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Introduction

Recently Y. Tashiro and the present author [35] have studied fibred
Riemannian spaces with almost Hermitian or almost contact metric structure,
and given its applications to tangent bundles of Riemannian spaces. In [23]
we have also studied fibred Riemannian spaces with vanishing contact Bochner
curvature tensor and constructed an example of such spaces which is not a
Sasakian space form.

As the first step, it is natural to consider fibred Riemannian spaces with
invariant fibres normal to the structure vector. Such a space does not admit
nearly Sasakian or contact structure but a quasi Sasakian or cosymplectic
structure. This is a motivation for our study of fibred Riemannian spaces with
quasi Sasakian or cosymplectic structure.

The notion of quasi Sasakian structure on an almost contact metric mani-
fold was first introduced by D. E. Blair [2] and its properties have been
studied by himself, J. C. Gonzalez and D. Chinea [16], S. Kanemaki [19, 20],
J. A. Oubina [28] and S. Tanno [33]. It is known that a quasi Sasakian
manifold with dn = 0 or 2& = dy is cosymplectic or Sasakian, respectively, and
there is no quasi Sasakian structure of even rank [2].

An almost contact metric manifold, the structure tensor ¢ of which is
Killing, is called a nearly cosymplectic manifold, which was introduced by
D. E. Blair [3]. A five-dimensional sphere S° admits a nearly cosymplectic
structure but not a cosymplectic structure. Besides, M. Capursi [7], D. Chinea
and C. Gonzalez [8, 9], I. Goldberg and K. Yano [15], Z. Olszak [26] and
J. Oubina [28] have introduced new classes of almost contact metric structures
as generalizations of cosymplectic structure. Essential examples of the various
structures are given in the papers cited above.

On the other hand, cosymplectic space forms were studied by S. S. Eum
[13], S. Kanemaki [20] and G. D. Ludden [24]. S. S. Eum [13] defined the
cosymplectic Bochner curvature tensor and it vanishes in a cosymplectic space
form. K. Yano [36, 37] considered complex conformal or contact conformal
connection to give sufficient conditions in order that the Bochner or contact
Bochner curvature tensor vanishes. Similar studies were made by T. Kashiwada
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[21] and T. Sakaguchi [30] in the Kaehlerian case and by M. Seino [32] in the
Sasakian case.

As the second step, it is natural to ask conditions in order that a co-
symplectic manifold has the vanishing cosymplectic Bochner curvature tensor
and to explore relations of a cosymplectic conformal connection and the
cosymplectic Bochner curvature tensor.

In Chapter I, we shall give preliminaries of basic definitions and formulae
of the fibred Riemannian space and study relations among various almost
contact structures.

In Chapter II, we shall deal with nearly Sasakian, quasi Sasakian, Sasakian
or cosymplectic structures in fibred almost contact spaces with invariant
fibres tangent to the structure vector. As its application, we shall give examples
of fibred almost contact spaces with quasi Sasakian, Sasakian and cosym-
plectic structures. Moreover, we shall characterize the cosymplectic space
form.

In Chapter III, we shall treat the case when each fibre is invariant and
normal to the structure vector and deal with quasi Sasakian or various co-
symplectic structures induced in the total space.

A cosymplectic or closely cosymplectic manifold is locally the product of
an almost complex manifold with a 1-dimensional Euclidean space, because
the structure vector is parallel. At the first of Chapter IV, we shall give
a discussion from this view point. We shall also study necessary and sufficient
conditions for the cosymplectic Bochner. curvature tensor to vanish by means
of §-basis or a cosymplectic conformal connection.

The author would like to express his deep appreciation to his teacher,
Professor Y. Tashiro, who gave him extremely valuable suggestions and personal
and professional support, and Professor K. Okamoto who gave him continuous
encouragements and guidances in prepararion of this paper.

Chapter 1. Preliminaries
§1. Fibred Riemannian spaces

Let {M, M, §, n} be a fibred Riemannian space, that is, M an m-dimensional
total space with projectable Riemannian metric §, M an n-dimensional base
space, and n: M — M a projection with maximal rank n. The fibre passing
through a point Pe M is denoted by M (P) or generally M, which is a
p-dimensional submanifold of M, where p = m — n.

Manifolds, geometric objects and mappings we deal with are supposed to
be of C* class and manifolds to be connected. Throughout this paper the
ranges of indices are as follows;
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A, B,C,D,E:1,2,...,m,
hijk1:1,2,...,m,
abcde:1,2,....,n,

o B,y,0,e:n+1,...,n+p=m,

unless otherwise is stated.
If we take coordinate neighborhoods (U, z*) in M and (U, x°) in M such
that n(0) = U, then the projection 7 is expressed by equations

1.1 x° = x°(z")

with Jacobian (0x%/0z') of maximum rank n. There is a local coordinate
system y*in M n U # &, (x4, y*) form a coordinate system in U and each fibre
M(P) at P in M 1 U is parametrized as

2" = Zh(x*, 7).
Then we can choose a local frame (E,, C,) and its dual frame (E% C%) in O,
where the components of E* and C, are given by
1.2) Ef = 0x°/0z" and Ct, = dz"/ay*.

The vector fields E, span the horizontal distribution and C, the tangent space
of each fibre. The metric tensor g in the base space M is given by

(1.3) 9o = §(E.; Ey) ,
and the induced metric tensor g in each fibre M by
(1'4) gyﬂ = g(cy’ Cﬂ) .

We write (Ep) for the frame (E,, Cg) in all, if necessary. Let h,,* be components
of the second fundamental tensor with respect to the normal vector E, and
L = (L_*) the normal connection of each fibre M. Then we have

(1.5) hy =hg® and  Ly*+ L,*=0.

Denoting by ¥ the Riemannian connection of the total space M, we have the
following equations [18, 22, 23, 357:

V,E", = [GEfE", — Ly'EfC", + L,",C/E*, — h,%,C/C",
w6 fi',.c",, = L2EfE", — (h®, — P,")EfC", + h,,°CE*, + [5CCh, ,

ViE® = —T3EfE} — L°y(EfCP + CPEf) — h,,°C/CP

ﬁjCia = chancEl'b + (hﬂﬂc - Pcpa)EjCCiﬂ + hyaijYEib - —),a;;cjyclﬂ 9



480 Byung Hak KM

where 1§ are connection coefficients of the projection V = pVin M, _y; those of
the induced connection ¥ in M,

Lcap = chagbagaﬂ > hvab = hyﬂagﬂagba s
and P, are local functions in U defined by
[Eb, Cﬂ] = PbﬁaCa .

From (1.6, 1), we see that [E_, E,] = —2L,*C,, and so the horizontal dis-
tribution is integrable if and only if the structure tensor L vanishes identically.

Let y be a curve through a point P in the base space M and X be the
tangent vector field of y. There is a unique curve 7 through a point P € n7'(P)
such that the tangent vector field is the lift X~ The curve 7 is called the
horizontal lift of y passing through P. If a curve y joins points P and Q in M,
then the horizontal lifts of y through all points of the fibre M(P) define a fibre
mapping P, : M(P) — M(Q), called the horizontal mapping covering 7.

If the horizontal mapping covering any curve in M is an isometry of fibres,
then {M, M, g, n} is called a fibred Riemannian space with isometric fibres.
A necessary and sufficient condition for M to have isometric fibres is

(Zx:g") =0

for any vector field X in M, or, equivalently h,*=0. Here and hereafter A%
and A" indicate the horizontal and vertical parts of 4 respectively.

If the horizontal mapping covering any curve in M is conformal mapping
of fibres, then {M, M, g, n} is called a fibred Riemannian space with conformal
fibres. A condition for M to have conformal fibres is h,s* = g,5A°, where
A = A°E, is the mean curvature vector along each fibre in M. The following
lemma is well known [18].

LemMa 1.1.  If the components L = (L") and h = (h,;") vanish identically in
a fibred Riemannian space, then the fibred space is locally the Riemannian product
of the base space and a fibre.

The curvature tensor of a fibred Riemannian space M is defined by
(1.7) R(X,V)Z = V3ViZ — Vil3Z — VigyZ
for any vector fields X, ¥ and Z in M. We put
(1.8) K(Ep, E)Ey = Kpcy®Eq = Kpes'Ea + Kpcs™C, »

then K,cz* are components of the curvature tensor with respect to the basis
(Ep). Denoting by K,;" components of the curvature tensor in (U, z"), we
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have the relations
(1.9 IZDCBA = IzkjihEkDEjCEiBEhA .
Substituting (1.6) into the definition (1.7) of the curvature tensor, we have

the structure equations of a fibred Riemannian space as follows [1, 11, 22, 23,
27, 29, 35]:

(1.10) Izdcba = K4 — L L* + L. Ly’ + 2L, °L,°,
(1.11) Ri* = —=*V,Ly* + *V.Lg* — 2Ly *h%,
(1.12) Kyop* = *V,hg"y — *V hg®, + 2**7,L,* + L, °L.%

- LceaLdeﬂ - hsadhﬂec + heachﬁsd s

(1.13) K" = *7,Ly%, — L h2y + Lyh,® — L hty
(1.14) Izdyba = —*;h%, + **V,Ly* + L%, Ley" + h,5ih7
(1.15) K" = Lsyp® + hstyhy® — hfohst

(1.16) Kjpp% = **W3h,s" — **7,hss"

(1.17) K% = Kspp® + hypth%, — hyythy,

where we have put

(1.18) Kuo" = Ol iy — 0. I3 + 5oLy — I0e0 G

(1.19) *WaLle' = 04Ley™ — IicLey™ — Tip L™ + Qa’Ley’
(1.20) *WaLllp = 0aLp + 3oL — T3l s — QugLe%:
(1.21) *Vahyg" = Oghyg" + Tith,® — Q4heg® — Qug’hy”
(1.22) *Wahg®s = Oahg®s — Liphg®e + Qa*hg"y — Qug'hss »

Q5" being defined by

Qop™ = Feg” — g’ ,

and

(1.23) **7;Lg* = %Ly + TLoy" — LLey" — Ly'sLes”
(1.24) **V5Ly"s = Ly — T3gLy’s + L5 Ly — Ly*sL™
(1.25) *4P,h ¢ = Oghy gt — T hey® — Figh,® + Lsh,,

(1.26) *¥Vshg’y = Oshg™, + f;i:hﬂeb - Fasﬂheab — Ly°sh% ,
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(1.27) L;y® = OsLy", — 0,L4% + L5Ls%, — L%, Ls%s

(1.28) Ky = 050% — 0,15y + ToT% — Ty .

Among these, the functions K,,* are projectable in U and its projections,
denoted by K,,° too, are components of the curvature tensor of the base space
{M, g}. On each fibre M, the functions K,,* are components of the curva-
ture tensor of the induced Riemannian metric g and L;,," those of the curvature
tensor of the normal connection of M in M. The components Kp.z* satisfy
the same algebraic equations as those Kkji" satisfy.

Denote by K¢z components of the Ricci tensor of {M, §} with respect to
the basis (Eg) in U, and by K, and Ify,, components of the Ricci tensors of the
base space {M,g} in (U,x") and each fibre {M,g} in (U, y*) respectively.
Then we have

(129) Izcb = ch - 2Lceszec - héechedb + %(*Vch:b + *Vbhsec) 3
(1.30) K,, = **7,h2, — **,h}, + *V,L,°, — 2h.%,L,%,
(1.31) K,p=K,5— hyh?, + *7,h,* — LS, L% .

Denoting by K, K and K the scalar curvatures of M, M and each fibre M
respectively, we have the relation

(1.32) K = KY + K — Ly, L — hyp,h"¢ — b7 h,P¢ + 2%V b2 .
§2. Certain classes of almost contact structures

Let M be an m-dimensional (m = odd) real differentiable manifold and
a tensor field ¢ of type (1, 1), & a vector field and 7 a 1-form on M satisfying the
equations

#=—-1+¢(®i7, ¢E=iodg=0, #Hd=1,

where I is the identity transformation. Then M is said to have an almost
contact structure. It is known that there is a positive definite Riemannian
metric § on M such that

§¢X, V)= —g§X,4Y) and §(X, Y)=g(¢X, ¢Y) + (X)),

where X and Y are arbitrary vectors on M. In this case, (4, &, #, §) is called
an almost contact metric structure. The fundamental 2-form @ is defined by
6(X, Y)=g(¢X, Y). We denote by ¥ the covariant differentiation with respect
to the Riemannian connection of § and put
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21) AR Y) = AT + T3 dY — (1) V3 .

An almost contact structure (4, &, /) on M is said to be normal if the
almost complex structure J on M x E! given by

~ .d s s~ o~
s(258)= (s -ranl).

f being a C*-function on M x E!, is integrable. The integrability is equivalent
to the condition

N@ 9 +2di®&=0,
where N(@, #) denotes the Nijenhuis tensor
N@ HX, V) = X, Y1+ [4X, §7]1 - §[4X, Y1 - §[X, §7]

of . Define a Riemannian metric W on M x E! by

W((X' f%) <? f%)) =§X, V) + f,

where f and f are C®-functions on M x E'. A. Gray and L. M. Hervella
[17] classified almost Hermitian manifolds and gave a class w, of Hermitian
manifolds containing locally conformal Kaehler manifolds.

An almost contact metric structure (4, &, fi, ) on M is said to be

(a) quasi cosymplectic [7] if A(X, f’) =0,
(b) closely cosymplectic [5] if 4 is Killing and # is closed,
(c) nearly cosymplectic [3] if é is Killing,
(d) almost cosymplectic [7, 9, 15, 26] if & and # are closed,
(e) nearly Sasakian [6] if
GHY + RHX = —23(X, NE+ 7DD T + A(NX,
(f) trans Sasakian [28] if (M x E', J, W) belongs to the class w, of
Hermitian manifolds.
(g) quasi Sasakian [2, 16, 19, 20, 33] if @ is closed and (§, &, #) is normal,
(h) cosymplectic if @ and  are closed and (, &, ) is normal,
(i) contact if dij = 6,
(j) K-contact if Vij = o,
(k) Sasakian if & = dfj and (4, &, #) is normal.

Then a schematic arrangement of structures is illustrated by the following
diagram:
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Closely —| Nearly
/ cosymplectic cosymplectic
Cosymplectic E N \ oo

cosymplectic |—| cosymplectic \
Trans —*| Normal almost N
Sasakian contact contact
Quasi

Almost

Sasakian
Nearly

where A - B means that the class 4 of structures is subordinate to the class
B. Concerning properties and examples of the spaces pictured in this diagram,
see [2,3,4,5,7,9, 15, 16, 19, 20, 26, 28, 33 etc.].

Chapter II. Fibred Riemannian spaces with almost contact metric structure,
the case where the structure vector is tangent to the fibre

§3. Almost contact structures in a fibred Riemannian space

In previous papers [22, 35], we have studied an almost contact metric
structure on the total space of a fibred Riemannian space M having an almost
Hermitian space M as base space and almost contact spaces M as fibres.

Throughout this chapter we consider a fibred Riemannian space M with
such structure, and recall fundamental formulae and some results for the later
use.

Denoting an almost Hermitian structure of M and its lift in the total space
M by (J, g) which is independent of the fibre and an almost contact metric
structure of each fibre M by (4, &, 7, g) which is in general dependent on points
of the base space. If we put

$=J}E'®E, +4C"'®C,,
(3.1) i=7,C, {=8C,

g = gbaEb ® E° + gﬂacﬂ ® Ca ’
then (¢§, & fj, g) defines an almost contact metric structure on M. Conversely, if
there is in M an almost contact structure (4, & 7, §), ¢ is projectable and & is
always vertical, then the structure induces an almost Hermitian structure (J, g)

in the base space M and an almost contact metric structure (¢, £, 7, g) in each
fibre M.
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We shall denote the covariant differentiation with respect to the frame

(Ep) = (E4, Cp) in the total space M by V3 = EgV,. By means of (1.6) and (3.1),
we get [22]

(32 (V.DEy = (V)" E, + (Lo85" — LJ)C,

(3.3) (7.4)Cs = (L, 85" — Ly E, + (V. 85C,

(34) (7,9 Ey = (**7,J,")E, + (h/yds* — h,%J)C,

(3.5 (7,8)Cp = (h, 5" — hyg*JY)E, + (7,447C, ,

(3.6) 7.&=(LEME, + (7.2 C,,

3.7 7,& = (h,,"EP)E, + (7,E9)C, ,

(3.8) Vefi = (L) E® + (*7,7,)C*

3.9 = (h"7)E® + (7,7,)C*

where we have put

V' = 00" + gy — I3J.°
Wbyt = 08" + Q05 — Qo0
WLt = 0.8 + 07,

*Vcﬁﬂ = 6cﬁﬁ - Qcpaﬁa s

(3.10) ¥ 00 = 0,0, + Lo — LA e,

N

V05" = 0,8 + I8y’ — 538,
V6% = 0,8 + I'%EP,
Vs = 0,7

Qcﬁ“=Pc,,“—h,,“c.

By use of (3.1) ~ (3.9), we have

yﬁna ]

(T + VM E Ey = (V. + J)EY, — (L0 + Ly 2 I Ch,

(3.11) (T4 + VigME.C'y = (LJ° — 2L5J." + L 45" E,

+ (*V aﬂa + hﬁacaaa - hﬂaeJce)Cha s
Zd + Vi CI,Cly = (h, 5° + hy"8,F — 2h,,°J,°)E",
+ (V,85" + Vp4,5)C", .
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If we put &(X,Y)=g(JX,Y) and O(X, Y)=g(¢X, Y) for vector fields
X, Yin M and X, Y in M, then we get
d6)" = de ,
d6(E,, E,, C,) = 2L #p, »
d6(E,, C,, E;) = 2AL e + Li'adec) »
dB(E., Cs, C,) = *V.Bgo + e’ + b’ »
6y =dé,
dii(E,, Ey) = 2Ly7, ,
dfi(E., Cg) = *Vfly — hg" 7,
(@) = df.

(3.12)

§4. Nearly Sasakian structures

Y. Tashiro [34] showed that a hypersurface of an almost Hermitian mani-
fold inherits an almost contact metric structure. D. E. Blair, D. K. Showers
and K. Yano [6] proved that a quasi-umbilical hypersurface of a nearly Kaehler
manifold admits a nearly Sasakian structure, that is,

@.1) DY + (GHX = 25X, DE+ DT + A(DX,

and that a nearly Sasakian structure is Sasakian if it is normal, and the vector
field & is Killing. It is known that a five-sphere S° properly imbedded in S¢
admits a nearly Sasakian structure which is not Sasakian.

Now we suppose that a fibred space M is nearly Sasakian. Then it follows
from (3.11, 2) and (4.1) with X = E_, ¥ = C, that

(4.2) LepJe® + 2Leopdy® + LepaBp™ = e -
By taking the symmetric part in b and ¢, we have

LigJy® + LpegJf = 2915 »
and substituting this into (4.2),
4.3) 3L.pJy* + chJp“ = 3g.7p -
Moreover, transvecting J,® to (4.3), we obtain
4.4) 3Ly + LeeJ; 85" = 3JecMp

and
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(4.5) Ly =Jy, .
On the other hand, transvecting 4, to (4.3) and using (4.5), we get
(4~6) cha - 3LceBJbe$aﬁ = JpMs -
By comparing of (4.4) with (4.6), it follows that

Leopdid =0,
and, by virtue of (4.6), we have

Lepa = JepMa -

Moreover we see from (3.11, 2) and (4.1) that
(4.7) *Vebpe + hy'cBex — hpoadd =0
By use of (3.10, 2) and (3.10, 9), we see that the equation (4.7) is equivalent to
(4.8) 0cBpa — Pe'bua — Pea'pe + MaacBg® — 2hpecbs’ — hpuad® = 0.
Taking the symmetric part in « and f, we get
4.9) Rgdst + ho'd® — 2hy,t =0,

the left hand side of which are identical with the coefficients of (3.11, 3).
Substituting (4.9) into (4.8), we obtain the equation

(410) acaﬂa - ‘Pcaegﬁs - Pcﬁﬁaca - %(hﬁscgas - hascqjﬂe) =0.

Besides, we can see that the space M is nearly Kaehlerian from (3.11, 1) and
each fibre M is nearly Sasakian from (3.11, 3). Contracting (4.7) with g**
we have h,;,g*” = 0. Thus we have

PROPOSITION 4.1. The almost contact metric structure (§, &, i, §) on M is
nearly Sasakian if and only if

(1) M is nearly Kaehlerian,

(2) M is nearly Sasakian,

() Lo = Jul%

(4) ac¢ﬂ¢ - I’cﬂz¢e¢ - Pcas¢ﬂe + ha£c¢ﬁsj' 2hﬂec¢ea - hﬂaa']ca =0.

In this case, each fibre is minimal in M.

§5. Fibred Sasakian space

In this section, we consider the fibred Sasakian space with Einstein or
n-Einstein metric. In [22], we proved
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PROPOSITION 5.1. The almost contact metric structure on M is Sasakian
if and only if

(1) M is Kaehlerian,

(2) each fibre is Sasakian,

3) Lc; = Jé ai _ _

(4) 0P + POy — Pyd” + 2hy°4" = O,

(5) hS5p” —hj I =0. _

In this case, each fibre is minimal in M and *V,L* = 0.

Next, we suppose that, in addition to the assumptions of Proposition 5.1,
M has conformal fibres and § is an Einstein metric. Then we have L,* = J,,&°
and hg," = 0 because each fibre is minimal. By use of (1.29), (1.30) and (1.31),
we get

Ky =(a+2)gs, Kyﬂ = 0g,s — g »
where « = K/m. Hence, by use of (1.32), we get
K =n(K + n + 2p)/p
and then
K=mmn+K)p.

Conversely, if we substitute hg,” = 0 and L, = Jp&% into (1.29) ~ (1.31), we
have

~ ~

ch = ch - 29(;b 5 K?b =0, Izvﬁ = K_)‘ﬂ + nﬁ?ﬁp '

Thus we have

PROPOSITION 5.2. Let M be a fibred Sasakian space with conformal fibres.
Then M is Einstein if and only if

(1) M is Einstein,

() Kyp=0gy — i, Mg,

(3) K =n(n+2p+ K)/p,
where o = K/m.

Now, we assume that a fibred Sasakian space with conformal fibres M is
an n-Einstein space, that is,

(5.1) K;; = ag; + bij;f;

a and b being constant. Then we get

(5.2) Ky =(a+2)gy, K,s =ag,; + (b — n)n,n, .
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and

(5.3) K=n@a+2, K=pa+b—n.
On the other hand, we have the relation

(54) a+b=m-—1

because & satisfies K;E/€ =m — 1. By use of the relations (5.3) and (5.4), we
obtain

K
(5.5) a=——-—1, b=m—-———,
p—1 p—1

and the relation

K K
(5.6) A2 41
n p—1
Conversely, if the base space M is Einstein, each fibre is #-Einstein and the
relation (5.6) is satisfied, then, by use of (1.29) ~ (1.32) and iZy,, = 0, we see that
M is n-Einstein.

PROPOSITION 5.3. Let M be a fibred Sasakian space with conformal fibres
and p # 1. Then M is n-Einstein if and only if

(1) M is Einstein,

(2) each fibre is n-Einstein,

3 K=nK/(p—1)+n.

In particular, if p =1, then M is n-Einstein if and only if M is Einstein.

Next, we assume that a fibred Sasakian space M is conformally flat, then
we get

(5.7)

~

K
(m —1)(m —2)

Since the components IZ,,C,," vanish and L,* = J,,&* by Proposition 5.1, it
follows from (1.12)

1
m-—2

Izkjih = (51:'121’1' - 5jhkki + Kkhgji - Izjhgki) - (&:lgji - (thgki) .

(58) *Vchﬁad - *thﬂuc + 2(**VﬂJdc)ﬁa + 2‘Idc$ﬁa - hcadhﬂec + haachﬂgd =0.

Transvecting this equation with ¢#* and making use of the equation (5) of
Proposition 5.1, we have

(59) 2(p - I)Jdc = hﬂancahﬁed - hﬂeaJdahﬁac .
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Moreover, transvecting this equation with J%, we obtain
n(p - 1) + hﬁabhﬂlb = 0 .

Hence we see that the dimension of fibre is equal to one and h = (h,,”) vanishes
identically. From this fact and Proposition 5.1, we have K, = K, — 2g,; by
means of (1.29), and the equation (1.10) implies that

1
chba = n___—l(gdach - gcade + gchda - gdeca + 4gcagdb - 4gdagcb)

K —
- W—)(gdagcb gcagdb) + JdaJcb - Jca‘Idb - 2Jdc"ba ’

by useof m=n+p=n+1and (1.32). From (5.10), we see that M is Einstein,

that is,

K
(511) ch = ;gcb .

If we substitute (5.11) into (5.10), then the curvature tensor of M is reduced to

K —3n
(512) chba = )(gdagcb - gcagdb) + JdaJcb - JcaJdb - 2Jdc"ba .

nn—1

Thus we have

THEOREM 5.4. If the fibred Sasakian space M is conformally flat, then we
have

(1) h = (hg,”) vanishes identically,

2 dmM-=1,

(3) the curvature tensor of the base space is of the form (5.12).

In particular, the base space M is a complex space form if and only if
K =n(n + 2).

Since the space of constant curvature is conformally flat, by use of Theorem
5.4, the fibred Sasakian space of constant curvature has 1-dimensional isometric
fibres and m=n+ 1 and K = K — n. Therefore, if we compare the horizontal
components of

~ K —
K. !=
MECE)

with (1.10), then we get

(51; dji 5jhgki)

(gdagcb gcagdb) + JdaJcb Jdb 2Jchba .

dcba =

K-
n(n + 1)
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From this equation, we see that K = n(n + 2) and then (K — n)/n(n + 1) = 1.
Hence the base space M is a complex space form with constant holomorphic
sectional curvature 4. Thus we have

THEOREM 5.5. If a fibred Sasakian space M is of constant curvature, then
the base space M is a complex space form with constant holomorphic sectional
curvature 4 and M has 1-dimensional isometric fibres.

ExaMPLE 5.6. The Hopf fibering n:S%"*! » CP(n) with totally geodesic
fibre S* (cf. [10, 11]) is a typical example of fibred Sasakian space satisfying the
conditions stated in Theorem 5.5, where CP(n) is a complex projective space of
complex dimension n > 1.

§6. Quasi Sasakian and cosymplectic structures
In [22], we proved

PROPOSITION 6.1. If an almost contact structure (@, &, i, §) on M is normal,
then the complex structure J on M is integrable and the almost contact structure
(@, &, 1) on M is normal.

More precisely, putting
Ivcﬁa = Jce(aeaﬂa) + Jﬂy(acaya) ’
we can see that
PROPOSITION 6.2. An almost contact metric structure on M is normal if and

only if the almost complex structure on M is integrable, the almost contact metric
structure on M is normal and N_* =

If the structure (4, &, 7, §) in M is quasi Sasakian, that is, d@ = 0 and the
structure is normal, then, by means of (3.10, 5), (3.12) and Proposition 6.1, we
can see that M is Kaehlerian, M is quasi Sasakian, and

(6.1 Ly =0,

(6.2) LeJye + LyJ,. =0,
(6.3) YW ebpa + hprets’ + by =0,
(6.4) N, =0.

Hence, from (6.1) and (6.2), we see that the field L,* is expressed as the
form L *= A.,£% where A, is a skew symmetric (0,2)-form and satisfy
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Jyed,* = A4,J,°. Moreover, by means of (3.10, 2) and (3.10, 9), the relation (6.3)
is equivalent to

5:‘3;1« = cﬂyaya + Pcaygﬂy .

Thus, by means of (3.12) and Proposition 6.2, we can state

PROPOSITION 6.3. The almost contact metric structure on M is quasi Sasakian
if and only if

(1) M is Kaehlerian, i.e. d0© = 0 and the structure J is integrable.

(2) M is quasi Sasakian, i.e. d0 = 0 and the structure (9, £, 1, §) is normal,

(3) the field L,* is written in the form L,* = A,&* with A, satisfying
JeA,t = A°J°

4) 0O.4ps = P’dys + Poi'dp, and

(5) Ny =0.

Since the cosymplectic structure is characterized by F¢ = 0 and V& = 0, it
follows from (3.6) and (3.12, 2) that
chaEa = 0 and chaaﬂa = O .

Hence L = (L.*) vanishes identically. Moreover, by means of the equations
(3.2) ~ (3.7), we see that M is Kaehlerian, M is cosymplectic and

(65) hypbaﬂa - hyaa‘lba =0 ’
(6.6) g =0,
(6.7) *WwE =0,
(6.8) b T =0,

By use of (6.5), h#’,,q?,,a is symmetric in o« and y and hence *VJ,,“ =0 is
equivalent to

(6.9) 05" = Pg’* — PG — 2hg°d° .
The relation */,&* = 0 with h,,*¢# = 0 is reduced to
(6.10) 0.8+ PjEY=0.

Conversely, if the base space is Kaehlerian, each fibre is cosymplectic and
the equations (6.5), (6.8) ~ (6.10) and L,* =0 are satisfied, then, by use of
(3.2) ~ (3.7), we can see that M is cosymplectic. Thus we have

PROPOSITION 6.4. The almost contact metric structure on M is cosymplectic
if and only if
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M is Kaehlerian,

M is cosymplectic,

cha = 0’

ac¢ﬂa_= Pcﬂe¢sa —P csa¢ﬁ8 - 2hﬂ£c¢sa’
hy”_,,qi,,“ — hl"‘,,J,," =0, B

0.8%+ P, =0, h,ptP = 0.

In this case, each fibre is minimal in M.

§7.

Examples

Now, we shall give new examples of cosymplectic, Sasakian and quasi
Sasakian structures on a 5-dimensional Euclidean space E® as fibred Riemannian

space.

Of course, these examples can be extendable to E2"*! by the same

method of construction.

ExaMPLE 7.1. We denote Cartesian coordinates in E> by (x,, X,, X3, X4, Xs)
and define a symmetric tensor field § by

1412 0 ot 0 -1

0 1 0 0 0

g= ot 0 1+4+¢*> 0 -0
0 0 0 1 0

-1t 0 - 0 1

where ¢ and 1 are functions on E3. Then § is a positive definite Riemannian

metric.

The inverse matrix of § is given by

1 0 0O T
01 0 O 0
it=lo o0 1 0 -
00 0 1 0
10 6 0 1+0%2+12

We define an almost contact structure (@, £, 7) on E° by

0 -1 0 00
1 00 00
=0 00 -1 0
0 01 00
0 -7 0 -6 O

ﬁ =('—T’ 0, —0, O, 1)5
&=10,0,0,0,1),
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where A’ is the transposed matrix of 4. Then (8, §, 7, §) constitutes an almost
contact metric structure on E. The fundamental 1-form # and 2-form & have
the forms

fi= —tdx' —adx®+dx®> and O =dx, A dx, +dx; A dx,
respectively, and hence
di=dx' Adt+dx; Ade and d6=0.

We seek for the conditions of normality in terms of the Nijenhuis tensor of é.
The Nijenhuis tensor N;; can be written as ([31])

Ny = 62@d — o)) — 8/ @b — ad)) + (0,E) — ALY,
where the indices h, i, j, k run over the range 1, 2, ..., S for this example. As

components of & are all constant, the third and fourth terms of the right hand
side do not appear. Hence non-trivial components of N} are given by

N3’ =031 — 0,0,

N’ = —0,0 + 0,1 = —Ny3°,
N,s° = 0s1,

N,,3 = —00s1 + 1056 — 83T + 0,0,
N3s° =050 .

Therefore, we can see that E° with (8, &, #, §) is
(1) cosymplectic if T = 7(x,, X3), ¢ = g(x,, x3) and d37 = 0, 0,
(2) Sasakian if 1=1(x,x;,x3), 0=0(x;,X3,X4), 0,7 =constant
(=1)= 0,0, and 037 = 0,0,
(3) quasi Sasakian if T = 1(x{, X3, X3, X4), 0 = 6(X1, X3, X3, X4), 04T = 0,0
and 05t = 0, 0,
where t and o are functions dependent only of the coordinates indicated in
parentheses. For example, we can take t = ¢ = sin(x, + x;) for a cosymplectic
structure and 7 = x; + x, + 2x3, 6 = 2x; + x5 + x, for a Sasakian one. By
a choice of the functions 7 and g, we obtain pretty extensive examples of quasi
Sasakian structure which are neither cosymplectic nor Sasakian, say
T =0 =sin(x; + 2x, + x5 + 2x,).
If we take vector fields

E, =%1,0,0,0,1),
E2 = t(Oa 11 0, Oa 0) ’
C,=(0,0,1,0,0),
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C2 = (Oa 09 0: 1, O)a
C3 = (0’ 09 03 03 1)’

then these vector fields form a frame field in E5 and we see that

s=bemr=(_7 o).

o=ae.E)=(y 7

and
0 -1 0
$=¢3(cﬂ,c¢)=<1 0 0),
0 —6 O
1+6> 0 —o0
z7=é(Cp,C¢)=( 0 1 0 )
-0 0 1

E=Ec="0,0,1,
ﬁ = ﬁ(cﬁ) = (—O', Oa 1) 5

where the indices a, b and «, f run over the ranges 1, 2 and 1, 2, 3 respectively.
Hence the space E> with (8, &, 7, §) becomes a fibred Riemannian space having
(E?; J, g) as base space and (E3; ¢, &, 7, §) as fibre.

On the other hand, by the analogous way, (E3; ¢, & 7, g) with local co-
ordinates (x5, X4, Xs) becomes an almost contact metric space and we can see
that (¢, &, %) is normal if and only if d;06 = 0. Since the fundamental 1-form 7
and 2-form O of the fibre E3 are given by

= —0dx;+dxs and O =dx; Adx,
and
dn = (0,0)dx3 A dx, + (0s0)dxs A dxs ,

we can see that (E3;, &, 7, §) becomes

(1) cosymplectic if ¢ = a(x3), i.e. 9,06 =0 = 050,

(2) Sasakian if ¢ = o(x3, x,) and d,0 = constant (=1),

(3) quasi Sasakian if 0 = a(x;, x,).
Henceforth, we have constructed a fibred Riemannian space with co-
symplectic (Sasakian, quasi Sasakian) structure having a Kaehlerian space as
base space and a cosymplectic (Sasakian, quasi Sasakian, respectively) space as
fibre.
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§8. Cosymplectic space form

We assume that M is a cosymplectic space with constant g-holomorphic
sectional curvature k. Then the curvature tensor has the form [12, 20, 24]

. k. ) o

K" = Z(gji‘sr:' — il + 3id" — dud — 260"
(8.1) S o~ sh | o~ Thy s Thy 5 o~ o
— ;10 + 1;¢ G — MG + Medidy') -

Then, since L,* =0 in the cosymplectic case, the equations (1.10) and
(1.14) ~ (1.17) give rise to

k
(8.2) Ky = Z(5fgcb — Ga0¢ + Iy — " — 201 h7)
k o
(8.3) hfihy — *V by = —Z(gabéyu + I, — 1,$%9a) 5
k —
(84) hésbhysa - hysbhéea = _§¢76Jba ’
(8.5) **Wshyp" — **Vhes" =0,

d k. a = Ssa T ra T ra 1 pa
(8.5) K" = Z(gyﬁéd — Gsp0y + Dpbs™ — Psp®," — 205,05
— 1,105 + NsMgdy + ﬁyzagéﬁ - ﬁof’ﬁyﬁ) + h,s°hs*. — hsp®h),

(1.11) and (1.13) are trivial, and (1.12) is equivalent to (8.3). As seen from (8.2),
the base space M is a complex space form and we have

ch = %(n + z)gcbk s

and

8.7) g = K/n(n + 2).

Contracting o and y in (8.3), using (8.7) and the minimality of M, we get
(8.8) hogph®™s = —K(p — Dgap/n(n + 2),

and so,

(8.9) Ihegoll* = —(p — DK/(n +2).
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Since K and k is in the relation

~

k K

®10 A mrOm-1

we obtain, from (1.32) and Proposition 6.4,

kK . R
4 m-Dr+2) (m+Hm—1)’

By use of (8.7) and (8.10), we get
(8.11) nn+2)K—(p—1Hm+ 1)K =0,
from which and (8.6),

= p+1n = ce
8= o= Dm g 1) 0~ HIK = hechy

and

p* -

- 1
K= k — ||hapb”2 .

Hence we see that

PROPOSITION 8.1. If the fibred space M is a cosymplectic space form, then
the base space M is a complex space form.

In the special case of the codimension p = 1, we have K = 0 and hagy =0
from (8.9). Thus we have

COROLLARY 82. If Misa fibred Riemannian space with cosymplectic space
form and one dimensional fibres, then M is locally the product manifold of
a complex space form and E.

If p# 1 and M has conformal fibres, then the second fundamental h,,* = 0,
because each fibre is minimal in M by means of Proposition 6.4. Moreover we
get K =0 by use of (8.9), k=0, K =0 and K = 0 by the equations (8.7), (8.10)
and (8.11). Therefore we can state that

COROLLARY 8.3. If a fibred Riemannian space M is a cosymplectic space
form and has conformal fibres of dimension p # 1, then M itself, the base space
and the fibres are locally Euclidean.
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Chapter III. Fibred Riemannian spaces with almost contact metric
structure, the case where the structure vector is normal
to the fibre

§9. Structures in the total, base and fibre spaces

In this chapter, we consider the case where each fibre is ¢-invariant and
normal to & and deal with quasi Sasakian or various cosymplectic structures in
the total space.

We suppose that a fibred Riemannian space {M, M, §, n} has a projectable
almost contact metric structure (@, , 7, §), each fibre M is g-invariant and
normal to the structure vector £&. Such a space is called a fibred almost contact
metric space with g-invariant fibres normal to . Then we can easily see that
(J, g 7, §) has the form

$=0'E°QE, + J)C*®C,,
={°E,, fi=n,E",
g = gbaEb ® E‘l + gpacﬁ ® Ca >

eV

©.1)

(@, ¢, n,9) defines an almost contact metric structure in the base space M
and (J, §) an almost Hermitian structure in each fibre M.

Conversely, if, in a fibred Riemannian space M, M has an almost contact
metric structure (¢, &, 1, g) the lift of which to the total space M is denoted by
the same letters (¢, &, #, g), and each fibre has an almost Hermitian structure
(7, ), then we can construct an almost contact metric structure (4, &, fj, §) on
the total space M by putting (9.1).

If we apply the differential operator ¥V, = Efij and 17,, = C"ij to the
equations (9.1) and take account of (1.6), then we obtain

9.2) (.PEy, = (Vs )E, + (L’ T5* — Lo "$,°)C,
©.3) (7.9 Cp = (LT — LEpt)Eq + (V. J4)C,
94) (7,)E, = (**0,0,)E, + (1,3 J5* — h,%$°)C,
©.5) (7,)Cs = (h,"J5* — hys®8.")E, + (F,Jp")C,
(9.6) V& = (P.EYE, — (L*E)C,

©.7) 7,& = (**7,£E, — (h,.£°)C, ,

©.8) *,g=0,

©.9) **g=0,
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where we have put
Vb = 0" + Loy’ — 1539.°
Vit =08+ I3,
T = 0.0 + QT — 05" T,
*chﬂa = cgﬂa - Qcaﬂgﬁa - Qcﬂsgaa ’
(9.10) Vb = 0,0° + LS — L%, 4.",
AL 5,,5“ + L2,
**Vygba = aygba - Lbeygea - Lnevgbe s
Fdt = 0,0y — Tyl + TaJy
Q" = Py — hy’, .
By use of (9.1), (9.6) and (9.7), we get
(9.11) @n*=dn,  dij(Cp E)=0, (@df) =0,

because #j is projectable. By virtue of (9.1), we have ;Z(C,,, C* = fp“. Hence,
we have

PROPOSITION 9.1. The almost contact structure (q?, & #,§) in a fibred almost
contact metric space with @-invariant fibres normal to £ cannot be contact.

§10. Almost cosymplectic structures

An almost contact structure with closed forms @ and # is said to be almost
cosymplectic. S. I. Goldberg [15] have examined the integrability of almost
cosymplectic structures and showed that a normal almost cosymplectic mani-
fold is cosymplectic. Z. Olszak [26] gave certain sufficient conditions for
an almost contact structure to be almost cosymplectic. In this section, we
consider almost cosymplectic structures in fibred Riemannian spaces.

Taking account of (9.2) ~ (9.5) and (9.10), we obtain the following relations
among the fundamental 2-forms @ in the total space, © in the base space
M and Q in the fibre spaces M:

d6)! = do ,
dé(Eca Eb’ Ca) = 2che‘fea H
(10.1) ~ _ _ _
d@(Ec, Cﬂ, Ca) = *VcJﬂa - hﬂec‘]ea - haecJﬁe s

dO) =dQ.
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Since dfj =0 and d@ = 0 for an almost cosymplectic structure, by means
of (10.1, 2), we get L,*=0. By use of (9.10, 3) and (9.10, 9), we see that
dO(E,, Cs, C,) = 0 is equivalent to

ac']_ﬂa - Pcﬂz‘]_sa - Pcae'fﬁe =0.
Thus, referring to (9.11) and (10.1), we have

ProrosITION 10.1. The almost contact metric structure (qz, & 7i,§) on the
fibred space M is almost cosymplectic if and only if the following conditions are
satisfied:

(1) the base space is almost cosymplectic,

(2) each fibre is almost Kaehlerian,

3 L, =0,and

4 0Jps — Pop'dou — Pi’Jp = 0.

Moreover, if a fibred almost cosymplectic space M has isometric fibres,
then the second fundamental form h = (h,4") with respect to E, vanishes identi-
cally. Therefore, by means of Lemma 1.1, the fibred space M is locally a
Riemannian product space of the base space and a fibre.

Conversely, if a space M is almost cosymplectic and M is almost Kaehle-
rian, then the product space M = M x M becomes an almost cosymplectic
space by means of Proposition 10.1 and the equations (9.11) and (10.1). Thus
we have

COROLLARY 10.2. If a fibred space M with almost cosymplectic structure
has isometric fibres, then M is locally the product of an almost cosymplectic space
and an almost Kaehlerian space, and vice versa.

§11. Normality of the induced almost contact metric structure on M
and quasi Sasakian structures

The Nijenhuis tensor of an almost contact structure (¢, & #n) in the base
space M is given by
(1 11) th:bdl = ¢ce(ae¢ba - ab¢ea) - ¢be(ae¢ca - ac¢ea) + "c(abéa) - r'b(acga) .

On the other hand, the Nijenhuis tensor of an almost complex structure
J = (J;%) in the fibre is given by

Nvﬂa = ‘Tvﬁ(asfﬂa - aﬂ‘]_ea) - J_ﬂe(aejva - avjea) :
In our envisaged case, the Nijenhuis tensor N of the almost contact
structure (¢, £, 7j) of the total space M is given by the expression (11.1) with



Fibred Riemannian spaces with quasi Sasakian structure 501

(, &, 7) in place of (¢, £, 1), and it splits into the following components:

1

cba = IVcba s
ﬁcﬂa = 0 s
(11.2) - _ L
cﬂy = ¢ce(ae‘]ﬂy) - Jﬂa(ac‘]ay) s
N,g* = ﬁvﬂa :

Thus we have

PROPOSITION 11.1.  In order that the almost contact metric structure on M is
normal if and only if the almost contact structure on M is normal, the almost
complex structure on M is integrable and N,z" vanishes identically.

If the structure (¢7, g fi, §) is quasi Sasakian, that is, the structure is normal
and d® = 0, then the structure vector ¢ is Killing [2, 33], i.e.,

LG = Vi + Vif; = 0
where %; indicates the Lie derivation with respect to &, and it is known that

LEMMA 11.2 [2]. A quasi Sasakian manifold M is cosymplectic if and only
. > Th _
if g =0,
LemMa 11.3 [33]. In a quasi Sasakian manifold M, we have
(%6)(Y, 2) = i(V)(%AN$Z — 1(2) (i)Y .

Assume that the almost contact metric structure (4, &, , §) in M is quasi
Sasakian and projectable. In this case we call M a fibred quasi Sasakian
space. Then, by means of (9.1, 2), (9.3) and Lemma 11.3, we obtain

(11.3) *,Jp, =0.

By means of (10.1, 3), it follows

(11.4) he' Ty + b dp =0,
Hence, transvecting J#* with (11.4), we get

(11.5) haﬂbgaﬁ =0,

that is, each fibre is minimal in M. By means of (10.1), Proposition 11.1 and
(11.5), we have

PROPOSITION 11.4. The almost contact metric structure (p, &, #, §) on M is
quasi Sasakian if and only if the following conditions are satisfied:
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(1) the base space is quasi Sasakian,
(2) each fibre is Kaehlerian,

@) Ly=0,
“4) 6£J,,a — Pty — By'Jg = 0, and
(5) Ncﬂy = 0.

In this case, each fibre is minimal in M.

In addition, if M has conformal fibres, then the second fundamental form
h = (h,s") vanishes identically. We have seen the normal connection L = (L")
of M in M is zero. Consequently the fibred quasi Sasakian space M is
locally the Riemannian product space of the base space and the fibre by means
Lemma 1.1.

Conversely, if a space M is quasi Sasakian and M is Kaehlerian, then
the product space M = M x M becomes a quasi Sasakian space by use of
Proposition 11.1 and the equation (10.1). Thus we have

COROLLARY 11.5. If a fibred quasi Sasakian space M has conformal fibres,
then M is locally the product of a quasi Sasakian space and a Kaehlerian space,
and vice versa.

§12. Nearly cosymplectic and closely cosymplectic structures

An almost contact manifolds, whose almost contact structure tensor is
Killing, is called a nearly cosymplectic manifold, which was introduced by
D. E. Blair [3]. It is known that a five-sphere S°> as a totally geodesic
hypersurface of S° carries a non-normal nearly cosymplectic structure [4]. In
particular, if a nearly cosymplectic structure is normal, then it is cosymplectic.

D. E. Blair and D. K. Showers [5] introduced the notion of closely
cosymplectic structure by the condition that ¢ is Killing and # is closed, and
showed S® x S' admits this structure. Clearly, a closely cosymplectic structure
is nearly cosymplectic but the converse is not true, in general. For example,
it is known that S° is a nearly cosymplectic manifold but not a closely
cosymplectic manifold in view of the following

LemMMA 12.1 [S]. Every S5S-dimensional closely cosymplectic manifold is
cosymplectic.

By virtue of (9.2) ~(9.7), components of V,J,,, + V‘qzj,, with respect to a
frame E, = (E,, C,) are given by

P+ Gig E BV E" = Vo + Vobea s
(Z'Jih + Zq;_'ih)chEibcha = Lcea¢eb + Lbea¢ec ’
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(ﬁ}&ih + zth)ch CiﬂEha = Lcau‘Tﬁa - 2Lceﬁ¢ea - Laeﬂ¢ce ’
(Z&ih + Vi&jh)chCﬂiCah = *Vc‘Tﬁa + hﬂec‘fea - hﬂae¢ce ’
('ijaih + ﬁi&jh)cjyciﬂEha = hyea‘iﬂa + hﬂea‘fyc - 2h'yﬂe¢ea )
(ﬁj(;ih + ﬁi&jh)cjyciﬁcha = Z‘Tﬁa + Zl'iyu >

(12.1)

and components of Z;j by
(Vi + Vi) B Efy = Vony + i1
(12.2) (Vi + Vi) E.Cly = —2L, 8",
(Vi + Vifi)C',Cly = —2hy5°n, .
Assume that the total space M admits a nearly Sasakian structure, which is
characterized by the equation

(123) Z&m + ﬁ:éh = —2G;iftn + 7;Gin + f:iGjn -

The component of the right hand side of (12.3) with respect to C,® C;® E,, is
reduced to —2g,41,. Comparing this component with (12.1, 5), we get

(12-4) hysajl;e + hﬂsafye - 2hvﬂe¢ea = _2~‘77ﬂ”a .

Since the vector field ¢ is Killing in a nearly Sasakian manifold [6], by means
of (12.2, 3), h,p,&° = 0. Transvecting ¢* with (12.4), we have g5 =0. This is
a contradiction. Thus we can state

PROPOSITION 12.2. A fibred almost contact metric space with @-invariant
fibres normal to & does not admit a nearly Sasakian structure.

If the structure (4, & #, §) is nearly cosymplectic, then ¢ is Killing by the
definition and it is known [3] that the vector field € is Killing. Hence we see
that M is nearly cosymplectic and M is nearly Kaehlerian by means of (12.1, 1)
and (12.1, 6) respectively. Moreover, by means of (12.2, 2) and (12.1, 2), we get

chpf *=0 > Lf2bey = — Ly%afec
and (12.1, 3) implies
chﬁfyﬂ = 3Lcey¢eb s
or equivalently,
chp = 3Lcey‘7,9y¢be .

By these relations, we obtain
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chﬂ‘Taﬁ = _3Lcea¢be = _9Lcd7‘7av¢ed¢be = 9chﬂ‘faﬂ >

that iS, LCbﬂ = O.
From (12.2, 3), we have hg,*n, = 0 and hence

hﬂaeg fr=0
by the contraction of (12.1, 5) in f and y. By use of (9.10), we see that
(12.5) *Vc‘Tﬂa + hﬂsc‘fea — hg, e =0
is equivalent to
010pe — PapTeg — PatJpe + 2054 J o + h2adpe — hphae = 0.
Thus we have

PROPOSITION 12.3.  The almost contact metric structure on a fibred space M
is nearly cosymplectic if and only if the following conditions are satisfied:

(1) the base space is nearly cosymplectic,

(2) each fibre is nearly Kaehlerian,

3) L,*=0and

(4) ad']_ﬁaz - Pdﬂs‘faa - Pdac‘ZBs + 2hﬂ5d‘fsa + haed‘jﬂa - hﬂae¢de =0.

In this case, each fibre is minimal in M.

If M has conformal fibres, then the second fundamental form h = (h,g")
vanishes identically. Consequently the nearly cosymplectic space M is locally
the Riemannian product of a nearly cosymplectic and a nearly Kaehlerin space
by means of Lemma 1.1.

Conversely, if a space M is nearly cosymplectic and M is nearly Kaehlerian,
then the product space M = M x M becomes a nearly cosymplectic space by
use of (12.1) and Proposition 12.3. Thus we have

COROLLARY 124. Let M be a fibred space with a nearly cosymplectic
structure. If M has conformal fibres, then M is locally the product of a nearly
cosymplectic space and a nearly Kaehlerian space, and vice versa.

REMARK. To prove Corollary 12.4, we have introduced the fibred almost
contact metric space with g-invariant fibres normal to €. But, even if we consider
the case that each fibre is g-invariant and tangent to E it is possible to prove
Corollary 12.4 by exchanging the base space and the fibre.

If a structure (@, &, 7, §) is closely cosymplectic, then é is Killing and # is
closed by definition. A closely cosymplectic structure is nearly cosymplectic,
and V#j = 0 because ¢ is Killing in a nearly cosymplectic manifold [3]. Hence,
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by a similar method to that of the case of nearly cosymplectic structure, we
have the following

PROPOSITION 12.5. The almost contact metric structure on the fibred space
M is closely cosymplectic if and only if the following conditions are satisfied:

(1) the base space is closely cosymplectic,

(2) each fibre is nearly Kaehlerian,

3) L, =0and

4) 0aJpe — Pag™Jea — PiJpe + 2hﬂ£d‘751 + hadge — hga'ae = 0.

In this case, each fibre is minimal in M.

COROLLARY 12.6. Let M be a fibred space with a closely cosymplectic
structure. If M has conformal fibres, then M is locally the product of a closely
cosymplectic space and a nearly Kaehlerian space, and vice versa.

§13. Quasi cosymplectic and cosymplectic structures

M. Capursi [7] has introduced the notion of quasi cosymplectic structure
by the property A(X, Y) =0, the tensor A defined in (2.1). The notion includes
closely cosymplectic and almost cosymplectic ones, and the space (S x E*) x E!
is an example of quasi cosymplectic manifold which is neither closely co-
symplectic nor almost cosymplectic nor cosymplectic.

In this section, we state characterizations of fibred spaces with quasi
cosymplectic structure. By use of (9.2) ~ (9.7), components of the tensor A with
respect to the frame (E,, C,) are given by

AE EVES = Vg + @b — ny8 VL
APELEWCS = Lol Iy — L'$y® + LI 0" + La’6 — L85,
APELCLE® = LA — L2%e — Lo 026,
(13.1) A E.CyCr =* Iy + ¢ (*V.J7),
ACIEVE" = L,y — Ly*,0." + (L 8" — L39s™) Py
+ 'ijyﬂLaeﬂfe ,
AjihcijibCha = hysbjsu — h b + hagdjyafea%d + hsub‘iye ,
A'CILCaCF = VI + TR,y

If M is a quasi cosymplectic space, then (13.1, 1) and (13.1, 7) imply that
the base space M is q_ugsi cosymplectic and each fibre M is quasi Kaehlerian,
that is, V,J;* + Jy‘Jﬂ"VeJ,;“ = 0. Taking the symmetric part of the covariant
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component of (13.1, 3) with respect to the indices a and ¢, we have
(132) Luop$ + Leegts® =0.
Transvecting £¢ and ¢, successively to this equation, we obtain
(13.3) L.z¢°=0.
Then it follows from the equation (13.1, 5) that
(13.4) Lewy$ = Leag TP .
Substituting this into (13.1, 3), we obtain
Lbeyj;fy¢db¢ea =0,

and this together with (13.3) gives L,* = 0.
On the other hand, if we take the skew symmetric part of the covariant
component of (13.1, 6) with respect to the indices y and «, we get

(135) h'yee'Tﬂa = hﬁse'fys ’
or equivalently
hyg’ = hityd, g

If we transvect J,* to (13.5) and contract in the indices y and 4, then
h.°g*® = 0. Thus we have

PROPOSITION 13.1. The almost contact metric structure in a fibred space M
is quasi cosymplectic if and only if the following conditions are satisfied:

(1) the base space is quasi cosymplectic,

(2) each fibre is quasi Kaehlerian,

3) Ly =0,

4) hv“ef,,, = hﬂ"efy, and

() (W) + (Ve )es =0 _

In this case, each fibre is minimal in M.

If, in addition, M has conformal fibres, then the second fundamental
form h = (h,s") vanishes identically. Hence, by the same argument to that of
Corollary 11.5, we have the

COROLLARY 13.2. If a fibred space M with quasi cosymplectic structure has
conformal fibres, then M is locally the product of a quasi cosymplectic space and
a quasi Kaehlerian space, and vice versa.
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To the contrary, if a fibred almost contact metric space with g-invariant
fibres normal to & is cosymplectic, that is, Fj¢" =0 and F;&* =0, then by
a similar method to that of the case of nearly cosymplectic structure, we have
the following

PROPOSITION 13.3.  The almost contact metric structure on a fibred space M
is cosymplectic if and only if the following conditions are satisfied:

(1) the base space is cosymplectic,

(2) each fibre is Kaehlerian,

(3) Ly =0,

4) hy‘i,J,,m = hye’ =0, ~

(5) 0.0 — Pg*J% + P.Jg* + 2k J,* =0,

6 hr&e=0. )

In this case, each fibre is minimal in M.

COROLLARY 13.4. If a fibred space M with a cosymplectic structure has
conformal fibres, then M is locally the product of a cosymplectic space and
a Kaehlerian space, and vice versa.

Chapter IV. Cosymplectic structure and cosymplectic Bochner
curvature tensor

§14. Closely cosymplectic and cosymplectic structures

Up to the present, we have considered various almost contact metric
structures from the view point of fibred Riemannian space. However, if the
structure vector field & is parallel, & = 0, like a closely cosymplectic or co-
symplectic structure, then the manifold is locally the product of a Riemannian
manifold with a 1-dimensional Euclidean space. We have scarcely seen discus-
sions on closely cosymplectic or cosymplectic manifolds from this view point in
the literature. For this reason we give here a treatment of such manifolds as
product Riemannian manifolds.

We assume that the structure vector field & of an almost contact metric
manifold M is parallel. Then M is locally the Riemannian product M =
M x E' of a Riemannian manifold M with a 1-dimensional Euclidean space
E!. The vector field & is unit and tangent to E!. Therefore, in the trivial
sense, the manifold M has a structure with 1-dimensional fibre M = E!
discussed in Chapter II. The almost contact metric structure is expressed in

the form
. (] 0 : (0 . _ (g9 0
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and the horizontal part J = ¢¥ satisfies the equation J2= —I. It is noted
that h and L vanish identically.

If the structure is closely cosymplectic, Z(Zi" + 17,4;," = 0, then it follows
from (3.3) and (3.4) that

Vydj” =0,J = (ﬁcd;p + ﬁj&ki)ckijbEia =0,

hence ¢ is projectable and the projection J gives an almost complex structure
on M. By means of (3.2) in the cosymplectic case or (3.11, 1) in the closely
cosymplectic case, we can state the following

PROPOSITION 14.1. A cosymplectic (resp. closely cosymplectic) manifold M
is the Riemannian product M x E' of a Kaehlerian (resp. nearly Kaehlerian)
manifold M with a 1-dimensional Euclidean space E*.

Therefore the nature of the manifold M is characterized by that of the
manifold M. If we take a local coordinate system (x% y) in M = M x E!, then
non-trivial components of the curvature tensor of M are only K;,* = K .,°

The cosymplectic Bochner curvature B = (ﬁkﬁ,,) is defined by

Byin = Kyjin — {Ki(Gin — fiin) — K@i — fij71n) + Kia(Gsi — ,770)
- kjh(gk:‘ — Mfl) — thﬁij + thﬁik - &jiﬁhk + &kl’ﬁhj + z‘ﬂhﬁjk
+ Zakjﬁhi}/(m +3)+ K{(gkh — i) (G — 771:) — (Gin — ;710) (Gui — Tfls)
— G + B + 26 }(m + 1)(m + 3),

where ﬁij = J,-"I?kj = —ﬁﬁ. It is easily seen that B has non-trivial components
~ 1 ~
Bdcba = chba - m {chgda - degca + Kdagcb - Kcagdb - JdaHbc

+ Jcaﬁbd - Jcbﬁad + Jdbﬁac + 2Jbaﬁcd + 2Jdcﬁab}

~

K

+ m {94a9cb — 9ea9ab — Jaadbe + Jeadba + 2Jacdap} -

Since H,, = JK,,, K = K and m = n + 1, the components B, are the same as
Bochner curvature tensor B defined on the Kaehler space M (for the detail of
Bochner curvature, see [21, 23, 36] etc.). Hence we can state that

PROPOSITION 14.2. A cosymplectic manifold M with vanishing cosymplectic
Bochner curvature tensor is the product of a Kaehlerian manifold M with vanishing
Bochner curvature tensor and a 1-dimensional Euclidean space E!.
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Let {e;,..., e, Je; = ey*,..., Je, = eq*} be a J-basis in M with 2q = n, and
the indices 4, u and A%, pux run over the ranges 1, ..., q¢ and 1%, ..., g*
respectively. The symbol |a| means that

la] = A for a=Aor ix,

and |a|, |b|, |c|, |d| # means that |al, |b|, |c|, |d| differ from one another.
For the Bochner curvature tensor, T. Kashiwada [21] proved

PROPOSITION 14.3. Let M be a Kaehler manifold with n =2q =2 8. If the
relation

(141) chba =0 (|a|’ |b|a Icl’ |d| # )

holds for every J-basis {e,,e;*}, then the Bochner curvature vanishes. The
converse is true.

PROPOSITION 144. Let M be a Kaehler manifold with n=2q = 8. Then
the necessary and sufficient condition in order that the Bochner curvature tensor
vanishes identically is

(14.2) H(e;, e;*) + H(e,, e,¥) = 8H(e;, e,) A#w

for every J-basis (e;, e;*), where H(X, Y) means that the sectional curvature with
respect to the plane spanned by X and Y.

Combining Propositions 14.2, 14.3 and 14.4, we have

COROLLARY 14.5. Let M be a cosymplectic manifold with dimension m 2 9.
If the relation (14.1) is satisfied for every ¢-basis {e,,e,x, &}, then the co-
symplectic Bochner curvature tensor of M vanishes and vice versa.

COROLLARY 14.6. In a cosymplectic manifold M with dimension m =9,
in order that the cosymplectic Bochner curvature tensor vanishes identically,
it is necessary and sufficient that the relation (14.2) holds for every ¢-basis

{eb €%, Z}

ExaMPLE 14.7. The locally product manifold M,(c) x M,(—c) of constant
holomorphic sectional curvature ¢(=0) and —c¢ with dim M, + dim M, =2q =4
and min{dim M,, dim M,} = 2 is a Kachler manifold with vanishing Bochner
curvature [25]. Hence the space M = M () x My(—c) x E! is a cosymplectic
space with vanishing cosymplectic Bochner curvature tensor by means of Prop-
osition 14.2. But, by means of Proposition 8.2 or Corollary 8.3, such a space
M does not become a cosymplectic space form because M,(c) x M,(—c) is not
a complex space form.
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§15.. Cosymplectic conformal connection

In this section, we consider a cosymplectic conformal connection and give
a sufficient condition in order that a cosymplectic manifold has the vanishing
cosymplectic Bochner curvature tensor.

Let M be a cosymplectic manifold with structure (4, £, 4, §), and D an
affine connection with coefficients 4;" which satisfies

Dk(ezagji) = 2921Pk’7j’7i >

Dé=0, DE=0
and

At — A = —28ub,

where o is a scalar field, p, the gradient of a scalar field p and u"* a vector field.
Denoting by I} the Riemannian connection of M, A;* are given by

Al = I+ (6 — ;Ep: + (OF — 7,EMp, — PGy — 71,71 + b'a + dta; — bua"
where we have put
(15.1) p" =pg*, q"= Pk(zkh > 4= 9"
and p satisfies
(152) %p=p&=0.

In this case, an affine connection D is said to be cosymplectic conformal con-
nection [14]. From (15.1) and (15.2), we have

153 bt =—a, adt=p., d=4"., b'"=-p"
g =0, pp*=qq".
Now, the curvature tensor of 4" is defined by
Ry = 04" — 4" + A4 — 404
By a straightforward computation, we have the expression
Ry = Izkjih — (& — fikEh)Pji + (5,"' - ﬁjéh)l’m — p" (@ — ;)

+ p(Gs — Tfl) — b + ¢;jh4ki - qkhin + qthki + (ﬁz‘h - qu)qzih
+ 2(ij(‘1il’h - pia"),

where we have put
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~

Dji = Vjpi —Dpipi + 9;9; + A(gji - ﬁjﬁi)/z >
a5 = Vd: — pjg: — pid; + A4/2,
and 1 = p,p*.
Then we can see that the curvature tensor R,;" satisfies the relations
Rkjih = _Rjkih = _Rkjlu'
and
Rii" + Ry + Ry = Z(ij(zqiph —Vig"— AgM + 2‘511(2‘11;["' — Zg" — 2$M
+ 20u(2q;p" — Fq" — 49}
Hence if we assume that
Via" —2q;p" + 24/ =0,

then the curvature tensor R satisfies the first Bianchi identity and we get
Rijin = Rip- - ~ ~e~ ~

For any ¢-holomorphic section o = (X, ¢X), the ¢-holomorphic sectional
curvature with respect to the cosymplectic conformal connection is defined by

_§(R@X, X)¢X, X)

§(X, X)§(¢X, ¢X)
Then H(o) is uniquely determined by the holomorphic section ¢ and is inde-
pendent of the choice of X on ¢. If this holomorphic sectional curvature is
independent of the holomorphic section at each point of M, then a cosymplectic
conformal connection D is said to be of constant @-holomorphic sectional
curvature.

If a cosymplectic conformal connection D is of constant holomorphic
sectional curvature, then we have

H(o) = HX) =

Ryjin = c{(Gin — fifin) G — 71;71:) — (Gin — 7;71n) (Gai — Tiifli)
+ (Zkh‘l;ji - th‘im - 2¢7kj$u-} )
¢ being a scalar. By use of (15.4) and (15.5), we obtain
Ria=0  (lal 1l lcl,|d| #),

for every g-basis {es, €%, 5} Thus, by virtue of Corollary 14.5, we have

(15.5)

THeOREM 15.1. If an m(Z=9)-dimensional cosymplectic manifold M admits
a cosymplectic conformal connection D which satisfies

7.q" — 2q;p" + Agt =0



512

Byung Hak KM

and is of constant @¢-holomorphic sectional curvature, then the cosymplectic
Bochner curvature tensor of M vanishes.
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