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§1. Introduction

We consider a dynamical system in a compact metric space (M, d) in which
continuous maps operated on points are successively chosen randomly
according to a fixed probability law. Such random dynamical systems were
studied, for example, by [3], [4], [7] and [8]. More precisely, let @ be a set of
maps with a measurable structure # and {@,(w): neN} be (®, F)-valued
stochastic process on a probability space (2, & P). The corresponding
trajectories on M are {@,(@w)c---°¢,(w)x: neN}, xeM, for weQ. Here the
underlying probability space (22, &, P) can be taken to be (®N, #N, P) for some
P. To avoid the dependence of the law for the choice of maps on time, we
impose on P the stationality (i.e. the shift invariance). We also assume that P
is ergodic for simplicity.

Define a map t© on M x &N by 1(x,d)=(p,x,00), xeM, §
= (@1, @3,...)€ DN, where ¢ is the shift transformation on ®N. This map t is
called the skew product transformation. In most articles, a probability
measure of the following type was considered as an invariant measure of 7: Q
=pu x P, where P =pN, p is a probability measure on (&, #) and u is a
stationary (i.e. invariant) probability measure of the transition probability
P(x, B) = jd,l,,((px)dp((p). Tsujii [10] treated a slightly different measure in
connection with the theory of random fractals. He gave a 7-invariant measure
which has the non-trivial decomposition with respect to the partition
{M x {¢}: pe®N}. Even in his system P turns out to be of the type p} for
some probability measure p, on ®.

In this paper we consider the random dynamical sysytems in more general
situation. We assume only that an ergodic shift invariant probability measure
P on (®N, #N) is given and we are concerned with a t-invariant Q on (M x ®N,
By x FN) which is required to satisfy only the condition Q(M x F) = P(F),
Fe%. In §2 we prove the existence of such a t-invariant probability measure
Q. When maps are homeomorphisms, as a natural extention of ®N, we can
take the underlying probability space to be (®%, #Z, P) for a given ergodic shift
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invariant probability measure P on (®%, #Z%). Also in this case the existence of
an invariant measure is assured. (See [2].)

In §3 we study the ergodic decomposition of (r, Q) on M x @N. For a
random dynamical system such as Tsujii’s one, it has simple form. That is, the
decomposition is essentially determined by a decomposition of M. We deduce
this from the ergodic decomposition of a certain Markov operator. This result
obtained here corresponds to a special case of deterministic version lemma in
an iid. random dynamical system (i.e. P = p™ and Q = u x P stated above)
(7).

In §4 both topological and metrical entropies h,,,(P) and hy(P) of a
random dynamical system are defined as in a detrministic case or an i.i.d. case
([4]). The notion of the metrical entropy is closely related to that of the
conditional entropy and here we follow [4] to obtain the Kolmogorov-Sinai
type lemma. We also briefly consider the variational principle and the
Shannon-McMillan-Breiman type theorem in connection with the entropy.

In §5 we consider the maximal measure in a random Bernoulli
shift. Similarly to the deterministic case, we obtain the result that there exists a
unique invariant measure which maximizes the metrical entropy. Techniques
used are similar to those in the deterministic case. But the z-invariance
condition of measures is somewhat different so that we have to make some
modifications.

In §6 we take Tsujii random dynamical systems and apply the results
obtained in the previous sections. We review the measure given in [10] and
check the ergodicity as an application of §3. The entropy of a certain special
system is also treated.

§2. Random dynamical systems and invariant measures

Let (M, #) be a pair of a compact metric space (M, d) and its topological
o-algebra %, and C,,,(M, M) be the set of surjective continuous maps from M
to itself. The set C,,, (M, M) is endowed with the topology generated by the
metric r(f, g) = sup,d(fx, gx)(i.e. the uniform topology) and the measurable
structure &, generated by this topology. Let @ be a measurable subset of
Co(M, M) and ¥ =F,nd. We denote the product space (N, FN) by
(®, %), an element of & by ¢ = (¢,),x and the shift transformation on & by
0:0Q = (0,4 )en- We fix an ergodic o-invariant probability measure P on
(@, #). Then the coordinate functions {¢,: neN} becomes an ergodic
stationary process on (P, %, P).

DEFINITION 2.1. The pair {(M, d), (®, %, P)} is called a topological
random dynamical system. lts trajectory is {"¢x:neZ,}(Z, ={0,1,2,...,})
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for xe M, & = (¢,)n€ P, Where

nx _ §id if n=0
¢ = Qp0 0@y if n>1.

For a topological random dynamical system, we define the skew product
transformation 7 on M x & by

(x, ¢) = (¢, %, 6¢), xeM, Ged.
Our first task is to find an invariant measure in the following sense.
DEFINITION 2.2. A measure Qe 2(M x &) is called invariant if it satisfies
@1 ™0 =0
(2.2 50 =P,

where mg: M x & — @ is the natural projection. The set of invariant measures
is denoted by Sp(M x ).

REMARK 2.3. Throughout this paper 2(X) or Z(X, %) denotes the set of
probability measures on a measurable space (X, %) and the image measure of a
measure v by a map f is denoted by f*v(or sometimes veof 1),

We define ¢ =[Ji_, &b, ?,=® and F»=][[i., F,, F,=F for
l<p<g<o. For oM =(p)i_,e®™ and ¢@ =(¢)y-y+1€P**!", we
denote ¢V @@ = (¢ ;- ,€P”". Let m,: & — &**1:* be the natural projection,
ie. TP = (@) rs €D ® for ¢ = (@), €®P. Under these notations we
have @ = (¢, . Q)T or simply ¢ = ¢, --- o, 1P for all keN.

For n> 1, define a bijection 6,: & - "1 by (0,0), = Ox—m k>n
+ 1. We see that n,=0,°0". Since P is o-invariant, we have n}P(6,F)
= P(6™"F) = P(F) for Fe%.

Take Qe ?(M x &) with 7n%Q = P. Since (M, %) is a standard measur-
able space, there exists the family {Q 3: ¢ € 5} of regular conditional probability
measures of Q with respect to the partition {M x {¢}: q”)e(fi} of M x &:

QB x F) = J Q4B)dP($), Be B, Fe F,

where we regard Qs as a measure on (M, %). Similarly we have the family
{Py,5: e ®)} of regular conditional probability measures of P with respect to
the partition {®'" x {0,3}: Ge P} of &:

P(F, x 6,F) = J

0,F

Py, 5(Fy)dm; P(6,p) = J Py,5(F1)dP(p)

F
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for Fie#'" and Fe%, where we regard P, ; as a measure on (®'", #17).

LeMMA 24. For Qe P(M x ®) with 1%Q = P, Qe (M x ®) if and only
if

(2.3) jQ¢91¢(¢_13)dP91$(¢) = Q4B) for P-a.e. ¢ and all Be #.

Proor. Here we denote 6, by 0 for simplicity. First let us assume
Qe Sp(M x ®). For BeA, consider the function

fB((p JQ(qu)((p - IB)dPO ((P)s (P € ¢

By the definition of {Qg} and {Py;}, we have, for FeZ,

f fa(@)dP(p) = f J Qo9 ~ ' B)dPyy(0)dP($)
F F
= ffla(fpx)l oxor (9 00)dQ y55(x)dP (9 05)

= lexF(wlxs aP)dQ(x, §) (F = ¢0p)
=Q( (B x F))
= Q(B x F).

By the uniqueness of {Qz} we get

f8(@)=QsB)  for P-ae. §.

Thus we obtain (2.3).
Next assume (2.3). Then we have as above

Q(z™'(B x F)) —f JQ¢9¢(<P“B)dPo #@)dP(()

f 04(B)dP (G
=Q(B x F)

for Be# and Fe%.

REMARK 2.5. Under above notations, the t"-invariance condition of
Qe ?(M x @) with n%Q = P is
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(2.4) j Qy....0n0,5("® " ' B)APo, (01, -+, 0,) = Q3(B)
@l.n

for P-a.e. ¢ and for all Be %, where "p = @,o---o¢@, for (@, -, @,).

To deduce the existence theorem of invariant measure we prepare the
following results from [1]. Let C(M) be the set of continuous functions on M
and M(M) be the set of finite signed measures on M. Consider the Banach
space of integrable random continuous functions,

L&, C(M)) = {f: [f: & — C(M) measurable, || ]| = fllf(@)IIdP(é) < o},

where | f(@)| = sup{|f(@)|: xe M} for f($)e C(M), with the norm || ||. The
linear space of bounded random signed measures,
L®(®, MM)) = {u: u: & — M(M) measurable,
(P-) ess.sup{|u(@)|(M): pe P} < 0},
can be regarded as the dual space of LY@, C(M)) by the duality

(s, = jj J(@)(x)du(d)(x)dP(p)

[
for fe L{(®, C(M)) and peL®(®, M(M)).

THEOREM 2.6. Jp(M x @) # .

Proor. Define a linear operator T on L°°(5, IM(M)) by

(Tw(®)(B) = Ju(rpﬂlé) (¢ "'B)dPy,5(¢), BEA.

Then T is continuous with respect to the weak-* topology. In fact,

(f, Tw) = JJf((ﬁ)((pX)du(w@l(ﬁ) (x)dPo,5(¢)dP ()

= J Jf (o) (W1 x)du() (x)dP())

=(*f, 1

where t* is the linear operator on LY(®, C(M)) defined by (t*f)(®)
= f(6@)(¢p,x). Since t* is clearly continuous, so is its dual T. Since
L(®, P(M)) = {ue L*(®, M(M)): u(p)e P(M) P-ae. $} is a T-invariant weak-*
compact convex subset of L®(®, M(M)), by Schauder-Tychonoff’s fixed point
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theorem there exists a peI(®, (M)) with Ty = pu. Define Qe (M x @) by

OB x F) = f (@) (B)dP((), Be B, FeF.
F

It is clear that Q defined above satisfies (2.3) in Lemma 2.4. So we obtain an

element Qe Jp(M x B).

DEerFINITION 2.7. Let (M, %), (®, #) and P be the same as above. For
Qe Sp(M x ®), the triplet {(M, B), (B, Z, P), Q} is callled a metrical random
dynamical system, or simply a random dynamical system.

In the following, we briefly refer to invertible random dynamical systems.
(See the first part of [2].) Let (M, d) be the same as in the previous case. We
asuume that each ¢ € @ is a homeomorphism on M. The measurable structure
Z is associated with @ in the same way as before. We denote (D%, #%) by
(P, #), an elment of @ by ¢ = (#,)nez and the shift transformation on & by
0. We fix an ergodic o-invariant probability measure P on
(®, #). Corresponding to Definition 2.1, the pair {(M, a), (B, #, P)} is called
an invertible topological random dynamical system. The skew product
transformation, which is denoted by 7 in this case too, is given by

T(X, (ﬁ) = ((le, O'(b), (x7 @)EM X 45'
Note that in this case 7 is invertible and the inverse is given by

t7(x, @) = (05 1x, a719), (x, P)eM x &.

The measure Qe 2(M x ) is called invariant if it satisfies n%Q = P and t*Q
= Q, where my: M x & — & is the natural projection. The set of invariant
measures is denoted by S,(M x &). The triplet {(M, %), (D, #, P), Q} is
called an invertible metrical random dynamical system. The existence of
Qe Fo(M x D) is assured by the same arguments as in the proof of Theorem
2.6. Note that if {Q,: ped) is the family of regular conditional probability
measures of Q with respect to the partition {M x {¢}: $e®}, t-invariance
condition of Q is given by the following simple form:

(2.5) 0104 = Qup for P-ae. .

Of course we assume 7%Q = P and regard Q; as a probability measure on
(M, #). To prove (2.5) compare

Q(B x F) =f Q4(B)dP(9)

with
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*Q(B x F) = Q({(x, p)eM x &: ¢, x€B, oPpeF})

= J Q4(e1 ' B)dP(9) = f Q,-14(9o ' B)dP(9)
¢~ 1F F

for Be®B and Fe%, where B is a countable basis for (M, %).

REMARK 2.8. The condition (2.5) is derived from t*Q = Q. From (z")*Q
= Q(neZ), we obtain

(2.6) C"P)*Qp = Qong for P-ae.,
where {"¢: neZ} is the cocycle defined by

Ppo 0@, ifnzl,
"¢={id if n=0,
Ppiroog !l if n< —1.

ReMARKk 2.9. For simplicity we will abuse the underlying P and invariant
0 both in a non-invertible and in an invertible random dynamical system. We
will make use of different notations only for the infinite products @ and &,
elements e P and ¢ped. But the corresponding shifts will be both denoted
by o. Thus throughout this paper {(M,d), (&, Z,P)} or {(M, %),
(®, Z, P), Q) means a non-invertible random dynamical system which is
considered in the former part of this section and {(M, d), (@, #, P)} or
{(M, B), (D, #, P), Q} an invertible random dynamical system considered in
the above.

§3. Ergodic decomposition of a Markov random dynamical system

For a metrical random dynamical system {(M, #), (®, Z, P), Q}, let
{Q*: xe M} and {Q™*"?": (X, @1, , 9, )EM x &1"} (neN) be the families of
regular conditinal probability measures of Q with respect to the partitions
{{x} x 5: XGM} and {{(X, P15 (Pn)} x @t (x, P10y (pn)EM x ¢l.n~}'
respectively. Here we regard Q* and Q*¢"~%" as probability measures on &
and @"*1® respectively.

DEFINITION 3.1. Let {Q*: xe M} and {Q*®"*": (X, @, -, 9, )€M x D"}
(neN) be the same as above for a random dynamical system {(M, %),
(@, #, P), Q). We say that Q is Markov if satisfies

(3.1) QF O on = G Qrex for all neN, Q-ae. (x, @),

where 0,: @ > ®"*1® is the map defined in §2.
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Let n: & - M%* be the map defined by
n(x, §) = ("$x),ez,  for (x,p)eM x @,

6 be the shift transformation on M%* and %, =[]2,%;(neZ,), where

'%1_ '@ ifi=0,...,n,
*7 | the trivial o-algebra of M otherwise.

We also define 0 = n*Q and u = n¥%Q, where m,,: M x & — M is the natural
projection.

LEmMA 3.2. If Q is Markov, then Qe P(MN+, B%+) is a Markov measure,
that is,

(3.2) E(f°5"|%,) () = E(f|%0)° 5" (7).

for all neZ, Q-ae.jeM?+, fe L*(M?%+, #%+), where E( | )(resp. E) denotes
the conditional expectation (resp. the expectation) with respect to Q and
L*(X, &) is the set of bounded measurable functions on a measurable space
(X, o).

ProoF. Let {Q*: xe M} be the family of regular conditional probability
measures of Q with respect to the partition {{x} x M} (M">* =[[2M;, M,
= M) of M%+*. We regard Q* as a probability measure on (M%*, #%*). To
prove (3.2), it suffices to show

(3.3) E*(f<6"18,) () = E(f),

for all neN, Q*ae.j= Yz, EM?*, p-ae.x, feL®(MZ+, BZ+), where
E*( | )(resp. E) denotes the conditional expectation (resp. the expection) with
rspect to Q.

To prove (3.3), we first see that the following equality holds:

(3.4) EX(g°6"|7,)(®) = E"*(g),

for all neN, Q*-ae. @, p-a.e.x, ge L*(®, #), where E*( | )(resp. E¥) is the
conditional expectation (resp. the expectation) with respect to Q* and £, is the
sub g-algebra of Z defined by &, = [[2, %, with

- F if 1 <i<n,
7| the trivial o-algebra of @ otherwise.

For, if Fe#,, we have from (3.1),



Invariant measures and entropies of random dynamical systems 195

r

goa"dQ*

f EX(g° 0" ,)dQ"
F

o

F
= f g(a" )dQ=?1(0,0" ) dnt ,Q* (@1, ", ¢y
Jv g Q"‘px J"(ﬁ)d?’[l nQ ((pla"', (pn)

= E"“”‘(g) dQ*(9),

vF

where 7, ,: @ » ®'" is the natural projection. This implies (3.4). If 0x =
8, X Q* (6, is the point mass at xe M), it is easy to see from (3.4) that

(3.5 E*(hot"|n " (B)(y, §) = E"o~(h),

for all neZ,, Q0%ae. (y, ), p-aex, heL®(M x é, B x ), where
E*( | )(resp. E¥) is the conditional expectation (resp. the expectation) with
respect to 0. Therefore we have

EX(fo6"|B,)°n(y, ®) = E*(f&"|n "1 (B,) (3, )
=E*(fonea"|nY(%,))(), §)
= Eme=(fon) = E"o=(f),

for all neZ,, Q-ae.(y, §), p-ae.x, fe L°(M?+, B%*). Since n is surjective
mod. 0% for p-ae.x, (3.3) follows.

REMARK 3.3. Since {MZ+, %+, 4, Q} is a factor of {M x &, B x #, 1,
Q}, in the case of (3.1) (in which Q is Markov by the above lemma) Q is a
stationary Markov measure. The transition probability P(x, B) for xe M and
Be % is given by P(x, B)= Q*(B = [15(¢p,x)dQ*(¢) with the initial stationary
distribution u. In this case the correspondmg Markov operator 2 on L'(M, p)
is defined by 2f(x) = [f(¢,x)dQ*($) for feL'(M, p). We denote the dual
operator on 2(M) by 2*: 2*v(B) = ([ 14(¢,x)dQ*(¢)dv(x) for Be# and
ve P2 (M).

DErFINITION 3.4.  Suppose that Q is Markov. We say that Q is M-ergodic
if 2f =f p-ae. implies f = const. p-a.e. for fe L'(M, p).
THEOREM 3.5. Let Q be Markov. Then Q is M-ergodic if and only if (t, Q)

is ergodic.

PRrROOF. Suppose that (z, Q) is ergodic. Take fe L}(M, p) such that 2f = f
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p-ae. For ceR, we define B, = {xeM:f(x)>c}. Since 15 is 2-invariant
(see [4], p.19), that is,

j lg (91 x)dQ*(§) = 15,(x)  for p-ae.x,

we have 1p(¢;x)=1p(x) for Q-ae. (x, ). This equality shows that 1p,
viewed as an element of L!(M x &, Q), is t-invariant. By the ergodicity of
we have that 1 = const. y-a.e. From this, we obtain u(B) =0 or 1 for all
ceR, which implies that f=c¢, p-a.e. for some c,€eR.

Next suppose that Q is M-ergodic. Take ge L}(M x &, Q) such that got
=g Q-ae. and define g, by

go(x) = fg(x, ?)dQ*(9).

Clearly goeL*(M, p). By the t-invariance of g and (3.1), we have

"~

290(x) = | go(@1x) dQ*(P)

Y

= Jg(q)lx, ¥)dQ> () dnt ; 0*(e4)

= Jg(x, 0.0, ‘/7) o™ (0, l/;) dn¥ 1 0*(e4)

»

= | g(x, §)dQ*(P) = go(x) for u-ae.x.

v

Then by the M-ergodicity of Q, we have that g, =c p-ae. for some
ceR. Next if we define g, = E(g|# x #,), we have

gn(x7 (ﬁ) = J‘g(x9 D15 (pnenll;)de"pl .... (pn(enlp)
= Jg("ﬁx, ) dQ**1o(6,)

- j o0, 1) d0™>~()
= go(gx)=c  for Q-ae(x, §),

where we used the condition got" =g Q-ae. Therefore letting n— oo, by
Doob’s theorem we obtain g(x, ) =c Q-a.e. This implies the ergodicity of

(. Q).
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Let Q be Markov and put &p(M) = {veP(M): 2*v=v and 2f=f
v-a.e. implies f = const. v-a.e. for fe L'(M, v)}. Then u = n};Q is expressed in
the following way by a probability measure A on &p(M):

U= J vdA(v).
&p(M)

The ergodic decomposition of M with respect to 2 is { = {x "'(v): ve &p(M)},
where the map y: M — &p(M) is defined by

2(x) =1im, ., n™1 3275 (2*)5,,

x is defined p-a.e. by virtue of the Ornstein-Chacon theorem. (For details of
ergodic decomposition of Markov opertors, see [4] and [5].)

COROLLARY 3.6. Let { be the same as above. Then the ergodic
decomposition of (t, Q) is given by { x & = {C x @ Ce(}.

Proor. Let {uc:Ce(} and {Qc:Ce(} be the families of regular
conditional probability measures of u and Q with respect to the partitions { and
{ x @ respectively. Clearly

Qc(B x F) = j Q*(F)duc(x) for Be# and Fe%.
B
Since 21 = 1. pc-ae. and ae. Ce{(C* is the complement of C), we have

Qc(C x 'ij\T_l(C X ‘5)) = lec(x)lcv(¢1 x) dQ™(®) duc(x)
= ch(x)glcc(x)dﬂc(x)

= ch(x)lcc(x)duc(x) =0 for ae.Ce(

which implies 7 1(C x @) = C x dmod. Q,, a.e. Ce{. By the same arguments
as in the latter part of the proof of Theorem 3.5, we consequently have
(tlexd > Qc) is ergodic a.e.Cel. This implies the statement in the corollary.

§4. Topological entropy and metrical entropy

Let {(M, d), (@, #, P)} be a topological random dynamical system. For a
finite open convering o of M, the minimal cardinality of subconverings of « is
denoted by 4(x). Define the open covering a,(@) by a,(¢) = ViZ3ip~1a (the
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refinement of ‘¢ "'a, i=0,---,n—1). Under this notation clearly o, (@)
= a,(¢) V"Pa,(c"@)  and  therefore A (o +n(P)) < A (0,(P))

NP La,(6"F)) = N (,(@)) AN (¢,(6"B)). Hence by Kingman’s subadditive
ergodic theorem

h(P, o) = lim, , ,, log A" (a,())/n

exists P-a.e.(.(Recall that (o, P) is ergodic.) By the same arguments as in the
deterministic case, we know the existence of the limit

htap(P) = lirndiamaz—*O h(P’ a)’

which is called the topological entropy of {(M, d), (@, Z, P)}.

We say that for $e®, neN and ¢ >0, E = M is ((, n, ¢)-separated if all x,
yeE, x#y, satify d(@x, ‘'py)>e for some 0<i<n—1 The maximal
cardinality of (@, n, ¢)-separated sets is denoted by s(@, n, £). We say that for
@ped, neNande>0, F< M is (@, n, €)-spanning if for any x € M, there exists
y€F such that d('¢x, ‘py) <eforall 0 <i<n— 1. The minimal cardinality of
(@, n, ¢)-spanning sets is denoted by r(@, n, ¢).

LemMma 4.1. Let {(M, d), (D, Z, P)} be the same as above. Then
hyop(P) = lim,_, o limsup,log s(®, n, &)/n
= lim, ., , liminf,log s(®, n, ¢)/n
= lim, ., , limsup,log r(®, n, &)/n
= lim, ., liminf,log (&, n, ¢)/n  for P-a.e.p.

The proof is essentially the same as in the deterministic case. See [4] and
[11].

For a finite measurable partition ¢ of a probability space (X, &, v) and a
sub g-algebra ¥ of o/, we define the conditional entropy HV(CI%) of &£ given ¥
by

H,(|%) = le(él(é)dv, LEI%) = — Yacelalog v(4]%).

When € is the trivial o-algebra of X constructed from X and ¢, H,(¢]|¥) and
I,(£|%) are simply denoted by H,(¢) and I,(&) respectively. In this case H,(§)
=Y 4eck(V(A)) where k(x) = — xlogx if 0 <x <1 and x(0)=0. H,(|F(n))
and I,(¢|Z () will be sometimes denoted by H,(&|n) and I,(£|n) respectively,
where & (n) is the o-algebra corresponding to the partition #.

Let {(M, %), (@, Z, P), Q} be a metrical random dynamical system. For
a finite measurable partition ¢ of M, we define H,(¢) by
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H,¢) = JHQ¢ (&.(9)) dP(p),

where £,(@) = V2416 1 (the refinement of partitions ‘¢~ 1¢ 0<i<n— 1)
LEMMA 4.2. Let H,(&) be the same as above. Then
H, (&) <H,() + H,(&)  for all n, meN.

PROOF.  Since &,. (@) = &,(@) V "¢ ™1 &,(0"P), we have

H, . Q) < J{Hgé(fn(ﬁ)) + Ho, ("¢ ™' Eu(0"9))} dP(H)

=H,({) + fHQ,;,("@“Cm(G"@))dP(@)

So it suffices to show

(4.1) JHQé(”a_lém(ané))dP(é) < H,(J).

In the following we use the same notations as in §2. We see that

the left hand side of (4.1)

n
= J[ZAE{m(a"&') K(Qqn,..‘,(p,.o,.a"(p'("(ﬁ -1 A))] dPG,.a'"'q';’((ph Tty (pn) dP(G'"(I))

IA

[ZAeém(o'"fF) K<JQ¢1 ..... (p..ona"('ﬁ(n(i’ ! A) dPe,,gn(;i((P 15" q’n))} dP(O'"(ﬁ)

= [ZAegm(a'-@)K(Qana(A))] dP(c"p)

»

= | Hopny(Em(0"))dP(0"P) = Hp(S)-

o

Here we used Jensen’s inequality and t"-invariance condition (2.4) of Q. Thus
we obtain (4.1).

From Lemma 4.2 we know the existence of the limit
ho(P, &) = lim, _, , H,({)/n.

The value hy(P) defined below is called the metrical entropy of {(M, %),
(D, #,P), Q}:

ho(P) = sup{hy(P, £): ¢ is a finite measurable partition of M}.
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For an invertible random dynamical system, we can define entropies
similarly. That is, for {(M, d), (&, #, P)},

htop(P) = limdiama—'O limn—'oolog'/‘/(an((ﬁ))/n P'a'e'¢

a:opencovering

where for a finite open convering a of M, a,(¢) = VIZ3 ¢~ ' and A ﬁoc,,(gb)) is
the minimal cardinality of subcoverings of a,(¢), and for {(M, %), (D, #, P), Q}
with Qe fp(M x D),

ho(P) = sup{hy(P, &): £ is a finite measurable partition of M},
hQ(P, é) = limn—'ooHQ,;(fn((ﬁ))/n for P‘a'e-(b,
Euld) = ViZgioT e

As for the P-ae. existence of hy(P, &) in the above, we note the following
estimate and then apply Kingman’s subadditive ergodic theorem to
{Hg,(¢,(0)): neN} as functions of ¢:

Hy,(&nsm(®)) = Ho,(£(9)V "0~ En(0"P))
< Hy, (4(@) + Ho, ("¢ ™ {nl(0"d))
= Hy,(n(9)) + Hg,ny (Em(0"9)),

where we use the t"-invariance condition (2.6).
The following propositions are the random version of the equality h,(f, &)
=H,(¢|VE,f ¢ for a deterministic (f, w).

ProposiTION 4.3. Let {(M, B), (B, #, P),Q} be a random dynamical
system. Then for a finite measurable partition & of M,

ho(P, &) < ngé(fl Vil "¢~ E)dP(p).
Proor. Clarly for neN.

H,(¢) = ngé(én(fﬁ))dP(é)

= jHQ;,(éI VIZHig T E)dP(§) + JHQ,,-,( VIZLig 1O dP ().
But

JHQ,;(VL"} '9718)dP(p) = JHQ,;(fpflﬁn-l(aé))dP(@J) < H,_,().
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(Replace n and m by 1 and n — 1 respectively in (4.1).) Therefore

H,() — H,-,(9) < JHQ,;,(fI ViZo'¢ 1) dP(9)

and from this

H,(&) < k-1 fHQq-,(il VIZ1H'971E)dP(9),

where we put Hy,(¢) for the term corresponding to k = 1. Thus, considering

Ho,(EIVIZ1ie 1) Ho,(CIVZ,'9718) as ntoo,

we obtain

hQ(P5 é) = limn—*ooHn(f)/n

<lim, n' Yo, JH%@ VELiGT1E)dP(§)

= JHQ,;,(il ViZ, ¢~ 1E)dP().
For an invertible random dynamical system, we obtain the following
stronger results.
PRPOSITION 4.4. Let {(M, ®), (, #, P), Q} be an invertible random

dynamical system. Then for a finite measurable partition & of M,

(4.2) ho(P, &) = JHQ¢(€I VL6718 dP(9).

Proor. Clearly
Ho,(6u(9) = Ho, (I VIZ{ 9™ &) + Hp (o1 ' VIZ5(0p)™10)
= Ho,(¢IVIZ1'0 ™ 8 + Ho,,(VIZ3H(09)™1¢)
= Ho, (I VIZ1 9™ ¢) + Hy,,(¢4-1(09)).

Therefore putting

AN HQ,;,({IV?;Ili@_Ié), n22,
G )‘{H%(@, n=1,

and H,(&, @) = Hy,(¢.(¢)) for neN, we have

Hn(é’ (ﬁ) = G("? (»b) + Hn—1(€9 0(/3)
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and so
(4.3) H,(¢, ¢) =125 G(n—1i, a'9).
Since
G(n, §) 1 g(¢) = Ho,(¢IViZ,'071E),
n~ Y125 g(a'p) — JgdP (note that 0 < g < log(#¢)),
and

H, (& @)/n — hy(P, &)  for P-ae.q,
for arbitrary ¢ > 0, there exist K€% and NeN such that
P(K)>1—zg,

|G(n, ¢) — g(¢)| < e,

(@.4) .
=13y 723 gla’ ) — JgdPl <se,

[H,(E, @)/n — ho(P, O] <,

for all peK and for n > N, neN. If we put
Jl={0<i<n—1:0'¢0ekK, n—i> N},

there exists NyeN such that

(4.5) 1 —#J¢/n<e for all n> Ny, for P-ae. .

Then we have, from (4.3), (4.4) and (4.5),

< |hg(P, &) — H,(&, ¢)/n|

ho(P, &) — JgdP
+ 17 Y e |Gn — i, 6'9) — g(0'P)| + n7 1 Yigse| Gln — i, ' D) — g(0'P)|

+ [n71Y 125 9(0'p) — JgdP’

<e+e+elog#é) + ¢
= (3 + log(#¢))e

for some ¢peK and n> N, Since ¢ > 0 is arbitrary, we obtain (4.2).

In what follows, we will summarize some results on conditional entropies
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for later use. The arguments developed here are almost the same as in
[4]. Let (X, &, v) be a probability space and ¢: X — X be an endomorphism,
i.e. a measurable v-preserving transformation (resp. an automorphism ie. an
invertible v-preserving transformation). We assume that a sub o-algebra &
satisfies ¢ ~1¢ = € (resp. ¢ "€ = %). Then for a finite measurable partition &
of X,

4.6) hé(p, &) = lim, . ,n 'H,(VIZd 0 "1¢|9)

exists, which is called the entropy of ¢ with respect to & given 4. We also
define h¥(¢p) by

hé(p) = sup{h¥(p, &): ¢ is a finite measurable partition of X}.

The following properties hold:

4.7) h¥(e, &) < (e, m) + HC|F (1) V 6),
48)  h(e, &) = hi(p, Vicoo &) (resp. hi(p, Vi__y9 ') for keN,
(4.9) h (@) = lim,, . h,(¢, 1),

where ¢ and 7 are finite measurable partitions in (4.7) and (4.8) and {#,} is an
increasing sequence of finite measurable partitions of X such that #(V ., V ¢
=4 in (4.9).

Returning back to random dynamical systems, we can apply the above
results.

LEMMA 4.5. If & and { are finite measurable partitions of M and & (resp. )
respectively, then for {(M, B), (&, Z, P), Q} (resp. {(M, B), (&, #, P), Q}),

410)  hoP, O =hPF (@ Ex D) (resp. ho(P, &) = H3¥ (z, & x 1)),
where N is trivial o-algera of M constructed from M and ¢.

Proor. Since clearly

Qa(12d T4, x BYIR x F)(x, )= Q=86 A)[[128 15, (0'$)

for A;e¢ and B;e(, we have

Hy(VIZ§ 1T (E x QIR x F) = JHQ‘;(én(@))dP(@)-

Replacing %, v, ¢ and & by N x Z, Q, t and ¢ x { in (4.6), we obtain (4.10). In
the invertible case, the equality can be shown just in the same way.

LEmMA 46. For {(M, #),(®, Z, P), Q} (resp. {(M, B), (b, #, P), Q}) sup-
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pose that a finite measurable partition & of M satisfies F(NV 200~ "'¢) = B for
P-ae.§ (resp. F(V2 _ "¢~ 1E) =R for P-ae.d). Then

ho(P) = ho(P, &) (in both cases).

PROOF. Replace %, v, ¢, £ and # by Mx Z#, Q, 1, nx{, and
VE_oT7H(¢E x {,) respectively in (4.7), where {, is the trivial partition of & and n
is an arbitrary finite measurable partition of M. Then in view of (4.8) and
Lemma 4.5, we have

@.11)  ho(P, 1) < ho(P, &) + Hy(n x {o| F(Vi—ot (& x {o)) V (R x F)).
But clearly
Hy(n x (ol F(Vi—ot (& x o)) V (R x F))

_ J Ho, (1| # (VE-o'6 ™ 9)dP (@)

Letting k — o0, we obtain
ho(P, 1) < ho(P, &)

which implies hy(P, {) = hy(P). In the invertible case the equality can be
shown just in the same way.

To derive the variational principle for a random dynamical system, we
quote from [6] the relativised variational principle for continuous maps. Let
X and Y be compact mteric spaces and T: X - X, S: Y- Y, n: X > Y be
continuous maps such that n is surjective and noT = Sen. The relativised
variational principle for T, S are given by

THEOREM 4.7([6]). Fix a ve P(Y) such that S*v=v. Then
sup{h{(T): pe P(X), T*p=p, n*p=v}= Jh(T, = H(Y))dv(y).

where € = ™1 (By).
h(T, K) = lim,_, olimsup, log s,(T, K, d), and
5)(T, K, 6) =max{#E: E c K, E is (T, n, 6)-separated}
for a compact K = X. (E < K is called (T, n, 6)-separated if d(T'x, T'y) > & for

some 0 <i<n-—1, for all x, yeE, x #y.)

To apply this theorem we see the next lemma in connection with Lemma
45.
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LEmMA 4.8. Let {(M, B), (D, #, P), Q} be a random dynamical system

(resp. {(M, B), (B, #, P), Q} be an invertible random dynamical system). Then
ho(P) = K% (x) (resp. hy(P) = h*% (v)).

ProOF. From Lemma 4.5, it is easy to see hy(P) < hg"“& (). We prove
the converse inequality. Since M and @ are seprarable metric spaces, we can
choose increasing sequences {£,} and {(,} of finite measurable partitions of M
and & respectively such that #(V,{)=# and F(V,()=%. Then
F(V, & %) =B x % and by (49) and Lemma 4.5,

ho(P) = limsup, ho(P, &,) = lim, . h3*% (z, &, x L) = W% (@),
In the invertible case the proof is the same as above.

Applying Theorem 4.7 to a random dynamical system (resp. to an
invertible random dynamical system), in view of Lemma 4.1 and Lemma 4.8, we
immediately have the following theorem.

THEOREM 4.9. Let @ be compact with respect to the uniform topology and
{(M, B), (B, Z, P), Q} be a topological random dynamical system (resp. {(M, 2B),
(®, #, P), Q} be an invertible topological random dynamical system). Then

hiop(P) = sup {hy(P): Qe Fp(M x @)} (resp.
hiop(P) = sup{hy(P): Q€ Fp(M x D)}.)

Lastly in this section we briefly treat the random version of the Shannon-
McMillan-Breiman theorem for an invertible random dynamical system.

THEOREM 4.10. Let {(M, B), (B, #, P)} be an invertible random dynamical
system. Then for a finite partition ¢ of M,

Io,(C, x, @) = lim, .o, I9,(C,(P)) (x)/n

exists for Q-a.e.(x, ¢) and

J\IQa’* (é’ X, (f))dQ(xa (P) = hQ(P» é),

ProOF. Since proof is analogous to that of the deterministic case, we show
a rough sketch of it. First note that the following equality holds:

(4.12) I, (@) (X) = Y726 fuoioT'(x, @)
where
o [T, CIVIEE T O, 22,
fix, @) {I%m io1.
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Indeed, we have
I, (Gu@N(x) = Ig,(EV 1@TIEV - V1971 (x)
= I, (I VIZH 971 + Lo, (VIZ1i9™1E) ()
=fulx @) + I (01 (VIZ3 (09) ™1 E) (x)
=[x, @) + 1o, ,(VIZ3(00) ™ ) (@1)
=fulx, @) + 1o, ,(8n-1(09)) (@1 %),

where we used the t-invariance condition (2.5) of Q. Using this equation
repeatedly we obtain (4.12).

On the other hand by Doob’s theorem,
(4.13) f(x, @) = lim,_, , f,(x, §)

exists both for Qg-ae. and in L'(M, Qg for P-ae.¢. (Note that
fo<log#&) But

j J(x, 9)dQ(x, ¢) = Jff (x, $)dQ4(x)dP())

_ (tim, . f 1% 6)d04(®)dP(®)

.
= |lim,. , Ho,(&| VI_i ‘¢ 1 &)dP(¢)

»

= | Ho, (€| V=, "¢p 1) dP(9)

= hQ(P9 5)’

where we used Proposition 4.4 in the last eqality. Applying Birkhof’s ergodic
theorem, we know that

S, §) = lim, . on= 1 Y123 foti(x, @)

exists for Q-a.e.(x, ¢) and

f fdg = f fdQ = hy(P, §).

Then follwing the arguments in the deterministic case we can show the
statements in the theorem is true with Iy (¢, x, @) = f.
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§5. Unique maximal measure of a random Bernoulli shift

Let S={1,---,s}(seN), M =S% and y be the shift transformation on
M: (%), =x,41, n€Z for £ = (x,)ez€M. It is well known that each ' (ie N)
has the unique maximal measure p = {1/s,---, 1/s}*(see e.g.[7]). This maximal
measure is common throughout ieN. (The maximal measure means the
measure with espect to which its metrical entropy coincides with the topological
entropy.) We are interested in what occurrs when the shifts operated are
randomly chosen. The following theorem is a slight generalization of the
unique maximality in the deterministic shift.

THEOREM 5.1. Let M, ¥ and u be the same as above. Suppose that @
= {y, ¥?} and P is an ergodic o-invariant probability measure on ®. Then

(5.1) ho(P) < hyop(P)  for all Qe Fp(M x D).
The equality in (5.1) holds if and only if Q = u x P.
Proor. Though inequality in (5.1) is deduced from Theorem 4.9, here we

try to prove (5.1) derectly. The following notations are used.

iDx1 %0 = {9 = Uuhen €My = X, i <k < j}

& = {i[x;- x;1: X, -+, X;€8}
for i, jeZ with i <j and

W) ={ped: o, =y} i=12

Let us define the partition a = {,[xoX;];: X0, X; €S} of M. Then we have

o iA—1.\ _ lod s if ¢eW)
(5.2 I(| ViZ "7 o) = { 2logs if e(y?),
and so
(5.3) huxp(P) = hyxp(P, @) = P(())log s + 2P((y %)) log s,

using Proposition 4.4 and Lemma 4.6. We can easily check that h,,,(P)
coincides with the right hand side of (5.3) taking the sequence of open coverings
B,={C:Ce®™""}.

Suppose that Qe .#p(M x ). Then

(5-4) Hp, (@ V2’0~ o) < Ho, (@l ViZ{ ¢~ a)

for all neN, and for X = (x )z €M,
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(55) Iy, (@ Viei '™ o) (%)
Q¢(o [xo-- XN n)]N(@ n)) [P
— log : : if ¢pe@)
Q4(1 [xq - XN(¢,n)]N(¢,n))
Q4(o[X0 ** Xngm INom) A 2
—lo : : if ¢ge@?).
8 Q¢(2 [x;- xN(¢,n)]N(@,n))

where N(@,n)=1+#{1<i<n:¢;=

£ = (Xkezs

Agon = Q@(o[xo
begn= Qo(1[x1

Co.5m = Qpa[x5

Y} +2#{1<i<n:@o,=y?. Set for

xN(@,n)]N(ﬁ,n))a
xN(@.n)]N(@,n)),

xN(@,n)]N(ﬁ.n)) .

Then from Proposition 4.4, Lemma 4.6, (5.2)—(5.5), we have

huxP(P) - hQ(P) = huxP(P9 ) — hQ(P’ o)
f f( )dQ (x)dP(9)
)
j f( log 524 2 >dQ¢(x) dP(9).
w?
Put C,, = {£eCON®M: g, , > 0} and take a maximal subset E; , of C,, such

that for all X = (Xp)en, 9 = (yk)keZEEﬁ,m X #YP satisfy o[xq- xN(an)]N(@n) #
olYo *** Yn.mING.my- Since —logy>1—y, y>0 with the equality only
when y =1, we have

hyuxp(P) — ho(P)

= Ysee ,..<1 )awn}dp( )
f(w { ‘ § af»@"
c n A
+ f { Zfel:]a_,. < 1 - s 2’@ ) af.@.n} dP((P)
w2 2.6.n

-t (ZfeE@,,. bf,(p,n) dP(¢)
W)

—s72 f (Zfe&a,,. cﬁ?,&,n) dP(qA’)
w?)

>0,

=1-—s
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where we used Y ¢p,, bopn <5 and Y ep, Ces, <s® Thus we obtain (5.1).

Now we prove that the equation in (5.1) implies Q = u x P. In order that
the inequalities used in the above estimate become equalities, the following
conditions are necessary:

b
Aon 1 for all )QEC@,,,, P-ae. ¢e(y), and
SAag on

C
28" _ 1 for all %eC,,, P-ae. pe(y?),
S a,wy,,

for all neN. We may replace a.e. ¢ by all ¢ in the above condition with an
elimination of a o-invariant null set N. Putting a; 4, bs 4, and c; 4, back into
measures of cylinders, we have for all neN,

(5.6) Q51 [x1 -+ Xy mIngm) = 5 Colol[Xo - XnigmIng.m)
for all %(= (xkez)€Cy,ny and Pe(¥), and
(5.7) QpaLx1 + Xnigmdvgm) = 5° QplolXo *** XnomInig.m)
for all %eC,,, and ¢e(y?).
We will show the following equality for all neN by induction.
(5.8) Q4(o[x0 -+ XngmIngm) = s~ NPT
for all xo, ", Xypm€S, PED.
First we consider the case when n =1. Then from (5.6) and (5.7),
(5.9) Qp(1[x1x215) = 5 Qplo[x0%1%,]15) for all %eC,,, ¢e(¥), and
(5.10)  Qp(z[x2%3]3) = 52 Qplo[xox1X,Xx3]3)  for all XeCy,, pe?).
Summing over x;, x, in (5.9) and over x,, x5 in (5.10), we have
Q4(o[xolo) <571 for all x,€8 s.t. Qulo[X0]o) >0, (), and
Q4(o[xox11y) <572 for all xo, x;€8 st. Qulo[x0%,];) >0, pe(?).
Since
Yoxoes Qolo[Xolo) =1 and Yoo es Qplo[xox1]1) = 1,
we have from above
(5.11) Q4lo[x0Jo) =71 for all xq,€eS, ¢e(¥), and
(5.12) Qplo[xox,1y) =572  for all x,, x,€8, pe@?).
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Next summing over x, in (5.9),

Qslo[x0x1]1) < s71Qu(:[x114)
for all xo, x; €8 st. Qp(o[xox,1;) >0, @e(¥). But from (5.11) and (5.12), if
pe),
Q4(1[x111) = @ Qslo[x1Jo) = Qoglolx110) = 571,

where we used the codition (2.5). Therefore we have

Q4lolx0x;]y) < 572
for above x,, x; and ¢ e(¥), which by the same arguments as above together
with (5.12) yields
Qslo[x0x 1) =s"2  for all x,, x,€S8, ped.
Then returning back to (5.9) and (5.10), we have
Qplolxox1x212) = 571 Qp(1[x1X,12) = 571 Quplo[x1X21y) = 573

for all £eCy,, ¢e(¥), and

Q4lo[x0x1x2%3]3) = S_2Q¢(2[x2x3]3) = 5_2Qa@(o[x2x3]1) =s*

for all XeCy 1, p€(Y?). Again by the similar arguments and combining two

cases, we obtain (5.8) when n = 1.
Assume that (5.8) holds for neN. Since N(@,n+1)=N(@,n+1)
= N(op,n) +i if pe’), i=1, 2, from (5.6) and (5.7) we have

Q¢(o[xo o XN@on+ 1)]N(¢,n+ 1)) =s"! Q¢(1 [xg - XN@,n+ 1)]N(¢,n+ 1))

=5 IQaﬁ(O[xl xN(@,n+1)]N(¢},n+1)—1)

= s_leﬁ(O[xl o xN(ﬁ,’l+1)]N(a¢,n)) = S_ (2+N(a6,n)}

=5~ (N@n+D+1) for all £€Cy,+y, (), and

Q@(o [xo - XN(@n+ 1)]N(¢,n+ 1)) =s2 Qﬁ(z[xz 2 XN@on+ 1)]N(6,n + 1))

= S_szﬁ(o[xz © XN+ l)]N((ﬁ,n+ 1)—2)

= S_ZQaﬁ(o[xz o XN@on+ 1)]N(a¢‘,n)) = 5~ {3+Nedm)

=g~ (N@n+tD+1) for all %€Cgy,yq, Pe?).
From these we obtain (5.8) for n+ 1 similarly as above. Therefore by

induction we obtain (5.8) for all neN.
Since N(¢, n) T o as n1 co, taking (2.6) into consideration, we consequently
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obtain Q4(u[Xy -+ X,],) = s"~™*! for all x,,, -+, x,€S, m, neZ such that m <n
and ¢e®. This implies Q, = p for all ped and Q =p x P. Thus the
theorem is proved.

REMARK 5.2. We can obtain the analogous results to the above theorem
for & = {y,---, Y*} (keN) by applying the same arguments.

REMARK 5.3. We consider the case when M = SN, & = {y, y2}N, (y: M
— M is the shift transformation) and P is o-invariant and erodic. Suppose that
QeSpM x ®). In order that ho(P) = h,,(P), we obtain the following
condition by the same arguments as above and Proposition 4.3

Qa(x [xg - xN((T),n)]) =S Qa(o [xo - xN((?J’,n)]N((Ii,n))

for all X(= (X )ken)€Cs.0» PE(W), and

@,n>
a[x2 - Xy m]) = s? Qs(o[x0 *** Xn@mINGm)
for all xeCy,, Pe(¥ 2), for all neN. In the above, notations are the same as

in the proof of Theorem 5.1. Including the case X ¢ C;,, we consequently have

>
(5.13) Qa(1[x1 xN(a,n)]) =S Q«;(o [xo - xN(ii,n)]N(ii.n))
for all xq, -, Xyzm€S, ), and

(5.14) a(z[xz xN(i[)',n)]) =5’ Qa(o[xo xN(a,n)]N(a,n))

for all x4, , Xy@m€S, Pe(?). Although we have not yet obtained the
unique maximality in this system of random (non-invertible) shift, (5.13) and
(5.14) will be a criterion for a certain measure to be maximal. (See Fact 6.4 in

§6.)

§6. Application to Tsujii random dynamical systems

Let (M,#) amd (&, %) be the same as in §2. We fix a
peP (D, F). Consider a pe 2(M), a sub o-algebra &, of # and a measurable
function y: M x & — R, which satisfy the following conditions

(6.1) o*u=yu for all ped,
6.2) @ ~'# is independent of %, with respect to u for all pe®,
6.3) y(+, ): M >R, is B,-measurable for all pe®,

(6.4) Jy(x, @)dp(p) =1 for all xeM.
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Define Qe Z(M x @) by
(65) Q(B X F1 X oo XFn X ¢n+1,co)

= fls(X)]_[Ll L, (@)v( ™ ox, ) dp(@1) -~ dp(@,)du(x)

for all Be#, F,, -, F,e # and all neN, where we set ‘p = @, 0-0q, ifi > 1
and %@ = id for (¢,,", @,). Put

(6.6) P =1%0.

Then Qe #p(M x ®)([10]). We call the metrical random dynamical system
{(M, B), (@, Z, P), Q} constructed above a Tsujii random dynamical system.

In the following we fix a Tsujii random dynamical system {(M, %),
(®, #, P), Q} constructed from u, p, B, and 7.

Fact 6.1. P =pY for p,e P(®) defined by
dp,(¢) = 7(@)dp(@), 7(¢) = Iv(x, @) du(x).

Proor. For F,,---, F,e %, using (6.1)—(6.6), we have

P(F, x -+ x F, x @"*1:®)

= Hln((pl)v(x, e[ i=21r(@)y( " ox, @)du(x)dp(e,) - dp(p,)

= le,(tpl)Uv(x, <pl)du(x)fl—[?=2 Lp(0)y( ™ ox, <p;)du(X)]dp(<p1)~-- dp(@,)

and
f [Ti=27( Y ox, @)du(x) = f]‘[?:; YT 30x, @;)du(x)

where
{ id if i=2

Pi—1°"°Q, lf123, for ((pl,"': (pn)
Therefore we have

P(F; x -+ x F, x o"*1:®)

= p,(F,) j J [I=2 e (@y( "3 0x, @)du(x)dp(@,) - dp(e,)
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Repeating this procedure, we obtain
P(Fyx  x Fyx @""1®) = p (F,)- p,(F,)
which implies P = p) since neN and F,---, F,e # are arbitrary.

A typical element of Fp(M x @) is v x P with p*v = v, where p*: 2(M)
— P(M) is defined by

pyAB) = JJIB((px)dpy((p)dl(x) for Be%, Ae ?(M).

These measures are often considered. But Qe.#,(M x @) defined by (6.5) is
not equal to any of these measures except for the trivial case.

Fact 6.2. Suppose that
6.7) Q=vxP, p¥v=y.
Then v = u and

(6.8) Y(x, @) = 7(@) 1 x p-ae.(x, ¢).

Proor. If (6.7) holds, then n}Q =v, where m,: M x & > M is the
natural projection. On the other hand, we have n¥Q = u. Therefore v
=pu Letn,:Mx®—>Mx &' be the natural projection. Then both 7*Q
and n¥(v x P) are absolutely continuous with respect to u x p and the Radon-
Nikodym derivatives at (x, @) are y(x, ¢) and 7(¢) respectively. Hence if (6.7)
holds, we obtain (6.8).

If (6.8) fails to hold, Q constructed by (6.5) is decomposed into the family of
regular conditional probability measures {Q: @ed}, for which the mapping ¢
— Q5 is not trivially measurable, namely, not constant. Therefore the invariant
measure Q is one of examples whose decomposition {Qz: e @} depends
essentially on e d.

Next let us consider the ergodicity of this system {(M, &),
(@, #, P), Q). The tools used here are the results obtained in §3.

FACT 6.3. Let {(M, B), (D, Z, P), Q} be a Tsujii random dynamical system
constructed as above. Then Q is Markov in the sense of Definition 3.1.

Proor. It suffices to note that

Qx,(m ..... (p,.(F"+1 X eee X Fm X ¢m+1,co)

= J Jl_[?;m g, (@)y( ™1 0x, 0)dp(@n+1) - dp(@m)
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= Q"= (0, '(Fpyy X =+ X Fp x @"*1:%))
for all F,.{,---, F,€% and m, neN, m > n, Q-a.e.(x, @).

From Fact 6.3 and Theorem 3.5, (z, Q) is ergodic if and only if Q is M-
ergodic and the M-ergodicity of Q is nothing but the ergodicity of the Markov
operator

«@f(x)=ff(x, @)y(x, @)dp(@)  for feL'(M, p).

This coincides with the result obtained in Theorem 4 in [10].
Apart from general situations, we give a concrete example of Tsujii random
dynamical system. We consider the following objects:

S={1,-,s}, M=SN,
4 the o-algebra of M generated by cylinders,
& ={y, ¥}, ¥y: M > M is the shift,
F={¢, {} (¥}, (V. ¥},
peP(P, F) such that p, = p({Yy'})>0 for i=12,
w={1/s,, 1s{Ne P(M, B),
s

AB,: the g-algebra generated by {,[x],: xS},
y: M x @ > R, such that
Y& Y)) =9y if Xeolilo, 1<i<s, j=1,2
YisP1 +Y2pz=1for 1<i<s,
(6.9) Vij # yij for some 1 <i#i<s, j=1or 2

It is easy to see that M, 4,---,y above satisfy the conditions (6.1)-
(6.4). Hence we can construct Q and P by (6.5) and (6.6), from which we obtain
a Tsujii random dynamical system & = {(M, &), (@, Z, P), Q}. Next let us
consider the entropies of &. It is clear that u x Pe % p(M x ®) is one of the
maximal measure, that is,

huxP(P) = htap(P)

= (p,({¥}) + 2p,({y?}))logss.

(See Theorem 5.1, (5.3) and Fact 6.1.) On the other hand, in view of Fact 6.2
and (6.9), we have Q # u x P. As for hy(P), we obtain the following result.
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FACT 64. hy(P) < hy,,(P).

Proor. Suppose that hy(P) = h,,,(Q). Then, putting n =1 in (5.13) and
(5.14), we have

(6.10) Q5(1[x1x215) = s Q5o [x0x1x215)
for all xq, xy, x,€8 and for all ¢e(¥), and
(6.11) 05(2[x2x313) = s2Qa(o[X0%1%,X3]3)

for all x,, x,, X,, x3€8 and for all Ge(y?). But from the definition (6.5) of Q,
we have

J Q5(o[x0%1%,12)dP(®) = Q(o[x0X1 X215 X (¥))
(2]

=P1J (%, ‘p)dﬂ(i):Pl'}’xus—s
olxox1 %3],

and

J‘ Qa(o[xlxz]z)dp(‘m = Q1 [x1x,1;, x (¥))
(2]

=P1J v(i,W)du(f)=ms‘32i=1vkp
1xyx5],

Therefore (6.10) implies

Yh=1Y1 = SV for all ieS,
from which we consequently have

V=5 'Yi-17a  for all ieS.

This contradicts (6.9) if j = 1 in (6.9). Ifj in (6.9) is equal to 2, we can similarly
deduce a contradiction from (6.11). Therefore we obtain the desired inequality.
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