\(u-h)\}

- 4εζ,{- ζ\\D2u\2+ε2u2

t)t - 8

- 4μMζ2ζt(β + y) - μP

-4μζ2ζt(\Du\2 + uΐ)}

4akίζk{- ζ>(\D*u\*+ehι*t)t -

- 4μMζ2ζι(β + y) - μζ

- 4μζ2ζt(\Du\2 + «?)}.
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Applying Young's inequality to the right hand side of above yields

(3.13) - 4μMζ*{εζtt(β + y) + εζt{β + y\ + auζu(β + y)

+ aklζk(β+y)ι + hζk(β+γ)}

<: β'{Cμ?M\(ut + du-g)\} + y'{Cμζ*M\(u-h)\}

Cζ6{ε(\D2u\2 + ε2u2

t) + (\D2u\2 + ε2u2,)}

CμMζ2{β'\(ut + du-g)\ + y'\(u-h)\]

μζ*{ε(\Dut\
2

Cμζ2(\Du\2

In the fourth term of the right hand side of (3.13) we have used β(x)<β'\x\ and

y(x)<y'\x\ which follow from the convexity of β and y. On the other hand,

differentiating (2.10) gives

(3.14) Uul} = ΣLisa e"(i, j)D"u -(β + γ)tJ + fgj, .

L%t = Σ M S U I ^ ?>\tWd*uldr - (β + τ)tt

Lεut = Σ.M^e"(t)D"u -(β+y)t+ft,

Lεuk = Σ M s 2 e«(k)D"u - (β + y\ +fk,

where ex(i,j), eτ>α(ί), e"(f) and ex(k) are bounded functions. Using (3.7), (3.14)

and Young's inequality, we estimate the first two terms of the right hand side of

(3.11) as

(3.15) 2ζ*(uijL°uij + ε2ut,L'utt) + 2μζ\ukL°uk + u,Vut)

<, ζ8(θ\D3u\2 + ε\D2ut\
2)l2 + μζ*θ\D2u\2β

+ Cζ4εu2

t + Cζ*\D2u\2 + Cζ4\Dut\
2 + C

- 2C8«ί//?+y)0- - 2ε2ζ*u,,(β+y)tt

- 2μζ*uk(β+y\ - 2μζ

where C is a constant independent of μ. Substituting (3.13) and (3.15) into

(3.11) yields

(3.16) 2λ{ζ\\D2u\2 + ε2u2

t) + μζ\\Du\2 + u2)}

+ ζ*ε(Mμ - Cε\utt\) {β"{ut + du - g)2 + y"(u - h2)}

+ ζ*θ(Mμ - C\D2u\){β"\D(ut + du - g)\2 + y"\D(u-h)\2}
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+ /?'{- 2ζ*uij(ut+du-g)ij - 2ε*ζ*utt(ut

+ CMμ + Mζ\V-c)(

+ / { - 2ζ*uij(u-h)ij - 2εK8utt(u-h)tt

-2μζ*uk(u-h)k-2μζ%(u-h)t

+ CMμ + μMζ\L' - c) (ti - ft)} .

We can assume that (Mμ — Cε\utt\) and (Mμ — C\D2u\) are nonnegative. Hence

the second and the third terms of the left hand side of (3.16) are nonnegative.

If the third term of the right hand side of (3.16) is positive, then we obtain

C8(|D2i«|2 + e2u?,)(x0, ί0)

Therefore,

M 2 < 2sup{F(x, 0; (x, t)eQτ} = 2V(x0, t0)

< 2Cμ(M+l) + 2μM(C + CMyi2 + C.

Thus we have

(3.17) M<C(μ).

We can therefore assume that the third term on the right of (3.16) is nonpositive.

If the second term of the right hand side of (3.16) is negative, then we have

(3.17) similarly. Hence we can assume that

(3.18) 2ζ*Uij(ut + du- g)u + 2εψutt(ut + du - g)tt

+ 2μζ*uk(ut + du- g\ + 2μζ*ut(ut + du - g\

< CMμ + μMζ4Lε(ut + du - g).

Since Vt(x0, to) = O, we have

2ζ*(uijuijt + ε2unum) + 2μζ\uiuit + ututt)

Inserting the above inequality into (3.18) we have

Cμ(M+l),

where λ is a constant in Remark 1. Hence similarly we obtain (3.17). Since μ

is a large constant depending only on known quantities, we have proved the esti-

mates (2.17). Q.E.D.
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PROOF OF LEMMA 2. For any xoedΩ9 we may assume that x o = 0 and

Ω n Bx = B^ by a smooth change of variables. Here we use the notation:

Br={xeR»;\x\ <r}9 Bt = {xeBr; xn > 0}

and Sr = {xeBr;xn = 0}, for r > 0.

We may further assume that the coefficients of L satisfy

(3.19) ain(x9 0 = 0 for x e S 1 / 2 and 1 < i < n - 1.

Indeed, choose a smooth domain such that B+

1/2 c Ωo cz B\ and functions φfc G

C2([0, T ] ; C3'α(δΩ0)) ( l < / c < n - l ) satisfying φk=-ajam in S 1 / 2 x [ 0 , T ] .

Let Tk(x, t)(l<k< n — 1) be the unique solution of the problem:

- ATk + Tk = 0 in Ωo x [0, T ] ; 5Γ*/dv = φfc on dΩ0,

and set

xfc + T*(x, 0 - Tfc(x'5 0, 0 x G B\l29 1 < k < n - 1

x n x G J8J/2, fe = n.

By a standard theory, we see that Y(x, t) = (Yί(x9 t),..., Yn(x, t))eC2([0, T ] ;

C4>α(Bί/2)). It is easily checked that ainYk4 = 0 in Sί/2 x [0, T], l < / c < n - l .

Making the change of variables: x-» Y, we arrive at the situation (3.19).

To prove Lemma 2 we must choose £(ε, σ) independently of supp ζ (see (3.8)).

In view of the argument used to derive (3.8) we need the following fact:

PROPOSITION 3. As σ->0, {dvε'σ/dt(x, 0); σG(0, 1)} converges to dvεj

dt(x9 0) uniformly in Ω.

The above proposition will be proved in Section 4. From compatibility

condition (2.5), (3.19) and Proposition 3, we have

(3.20) - annunn + bnun = / on Sί/2 x [0, T ] .

We let ΰnn = unn-bnujann+flann and let ΰij = uij except for i=j = n.

Choose a nonnegative function ζ e Co(Bt) such that ζ(0) = 1 and ζn = 0 on S1 #

Let ξ be a smooth nonnegative function satisfying (3.4) and define ζ = ζξ. Set

V= ζ ^

In view of (3.20) we have

(3.21) Vn = ζ\ΰl)n

= 2C8 Σ?=l « t a{(fcΛ-ΛWi +

> - CF on Si x [0, T] .
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If (x, ?) is a point attaining sup {oxp (Axn)V(x, t); (x9 t)eQτ}9 then (3.21)

implies that xeΩ, for some A>0. Therefore we apply the maximum principle

to exp (Λxn)Vto get

0 < { - A2annV- 2 Σ?=ί aM + (Lε-c)V} πp{Axn).

Since Ff = 0 at (x, ?) for 1 < i < n — 1, we have

(3.22) 0<(Lε-c)V + CV.

The first term of the right hand side of (3.22) is calculated in the same way as in

(3.10)-(3.16). As in the proof of (3.17), (3.16) implies

λζ\\D2u\2 + E2u2

tt) <C + Cμ + C(M2 + μM).

In view of Remark 1, this inequality implies (3.17). Q. E. D.

4. Appendix

PROOF OF PROPOSITION 1. For small α > 0 there are unique functions u —

uε,δ,σ,a a n ( J υ = υε,σ,a solving

Lεu + βδ(ut + du- g) + yσ(u -h)=f in Q$

u = wε on

Lευ + γσ(v-h)=f in Qf

v = wε on

respectively. For notational simplicity we write u* and υa instead of uε

and vε'σ'a, respectively.

The comparison theorem yields that

(4.1) w° < wε < ua < va in Qf,

We put

' va in Qϊ
V" =

wε in Qτ\Qf,

f u" in Qf
u" =

[ wε in QT\Q*T.

Let (x0, t0) be a point in β Γ such that V"(x0, to) — μto = sup {Va(x, t)-~

μt; (x, i) e Qτ}, where μ is a positive constant to be chosen later. If we suppose

that (x0, t0) e Qf, then we have
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0 < LεV" - cVa - μ < f - cVa - μ.

Since we can assume that M>||/| |LO O(QT)II a n ( ^ ^ α > 0 , the above inequality yields

that (x0, t0) e Qτ\Qτ Therefore we have

(4.2) v«<C in Q%,

where C is a constant independent of ε, δ, σ and α. Thus there exists a constant

C, independent of α, such, that

\y(v-h)\ <C in Qf.

Hence by the standard diagonal argument we can show the existence and its

regularity of solutions of (2.11) in Proposition 1. Also we have (2.12) by (4.1)

and (4.2).

Since dΩ is smooth, there exists a positive number p such that for each

(x09 to)edQ% we can choose (x, Ί)eRn+1\Qf satisfying {(z, t)eRn+ί; |(z, t)-

(x, 7)1 <p} Π Qτ — {(xo> to)}- Let λ, μ>0 be numbers to be chosen later and

consider the barrier:

w(x, t) = A{exp(-/xp2) - e x p ( - μ\t - ψ - μ\x - x|2)}

+ wε(x, t).

We can take λ, μ > 0 so large that the inequality

LEw > I/I + \Lεwε\

holds in Qτ. By the comparison theorem and (4.1), we have

wε(x, t) < uε>δ>σ>a <w(x, t) in Qf.

In the same way as in (3.2) and (3.3) we find that there exists a constant C > 0

independent of (x0, t0) and α, such that

(4.3) \Duε>*>°>«(x09 to)\<C,

\duε>*'°>"ldt(x0,t0)\<C.

Set V=\Dux\2 + (uf)2 + μ(ua — μ)2, where μ is a positive number to be chosen later.

Similarly to the argument used in deducing (3.7), we have

\Du«\ + \uΐ\ < C in Q%.

Therefore there exists a constant C, independent of α, satisfying

Thus we can show the existence and regularity of solutions of (2.10) in Pro-

position 1. Q.E.D.
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PROOF OF PROPOSITION 2. In order to prove Proposition 2, we establish the

following a priori estimates of solutions to the problem (2.11). For each ε e (0, 1)

there exists a constant ά > 0 such that for all α e (0, ά)

(4.4) W ^ σ ' β - Λ ) I ^ C ,

in <2f > where C is a constant independent of σ and α.

Let ξ be a smooth function such that ξ = 1 in Q% and ξ = 0 near {(x, ί) e dβf/2

dis(x, dΩ)<&l2 and ί e [ 0 , 4/2]} U {(x, T); xeΩ}. Set F=£ 2 y, and let (χ0, ί0)

be a point of βf satisfying V(x0, ίo) = suρ{F(x, t); (x9 ήeQf}. By the com-

patibility condition and our choice of ξ, we can assume that (x0, t0) e Qf. The

maximum principle yields

= ξ2γ'(L*-c)(v-h) - ξ*y"{θ\D(v-hψ + ε(i;-/i)2}

- 2εζξtγt - ε(ξ*)tt - 2a^i7j - a^ξ%γ

- 2ξξtΊ - 2ξbkζky.

Since Vk/ξ(xOi t0) = Vt/ξ(x0, t0) = 0, we have

ξγt=-2ξtγ, and ξky = - 2ξkγ at (xo^o)

By making use of (4.5) and the convexity of γ, we have

0 < y>{ξ\v-c)(v-h) + C|(t>-Λ)|}

= /{- ξ\y +f~cv- UK) + C\(v-h)\}.

Since we can assume that V(xθ9 to)>0, the third assumption of (2.9) implies

ξ2γ < - ξ\f- cv - Uh) + C|(t>-Λ)|.

This implies (4.4). Q. E. D.

PROOF OF PROPOSITION 3. It suffices to prove that there exists a constant C,

independent of σ, such that

(4.6) \\d2v'>°/dt2\\L~(Ωxί0tT/2Ί)<C.

Indeed, simple calculation yields that

vfcc, 0) - vε

t>
σ(x, 0)

= Γ {tβ*(x, θt) - iήt(χ9 θt)}dθ x t
Jo

+ tftx, t) - v*t>°(x, t).
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If we let f = τ/4C, for any small τ > 0 , (4.6) implies

1 {υ%σ(x, Θt) - vε

tt(x, θt)}dθ x t < τ/2.
o

From Proposition 2 and the Sobolev imbedding theorem, it follows that there

exists a positive constant σ0, independent of x e Ω, such that

\vε(x, τ/4C) - vε>°(x, τ/4C)| < τ/2

for all σe(0, σo). Therefore the above considerations imply Proposition 3.

The estimates (4.6) are easily obtained by the same method as those for obtaining

the estimates in Lemma 1 and 2. We only note that γσ(vε>σ-h) = 0 on dpQT.

The same calculations as in the proof of Lemmas 1 and 2 imply that the same

estimate as (2.25) holds for vε>σ. Q. E. D.
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