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Abstract. Instability of mono-Neumann layer solutions to reaction-diffu-
sion systems is proved by using the SLEP method. Mono-Neumann layers are
singularly perturbed solutions of boundary layer type which are close to the
stable constant state except in a neighborhood of a boundary point and satisfy
the Neumann boundary conditions. We also show the dimension of the asso-
ciated unstable manifold and the asymptotic behavior of the unstable eigenvalue
when one of the diffusion coefficients tends to zero.

1. Introduction

For PDE systems of dissipative type such as reaction-diffusion systems and
the Navier-Stokes equations, it has been anticipated that the associated global
attractors are finite dimensional. Especially the recent progress of the study of
inertial manifolds guarantees that this is the case for several typical equations
(see, for example, [2]). Still so, in order to understand the precise dynamics on
it, it is quite important to know the number of unstable solutions, their profiles,
and the dimension of the unstable manifolds. We shall study such problems in
its most simplest case for the following reaction-diffusion system:

(Ua)
( vt = Dvxx + g(u, v) ,

with Neumann boundary conditions

(Lib) Mχ = 0 = ι;x, (ί, x) e (0, oo) x dl .

The associated stationary problem is given by

with

(1.2b) 1̂  = 0 = 1;,, xεdl,

where / denotes the interval (0, 1), ε and D are positive diffusion coefficients.
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We assume that the nullcline of / is S-shaped, g = 0 intersects once with / = 0
at U = (ΰ, v) like Figure 1, and ε is sufficiently small. Note that U is a stable
constant solution of (1.1). See the end of this section for detailed assumptions.

g =θ

h_(v)

Figure 1: Functional forms of/ and g.

The system (1.2) models a variety of phenomena such as chemical reaction,
solidification, population dynamics, and so on (see, for example, [3], [12], [14]
and references therein). It is known that (1.2) displays a variety of solution
with layers, what is called the singularly perturbed solutions, as in Figure 2
when ε is sufficiently small. They are divided into two classes according to
whether or not they have boundary layers (i.e., sharp transition at the bound-

ary). Solutions with boundary layers like Figure 2(b)(c)(d) were constructed by
[5], and they are called the Neumann layer solutions. Loosely speaking, those
boundary layers satisfy the Neumann boundary conditions at both ends (This
explains why the name "Neumann layer" is given to those layers). Under
Dirichlet boundary conditions, boundary layers usually appear in order to fill
the gap between the outer solutions and the boundary conditions. However
boundary layers in Figure 2 are not of this type, in fact the solution without
boundary layers (see Figure 2(a)) already satisfy the boundary conditions (l.lb)
In this sense Neumann layers are essentially different from the usual ones.

Solutions which have only internal layers (see Figure 2(a)) were constructed
by [4], [13], [8] and they are proved to the stable (see [16], [17], [20]). The
important observation suggested in [6] and [15] is that Neumann layer solu-
tions play the role of separators of these stable inner layer or constant solutions.
Namely they play the similar role as that of the separatrix in ODE system.
Note that for the scalar PDE case the existence and stability of such inter-
mediate solutions has been discussed even for higher dimensional case (see, for
example, [1], [10], [9]). As for the system (1.2), the situation seems to be
much more complicated than the scalar case. One of the main reason for this
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(a) (b)

Figure 2: Profiles of the w-component of singularly perturbed solutions
(a) Internal layer solution
(b) Mono-Neumann layer solution
(c) Neumann layer at the left end and the internal layer
(d) Neumann layers at both ends and the internal layer.

is that many stable stationary solutions coexist for suitably fixed parameters
(see [6], [17]).

Now we restate the problems more concretely:
(1) How are the stability properties of Neumann layer solutions?
(2) If they are unstable, what are the dimensions of unstable manifolds?

Especially how do they relate to the number of layers?
(3) What are the destinations of unstable manifolds?

These are fundamental to understand the global dynamics of (1.2). Note that
there is a gap between (1) and (2). More precise analysis is needed to know the
dimension of the unstable manifold.

Here we consider the most simplest case (see Figure 2(b)), i.e., the Neumann
layer solution which is close to the constant state U except in a neighborhood
of x = 0 or 1. We call it the mono-Neumann layer soltuion. In this case
Figure 3 answers the above questions numerically: a monotone initial data
bigger (resp. smaller) than the mono-Neumann layer solution evolves (resp.
decays) to the internal layer solution (resp. the constant solution 17).
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(a)

Figure 3: Destinations of the unstable manifold of mono-Neumann layer solution
(a) From Neumann layer to the internal layer
(b) From Neumann layer to the constant state 0.

Namely this suggests that the dimension of the unstable manifold is equal
to one, and the destinations of it are the internal layer solution and the
constant state 17, respectively (see Figure 4).

As the first step to solve the above problems rigorously, we intend to prove
in this paper the instability of mono-Neumann layer solution by studying the
spectral distribution of the linearized problem, and that the dimension of the
unstable manifold is equal to one. This gives us a detailed proof for the
corresponding results of [15].

Our goal is as follows.
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Figure 4: Behavior of the unstable manifold of mono-Neumann layer solution.

MAIN THEOREM. The eigenvalue problem linearized at a mono-Neumann
layer solution Uε has a unique real simple positive eigenvalue λc(ε) for small ε

which behaves like

(1.3) λc(ε) = ετ(ε)

where ζ$ is a positive constant and τ(ε) is continuous up to ε = 0.
spectrum has strictly negative real parts for small ε.

The rest of the

The SLEP method of [16] also works to prove this result. However, in

order to know the asymptotic order (1.3), i.e., λc(ε) — Co = ετ(ε)> we need to
construct the approximate solutions more accurately than [5]. In fact it turns

out that the approximation up to order ε is sufficient for our purpose (see
Appendix A). Also note that in order to obtain the asymptotic behavior of the
principal eigenvalue of the singular Sturm-Liouville operator (see Lemma 2.3),

which is indispensable to show (1.3), we can not apply the same technique as in
[16] to it, since the spatial derivative of the stretched Neumann layer solution
does not converge to the principal eigenfunction of the limiting stretched
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singular Sturm-Liouville problem as ej,0. We shall show it in Appendix B
with the aid of the approximate solutions of order ε.

We close this section with the list of the assumptions for / and g and the
notation.

ASSUMPTIONS
(A-l) / and g are smooth functions of u and v defined on some open set O in R2.
(A-2) The nullclίne of f is sigmoidal and consists of three continuous curves

u = h_(v\ h0(v) and h+(v) defined on the intervals /_, /0 and /+, respec-
tively. Let min /_ = v_ and max /+ = v+9 then the inequality h_(v) <
h0(v) < h+(v) holds for v e I* = (v-9 v+)9 and h+(v) (h_(v)) coincides with
hQ(v) at only one point v = v+ (ι;_), respectively. Moreover, the unique
equilibrium point U = (w, v) satisfies ΰ = /ι_(ϋ).

(A-3) It holds that J(v) > 0, where

ί
h + (v)

MW)

J(v) = \ f(s,v)ds.

(A-4) fu\u<0andg0\ϋ-<0.
(A-5) det (d(f, g)/d(u, v))\τ > 0 (see Figure 1).

REMARK 1.1. Note that additional assumptions are necessary besides the
above in order to guarantee the existence and stability of internal layer solu-
tions. See [16] for the details.

We use the following notation with p being a nonnegative integer and α
any nonnegative constant:

CP(I) — the space of p-times continuously differentiable functions on / with
the usual norm,

CJ(/) = the space of p-times continuously differentiable functions on / with
the norm

= fc

 max

Cα%(/) = { u e Cξ(ί)\ ux(0) = 0, ιι(l) = 0 },
Cίtl(7) = {ii e ς?(/)|.κ(0) = 0, ιι,(l) = 0),

C*Um(R+) = the compact uniform convergence in C7-sense in R+, namely, the
uniform convergence on any compact subset of R+ in Cp-sense,

HP(I) = the usual Sobolev space,
HP (I) = the space of closure of {cos (nπx)}ί™0 in HP(I\

9 Y) = the space of bounded linear operators from X into Y with the usual
norm.
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2. Existence theorem and preliminaries

We first show the existence theorem of mono-Neumann layer solution of
(1.2).

THEOREM 2.1. There is a positive constant ε0 such that (1.2) has an ε-family

of the solutions Uε(x) = (u(x9 ε), v(x, ε)) e Cε

2(/) x C2(I) for ε e (0, ε0). Moreover

they satisfy

lime>|,0 u(x9 ε) = ΰ uniformly on [fc, 1]

and

Iimεφ0 v(x, ε) = v uniformly on I,

for any k > 0 (see Figure 5).

u(x,ε) v(x, ε)

Figure 5: Profile of mono-Neumann layer solution.

PROOF. See Appendix A.

It is convenient to introduce the stretched variable s = x/ε to see the

internal structure of Uε near x = 0. We have

LEMMA 2.2. (Behavior of the stretched solution). Let Uε be the stretched

solution corresponding to Uε, i.e. Uε(s) = Uε(εs), and let u* be the unique mono-

tone solution of

us(0) = 0, M(+OO) = u.

Then it holds that

limεio Uε = U* in Q2

M. (R+) - sense,

where U* = (M*, v).
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PROOF. This is easily seen from the construction of the solution Uε (see

Appendix A).

Let us consider the following Sturm-Liouville problem at l/ε,

Uφ = (ε2(d2/dx2) + ffiφ = ζφ in / ,
(2>1) 14 = 0 ondl.

where /M

ε = fu(u(x, ε), iφc, ε)). Let {$;}π>0 be the complete orthonormal set
(CONS) in L2(/)-sense and{Cε}π>0 the associated eigenvalues of (2.1), which are

all real and simple. It is convenient to define the stretched Sturm-Liouville

problem for (2.1):

/ds2}+foφ = ζφ i n / ,

on 57,

where /„ is the stretched potential of /u

ε and 7 is the stretched interval (0, 1/ε).

Similarly, let {φn}n>o be the CONS in L2(/)-sense and{Cε}π>0 the associated real

simple eigenvalues of (2.2). Note that the set of eigenvalues {Cn}n>o remain the

same after stretching. On the other hand, we need y/ε-factor for the eigen-

functions φs

n = *J~εφε

n.

Next, we introduce the Sturm-Liouville problem on R+ which is obtained

by taking a limit of ε j 0 in (2.2):

ds2) + f*)} = ζφ in R+ ,

where f* = fu(ύ*9 v).
The main aim of this section is to show the spectral behavior of (2.1).

More precisely, the principal eigenvalue Co of (2.1) has a positive limit ζ$ as

ε j 0, which becomes the principal eigenvalue of (2.3), and the rest of its spectrum

is strictly negative for small ε. Moreover, (Co — C*)/ε has a definite limit as
ε 10 which can be explicitly expressed in terms of the approximations up to

order ε. We see in Lemma 2.4 that the principal eigenfunction φε

0 also con-

verges to that of (2.3) in an appropriate sense.

LEMMA 2.3. (Spectral behavior of Lε). (a) Let {C«}w>o be the complete set

of eigenvalues of (2.1). Then we have

ζ S > θ > -j*>Cί> >«>•••,
rε _ r* . prε
SO 4>0 " ~ f c ( 3 θ 5

where C*> ^* are positive constants independent of ε, and Co ίs a continuous
function of ε up to ε = 0 with
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Co* = lim^o Co

(see (44) in Appendix B for the detailed expression of Co ιn terms of O(ε)-
approximatiori).

(b) The principal eigenfunctίon φε

0 satisfies the following properties

(i) $>(s)<cexp(-ys), s e i ,

where c and γ are positive constants independent of ε.
(ii) It holds that

'Q(x) dx = L

where L(ε) is a positive continuous function of ε up to ε = 0 with

L* = Iimε4o L(ε) = f fa(s)ds>0
J R +

and φ$ is the principal eigenfunction of (2.3) to C*

PROOF, (a) We only show that the principal eigenvalue Co is strictly
positive and the remaining spectrum is bounded away from zero. The detailed

behavior of Co and its limiting formula is proved in Appendix B. First, we
extend the x-interval of the linearized problem from (0, 1) to (—1, 1) in an even
way and impose the Neumann boundary conditions on both ends. Note that
any eigenvalue and the associated eigenfunction of (2.1) becomes that of the
extended problem after folding over. Especially, they have common principal
eigenvalue. We distinguish the extended problem and its solutions by adding
the subscript e like (2.1)e and (φε

Q)e. The key idea lies in the behavior of the
second eigenvalue of the extended problem. More precisely, we first note that
duf/ds satisfies (23)e with C = 0, which has the unique zero at s = 0 (nodal one)
and decays exponentially as \s\ -» oo (ajid hence belongs to L2(R)). Namely the

second eigenvalue C* °f (2.3)e with the eigenfunction dύ*/ds of nodal one is
equal to zero. A direct consequence of this is that the principal eigenvalue C*
of (2.3)e is strictly positive and the spectrum (including continuous spectrum)

except C* and C* lies strictly in the negative real axis. The associated principal
eigenfunction (φ*)e of (2.3)e becomes an even function because of the even
symmetry of f* and the simplicity of the principal eigenvalue. Hence the half
of (φ*)e becomes the principal eigenfunction of (2.3) with the same eigenvalue
C*. In view of these observations and using similar arguments used in the
proof of Lemma 1.3 of [16], we can verify without difficulty that the principal

eigenvalue Co °f (2.1), which is a continuous function of ε, converges to Co as
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ε |0, and that the next eigenvalue ζ{, the associated eigenfunction of which has
two nodal points in the extended interval, is strictly bounded away from zero.

(b) The result (i) is a direct consequence of the potential form /M

ε, and the
proof of (ii) is quite similar to that of Corollary 1.3 of [16], so we leave the
details to the reader.

LEMMA 2.4. It holds that

lim^o fa (= ^/εφε

0) = fa in CC

2

M. (R+)- sense,

where fa (resp. fa) is the L2 -normalized principal eigenfunction of (2.2) (resp.
(2.3)).

PROOF. Using a similar argument as in the proof of Lemma 1.3 of [16],

any sequence of {$o}ε>o has a convergent subsequence {φon}n>ι *n Q2«.(R+)-
sense and its limit satisfies (2.3) with ζ = (* . Since ζ$ is simple, the limit does
not depend on the choice of the sequence, and hence the conclusion follows.

3. Instability of Neumann layer solutions

Let us solve the linearized eigenvalue problem of (1.2) around Uε(x):

where Mε = D(d2/dx2) + gε

v.

In view of Lemma 2.3, the first equation of (3.1) can be solved as

(3.2)

Here we introduce the reduced resolvent (Lε — A)f defined by

(3.3) (Z/-A)t(.)= X ^^^ε.
«>1 U — Λ

Substituting (3.2) into the second equation of (3.1), we have

(3.4) Dzxx + <"{/Z>f>^^6 + ̂ (Lε - λ)\-fεz) + (^ - A)z = 0 .
so ~~ Λ

We shall show the existence of real positive eigenvalue λε which converges to Co
(the limiting value of the principal eigenvalue of Lε) as ε J, 0, namely

(3.5a) λε = ζξ + τ(ε) ,
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where τ is a continuous function of ε with \imε±0τ(ε) = 0. The asymptotic
order of τ as ε [ 0 is not a priori known, however it turns out later (see Lemma

3.5) that τ is at least of 0(ε), i.e. τ can be written in the following form

(3.5b) τ(ε) = εf(e),

where τ is a bounded continuous function of ε up to ε = 0. Let us proceed
further under the assumption (3.5b) and defer its justification till Lemma 3.5.
Although λε and Co have the same limiting value ζ $ as ε 1 0, λε is not equal to Co
for small positive ε. In fact it holds that

LEMMA 3.1.

Co Φ σ(&ε) for small positive ε .

PROOF. See Appendix 2 in [16].

When λε belongs to σ(&ε\ this lemma guarantees that Co - ^ / 0 for
small positive ε. It follows from Lemma 2. 3 (a) and (3.5) that the second term
of (3.4) becomes

(36) < -*'*• *> q / - < -*'«' *> q y. -(3.6) . ε ,„*, - ftA

c. _ Aε „ ^ _ ^

Hence (3.4) becomes

(3.7) Dzxx + > g + rf(L. _ A rί-Λ z) + (^ - Aε)z = 0 .
Co ~ τA V ε

The second term of (3.7) is called the critical part, since it behaves in a singular
way as ε 1 0 in the sense of Lemma 3.3 below. The rest of (3.7) is called the
noncrίtical part. To proceed further, we need the following three lemmas. The
first two lemmas concern about the asymptotic characterization of the second
and third terms of (3.7). The third one shows the existence of inverse operator
of the noncritical part of (3.7). We leave the proof of them to the reader, since

they are obvious modifications of those of Lemmas 2.3, 2.4 and 3.1 in [16].

LEMMA 3.2. Let F(u9 v) be a smooth function of u and v. Then it holds

that

lim^o (Lε - λ)\Fεh) = F*h/(f* - λ) strongly in L2-sense,

for any function h eL2(/)nL°°(/) and λeCμ, where Fε = F(u(x, ε), v(x, ε)),
F* = F(S,10, f*=fu(ΰ,Ό) (see Theorem 2.1), μ = min {Λ*, -/M*} and Cμ =
{AeC|Re λ > — μ}. Moreover, if h belongs to Hl(I\ the above convergence is
also uniform on a bounded set in H1^).
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LEMMA 3.3.

(i) Hmε^(-fv

εφ^ε) = c^δ0 in (Hfrί))*-sense,

(ii) lim^o (gε

uΦo/V^ = cξδ0 ™ (#*CO)# -sense,

where δ0 is the Dίrac's δ-function at x = 0, (//#(/)) * means the dual space of
Hχ(I) and cf (i = 1, 2) are positive constants defined by

ί
+0°

f */£* Λ?Jυ ΨO aί> •>
3

= Γ°° δίfgds.
Jo

el

Here f* = fv(ύ*(s\ v\ g% = gu(ύ*(s\ v\

LEMMA 3.4. The differential operator Tε'λ: H^(I) —»(H^(/))# defined by
T^λ

z = -D(d2/dx2)z-gε(Lε-λ)\-fεz)-(gε-λ)z has a uniform bounded
inverse Kε'λ : (H^(I))# —>• H^(I) for 0 < ε < ε0 and λ e Cμ with ε0 being an appro-
priate positive constant. Kε'λ depends continuously (resp. analytically) on ε (resp.
λ) in operator norm sense.

I

Let us solve (3.7) in //#(/). Applying Kε'λε to (3.7), we have z =
<z, -fv

εΦo/^/εyKε^ε{gεφε

3/^/ε}/(ζε

()-τ). Hence z is a constant multiple of

Substituting this into (3.7), we see that a nontrivial z satisfying (3.7) exists if and
only if τ satisfies the following equation

/"3 o\ <25Y P ιΛ — Γε -r / fc^ε» Λ£ J ^ιε ^Q I fε °̂ \ Λl^ oj >*ιτ, εj = ς0 — τ — ( A S^u—pf, —Λ —7= / — u ?
\ t vε^ v ε /

where A ε = £* + ετ (see (3.5)). It follows directly from Lemmas 3.1-3.4 that ̂
is continuous with respect to ε up to ε = 0, and holomorphic with respect to
τ e Jf, where Jf is an arbitrary compact subset of C. Hence ̂  is well-defined
at ε = 0 with the limiting value

(3.9) J^(τ, 0) = CAg - τ - c?cj<K°'ζo*{<50}, ^o>

Now we are ready to apply the implicit function theorem to (3.8) at (τ, ε) =
(τ*, 0). Here τ* is defined by

(3.10) τ* = CA$ -
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In fact, it is clear from (3.9) that #"(f*, 0) = 0, and it holds that

-0)=-l- β ^-
' ' dλ'

Thus, using the implicit function theorem, we see that there exists a unique
continuous function τ = τ"(ε) with τ"(0) = τ* for small positive ε satisfying

# (f "(4 ε) - 0 .

Note that τ" is real-valued, since 2F is real-valued when τ is real. The simplic-
ity of this unstable eigenvalue can be verified in an analogous way as [16]. So
we leave it to the reader.

Now let us return to the justification of asymptotic order (3.5b).

LEMMA 3.5. Suppose that there exists an eigenvalue λ = λε of (3.1) which

approaches £* as ε 10, then it must have the asymptotic form (3.5b).

PROOF. We prove this by contradiction. Suppose |τ(ε)| tends to zero
strictly slower than ε. Then we can find a sequence εn for n > 1 with
limπ_0 0επ = 0 such that τ(επ) (= τ(εn)/εn) is a solution of (3.8) for n > 1 with
lim^^^ |τ(εj| = oo. However this is not possible since we see from Lemmas 3.3

and 3.4 that the rest of J*% that is, ζ£ - (Ke *'{gϊφZ/Jl}, -fv

εφo/^fε >, remains
bounded as ε (= εn) j 0.

We conclude that

THEOREM 3.6. There exists a positive constant ε0 such that the linearized
eigenvalue problem (3.1) has a unique real simple positive eigenvalue λ = λu(ε) for

0 < ε < ε0, which tends to ζ* as £l® where ζ* — Iimε4-oCo (see Lemma 2.3).
Moreover, it has the asymptotic form

λ"(ε) = Cg + ετ«(ε),

where τ"(ε) is a real continuous function of ε for 0 < ε < ε0 with τ"(0) =. τ* being

given by (3.10).

So far we only focus on the eigenvalue converging to Co as ε I O 0 e >
the unstable eigenvalue), however we can show much stronger result if we
reconsider the above discussions. Namely we can prove the following

PROPOSITION 3.7. Any eigenvalue λ = λε of (3.1) which stays in the region

Cμ for any small ε must converge to ζ$ when ε J, 0.
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PROOF. We prove this by contradiction. Suppose that λ = λε remains in
Cμ and away from Co uniformly for small ε. In view of (3.7), we see that there
exists a nontrivial zε satisfying

(3.11) Dzε

xx + ̂ l^p-gtf + g*u(U - λ'M-fiz') + (gl - λε)zε = 0 .
bo ~~ Λ

Using the same procedure as before (see (3.8) and (3.9)), this is equivalent to say
that λε satisfies this equation

π 1 9ΐ <&dε P\ — fε 3 ε P / j^ε'λε J/7 ε_2_l f* ° \ — π(j.izj ,/Ί/, , ε; — ς0 — A — ε i Λ ^gfM — —>9—jv — — / — u ,
\ I V8-* V ε /

In view of Lemmas 2.3, 3.3 and 3.4, we see that A£ must remain bounded, since

both Co and ( Kε>λε\gε

u-^\9 -fε^= } are bounded for small ε. Hence λε

\ ( vε j vε /

converges to some value λ* in Cμ different from Co (if necessary, we take a
subsequence of it).

Thus we have in the limit of ε J, 0

which is a contradiction since λ* Φ Co-

Combining Proposition 3.7 and Theorem 3.6, we have

THEOREM 3.8. The unstable eigenvalue λ = λu(ε) is a unique eigenvalue of
(3.1) in Cμ9 and hence the rest of the spectrum has strictly negative real parts
uniformly for small ε.

This apparently shows that the mono-Neumann layer solution is unstable
and the dimension of the unstable manifold of it is equal to one. Also it
is clear that Main Theorem in Section 1 is contained in the statements of
Theorems 3.6 and 3.8.

4. Concluding remarks

(a) Instability of spike solutions. Folding over even times the mono-
Neumann layer solution and normalizing the length of the interval to 1, we
obtain the solutions of (1.2) with sharp peaks as in Figure 6. We call these the
spike solutions. All these spike solutions are unstable, since, by folding over the
unstable eigenfunction for mono-Neumann layer, we see that the resulting one
automatically becomes an eigenfunction of the linearized problem with keeping
the same unstable eigenvalue.
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(a) mono-spike solution (b) double-spike solution

Figure 6: Profiles of spike solutions.

(b) Singularity of dipole type. For simplicity we only consider the mono-
spike solution like Figure 6(a), which is obtained by even extension of mono-
Neumann layer. As we saw in Lemma 3.3, the scaled principal eigenfunction
of U was characterized as a convergent sequence to Dirac's <5-function when
ε|0. An interesting phenomenon for the spike solution is that a new type of
singularity appears for the second eigenfunction of Lε as ε jO, namely the
dipole singularity. Loosely speaking, this can be observed by differentiating the
H-component of the spike solution with respect to x, although it does not satisfy
the Neumann boundary conditions, but Dirichlet ones. See Figure 7. One
can prove that the appropriately scaled second eigenfunction of Lε at the
mono-spike solution, which has nodal one, is close to Figure 7 and converges
to a constant multiple of the derivative of Dirac's ^-function at x = 1/2 (i.e.,
dipole) as ε J, 0. The detailed discussions will be reported elsewhere.

dipole singularity

Figure 7: Profile of the derivative of the w-component of mono-spike solution.
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(c) Instability of general Neumann layer solutions. Our approach and the

instability result seem to be valid for more general Neumann layer solutions
with internal transition layers like Figure 2(c)(d). We shall discuss more about
this in a future paper.

(d) The destination of the unstable manifold for the shadow system. When
the second diffusion coefficient D goes to infinity, we have the following limiting
system, what is called the shadow system (see [14] and [16])

(4.1)

= ε2uxx + f(u, ξ ) 9 x e I ,

ux = 0 , x e dl ,

where v = ξ is a constant function with respect to x. This could be regarded
to be an intermediate system between the full system (1.2) and the scalar
reaction-diffusion equation. In fact, it can be proved that (4.1) has both mono-
Neumann layer solution and mono-internal transition layer solution which are

unstable and stable, respectively (see [6]), and at the same time, (4.1) has a
Lyapounov function when g is a linear function of u and ξ. Using these
properties, we can determine the destinations of the one-dimensional unstable
manifold of mono-Neumann layer solution, namely the stable internal transition
layer solution and the stable constant state U like Figure 3. More precise
discussions will appear in [18].

(e) Stability and instability of standing pulse solutions. When the interval
/ becomes infinite, Ermentrout, Hastings and Troy [3] showed the existence
of two different standing pulse solutions of (1.2a) with boundary conditions
Iim\x^ao(u9v)(x) = U by using a shooting method. Singular perturbation
method also works to obtain similar solutions, moreover the SLEP method
clarifies the stability properties of them. Namely the large pulse solution is
stable and the small pulse solution, which is an extension of mono-spike
solution to the whole line, is unstable. The proofs of these results can be
obtained by the combination of those of [15], [16], [19] and this paper. Note
that, because of translation invariance, zero is always a known critical
eigenvalue for this case. Hence the analysis of asymptotic behavior of critical
eigenvalues becomes slightly easier than the finite interval case. Finally the
instability of the small pulse solution is also obtained by Mimura and Ikede
[11] independently.

Appendix A (Construction of the mono-Neumann layer solution up to

0(ε)).
We shall prove Theorem 2.1 which is a finer version of Fujii and Hosono



Instability of Neumann layer solutions 313

[5] showing the existence of the Neumann layer solution by using the approxi-
mate solution of 0(1) with respect to ε.

First, we shall construct the solutions (M±, t>±) of the following two problems:

Γε2(u_)x : e+/(u_,t>_) = 0,
(la) 4 x e (0, SK) ,

LD(r_)« + 0(ii_,»_) = 0,

with the boundary conditions

and

fε2(u+)xx + f(u+,v+) = 0,
(2a) 4 x e (SK, 1) ,

L !>(».,.)« + 0(«+,P+) = 0,

with the boundary conditions

f(«+),(l) = 0, ιι+(βκ) = Λ0(p) ,
(2b) 4

Next, we obtain α and K to be the functions of ε such that u+ and υ±

satisfy

Γ(M_)x(εκ) = (u+)x(εκ)

\(v-)x(εκ) = (v+)x(εκ) ,

that is, they are classical solutions of (1.2).

A.I. Construction of solutions on (0, £κ).
Using the stretched variable ξ = x/εκ, (1) can be converted to the problem

on / = (0, 1) as

Γ («_)„ + κ2/(u_,»_) = 0,
(3a) 4 ξel

(_D(v_)ξξ + ε2κ2g(u_,V-) = 0,

with

Γ(«_)4(0) = 0, u_(l) = Λ0(»),
(3b) 4

1(̂ (0) = 0, »_(!) = «•

Let K = KO + εKj and α = α0 + eαt, where κ0 (>0), κ l 5 α0 and αj will be deter-
mined later. We seek the solution of (3) in the following form:
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r u - ( ξ ) = U 0 _ ( ξ ) + εUl_(ξ) + εp4ξ)
(4) 1 ,

L»-(ί) = V0.(ξ) + εV^(ξ) + ε2V2.(ξ) + ε2q_(ξ) ,

where p_ and q_ are remainder terms. Substituting (4) into (3), we have

(if _1_ p ts \^" f(TJ I cTJ I pn l^ I cl/^ I p^"Λ/ I c ^/7 \ — O
v 0 ^̂  oiv^^ ^/ v 0 * ^ 1 "^ r ' 0 * ^ 1 ^̂  2 "^ T / — '

(5a)

)-)« + Dε(Vι-)ξξ + Ds2(V2_)ξξ + Dε2(q_)ξξ

£2(κ0 H- εκ1)
2^(l/0_ + εl/!- + εp_, l̂ . + εP^. + ε2K2_ H- ε2^f_) = 0,

with

'(l/o-)δ(0) + B(U^(0) + ε(p.)c(0) = 0,

)€(0) -f ε2(F2_)ξ(0) + ε2(^_)ξ(0) = 0 ,

^_(1) + ε2F2_(l) + ε2q_(l) = α0 + ε^ .

Equating like power of ε°, we have V0_(ξ) = α0, and (5) is reduced to the scalar
problem of £/0_:

(6) 1
L(l/o-)ί(0) = 0, l/o_(l) = M»)»

By using a phase plane analysis and assumption (A-3), we have the following

two lemmas.

LEMMA 1. Let α0 = v. Then, for some positive constant K*, there exists a
unique monotone decreasing solution U0-(ξ) defined on R+ such that U0-(ξ)
satisfies (6) and ί/0_(+oo) = ΰ, that is, U0_(ξ) = ΰ*(κξξ) (see Lemma 2.2).

LEMMA 2. There is a positive constant Cj such that for any α0 e
(v — C I , P ' + C I ) and κ0e(κ* — cl,κ* + c^, there exists a unique monotone

decreasing solution U0-(ξ, α0, KO) of (6).

Using Lemma 2 and equating like power of ε in (5), we have Vί-(ξ) = a.^
and the following problem for U1_:

^)ξξ + κ2{fu(U0., αo)^. +

(7) +2κoKl/([/0_,α0) = 0,

/1_)4(0) = 0 , [/!_(!) = 0,
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Since it follows from (6) that φ-(ξ) = (U0-)ξ(ξ9 α0, KO) < 0 is a nontrivial solu-
tion of the differential operator acting on L^., we can construct the Green
function G(ξ, η) by using it, namely, setting ψ(ξ) = φ,(ζ)^dη/φ,(η)2 and φ(ξ) =
φ-(ξ) - φ'-(Q)ψ(ξ)/ψ'(0), we have the Green function defined by

v
η (Φ(ξ)Φ(η) for ξ<η<l.

!_«, A)=-\ G(ξ, η){κfafΌ(UQ-9 α0) 4- 2κ0κ1/(t/0_, α0)} dη ,
Jo

Therefore, a solution Uι-(ξ> A) of (7) is given by

(8)

where A = (α0, α1 ? KO, jq). It follows from (8) that

LEMMA 3. For any A e Γ± = {A e R4|α0 e(v — cl9v + c±\ κ : 0 e(κ:J—c l 5

Kj + cj and a1? KJ e( — cl9 cj}, ί/iere exisίs a unique solution £/!_(£, zί) o/ (7).

Equating like power of ε2 in (5), we have the following problem of F2_:

iV^O* I 0°3( F°"Ία°= 0 °' ξ € * '

The solution V2_ is given by

2.(ξ, α0, KO) = Ί ί ' Γυ Jξ Joo

From (5b) and lemmas 2, 3, p_ and g_ satisfy the boundary conditions

Γ(p-)c(0) = 0, p-(l) = 0,

Lfa-)«(0) = 0, «-(!) = 0.

Therefore, we look for the solution (p_, ^f_) which belongs to X = C2

>0(/) x
C2

)0(7). Let t = (p_, ^_) and 7 = C°(/) x C°(/). Dividing the left hand side of
(5a) by ε and putting it to T(ί, ε, Λ\ we find that T is the operator from X to Y
and continuously differentiable of t for (ε, J). Analogously as in Lemma 9 of
[12], we have the following lemma.

LEMMA 4. There exists a positive constant εj such that the following
estimates hold for (ε, A) e (0, ε t) x /\:

( i ) | |Γ(0,ε,zf)| |y<K0ε,
(ii) IIT^ε,^)-1!!^^^^!,
(iii) 117$!, ε, zf) - IJ(ί2, ε, Δ)\\ w,y) < ̂ H^ - ί2||x,

where Kt (i = 0, 1, 2) are positive constants independent of (ε, J) and Tf is the
Frechet derivative of T with respect to t.
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Applying the generalized implicit function theorem in [4] to T = 0, we

have

THEOREM 5. There exist solutions ί(ε, Δ) = (p-(ε, Λ\ q_(ε, A)) of T = 0 for

(ε, Δ) e (0, βi) x /I such that ί(ε, Δ) depends continuously on (ε, Δ) in X-topology,
and satisfies Iimεφ0 ||ί(ε, Δ)\\x = 0 uniformly in (0, εj x Γ^.

Thus, we obtain solutions of (1) of the form

fu_(x, ε, Δ) = l/0_(x/εκ;, α0, fc0) + εU1_(x/εκ, Δ) + εp_(x/εκ, ε, Δ)
(9) 1LI>_(X, ε, zί) = α0 + εoq -f ε2F2_(x/εκ;, α0, KO) -I- ε2q_(x/εκ, ε, zί) .

A.2. Construction of solutions on (εic, 1).
By using the transformation y = (x — εκ)/(\ — εκ\ (2) can be written as

{ε2(u+)yy + (l-εκ)2f(u+,υ+) = Q 9

(lOa) J y e / ,
L />(»+)„ + (1 ~ εκ)2g(u+, v+) = Q,

with

f( t t+yi) = o, ιι+(θ) = fc0oo,
(10b) ^

t(t;+),(1) = 0' M0) = α .

We first construct outer approximations of (10) in the following form:

u+(y) = u0+(y) + εul+(y)

Substituting this into (10), we have

[ε2(u0+)yy + ε3(u1+)yy + (1 - εκ)2f(u0+ + εu1+, r0+ + ει;1+) = 0 ,
(lla) J y e / ,

LDfao+ίy, + ̂ ε(ϋ1+)yy + (1 - εκ)2g(u0+ + ειι1+, ι?0+ + ει;1+) = 0 ,

with

Γ(M0+),(1) + Φι+)y(l) = 0 , w0+(0) + eιι1+(0) = Λ0(F) ,
(lib) J

L(»o+),(l) + Φι+),(l) = 0 , ^o+(0) + ει?1+(0) = α0 + ε^ .

Equating like power of ε°, we have /(w0+, t>o+) = O Letting MO+ = Λ_(UO +), ι?0

must satisfy

L



Instability of Neumann layer solutions 317

where G_(f) = g(h_(v\ v). It turns out later that when ε tends to zero, v0+

must satisfy the Neumann boundary condition at x = 0 from the matching
condition of v. Hence in view of the above equations and the monotonicity of
G_(f), we see that the only solution, which meets the matching condition, is U,
that is, α0 = v.

Equating like power of ε in (11), we have f*u1+ + f*vί+ = 2κ0f(ΰ,v\
that is, f*u1 + + fv*υί+ = 0, where f* = fu(ΰ, v) and f* = fv(ΰ9 v). Therefore,
vί+ must satisfy

(12) fu

= 0,

where g* = gu(u9 v) and 0* = gΌ(u9 v). Let a* = g* - fv*gΐ/f? (<0, see assump-
tion (A-5)(b)) and σ± = ± ^/' — a*/D. Then the solution t>ι+(y, αj of (12) and
uί+ are obtained by

(13)

where Q = a,ίσ-/(σ-ea+ — σ+e"~) and C2 = —σ+Cι/σ_.

Next, we construct inner approximations of (10). By using η = y(i — BK)/
SK, (10) can be rewritten as

(14a)

with

(14b) w+(0) = h0(v), ι;+(0) = α .

We seek approximations of the form

fu+(η) = ΰ + εu1+(η) + U0+(η) + εU1 + (η),

|ι;+(ιy) = F + ει;1+(ιy) + ε2V2+(η) + ε3V3+(η).

Substituting (15) into (14), we have

(15)

(16a)

ε3κ2(ul+) yy

κ2(\ - εκ)2f(u+, v+) = Q,

Dε2(ί - «c)2[(K2+)w

+ (l-εfc)2κ2^(M+,υ+) = 0,
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(16b)
Ja + εu1+(0) + l/0+(0) + εt/1+(0) = Λ0(»),

IP + «>ι+(0) + ε2F2+(0) + ε3F3+(0) = α .

Equating like power of ε°, we have the equation of U0+ as follows:

(17)

It follows from Lemma 1 that there exists a unique monotone decreasing
solution U0+(η, KO) of (17) with the boundary condition l/0+(+oo) = 0 for any
positive constant KO.

Using this result and equating like power of ε in (16), we have

(18)
'(ί>ιΛ V0+, v)U1+ = F ,

where F = -κ2{/u(ΰ + U0+, »)u1+(0) + fv(ΰ + U0+, »)»1+(0)} -
2κ0κ1/(ΰ+ l/0+,ίO. Letting (U0+)η(η, KO) = φ+(η), we obtain a solution
U1+(η, <t1, κ0, KJ) of (18) with the boundary condition [71+(+oo) = 0 by

(19)

Next, equating like powers of ε2 and ε3 in (16), we have the problem of V2+
and F3+ as follows:

2κ0κιg(ΰ + U0+, v) = 0 ,

F3+(0) = 0.

The solutions F2+ and F3+ bounded on R+ are given by

' V2+(η, KO) = V2(η, κ0) - K2(0, K0) ,

^2 r+ao Λ+cx)

ί, KO) = — ί? 0(« + ^0+, »)
^ J»/ Jσ
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and

V3+(η, α l 5 = V3(η, α1 ? KO, fcj - K3(0, α l 9 fc0, KI)

ι p+oo Λ+oo

= -- {-J>Ko(t>ι+)«(0) -

We seek the solution of (10) in the following form:

\^v+ = v + εvl+ + ε2(V2+ + εV3+)θ + εq+

where θ(y) is a C°°-cutoff function defined by

(20)

000 -ίi for ye [0,1/4],
for y e [1/2,1].

Substituting (20) into (10) and dividing it by ε, we have for t = (p+, q+)

P(t, ε, α0, κθ9 /cj = \ε2(u1+)yy + ε2θyy(U0+ -h εt/1+)

ε

'κ(

Q(t, ε, «!, K0, KO Ξ

ε2(p+)yy + ε3ί

(1 - εκ)2/(u+, v+.

Dε(v1+)yy + Dε2θyy(V2+ + εV3+)

ε

K

-(!-<
D/9

Dε(q+)y



320 Yasumasa NISHIURA and Tohru TSUJIKAWA

Then, the boundary conditions of (/?+, q+) are given by

(q+),(l) = 0, «+(0)=Ό.

Letting Γ(ί, ε, π) = (P, ρ), π = (αlf KO, /q) and *ε = Cε%(/) x Cf f l(/), we find
that T is the operator from Xε to 7 and differentiate of t for (ε, π). Analog-
ously as in Lemma 4.3 of [8] and Lemma 4.3 of [13], we have the following
lemma.

LEMMA 6. There exist positive constants c2 and ε2 such that for any
π e Γ2 = {πeR 3 | fc 0e(τc5 — c2, fc* + c2) and α l 5 κί ε ( — c2, c2)} and ε e (0, ε2),
£/ιe following estimates hold:

( i ) ||Γ(0,ε,π)||y<K3ε,
(ii) ||
(iii) /or

~(ί1?ε,π)-7;(ί2,ε,π)

f (ί = 3, 4, 5) are positive constants independent of (ε, π).

Applying the generalized implicit function theorem to T = 0, we have

THEOREM 7. There exist solutions ί(ε, π) = (p+(ε, π), q+(ε, π)) of T = 0 for
(ε, π) E (0, ε2) x Γ2 such that ί(ε, π) depends continuously on (ε, π) in Xε-topology,
and satisfies limε±0 ||ί(ε, π)||χ£ = 0 uniformly in (0, ε2) x 7"2.

Thus, we obtain solutions of (10) of the form

M+(X, ε, π) = ΰ + εw1+((x — ετc)/(l — ε/c), αj

+ 0[t/0+(Λ;/εκ: — 1, KO) + εUί+(x/εκ — 1, π)]

+ εp+((x — εκ)/(l — εκ\ ε, π)

(21) -{ + εhf_(v)q+((x - εκ)/(l - ε/c), ε, π),

v+(x, ε,π) = v + εt;1+((x — εκ:)/(l — εκ;), αj

H- £2θ[y2+(x/εκ — 1, κ0) -f εF3+(x/ε/c — 1, π)]

+ εq+((x - ετc)/(l - εκ)9 ε, π).

A.3. Construction of solutions on /.
We seek solutions on the whole interval /. Putting α0 = v and KO = κ$9

we see from (9) and (21) that u+ and v± constructed in the above subsections
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satisfy the C1-matching conditions up to O(l) as εj,0. Taking
appropriately, we match the derivatives up to O(ε) as follows:

321

and

Φ(ε,

(22)

«!, fq) = -j-M-(*> ε» v, αι» *o> KI)

- -τ-w+(x, ε, α1 ? κ:J, jq) = 0 ,
"* JU=εκ

I f dα l 5 /q) = - ;̂M*> e, t;, α1? /eg, /q)

d II
- -j-M*> ε, α l 5 /eg, Kj = 0 ,

"^ JU=εκ

where u± and t;± are given in (9) and (21). By Theorems 5 and 7, it holds that
Φ and Ψ are uniformly continuous in (ε, α^fq), that is, they are extended
continuously to ε = 0. Setting ε = 0 in (22) and using (8), (13), (19), we have

1 [ d d 1
Φ(0, α l 5 icO = -̂  Tp ^ι-(l» v, <*ι> ^o, ^i) - -& ̂ ι+(0, α1 ? icg, icj ,

KO |_ας ας j

β(U0-, .

fC* Γ+α°
Putting αf = -̂  gf(C/0_, ϋ) dξ/(σ+eσ~ - σ_eσ+)/σ.σ+(eσ+ - eσ~\ we have

υ Jo
, αf, /q) = 0 and (δ/δαJ^O, α1 ? K J^^^ ̂  0. Next, we seek κx such that

Φ(0, αf, fcj = 0. From (8) and (19), it follows that

Γ f '
LJo

(I/0-, F) dξ

Γ+α

Ji

Γ 1 1
2ιc1 (^r - ^/(l/0-, F) dξ\

Jo J

We find that Φ(0, αf, *f) = 0, where fcf = -«ίιcJ[JJ^K)Λ(l/o-, ϋ) dξ +

ίi"°°^ω/,K-,t;)^]/2ίέ(^-^/(t/o-^)^ Applying the implicit function
theorem to Φ = ¥*" = 0, we can show that there is a positive constant ε0 such
that for any εe(0, ε0), there exist two functions α^ε) and K^ε) satisfying
Φ(ε, αx(ε), ic^ε)) = Ψ(ε, α^ε), /q(ε)) = 0, lim^oα^ε) = αf and li
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Therefore, Uε(x) = (u(x, ε), v(x9 ε)) defined by

w_(x, ε, v, α^ε), icjj, ^(ε)) for x 6 (0, εκ (ε)),
1 MX, ε> v> αι(£X KΌ, *ι(ε)) f°Γ x e (εκ(ε), 1),

and

: (0, ε/φ)),
v(x ε) — 1 MX, ε, ϋ, αjε), /eg, /c^ε)) for x e (εκ(ε), 1),

becomes an ε-family of solutions to (1.2). This completes the proof of Theorem
2.1.

Appendix B (Asymptotic behavior of the principal eigenvalue and its
eigenfunction).

We shall prove the remaining part of Lemma 2.3 by constructing the
principal eigenvalue ζ and its eigenfunction w such that

(23a) 82^Lw + (/;_C)w = 0 s X 6 / ,

with

(23b) w,(0) = 0, w,(l) = 0, w(εκ(ε)) = 1 ,

where κ(ε) = κ$ -H κ±(έ).

In order to solve (23), we shall construct the solutions w± of the following
problems for any ζ belonging to some real interval:

(24a) ε2 ̂  w_ + (fu

ε - ζ)w_ = 0 , x E (0, εκ(ε))

with

(24b) (w_),(0) = 0, w_(eιc(β)) = 1 ,

and

(25a) ε2 ̂  w^ + (/tt

ε - 0w+ = 0 , x e (εκ(ε), 1)

with

(25b) (w+)x(l) = 0, w+(ε/c(ε)) = 1 .

Next, we determine ζ to be a function of ε such that w± satisfy
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B.I. Construction of solutions on (0, εκ(ε)).
By using the transformation ξ = x/ε/φ), (24) can be written as

|>-)« + κ(ε)2(#-Ow-=0, ξel,
(26) \

l(w_),(0) = 0, w _ ( l ) = l .

We seek the solution of (26) in the following form:

f w_(£) = W0_(ξ) + βWUί) + «M£) >
(27) \

U = Co + εCo ,

where r_ is a remainder term. Substituting (27) into (26), we have

(28)
+ κ(ε)2[/; - (Co + eCoXKWo- + β^i- + βr_) = 0 , ξel,

(Wo-)«(0) + e(Wί_){(0) + β(r_)4(0) = 0 ,

W0_(l) + eWi_(l) + βr_(l) = 1.

Equating like power of ε°, we have the following problem of W0_ and Co:

Γ(Hί)-)« + (^)2(/«° - Co)Wo- = 0 , ξ 6 / ,
(29) ^

LEMMA 8. There exists a unique positive constant ζj with which (29) has a
unique bounded solution W0(ξ) on R+.

PROOF. (29) is the linearized eigenvalue problem of the following problem:

(£/o)4(0) = 0 , {70(+oo) = ΰ,

where the solution U0(ξ) is given in Lemma 1. Therefore, (29) has a real
positive eigenvalue and the corresponding eigenfunction has a definite sign (for
example, see [7]). Without loss of generality, we can assume that W0(ξ) > 0
for ξ e R+, W0_(ξ) = W0(ξ)/W0(l) is a solution of (29) with ζ0 = CS

REMARK 1. Since we showed in the proof of Lemma 2.3 that (23a) has a
unique positive eigenvalue, the eigenpair of (27) corresponding to ζξ must be
the principal one.

Equating like power of ε in (28), we have the following problem of £0 and
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W,.:

\(W, _)« + K)2(/u° - CS) W,_ = F_ + £0K)2 Wo- , ξel,
(30) j

W _)<(()) = 0, WΊ_(1) = 0,

where F_ = -[(κ8)2/^t/ι- + W/JX + 2κ$κ?(/u° -

LEMMA 9. For any £0 e R, (30) was a solution W^_(ξ, ζ0)

PROOF. Set <*(£) = W0_(ξ)Hdη/W0_(η)2. (30) has the Green function

G(ξ, η) denned by

c(f . for 0 < » / < £
(ζ'η)- for { < S f f < l .

Therefore, a solution WΊ_(ξ, £o) of (30) is given by

(31) W,_(ξ, Co) = Γ G(ζ, η)F.(η) dη + U^)2 Γ G(ξ, η)W0^(η) dη .
Jo Jo

From (28) and Lemmas 8, 9, it follows that r_ satisfies the boundary
conditions (r_)ξ(0) = 0, r_(l) = 0. Dividing the left hand side of the equation in
(28) by ε and putting it to T(r_, ε, £0), we find that T is the operator from
Cι>0(7) to C°(/) and continuously diίferentiable of r_ for ε. Then, we have the
following lemma for T.

LEMMA 10. For any bounded interval B in R, there exists a positive constant
ε3 such that the following estimates hold for (ε, £0) e (0, ε3) x B:

(i) ||T(0,ε,{0)||co(J)<X6ε,

(ii) || Γr(0, ε, CAo)-x ll*(co(/,.c?.o(/)) ̂  KI>

(iii) || Tr(rl9 ε, Co) - Tr(r2, ε, ίo)llj2'(cϊ>0(/),co(j)) ^ ̂ βlki ~ Γ2llcϊ> 0</)»
where Kt (ί = 6, 7, 8) are positive constants independent of (ε, £0).

PROOF. Since (i) and (iii) are obvious, we only consider (ii). Noting that

Γr(0, ε, Co) = d2/dξ2 + (/Co*)2(/tt° - Co) + O(e) as ε j O and using the Green func-
tion in Lemma 9, we can prove (ii).

Applying the generalized implicit function theorem to T = 0, we have

THEOREM 11. There exist solutions r_(ε, Co) of T = 0 for (ε, Co) e (0, ε3) x B
such that r_(ε, C0) depends continuously on (ε, C0) with respect to the topology of

C?i0(/), and satisfies Iimε4r0 ||r_(ε, Co)llcf,0(/) = 0 uniformly in (ε, C0) e (0, ε3) x B.
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Thus, we obtain solutions of (24) of the form

w_(x, ε, £0) = W0_(x/εκ(ε)) + εW^x/εfφ), £0) + εr_(x/εκ:(ε), ε, £0) ,

B.2. Construction of solutions on (εκ(ε), 1).
By using the transformation y = (x — εκ(ε))/(l — εκ(ε)), (25) can be written

as

Γε2^iw+ + (i _ εκ(ε))2(/tt

ε - (ζ* + ε£0))w+ = 0 , yel,
(33) J dy

[(w+),(l) = 0, w + (0)=l.

We first construct outer approximations of (33) in the following form:

(34) w+(y) = w0+(y) + εw1+(y).

Substituting (34) into (33), we have

ε£0))(w0+ + εw1+)

=0, yel,
(35)

w0+(0) + w1+(0

Equating like power of ε°, we have (f° — C*)w0+ = O Because /u° — C* ^ 0 for
y e (0,1], it holds that w0+ = 0. Using this result and equating like power of ε
in (35), we have (f° - CS)w1+ = 0, that is, w1+ = 0.

Next, we consider inner approximations of the form

(36) w+(η) = W0+(η) + εW1+(η)

by using η = x/(εκ(ε)) — 1. Substituting (36) into (33), we have

f(W0+ + εW1+)ηη+κ(ε)2(fi - (C8 + <£>))(%+ + eW1+) = 0,
(37) 4

[W0+(0) + εW1+(0) = 1 .

Equating like power of ε°, we have the equation of W0+ as follows:

(38) {J0+

0

W-Γ°

Then, it follows from Lemma 8 that the bounded solution of (38) is given by

W0+(η) = W0(η
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Using this result and equating like power of ε in (37), we have

*
1+ - 0+ + F+ = 0 ,

where F+ = 2κ5κf(/u° - ti)W0+ + (κg)2[/>1+(0, 0) + Uί+θ) + />1+(0, 0)] W0+.
By using W0+, a bounded solution W^+(f/, C0) of (39) is given by the form

(40) Wί+(η, Co) = W0+(η) ί" Γ°
JO Jσ

We seek the solution of (33) in the following form:

(41) w+ = (W0+ + εWl+)θ + εr+ ,

where r+ is a remainder term and θ is the cutoff function. Substituting (41)

into (33) and dividing it by ε, we have

T(r+9 ε, Co) =

+ 2sθyl(W0)η + e(^),] + ε3(r+)y, + (1 - ε/c(ε))2

]0 + εr+)}/ε = 0 .

The boundary conditions of r+ are given by (r+)y(l) = 0 and r+(0) = 0. There-

fore, we find that the operator T from C*tί(I) to C°(7) is continuously diίferenti-

able of r+ for (ε, ζ0). Then we have the following lemma for T.

LEMMA 12. There exists a positive constant ε4 such that for (ε, Co) e

(0, ε4) x B, the following estimates hold:

( i) ||Γ(0,ε,CA

0)||co(/)<X9ε,

(ii) || Γr(0, ε, C'o)'1 ll^(co(/),c^(/)) < ̂ 10,
(iii) || Tr(rl9 ε, Co) - Tr(r2, ε, Co)ll^(cf>l(/),co(/)) < ̂ i i Iki - r2||C2 1(/) ,

where KI (i = 9, 10, 11) are positive constants independent of (ε, Co)

PROOF. Since (i) and (iii) are obvious, we only consider (ii). Note that

Γr(0, ε, Co) = ε2d2/dy2 4- fu° - Co + O(ε) as ε 1 0. Analogously as in Lemma 3.2
in [4], we can prove (ii).

Applying the generalized implicit function theorem to T = 0, we have

THEOREM 13. There exist solutions r+(ε, Co) of T = 0 for (ε, Co) e (0, e4) x B

with respect to the topology of C2

Λ(I), and it holds that lim^o ||r+(ε, Coίllc^d) = ̂
uniformly in (0, ε4) x B.
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Thus, we obtain solutions of (25) of the form

(42) w+(x, ε, CA

0) = [W0 + ((x - εκ(ε))/εκ(ε))

+ εWl+((x - εκ(ε))/εκ(ε\ £0)M(*

+ εr+((x - εκ(ε))/(l - εκ(ε)), ε, Co)

B.3. Construction of solutions on /.
We seek solutions of (23) on /. From (32) and (42), it follows that vv±

satisfy the C1- matching condition up to O(l) as ε^O. So, we consider that up

to 0(ε) as follows:

(43) Φ(ε, Co) = *(ε) -j- w_(x, ε, Co) - ~r w+(x> ε» Co)
LaX ax J x=εκ(ε)

By Theorems 11 and 13, it holds that Φ is uniformly continuous in ε and C0,

that is, it is extended continuously to ε = 0. Setting ε = 0 in (43) and using

(31), (32), (40) and (42), we have

Φ(0, CA

0) = (»Ί-){(1, Co) - (Wι+),(0, Co)

Γ 1 2κ:* Γ+0°
+ CAo(*S)2 (^o)2(ί) dξ--±\ l(W0\(ηn2 dη

Jo κo Jo

J i
[/«°u(«ι(o) + 1/!_) +

i

Putting

(44) CAS = 2^* 00 ((^W)2 ^ + (^S)3 C/uu^i- + fu>Ώ(W0)
2(ξ) dξ

Γ
1

+0°

we have Φ(0, ζ$) = 0. Noting that (d/dζ0)Φ(Q, ft) = (κ?)2 ί^00 (^0)
2(ί) ̂  > 0

and applying the implicit function theorem to Φ(ε, ζ0) = 0, we obtain that there

is a positive constant ε5 such that for any ε e (0, ε5), there exists a function

C0(ε) satisfying Φ(ε, ζ0(ε)) = 0 and limε>i,0Co(ε) = ft- Therefore, (w(x, ε), £0(ε))

defined by

( \ = \ w-^x' ε' ̂ °^ε^ f°Γ X e °̂' εκ^W ( X ' ε J~lw+(x,ε,CAo(β)) for x e (εκ(ε), 1)



328 Yasumasa NISHIURA and Tohru TSUJIKAWA

and

becomes an ε-family of solutions to (23) with ζ = ζ(ε). This completes the
proof of Lemma 2.3.

References

[ 1 ] Amann, H., Existence and multiplicity theorems for semi-linear elliptic boundary value

problems, Math. Z. 150 (1976), 281-295.

[ 2 ] Constantin, P., Foias, C, Nicolaenko, B. and Temam, R., Integral Manifolds and Inertial

Manifolds for Dissipative Partial Differential Equations, Springer-Verlag Berlin Heidelberg,

1989.

[ 3 ] Ermentrout, G. B., Hastings S. P. and Troy, W. C., Large amplitude stationary waves in an

excitable lateral-inhibitory medium, SIAM J. Appl. Math. 44 (1984), 1133-1149.

[ 4 ] Fife, P. C., Boundary and interior transition layer phenomena for pairs of second-order

differentiable equations, J. Math. Anal. Appl. 54 (1976), 497-521.

[ 5 ] Fujii, H. and Hosono, Y., Neumann layer phenomena in nonlinear diffusion-

systems, Lecture Notes in Num. Anal 6, Kinokuniya-North Holland, 1983, 21-38.

[ 6 ] Fujii, H., Nishiura, Y. and Hosono, Y., On the structure of multiple existence of stable

stationary solutions in systems of reaction-diffusion equations, in "Patterns and

Waves—Qualitative Analysis of Nonlinear Differential Equations", North Holland, 1986,

157-219.

[ 7 ] Greenberg, J., Stability of equilibrium solutions for the Fisher equation, Qual Appl. Math.

39 (1981), 239-247.

[ 8 ] Ito, M., A remark on singular perturbation, Hiroshima Math. J. 14 (1984), 619-629.

[ 9 ] Kelley, W. and Ko, B., Semilinear elliptic singular perturbation problems with nonuniform

internal behavior, preprint (1989).

[10] Matano, H., Asymptotic behavior and stability of solutions of semilinear diffusion

equations, Publ. RIMS. Kyoto Univ. 15 (1979), 401-454.

[11] Mimura, M. and Ikeda, H., private communication.

[12] Mimura, M., Nishiura, Y., Tesei, A. and Tsujikawa, T., Coexistence problem for two

competiting species models with density-dependent diffusion, Hiroshima Math. J. 14 (1984),

425-449.

[13] Mimura, M., Tabata, M. and Hosono, Y., Multiple solutions of two-point boundary value

problems of Neumann type with a small parameter, SIAM J. Math. Anal. 11 (1980), 613-

631.

[14] Nishiura, Y., Global structure of bifurcating solutions of some reaction-diffusion systems,

SIAM J. Math. Anal. 13 (1982), 555-593.

[15] Nishiura, Y., Large stability analysis and threshold phenomenon of reaction-diffusion

systems, Proceedings of the Conference "Nonlinear Parabolic Equations; Qualitative

Properties of Solutions", Research Notes in Math. 149, Pitman, 1987, 162-170.

[16] Nishiura, Y. and Fujii, H., Stability of singular perturbed solutions of systems of reaction-

diffusion equations, SIAM J. Math. Anal. 18 (1987), 1726-1770.

[17] Nishiura, Y. and Fujii, H., SLEP method to the stability of singularly perturbed solutions

with multiple internal transition layers in reaction-diffusion systems, NATO ASI Series F37,



Instability of Neumann layer solutions 329

"Dynamics of Infinite Dimensional Systems", Eds., Chow S. N. and Hale J. K., Springer-
Verlag Berlin Heidelberg, 1987, 211-230.

[18] Nishiura, Y., Gardner, R. and Tsujikawa, T., in preparation.
[19] Nishiura, Y., Mimura, M., Ikeda, H. and Fujii H., Singular limit analysis of stability of

travelling wave solutions in bistable reaction-diffusion systems, SIAM J. Math. Anal 21
(1990), 85-122.

[20] Sakamoto, K., Construction and stability analysis of transition layer solutions in reaction-
diffusion systems, preprint (1988).

Department of Mathematics,
Faculty of Science,

Hiroshima University
and

Hiroshima Junior College of
Automotive Engineering






