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Introduction

We introduce a notion of ideal boundary components of an infinite network as
a discrete analogue of that in the theory of Riemann surfaces. This notion gives a
fine information on the ideal boundary of the infinite network. Given an ideal
boundary component « of N and a finite set 4 of nodes, the extremal length EL, (4,
a) and the extremal width EW (4, «) of N of order p relative to 4 and o will be
studied in Section 2 and Section 4. A discrete analogue of the continuity lemma due
to Marden and Rodin [3] plays an important role in our study. It will be shown that
a generalized inverse relation [EL, (4, «)]'?[EW,(4, a)]"=1 (1/p+1/q=1, p
> 1) holds in the present case.

§1. Ideal boundary components

Let X be a countable set of nodes, Y be a countable set of arcs, K be the node-
arcincidence function and r be a strictly positive real function on Y. We assume that
the graph {X, Y, K} is connected, locally finite and has no self-loop. The quartet N
={X, Y, K, r} is called an infinite network. For notation and terminology, we
mainly follow [2] and [4].

For each ae X and yeY, let us put

Y(a)={yeY; K(a, y)#0},
e(y) = {xeX; K(x, y)#0},
X(a)=U{e(); yeY (a)}.

We say that a subset 4 of X is connected if, for every x, x'€ 4, there exists a path P
from x to x’ such that Cx(P)< A. A node a€ 4 is called an interior node of 4 if X(a)
c A, i.e., every neighboring node of a is contained in 4. Denote by i(4) the set of all
interior nodes of A. We put b(4)=A—i(A) and call it the boundary of A.

For two subnetworks N'=<X", Y'Y and N"=<{X", Y") of N, we write N' < N" if
N'is a subnetwork of N” and X" = i(X”). An infinite subnetwork N*={(X* Y *) of N
is called an end of N if the following conditions are fulfilled:
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(1.1) b(X*) is a finite connected set,
(1.2) Y*={yeY;e(y)c X*},
(1.3) X — X* is connected.

Denote by ed(N) the set of all ends of N.
A sequence {N}} (N} =<X¥, Y*))of ends is called a determining sequence of
an ideal boundary component if the following conditions are fulfilled:

14) Ny ZNiyq,
(1.5) =1 X5 = @.

We say that two determining sequences { N¥} and { N*} are equivalent if for each N*
there exists N* such that N*X< N* and if for each N* there exists N* such that
N*< N*. Each equivalence class is called an ideal boundary component of N.
Denote by ibc(N) the totality of ideal boundary components.

For anend N*={X*, Y*) of N and a nonempty finite subset 4 of X, denote by
P% (N*)theset of all Pe P, , (the set of all paths from 4 to the ideal boundary co
of N) such that Cy(P)— X* is a finite set (possibly, the empty set). Let aeibc(N) and
{N}} be its determining sequence. Then P% , (N¥, )< P% , (N¥). Let us put

(1.6) Pyo=n=1Pho(NY)

and callits element a path from A4 to a. Clearly this definition does not depend on the
choice of the determining sequence of «. We may say that acibc(N) is an ideal
boundary of an end N* if P% (N*) contains P, , for a nonempty finite set A4.

Let I"be a family of paths. The extremal length 4,(I') of I"of order p (1 <p< )
is defined by

Ap(F)~* =inf {(H, (W), WeE,(I')},

where H,(w)=Y) ,eyr()Iw(y)I’ and E,(I") is the set of all WeL'(Y) such that
H,(W)< o and

ZP’()’)W()’) = ZyeCy(P}r(y)W(y) =1

for all Pel’. We also use notation EL, (4, a) for 4,(P ). It is called the extremal
length of order p of N relative to 4 and «. Since E,(P 4 ,)# ¢ for a finite set 4, we
always have EL,(4, «)>0.

We say that a property holds for p-almost every path of I" if it does for the
members of I"except for those belonging to a subfamily with infinite extremal length
of order p.

For ueL(X)and PeP = J{P ., »; XX}, denote by u(P) the limit of u(x) as
x tends to the ideal boundary co of N along P if it exists. It is proved in [2] that u(P)
exists for p-almost every Pe P, if u is a Dirichlet function of order p, i.e., us DP(N)
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={ueL (X); D,(u)< oo}, where
Dy(u)=Hy(du) and du(y)=—r(y) 'LrexK(x, y)u(x).

We write u(a) =1 for acibc(N) and te R if u(P) exists and is equal to ¢ for p-almost
every PeP,={P ) .; X€X}.
We prepare some lemmas. By [2; Theorem 2.3], we have

Lemma 1.1. If WeL*(Y) and H,(W)< o, then ) pr(y)W(y)=c0 for p-
almost every PeP,.

For later use, we introduce an operation on the set of paths. Let P’ be a path
from a to b with Cy(P')={xp, X},--, X} (xo=a, x,=b), Cy(P')={V1, -, ¥,} and let
P” be a path from b to ¢ with Cyx(P")={xg, x1,---, X} (x6=>b, xj,=c), Cy(P")
= {1, ¥m}- Put v=max {k; x;e Cx(P')} and let x;, = x,. We define two ordered set
Xo={x;; 0Sk<m+q—v} and Yo={y; 1<k<m+q—v} by

Xo=Xo, X=X, and y.=y if 1=5k=<gq,
Xy =Xp—g+y and y=yi_ .y, if g+1SkSm+q—v.
Let p’ and p” be the path indexes of P’ and P” respectively and define pe L(Y ) by
p)=p'(y) if yeY,NCy(P),
p)=p"(y) if yeY,NCy(P")— Cy(P),
p(y)=0 if y¢Y,.
Then the triple{ X, Yo, p}defines a path P from a to c. We call P the path generated

by P’ and P” and denote it by P’ + P”. In the case where P” is a path from b to the
ideal boundary oo, we can define P’ + P” similarly.

LEmMMa 1.2. Let A, and A, be nonempty finite subsets of X and o.cibc(N). Then
lp(PAl,a)= oo if and only if}*p(PAz,a)=oo.

PrROOF. Assume that 4,(P Al,a)= 00. Then there exists We L*(Y) such that
H,(W)<o and ) pr(y)W(y)=co for every PeP, , by Lemma 2.3 in [2]. Let
PePy, . If Cx(P)NA4, # ¢, then P contains a subpath P’ePAl,a, sothat) ,r(y)W (»)
25 r()W(y)= 0. If Cx(P)NA4,= ¢, then there exists a path P, from 4, to 4,
such that P"=P,+PeP, ,, so that

Y WIWy) = pr ()W ZPO )= 0,

since Cy (P, ) is a finite set. Therefore Zpr(y) W(y)= oo for every Pe P Ay and hence
AP(PAN)= oo by Lemma 2.3 in [2].

As a discrete analogue of the fundamental lemma due to Marden and Rodin
[3], we have
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LemMMA 1.3.  Assume that W,eL"(Y') and H,(W,)—0 as n— . Then there
exists a subsequence { W,,k} of {W,} such that for p-almost every PeP

limy. . Ypr (/) Wy, () = 0.

ProoF. Choose a subsequence {W, } such that H,(W, ) <27 %P Set I
={PeP,; Y (y)W, (v)>27%}, I =U7=l, and "=, I;. Since 2W, €
E,(I) for each k, we have by Lemma 2.2 in [2]

M) S A (L) ST dy(T) T S TP Hy Q2 W, ) S Y7427 750

as k—oo. Hence A,(I")=co. If limsupk_,wzpr(y)W,,k(y)>0 for some PeP,, then
PeT;, for all k£ and therefore Pel™.

In order to assure the existence of a limit function of a sequence of functions on
Y or X, we need the following type of Clarkson’s inequality (cf. [1], [5]):

LemMAa 14. For w, weL,(Y; r)={weL(Y); H,(w)<oo}, the following
inequalities hold:

(L.7) H,(w+w)+H,(w—w)<2""'[H,(w)+ H,(W)] in case 2 < p;
(1.8) [Hp(w+w')]”(”_” + [Hp(w—w’)]l/"’"”
<2[H,(w)+H,(w)]"?" D in case 1 <p <L 2.

§2. Extremum problems related to ocibc(N)

Let aeibc(N), ceL*(Y) and A4 be a nonempty finite subset of X. Consider the
followipg linear programming problems related to o:

2.1 Find N(P,,; ¢c)=inf{}pc(y); PEP 4 ,};
(2.2) Find N*(4, «; ¢)
= Sup{[infxeAu(x)] - [SupPeFA’a;cu(P)]; MES*},

where S* is the set of all ue L(X) satisfying [} ,.x K(x, yJu(x)|<c(y)on Yand Iy ,..
={PeP,,; Y pc(y)<oo}. We remark that u(P) exists for any ueS* and Perl, ,...
We have the following duality theorem:

Tueorem 2.1. If Iy, # ¢, then N(P 4, c)=N*(A, o; c) holds and problem
(2.2) has an optimal solution.

PrROOF. Let ueS* and Pel,,, with Cx(P)={x,; n=0} (x,eA4) and Cy(P)
={y,; n=1}. Then we have

ZP"()’)%ZZiiC(J’k) = ZZ=0|“(Xk+1)—u(xk)|

Z u(xo) — u(xp41)-
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Letting n— oo, we have Y pc(y) = u(x,)—u(P) and hence

ZPc(y) g infxeAu(x) _SupPeI’A‘a;cu(P)'

Thus the inequality N(P,,; ¢)=N*(A4, o; ¢) holds.
Next we define deL (X) by

a(x) =inf{Ypc(y); PEP () o}

for xe X. By the assumption of the theorem, i2(x) < co. To prove that e S*, let ye Y
with e(7)={x,, x,}. Let PeP, x1) .8 be arbitrarily given. In case yeCy(P), there
exists a subpath P’ of Psuch that P€P (x,) .« Thend(x,) <Y p,c(r) <Y pc(y)+c().
In case j¢Cy(P), let P"e P, ) , be the path generated by {7} and P. Then a(x,)
<Y pc()=Ypc(y)+c(p). Thus we have &(x,)<Y pc(y)+c() for any PeP, )@
and hence #(x,) <4(x,)+ c(y). By interchanging the role of x, and x,, we have 2(x, )
<#(x;)+c(p) and hence [}, x K(x, P)a(x) S c(p).

Let PeT 4,4, With Cy(P)={x,;n =0} (x,€ A)and denote by P, the subpath of P
from x, to a. Then we have 4(x,) gzpnc(y)—»O as n— oo, so that 4(P)=0. Therefore
SUPper, . cﬂ(P)=O and N(P,,; c)=inf,_,4(x)SN*(4, o; c). Note that 4 is an
optimal solution of problem (2.2). This completes the proof.

As a dual quantity of EL, (A, a)=4,(P,,), let us consider the following value
of an extremum problem:

2.3) Find d,(4, &)=inf{D,(u); u=1 on A, u(x)=0}.
Note that d,(4, «)< o0, since 4 is a finite set. We have
THEOREM 2.2. d,(A4, a)=A,(P,,)" "

PrOOF. Incase A,(P,,)= o0, wehaved,(4,a)=0,since u=11is an admissible
function for problem (2.3). We consider the case where 4,(P,,) < . To prove the
inequality A,(P,,)” ' =d,(4, ), let ue DP(N) satisfy u=1 on 4 and u(x)=0. Put
W (y)=|du(y). Then WeL*(Y) and H,(W)=D,(u). Set I'(a)={PeP,, u(P)
=0}. Then we see easily that Y pr(y) W(y)=1—u(P)=1 for all Pel (¢), so that
WeE,(I'(x)). Since 4,(P,,—I'(x))= 0o, we have by Lemma 2.2 in [2]

Ap(Pao) ™t = 2,(F(@)) ™' S Hy(W)=Dy(u).

Thus 4,(P4,)” ' £d,(4, a). To prove the converse inequality, let We E,(P,,). Then
Ypr(y) W(y) < oo for p-almost every Pe P, , by Lemma 1.1. On account of Theorem
2.1, we can find ueL (X) such that u(x)=1 on 4, u(x)=0 and [} ,.x K(x, y)u(x)|
<r(y)W(y) on Y. Define ve L(X) by v(x)=min (u(x), 1). Then v(x)=1 on 4, v(x)
=0and |dv(y)| S|du(y)|< W (y), so that d,(4, ) < D, (v) < H,(W ). Therefore d,(4,
“)élp(PA,a)—l~
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As for the existence of an optimal solution of problem (2.3), we have
THEOREM 2.3. There exists a unique optimal solution of problem (2.3).

PROOF.  Let {u,} be a sequence in DP(N) such that u, =1 on 4, u,(«)=0and
D,(u,)—d,(A, «) as n—oo. Since (u,+u,)/2 is an admissible function, we see by
Clarkson’s inequality that D, (u,—u,)—0 as n, m— o (cf. [5]). Since DP(N) is a
Banach space with the norm |ull,=[D,(u)+|u(b)’]'" (beX), there exists
#eDP(N) such that ||u,—a||,~0as n—oo. It follows that #=1 on 4 and d,(4, «)
=D, (). To prove @(x) =0, put W,(y)=|du,(y)—di(y)|. Then H,(W,)=D,(u,—1)
—0 as n—o0. Set I"'(x) = { PP 4 ,; (P) exists and u,(P)=0 for all n}. Then A,(P 4,
—I''(a))=0o. By means of Lemma 1.3, we can find a subfamily I («) of I («) and a
subsequence { W, } of {W,} such that lim, , ., pr(y)W,, (»)=0 for every Pel" ()
and A,(I"(x)—I"(x))=oc0. Denoting by p(y) the path index of P, we have the
relations

2er0p()du,(y)=1 and 3 pr(y)p(y)dia(y) =1—a(P)

for every PeI"(x), so we see that #(P)=0 for every PeI""(x). Since A,(P, ,—I'"(2))
=00, we have #(a)=0, and hence 4 is an optimal solution of problem (2.3). The
uniqueness of the optimal solution follows from Clarkson’s inequality.

Let {N}} (N} =<X}, Y})) be a determining sequence of a€ibc(N) such that
ANXT=¢. Denote by P, x* the set of all paths from 4 to X7. Let us study the
relation between 4,(P,,) and the extremal length 4,(P 4 x*) of order p of N relative
to A and X}

We begin with

LEMMA2.1. Let ce L™(Y) and set t=N(P,,;c) and t,=N(Px*; c)
=inf{} pc(y); PEP 4 x*}. Then t,<t,,, <t and t,~1 as n—oo.

ProoF.  Since each path of P y* . (resp. P, ,) contains a path of P, x* (resp.
P4 x*, ), we have t,<1,,, <1. Suppose that lim,, ,7,=1,<t. Let ¢ be a positive
number such that ¢ <¢—t,. For each n there exists P,eP x* such that anc(y) <t,
+¢/4". Since {t,} is monotone, by taking a subsequence if necessary, we may assume
that z,—1,<1/2". Since 4 is a finite set, we may also assume that all elements of { P,,}
have the same node ae 4. Let Cx(P,)={x{; 0<i<gq,} (x{’=a, x)eb(X})). For
every nand k with n>k, let v(k, n)=max {i; x"eb(X}¥)}. Then x{"e X} for all ; with
v(k, n)<i<gq, We call x{} ,, (n>k) the last exit node of P, from X— X}. Since
b(X¥)is a finite set, we can select a subsequence { P,(1} of { P,}, all elements of which
have the same last exit node z, from X — X*. Put n{!) =n,. Similarly we can select a
subsequence { P} of { P,(1)}, all of whose elements have the same last exit node z,
from X — X%. Let n, be the first number of {n{*}such that n*’>n,. By induction we
obtain for each k a subsequence {P,®} of the preceding one, all of whose elements
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have the same last exit node z, from X — X¥, and the number n,. We consider the
sequence of paths { P, } and denoteit by {P,}. Let ko be anumber suchas Y i, 1/2"
<¢&/2. We shall construct a path P*eP ,, ,.Foreach k=2, let P} be the subpath of
P, such that P, is a path from z, _ , to z, and let P} be the subpath of P, such that P; is
a path from a to z,_ . We define a set { P{'; k=k,} of paths by P¥ =P, + P  (the
path generated by P, and P, )and P{,,=P{+ Py, for k=k, We see that for
each k =k, the restriction of P¥ to the subnetwork N— N} =<{X—X¥, Y—Y}*) is
identical for all m=k+ 1. Thus we can define an infinite path P*eP ,, , by the
condition that the restriction of P* to N — Nj isequal to P{, , for every k> k,. Then
P*eP,,. Since Pj contains a path belonging to P, y¥ , Yp;c(¥)Zt-1> so that

Yr,c0) S Y5 c0) = Lpre(n) <ty + /4 — 1y <e/d +1/2¢71
We have
ZP,’:‘C(Y)§ZP,’:‘0 c(y) +Zf=k0+1 ZP;.C()’)
< t"k(, + 8/4k0 + Z,i(=k0+ 1 (8/4'-}- 1/2i_ 1)
<tp+e

forallk=ky+1,s0 that ) pxc(y)<t,+& <1 This is a contradiction. Therefore t,—
as n— oo.

Now we have a discrete analogue of the continuity lemma due to Marden and
Rodin [3]:

THEOREM 2.4.  1im,, o, A,(P 4,x*) = A,(P 4,4)-

PrOOF. Since E,(P4q)2E,(Pyx*, )2E,(Pax}¥), we have 1,(P4,)
24, (Pax*, )2 4,(Pgx*). Put s=lim,_, A, (P x*). Then 0< 5= 41, (P,,,). To prove
the converse inequality, let WeE,(P,,) and put c(y)=r(y) W(y). Then, by Lemma
2.1, we have t,,=N(PA,X:; c)=t=N(P,, c) as n—>oco. We note that =1 since
WeE,(P,,). For any ¢ with 0 <e <1, there exists n, such that z,>1—¢>0for all n
=n,. Then W/(1—¢) belongs to EP(PA,X:) and

/s S Ap(Pyxx) ™' S Hy(W/(1—&)) = H,(W)/(1—¢)

for all n=2n,. Since ¢ is arbitrary, we have 1/s < H,(W),so that 1/s<4,(P,,)”'. This
completes the proof.

§3. Flow problems
For a node xeX, a subset B of X and weL (Y), let us put

I(W’ X) = ZerK(x’ y)W(y),
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I(W’ B) = erBI(W; X) lf erBlI(W; X)I < 00.

Let A be a nonempty finite subset of X, a€ibc(N)and {N}} (NFf =<{X}, Y,*>) be
a determining sequence of a. Denote by F(4, X7 ) the set of all flows w from 4 to X},
i.e., the set of we L(Y') satisfying the conditions: I(w; x)=0for all xe X — A — X} and
I(w; A)+I(w; X¥)=0. Note that F(4, X}, )= F(4; X}). Let L ,(Y') be the set of all
we L(Y ) with finite support and F, (4, X¥) be the closure of F(4, X)) Lo (Y ) in the
Banach space L4(Y; r) with the norm [H,(w)]'/. Here g is a positive number such

that 1 <g<oo.
We say that we L(Y) is a flow of order g from 4 to « if there exists a sequence

{w,} of flows such that w,e F,(4, X}¥) and H,(w,—w)—0 as n—co. Denote by F,(4,
o) the set of all flows of order ¢ from A to a. Let us consider the following extremum
problems related to flows:
3.1) Find dj (4, X})=inf{H,(w); weF (4, X}), I(w; A)= —1};
3.2) Find d}(A4, «) =inf{H (w); weF (4, a), I(w; A)= —1}.

We have

THEOREM 3.1.  lim,_, , d} (4, X¥)=d}(4, o).

PROOF.  Since F (4, X5\ )= Fy(4, X¥), df (A, X¥)Sd} (A4, X}, ). Let we F (4,
a) such that I(w; A)= —1. Then there exists a sequence {w,} of flows such that
w,eF,(A4, X¥) and H,(w,—w)—0 as n—oo. Since w,(y)->w(y) as n—oo for each
yeY, I(w,; A)—I(w; A)=—1 as n—>o0. We have

dg (A, X¥) = Hy(wy/I(wy; A)) = Hy(w,)/lI(w,; A)|*

for large n, so that lim,_, ., dy (4, X})< H,(w). Therefore lim,_,  d5 (4, X}¥)<d} (A,
a). To prove the converse inequality, we may assume that lim,_, ., d§ (4, X}¥) < c0.
For each n, there exists an optimal solution w, of problem (3.1), i.e., w,eF,(4, X))
such that I(w,; A)=—1 and df(4, X})=H,(w,). By a standard argument and
Lemma 1.4, we can verify that H,(w,—w,,)—0 as n, m—oo. Since L,(Y;r)is a
Banach space, there exists we L, (Y'; r) such that H,(w,—Ww)—0 as n— co. Therefore
weF,(A,a). Since w,(y)—>w(y) as n— oo for each ye Y, we have I(w; A)= — 1. Hence
im,_, ,df (4, X}¥)=lim,_, , H,(w,)=H,(W)2d} (A, «). This completes the proof.

In connection with problem (3.1), we considered the following problem in [4]:
(3.3) Find d,(4, X¥)=inf{D,(u); u=1 on 4, u=0 on X}}.
By [4; Theorems 2.1 and 5.1] we have
dy(A, X¥) =2y (P4 x*)""

and the reciprocal relation
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[d,(4, X)1'PLdy (4, X))]'=1 if 1/p+1/g=1.

On account of Theorems 2.2, 2.4 and 3.1, we obtain the following reciprocal
relation:

THEOREM 3.2. If d(A, ®)>0 and 1/p+1/q=1, then
[d,(A, 0)]'P[d¥(A, a)]** = 1.

§4. Extremal width of N relative to 4 and «

Let B, and B, be mutually disjoint nonempty subsets of X. Denote by B, ©B,
the set of all ye Y which connects B, and B,, i.e.,e(y)\B; # ¢ and e(y)"B, # ¢. Let
Qs, 8, be the set of all cuts between B, and B,, namely QeQp g, if there exist
mutually disjoint subsets Q(B;) and Q(B,) such that Q(B;,)=>B; (i=1, 2), X
=0(B,)UQ(B,) and Q=0Q(B,)©Q(B,).

In general, we say that a nonempty subset Q of Yis a cut of N if there exists a
subset X’ of X such that Q=X & (X—X"). The pair of X’ and X— X is uniquely
determined by Q.

Let 4 be a finite nonempty subset of X, aeibc(N) and {N}} (N} = (X}, Y,*))
be a determining sequence of « such that 4N XT=@. Then Q, x*<= Q4 x*, . Let us
put

(4.1) Qaa=Un=1Qax*

and call an element of Q , , a cut between 4 and «. Note that the definition of 0, ,
does not depend on the choice of the determining sequence of «.
For a set 4 of cuts, let us define the extremal width p,(A4) of 4 of order g by

4.2) po(A)™ =inf {H,(W); WeE¥(4)},

where EJ (A) isthe setof all WeL™(Y) suchthat H,(W)< oo and Y ,W(y)=1 for
all QeA. Here we put Y o W (y)=),,W (v). The following properties of the
extremal width can be proved analogously to the case of the extremal length (cf. [2]):

LEMMA 4.1.  Let A, and A, be sets of cuts. If A; < A,, then p,(A)2 py(A45).
LeEMMA 4.2. Let {A,;n=1,2,---} be a family of cuts in N. Then ¥ | pu(A,) "
> u (U, 4,) "1
_.uq Un 14%n

We say that a property holds for g-almost every cut of A if it does for the
members of A except for those belonging to a subfamily with infinite extremal width
of order gq.

Similarly to Lemma 1.3, we can prove

LEMMA 4.3.  Let A be a set of cuts and assume that W,e L*(Y ) and H,(W,)—0
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as n—o0. Then there exists a subsequence {n} such that for g-almost every QeA,
lim,, Yo W,(»)=0.

We call EW (4, X,T)=uq(QA,x:=) (resp. EW, (A4, a)=p,(Q4,.)) the extremal
width of N of order p relative to 4 and X7 (resp. 4 and «.), where 1/p+ 1/g=1. We
have

THEOREM 4.1. i, 4y (Q 4> x*) = 1g(Qa)s L€,
lim,_, , EW,(4, X})=EW,(4, o).

PROOF. Since Q4 x*<Qx*, , =040 We have by Lemma 4.1 p(Q, x*)
2 l‘q(QA,x,’:‘Jr 1) 2 11Q,,4), so that ]imn—»ao.uq(QA,x:‘) =521, (Q44)- To prove the
converse inequality, we may assume that u,(Q,,) <o and s>0. By [4; Theorem
4.1] (note that the definition of E}(A) in [4] is different from the present one), we
have d} (A4, X}¥)=u,(Q 4, x:‘)_ ! for each n. There exists w,EF, (A, Xy) such that I(w,;
A)= —1and H,(w,)=dj (4, Xy). By the proof of Theorem 3.1, there exists we F,(4,
a) such that I(W; A)= —1, 1/s=dj (A, «)= H,(w) and H, (w,—w)—0 as n—co. For
each n, choosew,e F(4, X})N Ly(Y ) such that H,(w,—w,)<1/n. Then H,(W—w,)
—0 as n—oo. Since I(w,; A)—I(w; A)==—1 as n— o0, we may assume that I(w;;
A)#0. Put w,= —w,/I(w,; A). Thenw,eF(4, X}*)\L ,(Y ) and I(w,; A)= —1. Let
Q€. Then there exists n, such that Qe Q,, x* for all n2 n,. Define ue L (X) by u
=1 on Q(4) and u=0 on Q(X})). For every n=n,, we have

—1=I(Wy; A) =Y xcadyer K(x, y)W,(»)
= Yrex (X)L ey K(x, Y)W, ()
= 2oer W) xex K(x, y)u(x),
so that

1 é Zye}’lwn(y)”erXK(x’ y)u(x)l = ZQlwn(y)l

Letus put W,(y)=|w(y)|—|w,(»)|| for every ye Y. Then H,(W,)< H,(w—Ww,)—0as
n—oco. By Lemma 4.3, there exist a subset 4 of 0, , and a subsequence {W, } of
{W,} such that p,(Q4,,—4)=00 and lim,.,y o W, (v)=0 for all QeA. We have

1=3oWO) = Yo [IWn, W) — W] S Yo W,, 0),
so that 1 <Y 5|w(y)| for all QeA. Thus |w|€ E}(A) and p,(A) "' S H,(W)=d¥(4, a)
=1/s. By Lemma 4.2, we have p,(4)=p,(Q,,), and hence u,(Q,,)” ' <1/s. This
completes the proof.
The relation [4,(P4,x*)]1""?[1,(Q4,x*)]"*=1 being known by [4; Theorem
5.2], we have

COROLLARY 4.1. [EL,(4, 2)]"?[EW (4, ¢)]'1=1.
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