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Introduction

We introduce a notion of ideal boundary components of an infinite network as
a discrete analogue of that in the theory of Riemann surfaces. This notion gives a
fine information on the ideal boundary of the infinite network. Given an ideal
boundary component α of TV and a finite set A of nodes, the extremal length ELp (A,
α) and the extremal width EWp(A, α) of N of order p relative to A and α will be
studied in Section 2 and Section 4. A discrete analogue of the continuity lemma due

to Marden and Rodin [3] plays an important role in our study. It will be shown that
a generalized inverse relation [ELP(A, OL)~]IIP{_EWP(Λ9 α)] 1 / 9 =l (l/p+l/q=l9p
> 1) holds in the present case.

§1. Ideal boundary components

Let Xbe a countable set of nodes, Y be a countable set of arcs, AT be the node-
arc incidence function and r be a strictly positive real function on Y. We assume that
the graph {X9 Y9 K] is connected, locally finite and has no self-loop. The quartet N
= {X, Y9 K9 r) is called an infinite network. For notation and terminology, we
mainly follow [2] and [4].

For each aeX and ye Y9 let us put

= U{e(y);yeY(a)}.

We say that a subset A of X is connected if, for every x, x'eA, there exists a path P
from x to x' such that CX(P) c A. A node aeA is called an interior node of A if X(a)
a A, i.e., every neighboring node of a is contained in A. Denote by i(A) the set of all
interior nodes of A. We put b(A) = A — i(A) and call it the boundary of A.

For two subnetworks N' = {X, Y'> and N" = <JT, Y "> of TV, we write N' ̂  N" if
N' is a subnetwork of N" and X a i(Xf). An infinite subnetwork N* = <JT*, Y*}oϊN
is called an end of N if the following conditions are fulfilled:
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(1.1) b(X*) is a finite connected set,

(1.2) Y*

(1.3) X- X* is connected.

Denote by ed(N) the set of all ends of TV.

A sequence {TV*} (TV* = <X*, Γ*>) of ends is called a determining sequence of

an ideal boundary component if the following conditions are fulfilled:

(1.4) W>N*+19

(1.5) n;°=i*? = 0-

We say that two determining sequences {TV*} and {N*} are equivalent if for each TV*

there exists TV* such that TV* < TV* and if for each TV* there exists TV* such that

TV*=ξTV*. Each equivalence class is called an ideal boundary component of TV.

Denote by ibc(N) the totality of ideal boundary components.

For an end TV* = <^*, 7*> of TV and a nonempty finite subset A of X, denote by

P\ >00 (TV*) the set of all PePAoo (the set of all paths from A to the ideal boundary oo

of TV) such that CX(P) — X* is a finite set (possibly, the empty set). Let (xeibc(N) and

{TV*} be its determining sequence. Then i ' l o o W + i l c P ^ K ) . Let us put

(16) PA,a = f]^iPloo(N*)

and call its element a path from A to α. Clearly this definition does not depend on the

choice of the determining sequence of α. We may say that oceibc(N) is an ideal

boundary of an end TV* if PAfO0(N*) contains PAa for a nonempty finite set A.

Let Γbe a family of paths. The extremal length λp(Γ) of Γof order/? (1 <p < oo)

is defined by

λ^Γ)-1 =inΐ{Hp(W); WeEp{Γ)},

where Hp{w) = YjyeYr(y)\w{y)\p and Ep{Γ) is the set of all WeL+{Y) such that

Hp(W)<oo and

for all PeΓ. We also use notation ELP (A, α) for λp(PA(X). It is called the extremal

length of order p of TV relative to 4̂ arid α. Since Ep(PAa) Φ φ for a finite set v4, we

always have ELP(A, α)>0.

We say that a property holds for /7-almost every path of Γ if it does for the

members of/"except for those belonging to a subfamily with infinite extremal length

of order p.

For ueL(X) and PeP^ = (j{P{x] ) 0 0 ; X G I } , denote by u{P) the limit of u(x) as

x tends to the ideal boundary oo of TV along P if it exists. It is proved in [2] that u(P)

exists for/7-almost every PeP^ if u is a Dirichlet function of order/?, i.e., ueDip)(N)
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= {ueL (X); Dp(u)< oo}, where

Dp(u) = Hp(du) and Λ ( y ) = - φ ) - 1 ^ ( x j ) φ ) .

We write w(α) = t for oceibc(N) and /ei? if w(P) exists and is equal to t for ^-almost
every PePa = [j{P{xUa; xeX}.

We prepare some lemmas. By [2; Theorem 2.3], we have

LEMMA 1.1. // WeL+(Y) and Hp{W)<oo, then Σpr(y)w(y)=(X) for p-
almost every

For later use, we introduce an operation on the set of paths. Let P be a path
from a to * with Cx{F) = {x'Oi *;,.••, x'n} (x'0 = a9 x'n = b\ Cγ(P') = {/1,-',y'n} and let
P" be a path from b to c with C,(P") = {*o, *ί, , *£} ( 4 = *, *£ = <0, Cy(P")
= {fi> * , /«}• Put v = max {k; x£eCX(P')} and let < = x'q. We define two ordered set
X0 = {xk; O^k^m + q-v} and Y0 = {ykl l^k^m + q-v} by

^0 = ̂ ^ = 4 and yk = y'k if l^k^q,

xk = xk-q + y a n d Λ = .v£-β + v if ^ + l ^ A : ^ m + ̂  —v.

Let/7r andp" be the path indexes of P' and P" respectively and define peL(Y) by

Piy)=p'(y) if

P(y)=p"(y) if

p(y) = 0 if ^ F o .

Then the triple!^, Y0,p} defines a path P from 0 to c. We call P the path generated
by F and P" and denote it by F + P". In the case where P" is a path from b to the
ideal boundary 00, we can define F + P" similarly.

LEMMA 1.2. Let Aγ and A2be nonempty finite subsets ofX and a e ibc(N). Then

λp(PAv*) = <x> if and only ifλp(PΛ2tΛ)=co.

PROOF. Assume that λp(PA ,α) = oo. Then there exists We L+(Y) such that
Hp(W)<oo and ΣPr{y)W(y) = oo for every PsPA a by Lemma 2.3 in [2]. Let
PePΛltΛ. If Cx{P)f]A1 Φ 0, then ̂ contains a subpath FePA^ so that Σpr(yW (y)
^ Σ P Φ ) W{y )= 00. If Cx(P)f]A1 = φ, then there exists a path P o from Aγio A2

such that F' = P0 + PePΛ „ so that

since Cy(P0) is a finite set. Therefore χPr(y) W(y) = 00 for every PePA >α, and hence

*P(ΛI 2 . « )= °° by Lemma 2.3 in [2].

As a discrete analogue of the fundamental lemma due to Marden and Rodin
[3], we have
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LEMMA 1.3. Assume that WneL+(Y) and Hp(Wn)^>0 as n-+oo. Then there
exists a subsequence {Wn} of {Wn} such that for p-almost every

PROOF. Choose a subsequence {WHk} such that Hp(WHk) <2~2kp. Set Γk

= {PePaΰ;Σpr(y)Wnk(y)>2-k},n = Uΐ=kΓe and r ^ Π ^ i ^ 2 ^
Ep(Γk) for each k, we have by Lemma 2.2 in [2]

as A;-»oo. Hence λp(Γ')=co. If limsup^^^^prty)^ (y)>0 for some PeP^, then
PeΓk for all A: and therefore PeΓ.

In order to assure the existence of a limit function of a sequence of functions on
Y or X, we need the following type of Clarkson's inequality (cf. [1], [5]):

LEMMA 1.4. For w, w'eLp(Y; r) = {weL(Y); Hp(w)<oo}, the following
inequalities hold:

(1.7) ^p(w + w') + Λrp(w-w/)^2^-1[//p(w) + ̂ (w / )] incase2Sp;

(1.8) [ ^ ( W + H / ) ] 1 ^ - 1 ^ [Hp{w-w')-]ll(p-l)

w')~]1/ip-1) in case l<p^2.

§2. Extremum problems related to cceibc(N)

Let aeibc(N% ceL+(Y) and A be a nonempty finite subset of X. Consider the
following linear programming problems related to α:

(2.1) Find N(PA,a; c) = inf{ΣpΦ); PePAJ;

(2.2) Find N*(A, α; c)

where 5* is the set of all ueL(X) satisfying \ΣχeχK(x>y)u(x)\ ύc(y) on Fand ΓAΛC

= {PePAa; Σpc(y)< °°} W e remark that u{P) exists for any ueS* and PeΓAac.
We have the following duality theorem:

THEOREM 2.1. IfΓA^.cΦφ, then N(PAa; c) = N*(A, α; c) holds and problem
(2.2) has an optimal solution.

PROOF. Let ueS* and PeΓAaL.c with Cx(i )) = {xπ; «^0} (xoeA) and
= {jn; n^ 1}. Then we have
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Letting «->oo, we have Σpc(y)*ϊu(xo) — u(P) a n d hence

u(x) -^ inixeA

Thus the inequality N(PA(X; c)^N*{A, α; c) holds.
Next we define ύeL (X) by

for xeX. By the assumption of the theorem, ύ(x) < oo. To prove that we*S*, let ye Y
with ^(j)={χ1, χ2). Let P e P ^ ^ ^ be arbitrarily given. In case yeCγ{P\ there
exists a subpath i* of Psuch that P'eP {χ2} ,α Then ύ{x2) ^ Σ P ^ O O ^ Σ P Φ H ^ O O

In case yφCγ(P\ let P"eP[XiU<x be the path generated by {y} and P. Then w(x2)

^ Σ P » Φ ) = Σ P C O ) + C ( > 0
 τ h u s w e h a v e ύ(χ2)^ΣpΦ)+c(y)for a n y ^ ? p { X i } , α ,

and hence w(x2) ^ w(Xi) + c(y). By interchanging the role of x1 and x2, we have ύ(xι)
Sύ(x2) + c(y) and hence \ΣxeχK(x9 y)ύ{x)\^c(y).

Let PeΓA,a.c with CX(P) = {xπ;« ^ 0} (JCOG^ ) and denote by Pn the subpath of P
from xn to α. Then we have u{xn)ύΣpn

c(y)~*Q a s
 Λ-*OOJ S O that ύ(P) = 0. Therefore

supPeΓAΛ cύ(P) = 0 and N(PAta; c) = inϊxeAύ(x)^N*(A, α; c). Note that ύ is an
optimal solution of problem (2.2). This completes the proof.

As a dual quantity of ELp(A, oc) = λp(PAoc), let us consider the following value
of an extremum problem:

(2.3) Find dp(A, OL)=M{DP(U); U=\ on A, w(α) = 0}.

Note that dp(A, α)< oo, since A is a finite set. We have

THEOREM 2.2. dp(A9 <*) = λp{PAJ-\

PROOF. In case λp(PAα) = oo, we have dp(A, α) = 0, since u = 1 is an admissible
function for problem (2.3). We consider the case where λp(PAtα)<co. To prove the
inequality λ^P^)'1 ^dp{A, α), let uεDip){N) satisfy u= 1 on A and w(α) = 0. Put
W(y) = \du(y)\. 'Then ^eL + (7) and 7/p(^) = Dp(w). Set Γ(oc) = {PePA,α; u(P)
= 0}. Then we see easily that Σ P Φ ) WXy)^l-w(P)=l for all PeΓ{oc), so that
WeEp(Γ(oc)). Since /lp(i)^α-JΓ(α))= oo, we have by Lemma 2.2 in [2]

Thus λp(PAtΛ)~x Sdp(A, α). To prove the converse inequality, let WeEp{PAo). Then
Σ P Φ ) W(y)< oo for/7-almost every PePAα by Lemma 1.1. On account of Theorem
2.1, we can find ueL(X) such that u(x)^l on A, w(α) = 0 and IΣxex^ί^ j ) " ^ ) !
ύr(y)W(y) on F. Define reL(J0 by v{x) = mm{u{x\ 1). Then i?(x)= 1 on A, V(OL)
= 0 and \dv(y)\ ^|ί/w(y)| ^ H^(j), so that dp(A9 α)^Dp{v)^Hp{W). Therefore dp(A9



82 Atsushi MURAKAMI and Maretsugu YAMASAKI

As for the existence of an optimal solution of problem (2.3), we have

THEOREM 2.3. There exists a unique optimal solution of problem (2.3).

PROOF. Let {un} be a sequence in D(P)(N) such that un = 1 on A, un{oc) = 0 and

Dp(un)-^dp(A, α) as «->oo. Since (un + um)β is an admissible function, we see by

Clarkson's inequality that Dp(un — um)^>0 as n, m->oo (cf. [5]). Since D(P)(N) is a

Banach space with the norm \\u\\p= [Dp(u) + \u(b)\pYlP (beX\ there exists

ύeD(p)(N) such that ||wπ-w||p->0as «->oo. It follows that ύ= 1 on A and dp(A, α)

= Dp(ύ). To prove ώ(α) = 0, put Wn(y) = \dun(y)-dύ(y)\. Then Hp(Wn) = Dp(un-ύ)

-•0 as n-+oo. Set Γ'(α) = {PePAa; ύ(P) exists and wn(P) = 0 for all n). Then ^ ( P ^

— Γ'(CL)) = oo. By means of Lemma 1.3, we can find a subfamily Γ"(OL) oiΓ'(aί) and a

subsequence {H^J of {PΓJ such that lim f c^ o o^Pr(y)^ I f c(y) = 0 for every PeΓ"(oc)

and λp(Γ'(<x) — Γ"((x))=oo. Denoting by p(y) the path index of P, we have the

relations

Σpr(y)p(y)dun(y)=\ and ΣPr(y)p(y)dύ(y) = 1 - ύ(P)

for every PeΓ'(α), so we see that ύ(P) = 0 for every PeΓ'iμ). Since ^ ( ^ , α - Γ " ( α ) )

= oo, we have w(α) = 0, and hence w is an optimal solution of problem (2.3). The

uniqueness of the optimal solution follows from Clarkson's inequality.

Let {TV*} (N* = {X*, F*>) be a determining sequence of oceibc(N) such that

^ = φ. Denote by PAX* the set of all paths from A to X*. Let us study the

relation between λp(PAa) and the extremal length λp(PAX*) of order p of JV relative

to A and X*.

We begin with

LEMMA2.1. Let ce L+(Y) and set t = N{PAoL\c) and tn = N{PAiX*; c)

= inf{ΣPφ); PePA,x*}. Then tn^tn+ί^t and tn^t as «-oo.

PROOF. Since each path of PA,X*+ (resp. PAflx) contains a path of PAtX* (resp.

PA,X* \ w e have tn^tn+1^t. Suppose that limn^Ootn = to<ί' Let ε be a positive

number such that ε < t —10. For each n there exists PnePA,x* such that ΣP c(y) < tn

+ ε/4". Since {tn} is monotone, by taking a subsequence if necessary, we may assume

that to — tn< 1/2". Since A is a finite set, we may also assume that all elements of {Pn}

have the same node aeA. Let Cx(Pn) = {x<fι); 0^i^qn} (x(

o

π) = α, xfneb(X*)). For

every n and k with n > k, let v (k, n) = max {i; xjn) eft (A£)}. Then x\n) e X* for all i with

v(fc, n)^i^qn. We call JC(

V^Π) («>^) the last exit node of Pn from X-Xt- Since

6(Zf) is a finite set, we can select a subsequence {Λi(1)} °f {Λ»}> all elements of which

have the same last exit node zx from X— X%. Put w^^Wi. Similarly we can select a

subsequence {ZV.2>} °f {^ υ}» a^ of whose elements have the same last exit node z 2

from X—X\. Let n2 be the first number of {^2)}such that n\2)>nv By induction we

obtain for each k a subsequence {Pnψϊ) of the preceding one, all of whose elements
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have the same last exit node zk from X—Xki and the number nk. We consider the

sequence of paths {PΛfc} and denote it by {Pk}. Let k0 be a number such as Σ?=k01/2W

<8/2. We shall construct a path P*eP{aUoo For each k^ 2, let P^be the subpath of

P k such that Fk is a path from zk _ x to zk and let P£ be the subpath of Pk such that Pk is

a path from a to z k_!. We define a set {PJf; k^k0} of paths by p*o = p'k'Q + pko (the

path generated by Pko and P'ko) and P£ + i = P* + P^ +1 for £ ^ &0. We see that for

each k^k0, the restriction of P* to the subnetwork N-Nΐ = (X-Xi, Y- rk*> is

identical for all m^k + 1 . Thus we can define an infinite path P*eP{a] >00 by the

condition that the restriction of P* to N— N$ is equal to P%+ x for every k ^ A:o. Then

P*ePAa. Since i^' contains a path belonging to PA,x*_ > Σ P ^ ^ ) ^ ^ - ! ' S O

ΣriΦ) ^ Σ> t Φ) - Σ P J Φ ) < ί-t + ε/4k -/»-!< ε/4k + 1/2*-̂

We have

for all A: ̂  k0 + 1 , so that Σ P * C (y) ̂  /0 +
 ε < t- This is a contradiction. Therefore tn -• ί

as n->oo.

Now we have a discrete analogue of the continuity lemma due to Marden and

Rodin [3]:

THEOREM 2.4. ]imH^p{PAtX*) = λp(PAtΛ).

PROOF. Since Ep(PAta)=>Ep(PAtX*+ί)=>Ep(PΛtX*)9 we have λp{PAtΰL)

^ λp(PA,x*+1)^ ^ ( P ^ ^ ). Put j = l i m ^ „ λp(pAtX*). Then 0 < s ^ ^ . ( f t j . To prove

the converse inequality, let WeEp{PAa) and put c(y) = r(y) W(y\ Then, by Lemma

2.1, we have tn = N(PA%x*\ c)-+t = N(PAa; c) as /i->αo. We note that ί ^ l since

WeEp(PAa). For any ε with 0 < ε < 1, there exists n0 such that tn> 1 - ε > 0 f o r all n

^n0. Then W/(l-ε) belongs to Ep(PAtX*) and

for all n ̂  /i0. Since ε is arbitrary, we have 1/s ̂  Hp( W), so that 1/s ^ ^ ( P ^ ) " x . This

completes the proof.

§3. Flow problems

For a node xeX, a subset 2? of X and weL (F), let us put
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Let A be a nonempty finite subset oϊX,aeibc(N) and {TV*} (τV? = <Z*, 7π*>)be

a determining sequence of α. Denote by F(A, X*) the set of all flows w from A to X*,

i.e., the set of weL{ Y) satisfying the conditions: I(w; x) = 0 for all xeX— A - X* and

I(w; A) 4- I(w; X*) = 0. Note that F(A, X*+1)cz F(A; X*). Let L 0(Y) be the set of all

weL(7) with finite support and Fq(A, X*) be the closure of F(A, X*)f^L0(Y) in the

Banach space Lq{Y\ r) with the norm \_Hq{w)~]llq. Here q is a positive number such

that 1 < # < O O .

We say that wsL(Y) is a flow of order # from A to α if there exists a sequence

{wj of flows such that wneFq(A, X*) and Hq(wn — w)-^0 as «-^oo. Denote by i^(^4,

α) the set of all flows of order q from A to α. Let us consider the following extremum

problems related to flows:

(3.1) Find d*(A9 X*) = ini{Hq(w); weFq(A, A?), I(w, A)= - 1 } ;

(3.2) Find d*(A9 α) = inϊ{Hq(w); weFq{A, α), ί(w; A) = -1}.

We have

THEOREM 3.1. l i m ^ d * ^ , X*) = d*(A, α).

PROOF.

α) such that /(w; A)= - 1 . Then there exists a sequence {wM} of flows such that

wneFq(A, X*) and Hq(wn — w)^>0 as n-+co. Since wπ(y)->w(y) as «^oo for each

yeY, I(wn; A)-+I(w; A)= —1 as H->OO. We have

d μ , ^ ) ^ Hq(wJI(wn; A)) = Hq(wn)/\I(wn; A)\*

for large /i, so that l i m ^ ^ d * ^ , l ? ) ^ i / , ( w ) . Therefore lim^^d*(i4, X*)^d^(A,

α). To prove the converse inequality, we may assume that l i m ^ ^ d * ^ , X*)< oo.

For each «, there exists an optimal solution H>Π of problem (3.1), i.e., wneFq(A, X*)

such that I(wn; A)= - 1 and ^(^4, X*) = ̂ (vPn). By a standard argument and

Lemma 1.4, we can verify that Hq(wn-wm)^>0 as «, ra->oo. Since L^(F; r) is a

Banach space, there exists we Lq(Y;r) such that /^(vP,, — vϊ>)->0 as «-• oo. Therefore

4, α). Since WnCyί-^vP^) as n-^co for eachjμe F, we have I(w; A)= — 1. Hence

, α). This completes the proof.

In connection with problem (3.1), we considered the following problem in [4]:

(3.3) Find dp(A, X*) = inf{Dp(u); u= 1 on A, u = 0 on X*}.

By [4; Theorems 2.1 and 5.1] we have

and the reciprocal relation
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= ι if

On account of Theorems 2.2, 2.4 and 3.1, we obtain the following reciprocal
relation:

THEOREM 3.2. If dp(A, α) > 0 and 1/p +1/# = 1, then

§4. Extremal width of N relative to A and α

Let Bx and B2 be mutually disjoint nonempty subsets of X. Denote by Bx QB2

the set of all ye Y which connects Bγ and B29 i.e., e{γ)f]B1 Φ φ and e(y)f)B2 Φ φ. Let

2 B ,B be the set of all cuts between Bι and B2f namely QeQB B if there exist

mutually disjoint subsets Q{BX) and Q{B2) such that Q(Bi)^>Bi ( i=l , 2), X

= β(^i)Uβ(Λ 2) and β = β ( Λ 1 ) θ β ( * 2 )

In general, we say that a nonempty subset Q of Γis a cut of TV if there exists a

subset JT of ^ such that Q = XQ{X-X). The pair of A" and X-X is uniquely

determined by Q.

LetΛ be a finite nonempty subset oiX9OLsibc(N) and {#£} (JV*= <**, 7Π*>)

be a determining sequence of α such that ^4Γ) î = 0 Then β A ^ c g ^ * Let us
' n ' π + 1

put

(4.1) βκ,« = Uί°-iβ^x*

and call an element of β A α a cut between A and α. Note that the definition of QAa

does not depend on the choice of the determining sequence of α.

For a set A of cuts, let us define the extremal width μq(A) of A of order q by

(4.2) μ^Ay1 =inϊ{Hq(W); WeE*(Λ)}9

where E*{A ) isthe set of all ^ G L + ( 7 ) such t h a t / / J ^ ) < oo and £ Q W ( y ) ^ l for

all QeA. Here we put XQ^0 ; ) = X),eQW/(>;). The following properties of the

extremal width can be proved analogously to the case of the extremal length (cf. [2]):

LEMMA 4.1. Let A1 and A2 be sets of cuts. IfA1czA2, then μ^A^^μ^A^.

LEMMA 4.2. Let {An; n = 1, 2, } be a family of cuts in N. Then J^L x μq(An)~ι

We say that a property holds for ^-almost every cut of A if it does for the

members of A except for those belonging to a subfamily with infinite extremal width

of order q.

Similarly to Lemma 1.3, we can prove

LEMMA 4.3. Let A be a set of cuts and assume that WnsL+{ Y) and Hq(Wn)^0



86 Atsushi MURAKAMI and Maretsugu YAMASAKI

as «-»oo. Then there exists a subsequence {n} such that for q-almost every QeΛ,

We call EWP(A, X*) = μq(QA,x*) (resp. EWP(A, *) = μq(QΛ,a)) the extremal

width of TV of order p relative to A and X* (resp. A and α.), where \/p + l/q=l. We

have

THEOREM 4.1. l i m ^ μ ^ β ^ , x*) = μq(QA,a\ i.e.,

PROOF. Since QAtX* c QA ^ i c QA α, we have by Lemma 4.1 μJίQAtX*)

<+ 1)^^(QA,αX so that \imH-.aoμq(QA,χ*) = s^μq(QA,a). To prove the

converse inequality, we may assume that μq(QA,a)<oo and ,s>0. By [4; Theorem

4.1] (note that the definition of E*(A) in [4] is different from the present one), we

have d*(A, X%) — μq(QA,x*)~ί f°Γ e a c h n- There exists wneFq(A, X*) such that I(wn;

A)= -1 and Hq(wn) = d*(A9 X*). By the proof of Theorem 3.1, there exists weFq(A,

α) such that 7(vP; A)= — 1 , l/s = d*(A, <x) = Hq(w) and Hq(wn — w)^0 as «->oo. For

each n, chooseH/eF(Λ, X*)f]L0(
γ) s u c h that Hq(wn-w'n)< 1/n. Then Hq(w-w'n)

->0 as 72->oo. Since /(w ;̂ ^4)^/(vi>; A)= —1 as n^co, we may assume that I(w'n;

A)Φ0. Put wn= - < / / « ; ^ ) . ThenwnGF(^, J ^ ) n L 0 ( y ) and I(wn; A)=-l. Let

QeQAa. Then there exists «0 such that Q^QAX* for all n^.n0. Define ueL (X) by w

= 1 on Q(A) and w = 0 on β(A^o). For every n^n0, we have

- 1 = I(wn; A) = ΣχeAΣyeγK(x, y)wn{y)

so that

χ, y)u(χ)\ =

Let us put Wn{y) = \\w{y)\- \wn(y)\\ for every yeY.

n-+oo. By Lemma 4.3, there exist a subset A of QAa and a subsequence {Wn } of

{J^J such that μq(QA,a-A)=oo and l i m ^ o o χ Q ^ / J f c ( » = 0 for all βeΛ. We have

i -Σcl*(y) l ^ Σ Q ClH>-fc(y)l - |w(y)|] ^ Σ Q ^ ( y ) ,

so that l ^ Σ Q | w 0 0 | for all βGyl. Thus |w|6£*(>4) and μ 9(yl)- 1^// 4(w) = ^ ( ^ , α)

= l/s. By Lemma 4.2, we have μq(A) = μq(QAJ, and hence μ ^ ί β ^ ^ ) " 1 ^ ! / ^ . This

completes the proof.

The relation Lλp(PA,x*)y/p[_μq(QAfX*)Y/q=l being known by [4; Theorem

5.2], we have

COROLLARY 4.1. \ELP{A, <x)y/p[EWp(A, α)]1 / < z = l.
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