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Abstract

This paper deals with a free boundary problem for reaction-diffusion equations,
which was previously proposed by the authors. The main purpose is to estabilish
the stability theory for stationary solutions for the free boundary problem with fairly
general nonlinearity. Our argument is based on the notion of tt>-limit set and the
comparison principle.

§ 1. Introduction

In the previous paper [3] the authors have proposed the following free
boundary problem for a pair of unknown functions {u(x, i), s(t)}:

(1.1) ut = dtuxx + uf(u\ 0 < x < s(t), 0 < t < oo,

(1.2) ut = d2uxx + ug(u\ s(t) < x < 1, 0 < t < oo,

(1.3) w(0, t) = mu 0 < t < oo,

(1.4) M(1, 0 = - m2, 0 < t < oo,

(1.5) u(s(t), t) = 0,

(1.6) 5(0 = - / W s ( 0 - 0 , 0 + / W * ( 0 + 0, 0, 0 < t < oo,

(1.7) u(x, 0) = cp(x), 0 < x < 1,

(1.8) 5(0) = /,

where di9 m{ and fit (i = 1, 2) are positive constants, / and g are locally Lipschitz
continuous functions, q> and / are given initial data, s(t) denotes ds(t)/dt and
ux(s(t)-O, t) (resp. MX(S(0 + 0, 0) means the limit of ux(x9 t) at x = s(t) from the
left (resp. right). Our problem (1.1)—(1.8), which is simply denoted by (P),
stems from regional partition phenomena arising in ecology; we consider the
situation where two species, that cannot coexist in the same region, are struggling
to get their own halitats on the intermediate boundary x = s(t). u(x, t) (resp.
— w(x, 0) means the population density in 0<x<s(0 (resp. s(i)<x<l). For
more details, see [3].
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In [3], we have discussed (P) under the following assumptions:
(A.I) /(u) is locally Lipschitz continuous on [0, oo), non-increasing on [0, 1]

and satisfies
f(u) > 0 on [0, 1),/(1) = 0 and f(u) ^ 0 on (1, oo).

(A.2) g{u) is locally Lipschitz continuous on (— oo, 0], non-decreasing on
[—1, 0] and satisfies
g(u) > 0 on ( -1 ,0 ] , #(-1) = 0 and g(u) ^ 0 on (-oo, - 1 ) .

(A.3) 0 < m1 ^ 1 and 0 < m2 ^ 1.
(A.4) 0 < / < 1.
(A.5) (peHl(0, 1) satisfies cp(O) = mu q>(J) = 0, cp(l) = - m2

and (l-x)cp(x)^0 for xe(0, 1).
A comparatively realistic growth rate of / satisfying (A.I) is of the Verhulst-Pearl
logistic form/(w) = r(l — w/k), where r is the instrinsic growth rate and K is some
carrying capacity. However, if the species is attacked by a predator, then the
growth rate/is slightly deformed. A realistic expression of f(u) is, due to Holling
[2], of the form

f(W) = lil-w/k) - Pl(

Here P is a constant attack capacity of the predator and D refers to some given
value of the prey population beyond which the predator's attack capability begins
to saturate. When D2/P<Klr, it turns out that / loses the monotonicity and,
instead of it, has a maximum or "hump".

This ecological interest motivates us to study (P) with (A.I) and (A.2) replaced
by the following general (in an ecological sense) assumptions:
(A.I)* / is locally Lipschitz continuous on [0, oo) and satisfies / ( l ) = 0 and

/(u)^Oon(l , oo).
(A.2)* g is locally Lipschitz continuous on ( — oo, 0] and satisfies g(—1) = 0

and g(u)t^0 on (— oo, —1).
Even if (A.I) and (A.2) are replaced by (A.I)* and (A.2)*, as was stated in

[3; Remarks 6.1 and 7.2], global existence of smooth solutions for (P) ([3, Theorem
I]) and structure of the co-limit set associated with each solution ([3, Theorem II])
remain true. Roughly speaking, these results imply that (P) has a unique smooth
solution {u(-, i), s(t)}, which converges (in a suitable topology) as f->oo to one of
{M*, 5*} satisfying

(SP)

dtu*x + M*/(M*) = 0, M* ^ 0, 0 < x < s*,

d2u*x + u*g(u*) = 0, M* ^ 0, s* < x < 1,

«*(0) = ml9 w*(5*) = 0, M*(1) = - m2 ,

= 0.
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This problem (SP) is called the stationary problem associated with (P) and any
pair {w*, s*} satisfying (SP) is called a stationary solution of (P). In the present
paper, we will concentrate our efforts on the analysis of (SP) to get information
about stability properties of stationary solutions for (P). We would like to
emphasize the number of the stationary solutions heavily depends on the non-
linearity o f / and g (see Fig. 6 in §5).

The plan of this paper is as follows. In §2, we state some basic results on
global existence of smooth solutions for (P), structure of the co-limit set associated
with the solution orbit and comparison principle. In §3, we study auxiliary
problems related to the stationary problem (SP) and construct solutions by the
phase plane analysis. Here we take / and g to be quadratic polynomials as
representative functions satisfying (A.I)* and (A.2)*, so that our arguments will
be made transparent and technical complexity will be avoided. §4 is devoted
to the investigation of (SP). We seek all stationary solutions with the aid of
solutions of the auxiliary problems studied in §3. In §5, stability theory is
developed. We make use of the comparison principle, which enables us to
decide stability or instability of each stationary solution.

Notation

We summerize some notation used throughout this paper. We set as follows:

/ = (0, 1), 6 = / x ( 0 , oo),

S- = {(x,*)eG; 0<x<s(t)},S+ = {(x,t)eQ; s(t) < x < 1}.

For(5>0,

; t^S}, SJ = {(*, t)eS+; t ^ 8}.

Let ut (i = 1, 2) be continuous functions on / and let st (i = 1, 2) be numbers in / .
We simply write

{uu s j ^ {u2, s2} if ut(x) ^ u2(x) for xel and st ^ s2,

and

{uu s x } > {u2, s2} i f ul(x)>u2(x) f o r xel a n d sx>s2.

§2. Preliminary results

In what follows, we always assume (A.I)*, (A.2)*, (A.3) and the initial data
{cp, 1} so as to satisfy (A.4) and (A.5). We will show some results which can be
proved almost in the same way as in [3]. The first one is concerned with the
existence and uniqueness of solutions for (P).
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THEOREM 2.1 ([3; Theorem I]). There exists a unique pair of functions
{«, s} e C(Q) x C([0, oo)) with the following properties:

(i) s(0) = /, seL3(0, oo) and b ̂  s(t) ̂  1 - b, fe[O, oo), wifh some
constant be(O9 1).

(ii) {M, 5} satisfies (1.3), (1.4), (1.5) and (1.7) everywhere and

0 <; u(x, r) g max {1, sup <p(x)} for (x, ^

0 ^ w(x, 0 ^ min { -1 , inf <p(x)} for (x, 0 e S+7

(iii) Lef u + = max {u, 0} and u~ = - min {w, 0}. Tnen 11*6 C([0, 00);

n L°°(0, ooj

(iv) w reL2(S") n L2(S+) .

(v) uf, MxxeC(5") n C(S+) and {u, s} satisfies (1.1) and (1.2) everywhere.

(vi) For each <5>0, ux is Holder continuous in (x, t)eSf and s is Holder
continuous in t e [<5, 00).

(vii) {w, s} satisfies (1.6) for every te(O, 00) .

The pair {«, s} in Theorem 2.1 is called a smooth solution of (P) on [0, 00).
We denote by {w(x, t, (p9 /), s(t; (p, I)} the smooth solution of (P) for the initial
data {cp, /}. In order to study asymptotic behavior of smooth solutions for
(P), it is convenient to introduce the notion of co-limit set associated with the
solution orbit {{u(-, t; (p, I), s(t; (p, /)}; ^ 0 } :

(2.1) co((p, I) = {{M*, s*}eHl(I) x / ; there exists a sequence {tn} | 00 such that

s(tn; (p, I) -+ s*, and u(tn; (p, I) -> u* in Hl(I) as n -+ 00} .

We say that the sequence {{u(tn; cp, /), s(tn; cp9 /)}}^=1 converges to {w*, s*} in
Q-topology if the convergence property in (2.1) holds. (Note that the definition
of co((p9 I) by (2.1) is equivalent to that given in [3].)

Our second result reads as follows.

THEOREM 2.2 ([3, Theorem II]).

(i) oj((p, I) is non-empty and connected in Q-topology.
(ii) / / {w*, s*} € co((p, 0, then it satisfies (SP).

This theorem gives us very useful information about asymptotic behavior of
smooth solutions for (P). For example, if it is shown that the set of stationary
solutions consists of isolated elements, then every solution of (P) converges in
^-topology to one of stationary solutions as f->oo.
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Finally we will give a comparison theorem which will be powerful in the study
of stability properties of stationary solutions. Before stating the result, we prepare
some terminology. Let ^ denote the set of all functions {u, s} e C(Q) x C(I)
satisfying

( i ) uxe C(SJ) n C(SJ) for any S > 0,

(ii) ut,uxxeC(S~)(]

(iii) 5 e C m oo)).

DEFINITION 2.1. A pair of functions {u, s}e& is called a subsolution of

(P) for the initial data {(p, 1} if it satisfies

(i)

(ii)

(iii)

(iv)

(v)

U, g dtUxx

u, S d2uxx

w(0, i) ^ n,

«(1, 0 ^ -

«(s(0, 0 =

+ uf(u) in S~,

+ ug(u) in S+,

it in (0, oo),

- m2 in (0j oo),

0 in (0, oo),

(vi) 5(0 ^ - ^ ^ ^ ( 0 - 0 , 0 + M2W*0(0 + 0, 0 in (0, oo),

(vii) u(x, 0) = (p(x) in I,

(viii) 5(0) = /.

A supersolution of (P) for the initial data {<p, /} is defined by reversing the
inequality signs in (i), (ii), (iii), (iv) and (vi). If {u, s} is a super- and subsolution of
(P), it is called a classical solution of (P).

Then our comparison theorem is

THEOREM 2.3 ([3, Theorems 5.1 and 6.3]).
(i) Assume that {u1, s1} (resp. {w2, s2}) is a supersolution (resp.

subsolution) of (P) for the initial data {(p1, I1} (resp. {cp2
y I

2}). If <px^q>2 in
I and ll>l2

y then

u\x,i)^u\x,i) for (x,t)eQ

and

si(t)>s2(t) for fe[0 , oo).

(ii) In addition to the assumptions of (i), assume that one of {u\ s*}
(i = l, 2) is a classical solution o/(P). Then

{u\-, t), s^t)} ^ {u\•, t), s*(t)} for all te [0, oo),
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whenever {cp\ V} satisfies {cp1, Z 1 }^!^ 2 , I2}. Moreover, if (p1^^2, then

{u*( •, t), s\t)} > {u\ •, t), s\t)} for all t e (0, oo).

§ 3. Analysis of auxiliary problems

In this section we will consider the following auxiliary problems (AP)^ before
studying (SP):

(3.1) d,uxx + uf(u) = 0, 0 < x < £ ,

(3.2) u ^ 0, 0 < x < <J,

(3.3) • d2uxx + ug(u) = 0, i < x < 1,

(AP)< { (3.4) u S 0, { < x < 1,

(3.5) W(0) = m l 5

(3.6) II(O = 0,

(3.7) ii(l) = - m 2 ,

where £ is regarded as a parameter moving over / . For the sake of simplicity,
we sometimes denote (AP) in place of (AP),,.

Let u(x; £) be a solution of (AP),*. Our strategy for solving (SP) is to seek
a pair {«(• ; £), £} satisfying the last equation of (SP) with {«*, 5*} replaced by
{u(-; £), <!;}. In order to avoid technical complexity in studying (AP), hereafter,
we will specify / and g as quadratic polynomials of the form

(3.8) f(u) = -

(3.9) g(u) = - v2

- f l X u - l ) with vt > 0 and a < 1,

with v2 > 0 and 6 < 1,

which cleary satisfy (A.I)* and (A.2)*, respectively. Our subsequent arguments
will be valid for general/and g.

Observe that (AP) is composed of two boundary-value problems; that is,
(AP) can be treated separately on [0, £] (denoted by (AP-1)^, or simply, (AP-1))
and on [<!;, 1] (denoted by (AP-2){, or simply, (AP-2)). The general theory
for nonlinear elliptic equations (see, e.g., Sattinger [4]) tells us that both (AP-1)
and (AP-2) have a maximal solution and a minimal solution. However, we will
employ the standard phase plane analysis to get preciser information about the
solutions for (AP-1) and (AP-2). (The results of Smoller-Wasserman [6]
and Smoller [5] are relevant here.)

First we will treat (AP-1). Rewriting (3.1) as a first-order system for

(t>, *)•
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(3.10) vx = v' and v'x = - vf(v)/d1,

we consider the phase plane for (3.10). Define

483

(3.11)

with F(v) =-i~[V uf(u)du = - ^ ~ {3v2-4(a+l)v
ui Jo tax

Since Ex(v, vf) is constant along orbits of (3.10), the phase portrait for (3.10) is
depicted as in Fig. 1. Clearly, a solution v(x; £) for (AP-1)^ corresponds to an
orbit of (3.10) which "begins" on the line v — ml9 "ends" on the line v = 0 and take
"time" £ to make the journey with v^0.

v 0

Fig. 1. Phase portraits for (v, v')

Our first result is concerned with an order relation for solutions of (AP-1)^
with any fixed £ e I.

LEMMA 3.1. For each £e(0, 1), let vt(x; £) ( i = l , 2) be two solutions of
(AP-1)C. / /

(3.12)

then

(3.13) v1(x;Z)<v2(x;0 Mall

PROOF. Suppose that (3.13) does not hold. Then there exists a point
xoe(0,{) satisfying vx(x; £)<v2(x; £) for xe(0,xo) and vx{x0\ £>) = v2(x0; £).
Therefore,

(3.14)
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For the orbits of (3.10) corresponding to vfa\ 0 0 = 1, 2) one can see from
(3.12) and (3.14) that (v2)x(0; £)>0 and (v2)x(x0; £)<0. Therefore, the orbit
corresponding to v2(-; 0 must be below the orbit corresponding to vt(-, £) for

v2(x0; £). This fact implies that

(3.15) (v2)x(xil0<(vi)x(xil0

at any xt e [x0, £] where v2{x1; 0 — v\{xi \ 0- Since (3.15) holds true for xt =x0

(by (3.14)) and x1 = £, there exists a point x2 e (x0, £) such that v1(x2; £) = v2(x2; 0
and (vl)x(x2; 0<(v2)x(

x2'> 0> which contradicts (3.15). Thus the proof is
complete. q. e. d»

By Lemma 3.1, the set of solutions for (AP-1)^ has an obvious order relation
for each fixed £ e I. Clearly, the analogous result is valid for (AP-2)^.

We will construct solutions of (AP-1) by the shooting method. As in [5]
or [6], let T^p) denote the "time" that an orbit starting from (mu p) takes to
arrive at the t/-axis. In other words, Tx(p) possesses the property

Ul(x;p)>0 for xe[0, T±(p)) and u^T^p); p) = 0,

where ux(x; p) is the solution of the initial value problem

diuxx + uf(u) = 0, x > 0,
(3.16)

w(0) = ml9 ux(0) = p.

Since

£1(Wl(x;p),M1>x(x;p)) = jp
2 + F(m1) for x ^ 0,

where Et is defined by (3.11), one can find that Tx(p) is expressed as follows:

Case I. a^0 or 0<a<l/2 with a*^ml9 where a* = {2(a + l ) -
y/2(2a-l)(a-2)}l3 (a* is the number determined by F(a*) = 0 with a*e(0, 1]).

(3.17) Tx(p) = (mi {p2 + F(m1)-F(v)}-1f2dv for p < 0,
Jo

and

(3.18) T1(p) = 2l { p H F W - F ^ } - " ^ - {
Jo Jo

for 0^p<Ai

where a(p) is the first point on the line vr = 0 which meets the orbit passing through
K ; p); that is

(3.19) p2 + F(W l) = F(<x(p)) with 0 ( ^ ) 6 ^ , 1).
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Case II. 0<a< 1/2 and m1 <a*< 1. T^p) is given by (3.17) for p< -A2 =
and by (3.18) for A2<p<A1.

Case III. l / 2^a< l . Tx(p) is given by (3.17) only for p< -A2.

In view of the expression (3.17), it is easily seen that T^p) is continuous and
monotone increasing for p<0 lying in the domain of T± and that

(3.20) lim 7\(p) = 0,
pi-OO

lim = oo for Cases II and III.

For a^-l9f satisfies (A.I); so that one can find from the result of [3] (see
the proof of Lemma 8.1) that Tx(p) is also monotone increasing on [0, At).
For a > -1, we recall the result of Smoller and Wasserman [6, Theorems 2.1 and

2.2] which says that the integral [a {F(oc)-F(v)}-^2 dv has exactly one critical
Jo

point (a minimum) as a function of a e (0, 1). Since <x(p) is a monotone increasing
function of p^O (use (3.19)), the above result assures that Tt(p) is monotone
increasing on [Ao, At) with some Ao. Moreover,

(3.21)

and

(3.22)

lim 7\(p) = oo for Cases I and II

lim Tt(p) = oo
plA2

for Case II.

By virtue of (3.20), (3.21) and (3.22), typical graphs of Tx(p) can be depicted as
in Fig. 2.

0

Case I

Fig. 2.

-A2 0 A2 At

Case II

Graphs of time mapping

-A2 0

Case III

REMARK 3.1. In our case (ml>0), it seems considerably difficult to know
the exact number of critical points of 7\ as in [6]. The qualitative shape of 7\
heavily depends upon rax and a.

Here we will give some properties of 7\ for later use.
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LEMMA 3.2. Let ux{x\ p) be the solution o/(3.16) and let pi<p2 be in the
domain of 7\.

(i) IfTl(p1)<T1(p2lthenul(x;pl)<u1(x;p2) for xe(0 , T^p,)).
(ii) lfTx{px) > T1(p2), then there exists a point £oe(0, T1(p2)) such that

«i(*; Pi) < "i(x; Pi) for xe (0^ o ) ,

Wi(*; Pi) >u1(x; p2) for x e ({ 0 , 7\(p2)).

PROOF. For the orbits of (3.10) corresponding to u(x; p() (i = 1, 2), we have
only to use arguments similar to those in the proof of Lemma 3.1. q. e. d.

We are ready to state some results for (AP-1).

PROPOSITION 3.3. Let £ el be fixed. Then:
( i ) (AP-1) has at least one solution.
(ii) The number of solutions for (AP-1) is identical with the number of

p's satisfying 7\(p) = {.
(iii) Let K = K(£) be the number of solutions for (AP-1) and let Pi(O<

P2(O<"'<PK(O satisfy T,{piO) = ̂  (i = l, 2,..., K). Then all solutions of
(AP-1) are given by

(3.23) vt(x; 0 = Ml(x; Pi(O), i = l ,2 , . . . ,X, for x e [ 0 , { ] ,

where M1(- ; p) is the solution of (3.16). Moreover,

(3.24) 0<vl(x;0<v2(x;0<-'<vK(x;0 for xeflU].

PROOF. We observe that solutions of (AP-1) correspond to orbits of (3.10)
which pass through (ml9 p) and satisfies T1(p) = ̂ . In view of (3.20), (3.21) and
(3.22), there exists at least one p such that T1(p) = £t for every <i;eJ (see Fig. 2).
This fact imples (i). Moreover, it is easy to see that (ii) and (3.23) hold. Finally,
(3.24) is derived from Lemma 3.1. q. e. d.

REMARK 3.2. From the definition, Tt(p) is an analytic function of p so that
T1(p) = £> has .only a finite number of solutions for each £ el. Hence the number
of solutions of (AP-1)^ is finite for any fixed £ e I.

REMARK 3.3. Consider the situation where Tx(p) is a monotone increasing
function of p. In fact, this situation takes place in the case l/2^a<l or a^—1.
(In the latter case,/(M) satisfies (A.I) and the complete analysis has been carried
out in [3].) Since a solution p(£) of T1(p) = £l is uniquely determined for every
£e J, (AP-1)^ has a unique solution v(x; ̂ ) = u1{x\ p(£,)).

We can deal with (AP-2) along the same idea as with (AP-1). Define
G(u) by



Stability analysis for free boundary problems 487

G(u) =

Let u2(x; q) be the solution of the initial value problem

d2uxx + ug(-u) = 0, x> 0,
(3.25)

u(0) = m2, ux(0) = q.

If we set

then

E2(u2(x;ql(u2)x(x;q)) = q2-^ G(m2) for x ^ 0.

Therefore, the time mapping T2(q) for u 2 ( - ; q) is defined by (3.17) and (3.18)
with F, p, ml9 and oc(p) replaced by G, q, m2 and /?(g), where P(q)e[m2, 1]
satisfies q2-\-G(m2) = G(P(q)). Then T2(g) has qualitative properties similar to

For (AP-2), the results corresponding to Proposition 3.3 can be stated as
follows.

PROPOSITION 3.4. Let ^el be fixed.

( i ) (AP-2) has at least one solution.
(ii) The number of solutions for (AP-2) is identical with the number of

q's satisfying T2{q)=\ — <^.
(iii) Let L = L(£) be the number of solutions for (AP-2) and let qt(O<

q2(0<~-«lL(0 satisfy T 2 ( ^ ) ) = l - ^ , j = l ,2 , . . . ,L. Then all solutions of
(AP-2) are given by

(3.26) wj(x; 0 = - u2(l-x; q^)\ j = 1, 2,..., L for x e K , 1 ] ,

where u2(- ; q) is the solution of (3.25). Moreover,

(3.27) w L (x ;0<-<w 2 (x ;0<w 1 (x ;0 for x e f c l ] .

Here it is convenient to introduce the following classification. For
let p(£) be any solution of T1(p) = £. If Tt(p) is monotone increasing (resp.
decreasing) in a neighborhood of p = p(O> we s a v that p(£) is in the stable class
y ^ ! (resp. unstable class °U^^). When /?(£) is continuous for £ in an open
interval Ioczl and p{^)e6^<^l (resp. ^ r ^ ) for every <i;e/0, it is monotone in-
creasing (resp. decreasing) on Jo. If Tt(p) is not monotone in any neighborhood
of p = p(£) (necessarily, dT1/dp(p(!;)) = 0), we say that p(£) is in the critical class
Wi. Similarly, any solution q(£) of T2(q) = 1 -{ (£ e / ) belongs to the stable
class y&2 (resp. unstable class ^ ^ 2 ) if T2{q) is monotone increasing (resp.
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decreasing) in a neighborhood of q = q(£) and q(£) belongs to the critical class
W2 if it belongs to neither y<<£2 nor ^ 2 .

For p{£) (resp. q(0)> the corresponding solution of (AP-1)^ (resp. (AP-2)^)
is given by v(x; £) = u1(x; p(£)) (resp. w(x; £) = —u2(l—x; q(0)) (see Propositions
3.3 and 3.4). If we set

(3.28) u(x;O=\
{ w(x; 0,

then u( -; £) becomes a solution of (AP)^. Conversely, any solution u( •, £) of
(AP)^ is expressed in the form (3.28), where v( •, ̂ ) (resp. w( •, ̂ )) is a solution of
(AP-1)4 (resp. (AP-2)^).

We will give the following results for (AP)^ when £ varies over / .

PROPOSITION 3.5. For each £el, let p(£) and q(£) be any solutions of
Ti(p) = ̂  and T2(q)=l-£9 respectively. Define u(- ; f) by (3.28) with u(x; {) =
UtixipiO) and w(x; 0=-u2(l-x; q(£)\ Suppose that both p(0 and q(0
are continuous in an open interval / o c / ,

(i) / / p © e y ^ and q(QeW2 for £e/ 0 , then u(x; ^)<u(x; £2),
x el for any ^ e / 0 with £1<£2.

(ii) / / X O e ^ ? ! and q(£)e<%&2 for £e/ 0 , then for any
^i<^2 there eixts a point xoe(0, 1) such that

(3.29) u(x;^)<u(x;^2) for xe(0,xo),

w(x; ^ ) > u(x; £2) for xe (x 0 , 1).

(iii) If piOeW&i and q{^)e6^^2 for ^ e / 0 , then the assertion of (ii)
holds true by reversing the inequality signs in (3.29).

(iv) If piQeW&t and q{£)eW2 for £ e / 0 , then for any ^ e / 0 with
£>\<£>i there exist two points 0 < x o < x 1 < l such that

u(x; fi) > u(x; £2) for X G ( 0 , X0) U (X1? 1),

M(X; Zt) < w(x; ^2) /or xe(x 0 , xx) .

PROOF. Let £t < £2 be in 70. If p((J) e yc^l (resp. ^ ^ J for ̂  e 70, then

The definition of 7\ yields T1(p(^i)) = ̂  (i = l, 2). Therefore, it follows from
Lemma 3.2 that, if ^ { J e ^ ^ for <Je/0, then M(X; ^ ) < M ( X ; {2) for xe(0, ^ )
and, if pffieW*! for {e / 0 , then u(x; Zt)>u(x; i2) for xe(0, £0), u(x; ̂ ) <
M(X; ^2) for x e g 0 , f j with some £oe(0, ^ ) . The analogous results hold for
(AP-2) so that the assertins of this theorem are easily derived. q. e. d.
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§ 4. Analysis of stationary problems

For each £e(0, 1), let PI(O<PI(O<"'<PK(O
 b« K solutions of Tx(p) = Z

and let qt(f)<q2(£)<• • • <qL(£) be L solutions of T2(q) = 1 — f. By Propositions
3.3 and 3.4, (AP-1)^ has K solutions vt(x; <J), i = l , 2,..., X given by (3.23) and
(AP-2){ has L solutions w/x; {), j = l, 2,...,L given by (3.26). Our task for
solving (SP) is to look for a family {vt(x; £), w/x; £), {} such that

(4.1) -MviUZ-0; 0 + fi2(wj)x(^0; 0 = 0.

We observe that $*(£)= - M i ( ^ ) ^ - ° ; 0 0"=l» 2,...9K) are expressed, in
terms of pf(O> a s

(4.2) ^ ( 0 = /^i{p^)2 + nmO} 1 / 2 ,

(use the invariance of Ex(v£x\ ^), (i?i)x(x; ^)) with respect to x). Moreover, since
fy (i= 1, 2,..., X) satisfy (3.24), it is easily seen that

(4.3) 0,(0 < * 2 « ) < < <PK(0 for each { e (0, 1).

We define the following set in the (£, f/)-plane

; o < ^ l, i = i, 2,...,

Clearly, C, consists of a finite number of continuous curves.
Analogously, ^j(0= -^(w/XcOJ + O; 0 0 = 1 , 2,..., L) are expressed as

(4.4) Wj(0

which satisfy the following order relation

(4.5) Y1(0<V2(0<~<VL(0 for each £e(0, 1),

(use (3.27)). We define a set C2 by

C2 = {{{, y / 5 ) } ; 0 = £ < 1, j = 1, 2,...,

In view of (4.1), all solutions of (SP) are obtained by finding points where
Cx and C2 intersect. Therefore, it is required to study the qualitative shapes of
Ct and C2.

As in §3, we say that #,(£) belongs to the stable class &>, (resp. unstable
class °UX or critical class <€^) if pt(0 corresponding to &££) belongs to £/"%,
(resp. fy^Y or ^^x). The stable class y 2 , unstable class °U2 or critical class
&2 f ° r Yj(£) is defined in the same way as for #*(£)•

First we will study Cx. By virtue of the monotonicity of 7\ for p^O in the
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domain of Tl9 it follows from (3.20) that px(0 is continuous and monotone
increasing on (0, £ t] with { 1=min{l , 7^(0)} (we set T1(0) = oo in Cases II and
III) and that lim^ ;o pl(O = — °o- Therefore, for £e(0, ̂ ] , 4>x(^) is monotone
decreasing, belongs to SfY and satisfies l im^ 0 #!(£) = oo (see (4.2)). Moreover, in
Case I, one can find that ^^S) is continuous and monotone increasing (therefore,
belongs to Sfx) on(^ l 5 1] except for a finite number of points where Q^O belongs
to <g?

1. Other <Pi(O 0V1), which can exist in Cases I and II, has the following
property; 4>t(^) belongs to Sfx (resp. °UX} for every £ in an interval where )
is monotone increasing (resp. decreasing). Moreover, (3.21) yields
fil{F(l)}1/2 for i # l and £e(0, 1]. Typical shapes of Ct are depicted in Fig. 3.
In Cases I and II, if some ^(^) belongs to 4?l9 then ^+1(^)>4> f({) with

Case III
1 * 0 1

Case I Case II
Fig. 3. Graphs of Ct

As for C2, the analogous results hold. In particular, Tt(^) belongs to £f2

except for a finite number of <̂ 's at which *¥x{£) is discontinuous and belongs to
^2- Moreover, ^ ( O is monotone decreasing on [0, £2] with ^2 = niax {0,
1 —T2(0)}, monotone increasing on (£2, l)and satisfies lim^t x 4>1((^)=oo. Other

(j ¥^ 1), if it exists, belongs to y 2 (resp. <%2) f° r every £, in an interval where
j is monotone decreasing (resp. increasing).

We are ready to show the following existence results for (SP).

THEOREM 4.1.

(i) / / {u*, s*} is a solution of (SP) then s* satisfies <Pt(s*)= ¥j(s*) for some
i, j and u*(x) is expressed as

(4.6)
Wj(x; s*), s* ^ x ^ 1,
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where vt and Wj are given by (3.23) and (3.26), respectively. Conversely, if s*
satisfies <Pi(s*)=lFj(s*) for some i,j9 then {w*, 5*}, where w* is given by (4.6),
is a solution of (SP).

(ii) (SP) has a maximal solution {u, s} and a minimal solution {w, s}
in the sense that any solution {u*, s*} q/(SP) satisfies

PROOF. From the preceding arguments, it is easy to see (i). Consider the
connected component Ct (resp. C2) of Ct (resp. C2) containing {{£, #t(£));
0<{£ l} (resp. {(£, ¥t(Z)); 0^{<l}). Recalling the properties of <Pt and Vl9

we find that Cx and C2 intersect at some points. This fact implies the existence of
solutions for (SP) (the existence result is also derived from Theorem 2.2). Put

5 = max {s* el; 3>f(s*) = Wj(s*) for some i, j}.

Taking account of qualitative shapes of Ct and C2, one can show that s is given by
the maximum among s*'s satisfying 0i(

s*)=^/i(s*) f°r some i. Let lF1(s) =
<PM(s) and define

«(*) =
vM(x; s) for xe[0, s] ,

wt(x; s) for xe[s, 1] .

Clearly, 0M(s)eS^t or &l. We will show

(4.7) {u*9 s*} ^ {M, S}

for any solution {«*, s*} of (SP). For the sake of simplicity, consider the situation
as in Fig. 4, where V^Oe^ for £e(sl9i)9 <£M(£)e^i for ie(sl9s2), and
®M-I(O

 e % f o r { e (si> 52)- fiy (0 of Proposition 3.5, we have

Fig. 4.
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{Ul9s*}£{u9s},

where U1 is defined by

vM(x;s*) for xe[O,s*],

wx(x; s*) for xe[s*, 1] .

Furthermore, Lemma 3.2 gives

because u* is expressed as

t,-,(x:s*) for xefO, s*l
u*(x) = .

wx(x; s*) for x e [s*, 1] .

In this way, (4.7) can be proved for any {u*, s*} by combining Lemma 3.2 and
Proposition 3.5.

In order to construct a minimal solution, it suffices to set

s = min {s* el; <Pt(s*) = IF/s*) for some i.j}

and repeat the above procedure with an obvious modification. q. e. d.

REMARK 4.1. Solutions of (SP) other than {u, s} and (w, s} are not neces-
sarily ordered. However, if Cx (resp. C2) is composed of only <PX (resp. Wt),
then the set of solutions for (SP) becomes totally ordered. Indeed, since both
(PiiO and ̂ i ( 0 belong to the stable class for every £el, Proposition 3.5 yields
the order relation. See [3].

§ 5. Stability of stationary solutions

Theorem 4.1 gives us a one-to-one correspondence between solutions of
(SP) (i.e., stationary solutions) and intersecting points of Cx and C2. We will
estabilish the criterion to know stability or instability of each stationary solution
from geometrical nature of the corresponding intersectiong point of Cx and C2.

THEOREM 5.1.

(i) Let {u, s} be a maximal solution of (SP). Then {w, s} is globally
asymptotically stable from above in the sense that, for any initial data {cpy 1}
such that {cp, /}^{w, 5}, the solution {w(-, t; cp9 I), s(t; cp, /)} of (?) satisfies

(5.1) {II(. , t; <p, 0, s(t; cp, I)} ̂  {u, s} for all * £ 0

and
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(5.2) lim {u(-9t;q>, I), s(t; cp, /)} = {u, s} in Q-topology.
t-KX)

(ii) Let {u, s} be a minimal solution of (SP). Then {u, s] is globally
asymptotically stable from below in the sense that, for any {cp, I) such that
{cp, l}^{u, s], the solution {u(-,t; (p, /), s(t; (p, /)} satisfies

{u(.,t;(p,l),s(t;(p,l)}S{u,s} for all t^O

and (5.2) with {w, 5} replaced by {u, $}.

PROOF. We will first prove (i). Since {u, s} is also a solution of (P) with
initial datum itself, Theorem 2.3 yields the validity of (5.1). Let {u*, s*} be any
element in co((p, I). Then (5.2) assures {u, s}^{u*9 S*}. However, (ii) of
Theorem 2.2, together with the maximal property of {u, s}, implies {u*, s*} =
{u, s}, from which (5.2) follows.

The proof of (ii) is carried out in a similar manner. q. e. d.

We will continue the stability analysis for general stationary solutions.
Let {«*, s*} be any stationary solution. Then Ct and C2 meet at a point

P* whose (£, ^-coordinate is given by (s*, — JULXU*(S* — 0)).
Suppose that a continuous part of Cx (rest. C2) is expressed by n — <P{E)

(resp. r\ =¥(£)) in a neighborhood of P*. The stationary solution of (AP-1)^
(resp. (AP-2),«) associated with $(£) (resp. ^ ( 0 ) is denoted by v(x; 0 (resp.
w(x; 0)' If we define u(x; £) by (3.28), then u(- ; {) is a solution of (SP)^ and,
in particular, M(- ; s*) = u*.

Stability or instability of {u*, 5*} is determined by the following theorem.

THEOREM 5.2. Set V(£) = $(0 -

(i) Assume

0(0 e Sfu V(0 6 y2 and V(0 < 0 (resp. V(£) > 0)

for every <^e(s*, <^+] with some £ + > s * (resp. for every £e [£~ , s*) wir/i some
<^"<s*). Then {M*, S*} IS asymptotically stable from above (resp. below) in the
sense that for any {cp, 1} satisfying

(5.3) {u*,s*}g{q>9l}£{u(.;Z+)9Z
+)}

(resp. {u(. ; {-), {-} ^ { ,̂ /} g {«*, s*}),

the solution {M(- , t; <jo, /), s(t; cp, /)} o/(P) satisfies

(5.4) {w*, s*} ^ {i<(., r; (p, /), s(r; 9, /)} ^ {«(• ; ̂ + ) , ̂ +)}

(resp. {ti(.; { - ) , ^ } g {u(., r; 9, 0, ^ ; ^ 0 } ^ {"*, s*})

/or allt^O and
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(5.5) lim {u(t; q>, I), s(t; <p, I)} = {u*, s*}
f-*oo

in Q-topology.
(ii) Assume

and V(£) > 0 (resp.

for every £e(s*, £ + ] (resp. for every £e[<!;~, 5*)). Then {M*, S*} IS unstable in
the sense that for any {cp, 1} satisfying
(5.6) {u*, s*} ^ {<p, 1} (res/?. {<p, /} ^ {M*, S*}) wiffe cp # II*,

f/ie solution {u(- , f; cp, /), s(t; <p, I)} of (P) converges (in Q-topology) to a
stationary solution other than {w*, s*} as f->oo.

(iii) Assume that at least one of <P(£) and ¥(£) is in the unstable calss for
£e(s*, ^ + ] or { e [ { " , s*). T/zen {w*, s*} is unstable in the sense that for any
neighborhood U* of {w*, a*} (in Q-topology) there exists some {cp, 1} such that
the solution {u(-, t; cp, I), s(t; (p, I)} converges (in Q-topology) to a stationary
solution other than {w*, s*} as f->oo.

PROOF, (i) We will prove (i) in the case F(£)<0 for £e(s*, {+] (the case
V(£)>0 for ^e [^~ , s*) can be treated similarly). First observe that a pair
{u(-; £), £) ( s * < ^ { + ) is a time-independent supersolution of (P). Moreover,
since 0(0 and W(£) are in the stable class for ^e(s*, £ + ] , Proposition 3.5 (i)
assures u*(x)<u(x; £+) for all xel. Consequently, Theorem 2.3 enables us to
conclude that the solution {u(t; cp, /), s(t; q>, I)} fulfills the order relation (5.4)
whenever {(py 1} satisfies the same order relation (5.3). The convergence property
(5.5) is an easy consequence of Theorem 2.2 because {w*, s*} is the unique sta-
tionary solution lying between {u*9 s*} and {«(•; £+), £ + }.

(ii) We consider the case V(£)>0 for £e(s*, {+] , where {u(-, ^), ^} is a
time-independent subsolution of (P) for £e(s*, £ + ] . If {(p, /} satisfies (5.6),
then Theorem 2.3 assures

{u(.9T;q>9Q,s(T;<p9l)}>{u*9s*} for any T> 0.

We note that {w(-, £)}, <^e(s*, {+] , is an increasing family by Proposition 3.5.
Hence it is possible to take £0 e(s*, £ + ] , depending on T, such that

{«(-, T; ^, /), s(T; ^, /)} ^ {«(-, {0X to) > {«*, 5*}.

Since {u(-, <̂ 0), <̂ 0} is a subsolution, application of Theorem 2.3 yields

{u(.9t;q>9 /), s(f; cp, /)} ^ {u(., £0), ^0} for all r ^ T,

which implies the instability of {u*, s*} in the sense of (ii).
(iii) Suppose that at least one of 0(0 and W(O is in the unstable class.
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Then it follows from Proposition 3.5 that u( • ; £) always meets u* at a point other
than x = 0, 1 when £^s* is very near s*. Moreover, {u(-,<!;), £,) becomes a
subsolution or supersolution according to the sign of K(£). Therefore, the proof
can be accomplished with the use of the comparison technique based on Theorem
2.3, which is now a routine work. q. e. d.

REMARK 5.1. In general, by virtue of Theorem 5.1, the geometrical feature
of an intersecting point of Cx and C2 gives us information on stability or instability
of the corresponding stationary solution. However, we cannot apply Theorem 5.1
to the case where the intersecting point P* lies in the critical classes of Cx and C2

and Cx and C2 are separated in a neighborhood of P* by a line passing through
P*. In this case more careful analysis will yield the instability of the stationary
solution (associated with P*) with the aid of Theorem 2.3.

REMARK 5.2. Aronson, Crandall and Peletier [1] have studied the stability
of stationary solutions for a certain class of nonlinear degenerate diffusion
equations. Their method is based on the notion of co-limit set and the comparison
principle. Our arguments for stability analysis are quite anologous to those used
by them.

Suppose that the graphs of Cx and C2 are depicted as in Fig. 5. Here a solid
line means a curve in the stable class and a dotted line means a curve in the unstable
class. Then Theorems 5.1 and 5.2 tell us that the stationary solutions corre-
sponding to Pu P 3 and P 7 are asymptotically stable (from above and below) and
that those corresponding to P2 , P4 , P 5 and P 6 are unstable.

Finally we will show some numerical experiments to know the number of
stationary solutions of (SP). We take

Fig. 5.
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a=0.295
Fig. 6D.

a=0.297
Fig. 6C.

a = 0.298

Fig. 6E.
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a=0.31 * " a=0.313
Fig. 6G. Fig. 6H.

Fig. 6. Graphs of Ct and C2, where each intersecting point Pt corresponds to a stationary
solution of (SP).

dt = d2 = 1, m1 = m2 = 0.5, / ^ = /i2 = 1,

/(M) = #( - w) = - v(u - a) (u - 1 ) with v = 200,

and regard a as a parameter. Then we meet with interesting bifurcation phe-

nomena as in Fig. 6, which exhibits that the number of stationary solutions varies

depending on the value of a. Stability or instability of each stationary solution

can be studied in view of the geometrical feature of the corresponding intersecting

point of Cx and C2.
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