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1. Introduction

In the growth curve model of Potthoff and Roy [10] we observe an
N x p random matrix Y whose rows are independently distributed as N,(-, 2)
with

(1.1) E[Y]= AEB,

where A4 and B are known N x k and g x p design matrices of ranks k and
q < p, respectively, and =5 is a k x g matrix of unknown parameters. This
model is also called a GMANOVA model since the model in the special case of
B=1,is a MANOVA model. The model in the case when X is arbitrary
positive definite has been studied by many authors. A comprehensive review is
given by Grizzle and Allen [5].

In this paper we consider the case when 2 has a serial covariance struc-
ture, or an autoregressive structure of the first order

1.2) X = 062G(p) = a*(p', iLj=1,2,...,p,

where ¢ > 0 and |p| < 1 are unknown. In most applications of the model (1.1),
p is the number of time points observed each of the N subjects, (¢ — 1) is the
degree of polynomial, and k is the number of groups. Further, p is small
For the situations, it is natural to assume (1.2) as a covariance structure.
In fact, Lee [8] has pointed out that the serial covariance structure (1.2) is
appropriate for three sets of real data. Fujikoshi, Kanda and Tanimura [4]
studied the limiting distributions of the MLE(maximum likelihood estimate)’s of
p and ¢? and the LR(likelihood ratio) test for (1.2) in the situation where p and
k are fixed and N — co. The purpose of this paper is to extend the limiting
results by finding the next terms in the asymptotic expansions. Some pre-
liminary results on our asymptotic method are given in Section 2. In Section 3
we obtain an asymptotic expansion of the distribution of the MLE’s of p and
62 up to the order N™*2, In Section 4 we discuss with refinements of chi-
square approximation to the null distribution of LR statistic for (1.2).
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2. Preliminaries

Throughout this paper it is assumed that X has the serial covariance
structure (1.2). Then

2.1 It ={o*(1 - p*)} (p?Dy — 2pD, + D),

where D, = diag(0, 1, ..., 1, 0), D; = I, = the identity matrix of order p, and

2.2) D, =

It is known (Fujikoshi, Kanda and Tanimura [4]) that the estimates =, p and
é? of Z, p and ¢ based on the maximum likelihood of Y are given as the
solutions of the following equations:

(2.3) E=(AA)AYZ'B(BE'B) !,
(24) 6> = {p(1 — p*)} (ap®> — 2bp + ¢),
(2.5) (p—Vap® —(p—2)bp> —(pa+c)p +pb=0,

where £ = 62G(p), a=tr D,R, b=trD,R, ¢ =tr D;R, R=n"'(Y — AZB) x
(Y — AZB) and n = N — k. Note that the MLE’s of =, p and o2 are given by
Z, p and (n/N)é?, respectively. Our asymptotic distribution theory is based on
perturbation method. We shall derive stochastic expansions of the MLE’s in
terms of

U = (A4) 24 (Y — AEB)Z 2,
V=/nEsx"_1,),

where S =n"1Y'(Iy — A(A’A)7*A’)Y. Here U and V are independent, the ele-
ments of U are independently distributed as N(0, 1), and V has the limiting
density given by

(2.6)

2.7) fo(V) = g~ PE+DA=PR+3f4 otr (_1Y2)
We can write R in terms of U and V as
R=S+n'{I,— S7'B(BL'B) By ZPU'UL?
(2.8) x {I,— £'B'(BL~'B')'B}
=SV, +n 2V £ 0T W2 4+ 0,(n ),
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where W =MU'UM, M =1, — P, and Py =X ""?B(BZ"'B)'BX~"2. This
implies stochastic expansions of a, b and c as follows:

a=ay+n"a; +nta, + 0,(n"*?),
(2.9) b= by, + n""2b, + n7'b, + O,(n"¥?),
c=co+n"c; +nlc, + 0,(n"),

where (ao, a, a;), (by, by, b,) and (co, ¢,, ¢,) are defined by (tr D,, tr D, V, tr D,;W),
i=1, 2, 3, respectively, and D, = Z2D,X'2 =1, 2, 3. These expansions as
well as (2.4) and (2.5) are fundamental in deriving stochastic expansions of p
and 2.

We now list some formulas used in Sections 3 and 4, which are given
by the following Lemmas 2.1 and 2.2. These are derived by straightforward
calculations.

LEMMA 2.1. Let X be the matrix defined by (1.2), and let n = ¢*(1 — p?)~".
Then

(1) tr 22 =n*{p—2p* - pp* +2p*"*V},
2 tr 2% =n*{p+3(p—2)p> - 3(p + 2p* - pp°
+6(p + 1)p*?™) — 6(p — 1)p>?* 2},
() tr 22Dy =n*{p -2 — pp* + 297},
4 tr 2D, XD, =n’{p—2+ (3p — 10)p* — 3pp* — pp°®
+ 20707 1 2(p + 1)p? — 22p — 5)p*7 ),
(5) tr2°Dy=n*{p—2+3(p—2p*>—Cp+4p*—pp°
+2(2p + 1)p*? — 2(p — 3)p>**V — 2(p — 2)p?** 2}

LEMMA 2.2. Let V be a p x p symmetric random matrix with the probability
density function defined by (2.7). Then, it holds that for any p x p symmetric
matrices A, B and C,

(1) E[tr AV-tr BV] = 2tr AB,

(2) E[tr AVBV]=tr AB+tr A-tr B,

(3) E[tr V*]=pQR2p*+ 5p+95),

(4) E[(tr AV)? tr (BV)*] = 2{(tr A)*> + tr A%} tr B*> + 8 tr (AB)?,
(5) E[(tr AV)>tr BV-tr CV] = 4tr A% tr BC + 8 tr AB-tr AC,
(6) E[(tr AV)? tr V*] = 2(2p> + 5p + 21p + 24) tr A% + 16(tr A)%,
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(7) E[(tr AV)? tr BV-tr V3]

=12{(p+ 1)tr A>-tr B+ 2(p + 1) tr AB-tr A + 4 tr A’B},
(8) E[(tr AV)(tr V3)?]

= 12(4p® + 9p? + 43p + 48) tr A% + 72(p? + 2p + 3)(tr A)>.

Some formulas in Lemma 2.2 have been used in Nagao [9], Fujikoshi [3],
etc. For the formulas in the case of A = B = I,, see Hayakawa and Kikuchi
[6]. The following lemma was proved by Fujikoshi [2].

LEMMA 2.3. Let V be a symmetric random matrix defined by (2.6), where nS
is distributed as a Wishart distribution W, (X, n). Then, the probability density
function of V can be expanded as

(2.10) SV) = foM {1 +n7q, (V) + n7'q,(V)} + O(n™?),
where fo(V) is given by (2.7), and
(V)= —3p+ HtrV+5tr V3,
(V) =Ha(V)}? —4%p2p* +3p— D+ 3(p+ Dtr V2 —gtr V*.

3. The distribution of p and >

It is known (Fujikoshi, Kanda and Tanimura [4]) that the limiting distri-
butions of \/;(ﬁ — p) and \/;1(0‘2 — o) are N(0,2) and N(0, t2), respectively,
where

(3.1) 2=p{(p— Dr} i1 —p??, 2 =2r(1 + pP)a®,

and r = p — (p — 2)p%. We generalize this result by finding the terms of n~'/2
in the asymptotic expansions of the distributions.

LEMMA 3.1. Let p and 6% be the estimates defined by (2.3) ~(2.5). Then
(1) p=p+nPp +n7'p, + 0,(n"),
(2 ¢*=0*+n"0, + n"'o, + 0,(n"),

where
p=—{(p— re?}1 {(r — p*pa, —rb, + pc,},

p2=2r"(p — 2)pp? — {(p — Dra*}'p,[{p — 3(p — V)p*}a,
—2(p — 2)pb; + 4]

— {(p — Dro®} ' [(r — p*)pa, — rb, + pe, ],
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g, =a*{p(l = p*)} 7 {2(p — Dpp, + (1 = p*) tr V},
oy =20 {p(1 — p*)} H{(p — DA + p*)(1 — p?)7'p}
+(p = Vpp, + ppy tr V + pia~*(ayp — by)
+(20%)Hazp? — 2b,p + ¢5)} -
Proor. The first result (1) is obtained by substituting (2.9) into (2.5) and

finding the solution of p in an expanded form. This result and the equation
(2.4) yield the second result (2).

We now use the following method frequently used in finding asymptotic
expansions. Let ¢, be the characteristic function of ﬁ(ﬁ — p). Then we may
write ¢, as

1
(3.2) B,(t) = E[exp (itpl){l + 7itp2}] +0@m™)
n
which will be evaluated as

(3.3) exp < — % rf,t2> [1 + % {(it)g, + (it)*g; }] +0(n™).
n

An asymptotic expansion can be obtained by formally inverting (3.3). The
validity of this method has been established under certain regularity conditions
(see, e.g., Bhattacharya and Ghosh [1]). We can write p, and p, as

(3.4) pr=a,trCV, pr=0,trCV-trC,V+oa, tr C;W,
where

o= —(1=p){2(p = Dp}7',  ay=p(l—p?)?{2p — V’rpe*}7",
(3.5) C, =1, —pre®)™'Q, Q=2-pD,,

C, =D+ {p+(p—2p*}{p(l — p?)r}7'Q.

Using some formulas with respect to V (see, e.g., Siotani, Hayakawa and
Fujikoshi [11]) and noting that E[W] = kM, it is seen that ¢,(t) can be
expressed as (3.3) with

g1 = 2“2 tr C1C2 + otlktl‘ CIM N

(3.6)
$a3 tr C} + dala, tr C2-tr C,C, .

g3

The coefficients g, and g; can be simplified by using Lemma 2.1. The final
result is given in Theorem 3.1.
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THEOREM 3.1. The distribution function of \/;l(ﬁ — p)/t, can be expanded
as

P(M < x) = 3(x) - i{ﬂ PN(x) + g—id’m(")} How.
T, \/; T T

where ®@Y)(x) denotes the j-thderivative of the standard normal distribution func-
tion @(x), 1, is given by (3.1), and

gl = -—2r_1(1 — p2)p + alk tr CIM s
gs = $r73a3p(p — 1)p*{3p> — (p — 2)(3p — 2)p*} .

Similarly we can derive an asymptotic expansion of the distribution of
\/;1(62 — 06?) by expanding its characteristic function

(3.7)

(3.8) (1) = E[exp (ita,) {1 + \/i;imzﬂ +0n™).

The evaluation of (3.8) can be done by the same way as in the case of ¢,(¢).
We note only that

o, =r1trQV,

(3.9)
o6,=03tr C;V-tr C3V +r ' tr QW,
where
(3.10) ay={(p—Dr}'(1—p?), C3=D,—r'(p-20Q.

THEOREM 3.2. The distribution function of \/;1(62 — 6%)/1, can be expanded
as

Jn(6? — 6?) 1 fhy hy -1
P<r— <x)=o9-— {—0 ) + 3 B ¢ + 0(r™),

where 1, is given by (3.1), and
hy =kr ' tr QM ,

(3.11)
hy =5r*{p + 3rp> — (p — 2)p°}0®.

The coefficients g, and h; in the MANOVA case of B = I, can be sim-
plified as

(3.12) g,=—2r''(1 —p*p and h; =0,

respectively, since M = O.
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4. The distributions of LR statistics

4.1. The LR test. We consider the problem of testing
“4.1) H: X = d?G(p)

against 2 > 0. The MLE’s of & and 2 under X > 0 was obtained by Khatri
[7]. The LR test is equivalent to reject the hypothesis H if

T = —nlog {|12,|/16°G(p)|}
= —nlog [|£al/{(62)(1 — p2)P1}],

is large, where £, = (4'A)"'A’YS™'B'(BS™'B’)™! and

4.2)

(4.3) Zo=n"Y (Y= AE,BY(Y — AZ,B).

Itis known (Fujikoshi, Kanda and Tanimura [4]) that the limiting null distribution
of T is a chi-square distribution with the degrees of freedom f =1p(p + 1) — 2.
We shall investigate refinements of the chi-square approximation.

4.2. The MANOVA case. The testing problem in the MANOVA case of
B =1, is equivalent to test (4.1) against 2 > 0, based on S, where § is distri-
buted as a Wishart distribution W,(Z, n). The LR statistic T can be written as

(4.4) T = —nlog [ISI/{(6*)’(1 — p*)P'}].
Here 62 is given by (2.4), but p is defined as the solution of
(p — 1(tr D, S)p* — (p — 2)(tr D,5)p*
—(ptr D;S +tr S)p + p(tr D,S)=0.

4.5)

Recently Wakaki, Eguchi and Fujikoshi [12] have obtained an asymptotic
expansion of the null distribution of a class of tests for a general covariance
structure, based on a Wishart matrix. From their result it follows that

46) P(T<x)=P(2<x)+ 5 {(P(%, < X) — P(2 < X)} + 0(n™*?),

where ¢ is a constant not depending on n. This suggests to use T =
{1 —2¢£(fn)™'} T as a better chi-square approximation, since

@4.7) P(T<x)=P(x2<x)+0@n ).

We are concerned with a simple expression for . A general expression for
¢ has been given by Wakaki, Eguchi and Fujikoshi [12]. However, it is
difficult to simplify it in this case. We shall determine ¢ by evaluating the
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expectation of T. Based on stochastic expansions of log |S|, § and 6%, we can
expand T as

(4.8) T=T,+n 2T, + n7'T, + 0,(n"*?),

where
T, = 3{tr V> — p7'(tr V)*} — 3r{p(p — )p*} !(tr C,V)?,

Ty = =5{tr V3 —p72(tr V)’} + {(1 — p*)o?} "a, p?
+{pP?(1 — p?P} 7' L1 = pP){pr + 2(p — 2P} P} tr V
+3(p — D(p — 2p°pi],
T, = ;{tr V* — p73(tr V)*}

+{P* = p?’} 7' LA = ) {=(P* — (p — 2*p*)pi(tr V)?

+p*(p — Drp; + 2p(p + (p — 2)p*)p1 P2 tr V}

+2p{2p(p — Dp(p + (p — 2)p*)P,

+ (= (p = 2*p*)pps tr V}1,

p, is the one obtained from p, by putting a, = b, =c, =0. Using Lemma 2.3
we can write

1
—n{‘h(V)To + Ty}

7

1
+ ;{42(V)To +q;(V)T, +T2}] +0(n ),

E[T]=E, [To +
4.9)

where E, denotes the expectation with respect to V with the probability density
function f,(V) in (2.7). It is easily seen that

Ey[To]1=f1, Ey[q:(V)T, + T;]1=0.
Therefore,

(4.10) 20 = Ey[4:(NT, + q:(V)T, + T1].

Each of the expectations in (4.10) is evaluated by Lemma 2.2. After much
simplification, we obtain

(4.11) ¢ ={24p(p — Dr*}7'(lo + £1p7 + £2p* + £30°),

where
Zo = p*(2p° + p* — 4p> + p* + 2p — 20),

=3p(p—2)2p° +p*—4p> +p* +2p+ 4,

2
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£2=3p*(p — 2)(2p° — 3p* — 6p* + 9p* + 8),
¢3= —(p —2)*@2p® — 3p® — 6p* + 9p° — 16).

In the special case of p=2, we have f=1 and /=3  Hence the
corrected LR statistic is given by

~ 3
4.12) T=<1 —E>T.

This result agrees with the one (see, e.g., Siotani, Hayakawa and Fujikoshi [11,

p- 374]) for testing an intraclass correlation structure.

4.3. The GMANOVA case. It is interesting to see how the correction term
{1 —2¢(fn)"'}in the MANOVA case should be modified in the case rank(B) <
p. For this purpose, we shall obtain a constant # such that

4.13) E[T1=f+2¢+On' + 0(n™¥?),
where ¢ is given by (4.11). We note that a corrected LR statistic
(4.14) T={1-2¢+5(m}T

gives a better chi-square approximation, in a sense that E[T] = f + O(n~%?).
The LR statistic T in the general model (1.1) with (1.2) can be expanded as

(4.15) T=T,+n (T, + T) +n" (T, + T) + 0,(n™*?),
where T;’s are given by (4.8),
Ti=ttVW—pttuV-tr W+ plp tr(I, — tQ)W — 2p(1 — p*)p, tr W,
T,= —tr VW + tr W2 —1p~l(tr W) + p 2(tr V)> tr W

= 3{p*(p — VP21 — p*)*} ' [2P°(1 - p*)pa,py
+3pr(1 = p*)? tr C,W + 4(p — 1)(2p + 1)p*pi
—r(l = p?)*(tr V)* + {p(4 — p) + 2(p — 2)*p*}(1 — p*)pp, tr V
+pt(1 — p2)3 tr V-tr QV — 4p(1 — p*)?ptp, tr QV]-tr C, W
+1a,0f — 2{pp(1 — p*)} rp, tr V-tr W + 1pp} tr QW}
+{PPA =P} H{p@ —p) + (p—2*p*}pi t W
+ (pp) trp(tr Vtr QW + tr QV-tr W) + 2 tr PaVWV
+ tr Po(KWK — VWV) + 2p~'p, tr KPg(I, — T1Q)W,
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K=—(pp) {r(1—p*)'py—ptr V}I,+p~'tp,Q and ' =(1—p?)o®. By the
same way as in (4.9), we have

(4.16) 2 = EyEy[q,(V)T, + T].

Noting that W is distributed as a Wishart distribution W,(Z, n), first we take
the expectation with respect to W. Next we take the expectation with respect
to V with the use of Lemma 2.2. After much simplification, we obtain

7 =%k[Zo + {(p — Dro?}'p(1 — p?) tr MZ 12D, T 12
—2{p(p — D} (p — 2 tr MC,
+ H{p(p — Vp?} r{2 tr (MC,)?* — 4 tr MC?
— k(tr MC,)?}],
where M = I, — 2 ~?B'(BX 'B')"'BZ "2, and
Zo=35p7 (0 — )Lk +p)a—{(p— Vr} (P — 2 {p(p* + 20 — 1)
— (P> =5p+6)p?}].

When B = I,, we have /=0since p=qgand M = 0.
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