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Introduction

In the present paper we aim to establish a method of finite element approx-

imations on a Riemann surface. Our method matches the abstract definition of

Riemann surfaces, and also will offer a new technique of high practical use in

numerical calculation not only for the case of Riemann surfaces but also for the

case of plane domains (cf. Mizumoto and Hara [18]). It is characteristic of our

method that by adopting an ordinary finite element approximation on every

parametric disk, the approximations of high precision are obtained.

Let Ω be a compact bordered or closed Riemann surface. We choose a

fixed finite collection Φ = {z = φ J(p), peUj; j=l,---9 m} of local parameters z

= q)j(p) and parametric disks Uj so that Ωa^jJ^^j. §1 is devoted to

construction of a triangulation K of Ω with width h associated to Φ (cf. §1.2), a

normal subdivision of K (cf. §1.3), and a naturalized triangulation K' associated

to K (cf. §1.4). The triangulation K of Ω is constructed as the sum of

subtriangulations Kj (j=l9---,m)in such a way that \Kj\ a Uj, each 2-simplex s

of K belongs to one and only one Kp each seKj is natural (see §1.2) at most

except for the case when it has a common side with another s'eKk (kΦj\ and

the diameter of q>j(s) is at most h for each seKj (/ = !>*••> w). Let Kj (/== !>••*,

m) be triangulations consisting of all 2-simplices of Kj which are not minor or

major, and all naturalized simplices of Kj (see §1.4). Then the triangulation Kf is

defined as the sum of Kj (/ = 1, , m).

In §2, we introduce and investigate two spaces Λ = A(K) and A — A(K')

of differentials. The space A consists of locally exact differentials σh such that for

each 2-simplex seKj (j=l, , m) the coefficients of σh are constant on φ,(s)

except that σh is modified on all lunes of minor or major simplices (see §1.4 and

§2.1). To each σheΛ, we associate a differential σ'h = F(σh) on K' whose

coefficients are constant on ψj(s) for each 2-simplex seKj (/=1, , m) and

which is equal to σh on Ω except for all lunes of K (cf. §2.2). The space A

consists of all σ'h = F (σh) (σheΛ). We shall investigate estimates of differences of
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Dirichlet norms \\σh\\2

Ω and ||σ^||^ (see Lemma 2.2).
Let ω be a harmonic differential on Ω which satisfies some period

conditions and some boundary conditions (see §3.1). The finite element
approximations φh and ω'h of ω are defined in the spaces A and Λ' respectively
(cf. §3.2 and §3.3 resp.). The differential ω'h can be numerically calculated. §3 is
devoted to error estimates of φh and ωh for ω, where ωh = F~ 1 (ω'h). We shall
make use of Bramble and ZlamaPs lemma (see Lemma 3.5). In Theorems 3.1
and 3.2, we obtain error estimates:

\\φh-ω\\2^Ch2 and \\ωh-ω\\2 ^C'h2,

where C and C are constants which depend only on the differential ω and the
smallest value of interior angles of triangles q>j(s) for all seK'j (j=l, , m).
Further, in Theorem 3.2, we obtain an estimate for | |ω| | 2:

in a special case (see §3.2), where ε{ω'h) is a quantity of O(h2) which can be
numerically calculated.

Finally, in §4 we apply our results to numerical calculation of periodicity
moduli of closed and compact bordered Riemann surfaces, and we shall show
that calculation results for some concrete Riemann surfaces of genus one are
fairly good. With respect to the problems of this type, there have been some
investigations by means of finite-difference method (Gaier [11], [12], Mizumoto
[13], [14], [15], Opfer [20], [21]).

Our treatment at critical points of a Riemann surface is closely related to
that at boundary singularities on a plane (cf. Akin [2], Babuska [3], Babuska
and Rosenzweig [4], Babuska, Szabo and Katz [5], Barnhill and Whiteman [6],
Blackburn [7], Craig, Zhu and Zienkiewicz [10], Mizumoto and Hara [18],
Opfer and Puri [22], Rivara [23], Schatz and Wahlbin [24], [25], Thatcher
[28], Tsamasphyros [29], Whiteman and Akin [30], Yserentant [31]).

The results in the present paper (Theorems 3.1 and 3.2) may be generalized
to the case of harmonic differentials on a higher dimensional Riemannian
manifold.

§1. Triangulation

1. Collection Φ of local parameters Let Ω be a closed Riemann surface
or a subdomain of a Riemann surface W whose closure Ω is a compact bordered
subregion of W. In the latter case, we assume that the boundary dΩ consists of
a finite number of analytic arcs meeting at vertices pk (fe=l, , v), and there
exist parametric disks Vk (fe = 1, , v) with the centers pk and local parameters z
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= Ψk(p) by which Vkf]Ω are mapped onto sectors {\z\^rk}f){O^aτgzSβk} (0
<βk^2π, βkφπ). For conformity, if Ω is a closed Riemann surface, then we
interpret that Ω = W.

By Φ = {z = (pj(p), Up 7 = 1, , m} we denote a finite collection of local
parameters z = φj(p) (j=l, -,m) and parametric disks Uj (j=l9-~> m) on W
which satisfies the following conditions (i)~(iv):

(i) Each Uj (/=1, , m) is a parametric disk and by the mapping z
= (pj{p)9 Uj is mapped onto a disk \z\<pj. Furthermore, each vertex pk (k
= 1, , v) is the center of some Uj.

(ii) Ω is covered by {Uj}J=v

(iii) If Ujf)Ukφ0Λhen there exists a constant L(>1) such that for the
mapping ζ=f(z) = φk°φj1 (z), 1/L<\f (z)\<L on φ^j(\Ufc).

(iv) If Ujf]dΩ^0, then φi (UjftΩ) is a half disk {\z\<Pj}f]{lm z >0} or a
sector {|z|<p j}π{0<argz<α J } (0<α^2π, α ^ π ) .

In the latter case of (iv), by the mapping ζ = (φj(p))κlaJ9 UjΓ\Ω is mapped
onto a half disk {|C|<p"/αj}p){ImC>0}. In this case we define anew z = ψj(p)
and Pj by {= (φj(p))πlatj and p]/aJ respectively. Then, the local parameter z
= q>j(p) is no longer conformal at the center of Uj.

2. Triangulation K associated to Φ For the collection Φ of local param-
eters and parametric disks defined in §1.1, and for a sufficiently small positive
number ft, we construct a triangulation K — Kh of Ω which satisfies the
following conditions (i)~(v). This is called a triangulation of Ω with width h
associated to Φ.

(i) Each point at which dΩ is not analytic is a carrier of some 0-simplex
of K.

(ii) K is the sum of subtriangulations Kl9~-9 Km of K such that each 2-
simplex of X belongs to one and only one Kj (; = 1, , m), and the carrier \s\ of
each 2-simplex s of Kj is contained in Uj.

If a 1-simplex eeX, does not belong to another Kk {kφj\ or a 1-simplex e
belongs to Kjf)Kk (jφk) and the mapping ψk°ψjι is an affine transformation,
then e is said to be linear. If each edge of a 2-simplex seX, is linear and ψj(s) is
an ordinary triangle, then s is called a natural simplex.

(iii) Each 2-simplex seX,- which has not a common edge with any 2-
simplex of another Kk {kφj\ is a natural simplex.

A 2-simplex of Kk which has a common edge with a 2-simplex seKj
(jφk), is said to be an adjoint (simplex) of 5 and is denoted by s'.

(iv) For each pair of a 2-simplex seKj and its adjoint s'eKk with a
common edge e, either one of the following three cases (a), (b), (c) occurs.

(a) Both s and s' are natural simplices.
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(b) ψj (s) is a curvilinear triangle such that φ} (e) is a strictly concave arc
w.r.t. ψj (s), φk (s') is an ordinary triangle, and all edges of s and s' except for e
are linear (cf. Fig. 1). Then s is called a minor simplex. The case where s' is a
minor simplex and s is its adjoint may also occur.

Fig. 1

(c) ψj (s) is a curvilinear triangle such that φ} (e) is a strictly convex arc
w.r.t. φ, (s), φΛ (s') is an ordinary triangle, and all edges of s and s' except for e
are linear (cf. Fig. 2). Then s is called a mα/or simplex. The case where s' is a
major simplex and s is its adjoint may also occur.

Fig. 2

If s is a minor or major simplex of Kp then it is assumed that \s'\aUj

for its adjoint s'.
(v) For each 2-simplex seKj (/=1, , m), d(q)j(s))^h, where through-

out the present paper we denote the diameter of a region G by d (G).
Next, we assume that for the fixed Φ the class of the triangulations K = Kh

satisfies the following conditions (i;) and (ii'):
(ϊ) For each j = l , , m the union of carriers of all minor and major

simplices of Kj9 and all their adjoints is contained in a closed subset Rj of
UjftΩ which is independent of the individual triangulation K.

(ii') The number N of minor and major simplices of K satisfies the

inequality:

(1.1)
1

T
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where M is a constant which is independent of the individual triangulation K.

3. Normal subdivision of triangulation K For a triangulation K = Kh of Ω

with width h associated to Φ we can construct a subdivision Kί = K1'h/2, called

the normal subdivision of K = Kh by the following procedure:

(i) K1 is the sum of the subtriangulations K}, ,K^ which are the

subdivisions of Kl9 , Km respectively which are defined in the following (ii),

(iii).

(ii) If seKj is a 2-simplex which is not minor or major, then s is

subdivided to four 2-simplices sl9 s2, s 3 and s 4 of K) so that φ/(si), Ψj{s2\

ψj (s3) and ψjist) are mutually congruent ordinary triangles as in Fig. 3.

a = ψj(a) (a: simplex)

Fig. 3

(iii) Let seKj and s'eKk be a minor (or major) simplex and its adjoint,

and let el9 e2 and e3 be edges of s such that ex is the common edge of s and s'.

We subdivide the edges eί9 e2 and e 3 to two edges eXί and ell9 e21 and e22, and

e31 and e32 respectively so that φk (eίl) and φk (e12), ψj (e21) and φj (e22), and

— φ}(a) (a: simplex)

Fig. 4
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<PJ ( g3i) a n < i Ψj (e32) have the same length respectively. Then we subdivide the

simplex s to two minor (or major resp.) simplices sx and s2 of Kj and, two

natural simplices s3 and s4 of K) so that eίl9 eί2, e2U

 en, esi a n d 3̂2 a r e edges

of s l 9 s2 and s 3 (cf. Fig. 4). Here we note that such a subdivision is always

possible if h is sufficiently small.

We can easily see that the normal subdivision Kx=Yj=1K) is a

triangulation of Ω with width h/2 + O(h2) associated to Φ (cf. (1.10)).

4. Naturalized triangulation For each minor (or major) simplex seKj we

define the naturalized simplex 4s of s as the 2-simplex such that | s | c | 4 s | (|t|s|

cz\s\ resp.) and (pj^s) is the ordinary triangle which has two common sides

with ψj (s). Further we define a 2-simplex \>£ — \>ί (s) (#£ = %£ (s) resp.) with

two edges whose carrier is the closed region | ί s | —|s| ( | s | - | 4 s | resp.). \?£(s)

(#£ (s) resp.) is called the deficient (excessive resp.) lune of 5.

Each triple of a minor (or major) simplex seKp its adjoint s'eKk and its

deficient lune \>ί (excessive lune %ί resp.) is denoted by (s, s',-\>£) ((s, s\ H)

resp.), and is called a triple for a minor (major resp.) simplex s or for a deficient

(excessive resp.) lune \>ί (#£ resp.) (cf. Fig. 5), where it is always assumed that \\>£\

c=|s'| for each (s, s', \>£\

Fig. 5

For simplicity of notation, we also denote \>£ = \>£ (s) or %£ = #£(s) by £

= £(s). If a minor or major simplex s is in Kp then we say that £ = £ (s) is a

June 0/ Xy and write /eX7 .

Now we shall define the naturalized triangulation K' associated to K.

First, Kj (/=1,. , m) are defined as triangulations such that the collection

of all 2-simplices of Kj consists of all 2-simplices of Kj which are not minor or

major, and of all naturalized simplices of minor and major ones of Kj. Then

the triangulation K' is defined as the sum of Kj (j=l, -, m). We should note

that K' is no longer a triangulation of Ω, and also is not an ordinary

triangulation.
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5. Parametrization of lunar domains Let (s, s\ £) be an arbitrary triple

for a deficient or excessive lune £9 and let ex and e2 be two edges of £ such that

βidds. Further, let

(1.2) z' = (l-t)Zl + tz2

and

(1.3) Γ = ( l - ί X i + ίC2

be parameter representations of the oriented segments (Pj( — e2) and

respectively. The representation (1.3) induces a parameter representation of the

curve Φj(^i):

(1.4) z" = 0(( l-ί)Ci + ί ί 2 ) (Ogί^ l ) ,

where z = g(ζ) = φj°φk~
1 (ζ). By (1.2) and (1.4) we obtain a parameter represen-

tation of the lunar domain φ7- (^):

(1.5) z = z(t, τ)={\-τ)z' + τz"

6. Area of lune

LEMMA 1.1. Let (s, s', £) be a triple for an arbitrary deficient or excessive

lune £. Then, the estimate

(1.6)

holds, where throughout the present paper we denote the area of a region G by

A(G\ z = g(ζ) = φjoφ-1 (£), Λ1=d(φ J (^)) and ζx is one of the vertices of the

lunar domain φk(£).

PROOF. Here we shall preserve the notations in §1.5. By Taylor's

expansion we have

(1.7) z " - z 1 = 0 ' ( C 1 ) ( C 2 - C i ) ί + ^ " ( C i ) ( C 2 - C 1 ) 2 ί 2 +

for the point z" of (1.4) on ψj (e^, and

(1.8) z'-z,=t{z2-zγ)
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for the point z' of (1.2) on <pj(-e2), where we assume that the triangulation K is
so chosen that φk{ex) is contained in a disk F centered at ζy such that φ^1 (V)
cUjf)Uk. By (1.7) and (1.8) we find that the equality

(1.9)

holds for the point z' of (1.2) on φ} (-e2) and the point z" of (1.4) on φ}

with common t.
Since IC2-C1I^Λi(l/lί'(Ci)l + O(Λi)λ the equality (1.9) implies

(1.10) |z"-z' |

Therefore we obtain the estimates

§2. Spaces of differentials

1. Subspace A of Γc Let Γc° = Γc°(β) be the set of all locally exact
differentials σ in the class C° on Ω with the finite Dirichlet norm

[=\\σ\\2

Ω= ί <
J Ω

σ*σ < oo,

where by *σ we denote the conjugate differential of σ. Let ΓC = ΓC(Ω) be the
completion of Γc°. We should note that in Chapter 5 of Ahlfors and Sario [1],
Γc is defined as the completion of Γ^Γ^C1.

We define a subspace A = A (K) of Γc as the space of differentials σh which
satisfy the following conditions (i)~(iv):

(i) σheΓc.
(ii) If seKj (/=!>•••, m) is a natural simplex, then

σh = aodx + body on ψj(s) <z = x+ /y),

where α0 and b0 are constants.
(iii) Let (5, 5', \?£) be a triple for a minor simplex s, and let ex and e2 be

two edges of \?£ such that - ^ c f e . Then

= aodx + body on φ, (s),
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σh = <xodξ + βodη on φk(s')-φk(\?£),

and σh is a harmonic differential in \>£ which satisfies the boundary conditions

σh = aodx + body along φy (et)

and

where α0, ί>0, α 0 and j80 are constants, and

(iv) Let (5, s', $£) be a triple for a major simplex 5, and let eί and e 2

two edges of #£ such that e^^ads. Then

on

on

and <7Λ is a harmonic differential in %ί which satisfies the boundary conditions

σh = aodx + b0dy along φj (e2)

and

( ^ d £ ) ( ^ δ £ ) along φ j ( β l ) ,

where α0, fc0, α 0 and j?0 are constants, and ζ = ξ + iη is as in (iii).

We note that σheΛ is generally discontinuous on each edge of 2-simplices

of K.

2. Space A' Let K' be the naturalized triangulation associated to X. For

each differential σheA, we define the differential σ'h on K' associated to σh as the

differential σ'h which satisfies the following conditions (i)~(iv):

(i) For each 2-simplex seKj (/ = 1, ••, m)

σ'h = aodx + b o ^ o n <Pj (s )>

where Λ0 and b 0 are constants.

(ii) If seK is a natural simplex, then

σ'h = σh on |s | .
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(iii) If (s, 5', \>£) is a triple for a minor simplex s, then

σ'h = σh on | s | U l s Ί - | W |

(iv) If (s, s\ %£) is a triple for a major simplex 5, then

σ'h = σh on

We should note that the differential σ'h is defined just twice on each

deficient lune b£9 while it is never defined on any excessive lune %£. In the

former case, for each triple (s, s', \>£) we shall denote the differential σ'h on

bseK'j and s'eK'k by σ'hM and σ*htS, respectively.

The space of all differentials σ'h associated to σheΛ is denoted by A

= A (Kf). Let σ'h and χf

h be two differentials of A'. Then the inner product (σ'h9

χ'h) of σ'h and χ'h is defined by

seK'J isi

and the norm \\σ'h\\ of σ'h is defined by

We see that σ'h = F(σh) defines a one-to-one mapping of A onto yl'.

3. Finite element interpolations Let σ be an element of Γc. We define the

finite element interpolation σ of σ in the space A as the differential uniquely

determined by the following conditions (i) and (ii):

(i) σsA;

(ii) For each 1-simplex eeK9

J e J e

4. Harmonic differentials on a lune

LEMMA 2.1. Let£ = £ (s) be a deficient or excessive lune ofKj9 let ex and e2

be two edges of £, and let σ1 and σ2 be exact differentials in the class C° on £

which satisfy the condition

1) We shall use the common notations ( , ) and || || for both inner products and both norms

of differentials of the spaces A and A'.
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Jβi tig.

Further, let χ be the differential harmonic in £ and continuous on £ which satisfies

the boundary conditions

χ = σi along et ( i = l , 2).

Then the inequalities

(2.1) l l z l l^ f ί maxftα^ + V λ (a2

2 + b2

2)}dxdy

!, where

_ r
χ*χ, etc.,

I £ I

σ1 = a1dx + b1dy and σ2 = a2dx + b2dy on q>j(£).

PROOF. By making use of the parameter representation (1.5) of the lunar

domain q>j(£)9 we define a differential σ on £ by

σ°φji (z) = (1 - τ Jσ^φΓ x (z) + τσ 2 oφri ( z ) ( z = z (t, τ )gφ 7 (^)).

We note that σ satisfies the same boundary conditions as χ on d£. Since χ is

harmonic in £, the inequality

(2.2) ω ^Ni;

holds. Further, the inequalities

|?g ίί(2.3)
JJφβl)

£ IT max { ( β l

2 + &!*), (α 2

2 + 62

2)}Λcdy

hold. The inequalities (2.2) and (2.3) imply the inequality (2.1).

5. Difference of norms of σh and σ'h

LEMMA 2.2. Let σh be an arbitrary differential of the space A and let σ'h
= F(σh).
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(i) The inequalities

(2.4) KII2;glK||2+ £ IM,2,

hold, where e2 is the edge of %t such that (Pj(e2) is a segment, λ is the length of
ψj(e2) and K is a constant which depends only on the transformations f (z)
= φkoφ-ί(z).

(ϋ)

(2.5)

_. II II2 _μ y y r

where for each triple (s, 5', \>ί) the notations in (iii) o/§2.1 are preserved.

PROOF, (i) By Lemma 2.1 we see that for each triple (s, sf, \>£)

(0 G\ II/T 11̂  <^ ll/τ' 11̂  -U. \\rrf 11̂

Hence the first inequality of (2.4) is obtained.

Let (5, s', %ί) be a triple for an excessive lune %ί. We preserve the

notations in (iv) of §2.1. We shall prove the inequality

(2.7)

from which the second inequality of (2.4) follows.

By y and δ we denote the arguments of the oriented segments ψj{ — e2) and

Ψk(β\) respectively. By making use of the parameter representation (1.5) of the

lunar domain φt(%β), we define a differential σ on %ί by

(2.8) σ = adx + bdy

= (1—τ) (a0cosy + b0siny)'((cosy)dx+ (siny)dy)

•f τ (α0 cos δ + β0 sin δ)

(z = z(t, τ)eφj{U)).

We note that σ satisfies the same boundary conditions as σh on δ(ft^). Hence
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(2.9) HσJ,2, g ||σ||#
2, g A (Ψj(U)) max (a2 + b2),

since σh is harmonic in %£.
From the equation (2.8) it follows that

(2.10) max (a2 + b2)^ max {{a0 cos γ + b0 sin γ)2,

(α0 cos δ + β0 sin δ)2 max |/' (z) | 2}.

Further we note that

(2.11)

and

(2.12)

where

If If
= -\ σ'h = -\ σ'h9

. = \dz\ and μ =
JφΛe2) Jφ

(2.13) 1 = | \dz\ and μ= I \f'(z)dz\.
φj(e2) J

By making use of the power series expansion of/' around a vertex zί of the
lunar domain ψj (#£), we see that

(2.14) m a x \f (z)\2 ^ \ f ( Z ί ) \ 2 (1 + K l h )

a n d

(2 .15) μ* (l/'ίzJI-^Λ) ί \dz\ = λ{\f'{z1)\-k2h)
J<pj{e2)

with constants κl9 κ2>0 depending only o n / Then the estimate (2.7) follows
from (2.9)-(2.15).

(ii) The inequality (2.5) is obvious from the definition of σ'h.

§3. Finite element approximations

1. Formulation of problems Let {C1? C2, C3} be a partition to three
parts of the boundary dΩ such that each Cj (/= 1» 2, 3) is a sum of boundary
components of dΩ, and let yk (fe= 1,•••, K) be the boundary components of C 2 .

Let Θ be a differential in Γc which satisfies the following conditions (i), (ii)
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and (iii):

(i) If UjΓ)C1φ0, then Θ°φJx is harmonic on a neighborhood of

ψjiUjD^);

(ii) 0 = 0 along C 2 ;

(iii) Θ is exact on a neighborhood of each boundary component of C3,

where the conditions (i), (ii) and (iii) may be ignored if dΩ= 0.

By Γθ we denote the subspace of Γc consisting of all differentials σ for which

there exists a function u o n Ω such that

dv = Θ — σ on Ω,

v = 0 on Cl9

ι; = const. on yk (fc=l, , K).

By ω we denote the harmonic differential in Γθ uniquely determined by the

conditions

*ω = 0(3.1) I *ω = 0 (fc = l, , K)

and

(3.2) *ω = 0 along C 3 .

The differential ω can be constructed by the following procedure. Let χ be the

harmonic component of Θ in the orthogonal decomposition of Γc (cf. Chapter 5

of Ahlfors and Sario [1]), and let u be the solution of the boundary value

problem:

u is a harmonic function on Ω,

M = 0 on Cu

u = const. on yk,

ί*du=\
and

*du = *χ along C 3 .

Then, ω = χ-du. We note that the differential ω°φ,"x (/=!»• , w) is harmonic
on

1) It is sufficient for our purpose that ω°φjι is of the class C1 onφjCU/Π^) and hence we
can weaken the assumption (i) for Θ.
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LEMMA 3.1. The harmonic differential ω satisfies the minimal property

(3.3) | | ω | | = min ||σ||.
σeΓθ

In the equality (3.3), the minimum of the right hand side is attained if and
only if σ = ω.

PROOF. For each σeΓθ there exists a function v such that

dv = σ — ω,

(3.4) υ = 0 on Cl9

v = const. on yk (fe = 1, , K).

From (3.1), (3.2) and (3.4) it follows that

(3.5) (σ — ω, ω)= v*ω
JdΩ

Γ κ Γ Γ

= ι;*ω + 2l I v*ω +

where

(σ, τ ) = (σ, τ)Ω= σ*τ.
*) Ω

The equality (3.5) implies that

In the last inequality, the equality holds if and only if σ = ω.

The unique harmonic differential ω in Γθ is called the harmonic solution in

Our aim is to obtain finite element approximations of ω in the spaces A
and Λ\ and error estimates between them and ω.

2. Finite element approximation φh in A Let Θ be the finite element
interpolation of Θ in the space A. By Aθ we denote the subspace of A con-
sisting of all differentials σheA for which there exists a function υ on Ω
such that

dυ = &- σh9

v=0 on Cl9

v = const. on γk (k —1, , K).
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By φh we denote the differential of A Θ such that

(3.6) \\φh\\ = min K | | .
Λ

We call φh the finite element approximation of ω in the space Λ.
Next, we consider the special case where the differential Θ satisfies the

condition:

Θ = 0 along Cx.

enote such a differenti

(3.7)

We denote such a differential Θ by Θo. Since ΛΘ aΓΘ , we see that

LEMMA 3.2. (i) In the case of general Θ, the equality

(3.8) l l ^ - ω | | = min | |σ Λ -ω | |

holds, where the minimum is attained if and only if σh — φh.
(ii) In the case of Θ — Θθ9 the equality

(3.9) l l ^ - ω l l ^ H ^ I I '

holds.

PROOF, (i) First, by a method similar to (3.5), it is shown that

(3.10) (ω, σh-ψh) = 0 for each σheΛΘ,

By (3.6), standard arguments imply that

(3.11) (φhi σh-φh) = 0 for each σheΛθ.

From (3.10) and (3.11), it follows that

||ω-σj2 = ||ω-̂ ||2 + ||cτΛ-^ll2 ̂  l|ω-̂ ||2.
In the last inequality, the equality holds if and only if σh = φh.

(ii) Since ΛΘQCZΓΘO, both φh and ω are elements of ΓΘQ. Hence, by (3.5)
(ω, φh — ω) = 0 and thus

l l^-ω| | 2 =| |^ll 2 - | |ω| | 2 .

From (3.11) the following lemma immediately follows.

LEMMA 3.3. In the case of general Θ, the equality

(3.12) lk*-W2 = l|σJ2-||^||2

holds for each σheΛΘ.
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3. Finite element approximation ω'h in A' Let A'Θ= {σ'h\σ'h = F(σh),

By ω'h we denote the differential of A'θ such that

(3.13) ||ωi|| = βmin i|σ^||.

We call ω'h the finite element approximation of ω in the space A'.

LEMMA 3.4. The equality

holds for each σ'heA'θ.

PROOF. By (3.13), standard arguments imply that

(3.15) (ω'h, σ'h-ω'h) = Q for each σ'heA'θ.

This implies (3.14).

4. Lemma of Bramble and Zlάmal The following lemma is due to 1 H.

Bramble and M. Zlamal (cf. [9]).

M δ2v

LEMMA 3.5. Let A be a closed triangle on the z-plane (Z = X + Ϊ>) with d(A)

^h, let υ be a function of the class C2 defined on A such that υ = 0 at each vertex

of A. Then, the inequality

(3.16)

<-^-h2

= sin20

holds, where B is an absolute constant and θ is the smallest interior angle of the

triangle A.

5. Pointwise estimate

LEMMA 3.6. Let A be a closed curvilinear triangle on the z-plane (z = x + iy)

with d(A)^h which is the image of some 2-simplex seKj (j= 1, , m) by z

= ψj{p), and let v be a function of the class C2 defined on A such that v = 0 at

each vertex of A. Then,

δv

δ~χ

<

5

Ih

dv

dy

4

sin Θ™? (
δ2v

δx2 + 2
δ2v

δxδy +
δh

δy2 (1+κ/i)
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on A, where θ is the smallest interior angle of the ordinary triangle which has

common vertices with A, and K is a constant which depends only on f(z)

PROOF. (Cf. Theorem 3.1 of Strang and Fix [27].) Let zo = xo + iyo be a

fixed point and z = x + ίy an arbitrary point in A, and let k = x — x0 and l = y

— y0. Here we choose the point z0 so that for each zeA the segment between z 0

and z is contained in A.

By Taylor's theorem we have that

where

(3.17)

with some point z' on the segment between z 0 and z. First, from (3.17) the

estimate

(3.18) \r(z)\£— max
2 zeJ

δ2v

δx2 + 2
d2υ

dxδy
+

δ2v

δy2 (zeA)

immediately follows. Let Zj (j=l, 2, 3) be the vertices of A. Then, by the

assumption of the lemma

(3.19) Ό(zj) = P(zj) + r(zj) = O ( / ' = U , 3).

Since P(z) is a linear function of x and y, by (3.19) we have the expression

(3.20) P(z)=-r{z1)φ1{z)-r{z2)φ2(z)-r(z3)φ3{z),

where φ3 (/=1> 2, 3) are linear functions of x and y such that

Φj(zk) = δjk 0 U = 1 , 2 , 3 )

with Kronecker's symbol δjk. (3.18) and (3.20) imply the estimate

(3.21)
~δx

δφ,
δx

\r(z2)\
δφ2

δx
\r(zi)\

δφ3

δx

<-Λ2max
δ2υ

δx'
+ 2

δ2v

δxδy

δ2υ
max

dx

Here we can easily verify that
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(3.22)
δφj

dx Ίι1 sin0
(7=1,2, 3),

where hx is the diameter of the ordinary triangle which has common vertices
with Δ. From (3.21) and (3.22) it follows that

(3.23)
dP

ώc
<3h-

1

sine?
max

Θ2V

dx2 + 2
δ2υ

δxdy
+

d2v

δy2 (ί+κh).

By Taylor's theorem we have that

dv (z) dv (z0)

dx dx dx

with some point z" on the segment between z0 and z. Since dv(zo)/dx
= dP(zo)/dx and

< h max (
δ2v

δx2 +
δ2v

δxδy

by (3.23) we obtain the estimate

δυ(z)

dx Sin θ max
δ2v

δx2 + 2
δ2υ

δxδy
+

δ2v

δy2 (1 + ιcΛ).

Analogously the estimate for \dv/dy\ is obtained.

6. Approximation by φh

THEOREM 3.1. Letω be the harmonic solution in Γθ defined in §3.1 and let

ψh be the finite element approximation of ω in the space A. Then,

(3.24) \\ψh-ω\\2

z s in 2 0

where B and C are constants independent of the triangulation K and the

differential Θ, θ is the smallest value of interior angles of all triangles ψj (s)

'j; J = l , , ml

ω = adx-\-bdy on φj(Uj(]Ω) (/=!,•••, m),

by ψj (Kj) we denote the image set by ψj of the carrier of K'p and Rj (j = 1, , m)
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are the closed subsets of Ujf]Ω defined in (ϊ) of §1.2.

PROOF. First, by (i) of Lemma 3.2,

(3.25) \\φh-ω\\^\\ώ-ω\\.

Hence it is sufficient to estimate ||ώ —ω||.

We have

(3.26) l|ώ-ω||2

β= £ £ | |ώ-ω| | s

2 .

Here we note that ω°φ]~1(j=l,-~, m) is of the class C1 on φj(Ujf]Ω). Then,

by Lemma 3.5,

(3.27) ||ώ-ω |2

B .Wί ((Gay (day (ob\ (ob
ύ-^Ύκh2\\ — +1 — I + ( — +( —

s m θ nφj(s)\\dχJ \dyJ \dχJ \dy.
for each natural simplex s of Kj. For simplicity, we denote the right hand side

of (3.27) by /[φ, (s)].

For a triple (s, s'j) fo. a minor simplex s, we denote the differential ώ' on

Cj and s'eKί by ώί,s and ώ^ respectively. Then, by Lemma 2.1

(3.28) | | ώ - ω | | 2 ^ | | ώ ; s - ω | | 2

This inequality and Lemma 3.5 imply that

(3.29) I | ώ - ω | | 2

+ s ^ | | ώ ; s - ω | |

Let (s, s', )̂ be a triple for a major simplex s. Then, by Lemma 3.5

(3.30) Wώ-ωWl ]

and

(3.31) | | ώ - ω | | 2

Let

y on φ/^s), and

η on

where α0, b0, α0 and jS0 are constants. Then we define differentials ώs and

ώs>+e on s and sr-M respectively by

body on ψj(s), and
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β0dη on φk(s'

637

Then, by Lemma 2.1

(3.32) l | ώ - ω | | 2 ^ | | ώ s - ω | | 2 + ||ώ f, + l -ω\\2

e.

Further, by Lemma 3.6

(3.33) ||ώs-ω||2

32Λ2 /
sin20 ™<*\

da
die

da

dy +
db

dx

db

Ty

and

(3.34)

where ω — adxΛ-bdy on φ/s) and ω = (xdξ + βdη on φk(s' + £).

By (3.25)^(3.34), Lemma 1.1 and (1.1), the estimate (3.24) is obtained.

32h2

max —- + —δξ +
dx

Tη +
dβ

dξ dη

7. Approximation by ωj,

THEOREM 3.2. (i) Let ω be the harmonic solution in Γθ defined in §3.1, let ω'h
be the finite element approximation of ω in the space A' and let ωh — F~1(ωf

h).

Then

(3.35) | |ωΛ — ω | | 2

'da\
2
 (da\

2
 fdbV fdb^

2

C'h2 X max (a2

where A\ B' and C are constants independent of the trίangulation K and the

differential Θ, and other notations are the same as in Theorem 3.1.

(ii) Let Θo be the differential defined in §3.2, let ω be the harmonic solution

in ΓΘQ and let ω'h be the finite element approximation of ω in the space A'. Then

the estimate

(3.36) ||ω||2^K||2+
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holds with

m /l Γ V ί fλ\2 }
(3.37) ε ( ω ί ) = Y T A(φΛ*4)) \-\ ω'h I max<l, I - I max \f'(z)\2 >,

j=i*eeκ V^J / I \μj */"> J

vv/ierβ βx and ̂ 2

 α r ^ ^ edges o/ίf^ swc/i ίAαί φ^ (e2) is a straight segment, λ and

μ are the lengths of the segments ψj (e2 ) and φk (ex) resp., andf(z) = φk°φj1 (z).

PROOF, (i) First, note that

(3.38) | | ω h - ω | | 2 ^ 2 | | ^ h - ω | | 2 + 2| |ωΛ-ι^Λ | | 2.

From Lemmas 2.1, 2.2 and 3.3, and (3.13), it follows that

(3.39)

SteK

^ Σ Σ (-4(ΨjW))• (a'o2 + b'o
2) + A(φk(H)) (α'o

2 + β'o
2))

j l t K

+ Σ Σ (A(φj(U)y(

where for each triple (s, s', \>i) for \>6eKj

ψ'h = a'odx + b'ody on φfos) and

φ'h = oc'0dξ + β'0dη on φk(s'),

and for each triple (s, s', %ί) for ttίeKj

ωh = aodx + body on φ^s) and

ωΛ = ccodξ + β0 dη on

with constants a'o, b'o, <x'o, β'o, a0, b0, α 0 and β0.

In the inequality (3.39), we have

(3.40)

A(φj(s))
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Since we can easily verify that

h 2

A (φj (Us)) > -A-sin θ (h^d (φ^s))),

by Lemma 1.1 we have

A(φj(s))

<-
* ( + 0(h): 2sin0\

with the notations in Lemma 1.1. (3.40) and (3.14) imply

(3.42) Σ Σ Ml

where C is a constant depending only on the transformations of local param-
eters. Since similar estimates for other terms of the right hand side of (3.39)
are obtained, from (3.39) it follows that

(3.43) \\ωh-φh\\2

^ \\\\2 + ^ \ \ φ \ \ 2

= sin0M Λ " s i n 0 l ι r Λ

+ 2 Σ Σ (A(φj(e))max(a2 + b2) + A(φk(e))max(«2 + β2)\

where for each triple (s, s', £) for #eKj

ω — adxΛ-bdy on ψj (s), and

ω = ocdξ + βdη on <pfc(s
r).

(3.38), (3.43), Theorem 3.1, Lemma 1.1 and (1.1) imply the estimate (3.35).
(ii) (3.7) and Lemma 3.3 and the proof of Lemma 2.2 (i) imply the

inequalities

Jl, f-Ymax |/'(z)|2}.max-<
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From Lemma 2.2, (3.41), the proof of Theorem 3.1 and Theorem 3.2, the

following corollary follows.

COROLLARY 3.1. Let ω and ω'h be the same as in Theorem 3.2, ώ be the finite

element interpolation of ω in the space A, and ώ' = F (ώ). Then, the estimate

(3.44) \\ω'k-ώ'\\£A"h

holds, where A" is a constant dependent only on ω and θ in Theorem 3.1.

§ 4. Applications

1. Periodicity moduli of Riemann surfaces Let Ω be a closed or compact

bordered Riemann surface of genus 1 with no or one boundary component. Let

{A, B} be a canonical homology basis of Ω such that AxB=l. Then there

exists a unique system of harmonic differentials {φ, ρ, χ, τ} on Ω satisfying the

period and boundary conditions:

(4.1)

(4.2)
JA JA JB JB

(4.3) φ=ρ=*χ = *τ = 0 along dΩ

and

(4.4) ί *φ= ί *ρ = f χ= ί τ = 0,
J dΩ JdΩ J dΩ JdΩ

where the conditions (4.3) and (4.4) may be ignored if dΩ=0. If dΩ—0, then φ

= χ and ρ = τ.

We can easily see that

II011

= i f 0= f z = o,
JA JA

ρ= τ = - l , ρ= ί τ = 0,
JA JA JB JB

(4.5)

(Φ,

= ί *Φ> \\Q\\2= \ *Q> a n d
JA JB

'> Q)=\ *Φ=\ *ρ = 0.
JB JA

We call

p1 = *φ and p2 = *ρ
J A JB

periodicity moduli of Ω with respect to A and B respectively, which are the
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quantities determining the conformal structure of Ω. By (4.1) ~ (4.5) we see
that

and χ = w -
These

(4.6)

If dΩ

(4.7)

relations

=0, then

T — •

imply that

P i - I l 0 l l 2 =

WΦf

1

llτll2

p. = 11

and p 2 = | | ρ | | 2 = *
ω

2 *

_ ||/A||2 _ _

\\Q\\2 Pi

By making use of a relation analogous to (4.7) for the modulus of
quadrilaterals on the complex plane, Gaier [11] presented a method to obtain
upper and lower bounds for the modulus by the finite difference approximation.

2. Calculation of periodicity moduli Let {Θl9 Θ2, Θ3, β 4 } be a system of
differentials in ΓC(Ω) satisfying the period and boundary conditions:

»i= \ Θ3 = ί,
B JB

f βl= ί 03=0,
JA JA

f <92=f <9 4=-l, f < 9 2 = f # 4 = 0,
JA JA JB JB

and Θ3 and Θ 4 are exact on a neighborhood of dΩ, Here we interpret that dΩ
= C 2 for Θ1 and Θ2> and dΩ = C3 for β 3 and Θ 4 in the notations in §3.1. We
note that Θu Θ2, Θ3 and Θ 4 satisfy the conditions for the differential Θo in §3.2.
Then we can easily see that φ, ρ, χ and τ are the harmonic solutions in ΓΘ , ΓΘ ,
Γ^ and ΓΘ, respectively. Let φ'h, ρ'h, χ'h and τ'h be the finite element
approximations of φ, ρ, χ and τ in the space A respectively. Then by (ii) of
Theorem 3.2 and (4.6), we obtain upper and lower bounds for pι and p2'

(4-8) ιlτ,/+

and

<4'9) ΰFT
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If δί2 = 0, then φ=χ and ρ=τ, and thus (4.8) and (4.9) imply the inequalities

3. Numerical example 1 (the case of a closed Riemann surface) Let Ω
be the two-sheeted covering surface with four branch points z = - 3 , —1, 1, 3
over the extended z-plane. Then Ω is a closed Riemann surface of genus one. A
canonical homology basis {A, B] of Ω is chosen as in Fig. 6. We aim to obtain
good upper and lower approximate values of the periodicity moduli px and p2

of Ω with respect to A and B respectively.

- 3

Fig. 6

First, we construct a triangulation of the closed region:

D = {z\ \z\£y/3, Rez^O,

as in Fig. 7. The closed regions G2 and G3 are mapped onto the regions Gf and
G£ resp. by the local parameters C = φ 2(z) = α x / z - l and w = φ 3(z) = b logz (a
= 2 (y/3 — 1 )1 / 2 and b — y/3) respectively, where a and b are so determined that
\dζ/dz\ = l and \dw/dz\ = l on |z-11 = ̂ 3 - 1 and \z\ = yfi respectively. We
construct ordinary triangulations K% and X* of Gf and Gf as in Fig. 7
respectively. By K2 and X3 we denote the image triangulations of K% and K%
by the mappings φ2

ι and φ^ 1 respectively. The triangulation Kx of the region
G1=D— (G2\j03) in Fig. 7 is so constructed that each 2-simplex s of K1 is
natural, minor or major according as |s|Πl^2 + ̂ 3l = 0' M01^21^^' O Γ

|5 |pi |K 3 |^0, where if some intersection is a point then it is interpreted to be
vacuous, and the local parameter φx (z) of Kλ is the identity mapping φί(z) = z.

A triangulation Lx of the region D1 = {z\ \z\^yβ9 Rez^O, Imz^O} is
defined by the reflection of the triangulation L = X 1 + X 2 + X3 with respect to
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Φ

K2(G2)

Fig. 7
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Fig. 8

the circle \z\ = y/ΐ (cf. Fig. 8). Next we define a triangulation L2 of the fourth
quadrant by the reflection of the triangulation L+Lx with respect to the real
axis and then a triangulation L3 of the left half-plane by the reflection of L+Lx

+ L2 with respect to the imaginary axis. Consequently, a triangulation L4 of the
extended z-plane is defined by L4. = L-\-L1-\-L2-\-L3. Then, a triangulation K of
the covering surface Ω is so constructed that the projection T of K onto the
extended z-plane is the triangulation L4. We see that the triangulation K
conforms to the definition in §1.2. We denote the parts of T~1{D) and T'^L)
on the upper sheet of Ω by D and L again respectively.

Let φ=χ and ρ=τ be the differentials on the present Ω defined in §4.1, and
let φ'h and ρ'h be the finite element approximations of φ and ρ respectively in the
space A' (Kf), where Kr is the naturalized triangulation associated to the present
K.

Let A (L) be the space of differentials on D which are the restrictions of
those in A (K) to D. Let AΦ(L) be the subspace of A (L) which consists of the
differentials σh in A(L) satisfying the conditions:
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σh = 0 along co = {z\ Og

σh = 0 along c1 = {z\ 1 £ R e z g

Rez =0},

Imz =0}

and

ί 1
= 4'

Further, let Λρ{L) be thesubspace

of A (L)"which consists of the differentials σh in A (L) satisfying the conditions:

along c% = {z\ O^Rez^l, Imz = 0},< 7 Λ =

and

and let

along π

= 2

JAΠE

1

), σheAρ(L)}. By ψKL and ρ'htL we denote the

Table 1. Periodicity moduli pi of closed Riemann surface

Exact
value

Finite

element

approxi-

mations

pί=\ *φ = 0.781701
J A

Original triangulation (7ι=0.213758)

Upper
bound

Lower
bound

ιιψ;ιι2+ε(0i)
=0.782184+0.429347 XlO" 3

=0.782613 (0.000912)

1

1.280878+0.150405 XlO~5

=0.780714 (-0.000987)

\\ΦΉ-$'\\
=3.76256X1O"3

llci-έil
=6.14254X1O~3

Normal subdivision (/ι=0.106879)

Upper

bound

Lower

bound

IIΨί,ll2 + ε(<«.)
=0.781968+0.107413 XlO" 3

=0.782075 (0.000374)

1

\\QΉ\\2+ε(QΉ)
1

~ 1.279506+0.381486X10"6

=0.781551 (-0.000150)

WΦΉ-ΦΊ
= 1.12050 XlO~3

WQΉ-Q'W

= 1.83821 XlO~3

( ): Deviation from exact value.
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= b log z
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differentials in Λ'Φ(L) and Λ!Q(L) respectively which minimize norms \\σ'h\\v in
Λ'φ(L) and Λ'ρ(L) respectively. Then, by making use of the symmetricity of K\
the period and boundary conditions of φ'h, ρ'h9 φ'hJL and ρ'htL, and their
minimality w.r.t. norm, we can verify that φ'KL and ρ'hL are the restrictions of φ'h
and ρ), to L respectively, and | | 0 ; | | i = 16||^LJ|£, and | |dlli^l6|lβi i Lll2'
Consequently, to attain our aim it is sufficient to make numerical calculations
°f Φh,L a n ( i Qh,L (cf Mizumoto and Hara [16], [17] for the calculation method).

We should note that the symmetricity of φ and ρ on Ω has not been used
and thus our method does not reject an application to the differentials which do
not have symmetricity on Ω.

Table 1 shows the exact value of the periodicity moduli px which can be
calculated by making use of a complete elliptic integral, and the values of our
finite element approximations. Furthermore, computation results for the normal
subdivision K1 (see Fig. 9) of the present K are shown. It can be said that the
both of upper and lower bounds of px are close to the exact value.

4. Numerical example 2 (the case of a compact bordered Riemann surface)
Let Ω be a two-sheeted compact bordered covering surface with three branch
points z= —1, 1, 3 over the ellipse:

Then Ω is a compact bordered Riemann surface of genus one with one
boundary component C. A canonical homology basis {4, B} of Ω is chosen as
in Fig. 10. We aim to obtain good upper and lower approximate values of the
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periodicity moduli p1 and p2 of Ω with respect to A and B respectively.

First, we construct a triangulation of the upper half ellipse D = Ef]{z\lmz

^0} as in Fig. 11. The closed regions G2, G3, G4 and G5 are mapped onto the

regions G\, Gf, G% and G% resp. by the local parameters ζ = φ2(z) = a^/z -f 1, ζ

= φ 3 (z) = α > / z - l , ζ = φ 4 (z) = bχ/z —3 and w = φ 5 (z) = cosh - 1 z (α = 2/51/4

and fe = 2/851/4) respectively, where α and b are so determined that \dζ/dz\ are

equal to \dw/dz\ at z — z^Λ-i (z o= — 1, 1 or 3). We construct ordinary

triangulations K%, K%, K% and K% of Gf, G?, GJ and Gf as in Fig. 11

respectively. By K2, K3, K4 and K5 we denote the image triangulations of K%,

K%, K% and K% by the mappings φ j 1 , cp^1, φ 4 * and φ j 1 respectively. The

triangulation Kx of the region G1 = Ω— (G2[jG3[jG4[jG5) in Fig. 11 is so

constructed that each 2-simplex s of Xx is natural, minor or major according as

\s\f)\K2 + K3 + K4 + K5\=0, \s\Π\K2 + K3^K4\Φ0, or |s |n|X 5l^0. with the
convention as in the previous section, and the local parameter of Xi is

φγ(z) = z.

A triangulation Lx of the lower half ellipse D1 = Ef]{z\lmz^0} is defined

by the reflection of the triangulation L=K1 + K2 + K3 + K4 + K5 with respect to

the real axis and a triangulation L2 of E is defined by L2 = L+LV Then, a

triangulation K of the covering surface Ω is so constructed that the projection T

of K onto the z-plane is the triangulation L2. We see that the triangulation K

conforms to the definition in §1.2. We denote the parts of T~1(D) and Γ " 1 ^ )

on the upper sheet of Ω by D and L again respectively.

Let φ, ρ, χ and τ be the differentials on the present Ω defined in §4.1, and

let φ'h, ρ'h, χ'h and τj, be the finite element approximations of φ, Q9 χ and τ

respectively in the space A'{K'\ where K' is the naturalized triangulation

associated to the present K.

Let A (L) be the space of differentials on D which are the restrictions of

those in A(K) to D. Let Aφ(L\ ΛQ(L), Aχ(L) and Aτ(L) be the subspaces of

A (L) which consist of the differentials σhu σh2, σh3 and σh4 in A (L) respectively

satisfying the conditions:

σΛi=σ/i3= =0 along co = {z\ 3 ^ Rez^4, Imz = 0},

σhi = σh3 = 0 along cx = {z| — 1 ^ R e z ^ l , Imz = 0},

ffh2 = σh4. = 0 along cj = {z| l ^ R e z ^ 3 , Imz = 0},

σ/ι2 = σh4 = 0 along cj = {z\ — 4 ^ R e z g — 1, Imz = 0},

^hi = σh2 = 0 along c = {z =

and
L*-L 1

σ/i3 = ^
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L Ln25

1

Further, let Λ'ψ (L) = {σ'hl}9 A'ρ (L) = {σ'h2}, Λf

χ (L) = {σ'h3} and Λ'τ (L) = {σ^},

where σ'hj = F(σhj) (/=1, 2, 3, 4) . By φhtL9 ρ'h,L, ihL and τ'KL we denote the

differentials of Λ'φ (L), Λ'Q {L), yl̂  (L) and >iί (L') respectively which minimize

norms in Λ'φ(L')9 ΛQ(L')9 Λf

χ{L) and Λ'τ(L) respectively. Then, by making use

of the symmetricity of K', the period and boundary conditions of φ'h, ρ
f

h, χ'h, τj,,

Φh,L> Qh,u Xh,L a n ( i τi,L» a n ( i ^eir minimality w.r.t. norm, we can verify that φ'hyL,

Qh,u Xh,L a n ( i τh,L a r e ^ e restrictions of φ'h, ρ'h9 χ'h and τj, to L respectively, and

Consequently, to attain our aim it is sufficient to make numerical calculations

The exact values of the periodicity moduli pι and p2 can be calculated by

the following procedure.

Let Co and C1 be the boundary parts of the upper half ellipse domain D

defined by

and

C1 = {z| - l ^ R e z g l , Imz=0}.

Let A be the rectangular domain

and let Γo and Γ± be the boundary parts of Δ defined by

and

If D is conformally mapped onto Δ so that Co and Cx are mapped onto Γo and

/"i respectively, then the periodicity moduli px is equal to τ. The conformal map

W=f{z): D-*Δ is constructed by the composition of the following mappings:

(ii) C = sn(K(fc)w), where
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Z-Zι Z3-Z2=ζ-ζt ζ3~ζ2

z-z2 z3-z, ζ-ζ2 C3-C1'

where ζ, =sn (K(fc) W ) (j=l, 2, 3, 4) with w1 = -ί + i (2π/cosh 4), w 2 = - l ,

w3 = 2 cosh - 1 3/cosh " ί 4 - 1 , w4 = 1 + i (2π/cosh x 4), and Z t = - 1/κ, Z 2 = - 1 ,

^ ϊ ) 2 , c=((C4-Ci)/(C4-Ca))'((C3= l, Z 4 = l/κ with κ =

Then we see that

and

Next, let C'o and Cί. be the boundary parts of D given by

C0 = {z\ 1^ Re z ^ 3 , Im z = 0 }

Table 2. Periodicity moduli pi of compact bordered Riemann surface

Exact
value

Finite

element
approxi-
mations

P ί = ί * 0 = 1.539330

Original triangulation (Λ=0.138840)

Upper
bound

Lower
bound

= 1.540588+0.572262xl0~ 4

= 1.540645 (0.00132)

1

Hτill2 + ε « ) i

0.649700+0.225117 XlO" 3

= 1.538639 (-0.00069)

WΦΉ-Φ'W
= 1.15335 X1O~2

II T? τΊI

=3.74131 X1O~3

Normal subdivision (Λ=0.069420)

Upper
bound

Lower
bound

= 1.539652+0.142916 X 1 0 " 4

= 1.539666 (0.00034)

1

1

0.649652+0.558093 X 1 0 " 4

= 1.539153 (-0.00018)

= 5.89447X1O"3

\K-τ'\\

= 1.09209 XlO- 3

( ): Deviation from exact value.
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Table 3. Periodicity moduli p2 of compact bordered Riemann surface

Exact
value

Finite

element

approxi-

mations

p2=\ *ρ= 1.839350
JB

Original triangulation (Λ=0.138840)

Upper
bound

Lower
bound

= 1.841976+0.351532xl0~3

= 1.842328 (0.00298)

1

WxX + *(x'h) χ

0.544588+0.145580X10"3

= 1.835760 (-0.00359)

WQΉ-Q'W

=7.65797 X1O~3

=5.22574 XlO~3

Normal subdivision (/ι=0.069420)

Upper

bound

Lower

bound

Ilί?ί,ll2 + Φί,)

= 1.840016+0.875764xl0~4

= 1.840104 (0.00075)

1

WxΉ\\2+ε(xΉ)
1

0.543904+0.361871 X 1 0 - 4

= 1.838437 (-0.00091)

WQΉ-QΊ\

=2.28613 XlO~3

IIΛ-ίΊI

= 1.73332 X K T 3

( ): Deviation from exact value.

^ - 1 , Im z=0}.

Let Δ, Γo and Γ1 be as above. If the domain D is conformally mapped onto the
domain Δ so that C'o and C[ are mapped onto Γo and Γx respectively, then the
periodicity moduli p2 is equal to τ. The conformal map W=f(p): D^>A is
constructed similarly to the case of periodicity moduli pv

Tables 2 and 3 show the exact values of the periodicity moduli pι and p2,
and the values of our finite element approximations. Furthermore, com-
putation results for the normal subdivision K1 of the present K are shown. It
can be said that the both of upper and lower bounds of pγ and p2 are close to
the exact values.
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