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1. Introduction

In this paper we shall consider a strongly order preserving semiflow

modeling the two species competition in population biology. To motivate the

principal result, we consider three examples of competitive dynamical systems

in an infinite dimensional space which is a product space. The first example

is the model of the unstirred chemostat with equal diffusions [6]

St = dSxx - — u
+ S

m2S
u — ι>,

a, + S a2 + S

(1.1)' ut = duxx + — — u, 0 < x < 1
a1 + S

m2S
vt = dvxx + υ,

a2 + S

with initial and boundary conditions of the form

S x (0 , ί )=-S<°>, . «x(0, ί) = ϋ je(0, ί) = 0,

S,(l, ί) + rS(l, t) = 0, 11,(1, t) + ru(h t) = 0,

vx{l, t) + rυ(l t) = 0,

u(x, 0) = uo(x) > 0, .i;(x, 0) = vo(x) > 0,

5(x, 0) = S0(x) > 0, 0 < x < 1,

where d, S{0\ r, mi? αt , i = 1, 2 are positive constants.

From [6], it follows that

S(x, t) + u(x9 t) + ι;(χ, ί) = φ(x) + 0(^~αί) as t • oo

for some α > 0, where φ(x) = S(0) I x ), 0 < x < 1.

V r )
From [10] it suffice to study the dynamics on the ω-limit set, i.e., solutions of
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m^φix) - u - υ)
ut = duxx + u,

at + (φ(x) - u — v)
(1.1) 0 < x < l

( ( ) )
a2 + (φ(x) -u-v)

MO, ί) = i;x(O, ί) = 0, M l , t) + riι(l, ί) = 0,

t;,(l, ί) + rv(l9 t) = 0,

M(X, 0) = MO(X) > 0, ι?(x, 0) = t?o(x) > 0.

The second example is the classical Lotka-Volterrra two-species competi-

tion model with diffusions and Dirichlet boundary conditions

Lut = Δu + u(a — u — cv),
(1.2) in Ω x U +

vt = Δv + v(d — v — cu)9

u = v = 0 . o n dΩ x U+,

u(x, 0) = MO(X) > 0, v(x, 0) = t?0(χ) > 0,

where a, c, d, e, L> 0 and ί2 is a bounded open set in Um. The existence

and uniqueness of positive solutions for the corresponding elliptic problem of

(1.2) was studied by Dancer [1].

The third example is the two-species delayed chemostat model [2],

dt a2 + S(t - τ2)

= φ(θ) > 0, - max (τλ, τ 2 ) < 6» < 0,

> 0, - τ 2 < θ < 0.

Let zλ{t) = Xi(ί + τOe1"1, z2(t) = x2(ί + τ 2 )e D t 2 . Then it follows that

<) a s ί •<».

From [10] it suffices to confine the study to the dynamics on the co-limit set,

i.e., to solutions of
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_ _

at a ^ ^ , { ) 2 )

^ = m2(^-z l(0-z2(0) _ _
d ί α 2 + ( 5 ^ ( ί ) ( ί ) )

0, - τ 2 < 6 > < 0 .

For appropriate parameter values these three problems have rest points

of the form, Eo = (0, 0), Eo = (ύ, 0), E = (0, v) where £ 0 is a repeller and £, E

are globally stable when there are trivial initial conditions for the "other"

population. Only nonnegative solutions are meaningful since the variables are

populations. For large time ί, each of these problems generates a compact,

dissipative semidynamical system on the nonnegative cone of a product space

Ci x C 2 where Ch i = 1, 2, is an ordered real, separable Banach space. Not

only is the nonnegative cone positively invariant, but sets of the form C1 x {0}

and {0} x C 2 are also invariant. These sets represent one population in the

absence of the other, and hence carry a semi-dynamical system of "lower"

complexity.

In the next section, a generalization which encompass all three examples

is discussed, and the basic hypothesis and the main theorem are stated. The

main theorem is proved in section 3. The application of the main theorem

to the problems (1.1), (1.2) and (1.3) is discussed in section 4.

2. The semi-dynamical system

In this section we set up the general framework which encompass the

examples (1.1)—(1.3) and state our main result, Theorem 2.1.

Let Ci9 i = 1, 2, be ordered, separable Banach spaces with respective partial

orderings < C f . Let Q + be the nonnegative cone of C(, i.e.,

and let Q + be the interior of Ct

 + with respect to the metric on C f. Then,

for any xi9 ^ e C j , define the order relations < c. and « c . as follows: xt < c.yi

if yt — XiEC* and yt — xf Φ 0; xi « c.y{ if yt — x^C*. Next, let K be the

cone in Cx x C 2 defined by

K = {x = (x1? x2)eC1 x C2\x1eCt and -x 2 eC 2

+ }

and let K = Cf x C2

+. The order relations < κ, < κ, and « κ for elements

x = (xl9x2) a n d y = (yι,y2) in C x κ C 2 a r e t h e n def ined b y : x<κy if
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y — xeK;x < κy iϊ y — xeK and y — x / 0 x « κy if y — x e K . Note, for

example, that x < κy means that xx < Cίyx and y2 < C2

χ2-

Following Hirsch [5], we define the semiflow T(t): Ct x C2

+ -> Cf x C2

+,

t > 0, to be monotone (eventually strongly monotone) as follows:

DEFINITION 2.1. Tis said to be monotone with respect to K on C^ x C^

if x, yeCf x C2

+ with x < κy implies that T(ί)x < κT(t)y for all ί > 0. T

is said to be eventually strongly monotone with respect to K on Cx

+ x C2

+

if x, y ε C ^ x C2

+ with x < κy implies that T(t)x « κ T(t)y for all t>τ for

some τ > 0.

Concerning T we will assume

(HI) T(t): Cf x C2

+ -> Cx

+ x C2

+ is a compact, C o semigroup

(H2) T(t) is monotone and is eventually strongly monotone [8] on the set

Ct x C2

+ and C+ x C2

+\({0} x C^}ϋ(C^ x {0}) respectively.

R E M A R K 2 . 1 . L e t (uθ9 vo)eC^ x C 2

+ , w 0 ^ 0, υ0ΦQ a n d T ( ί ) ( w 0 , r 0 ) =

(w(ί), ι (ί)). Since ί y , υ0 J < κ(uθ9 v0) and (M0, t;0) < κ ί κ0, y J, from (H2) it

follows that T(t)(j,vo)<<T(t)(uo,vo) and T(ί)(κ0, ϋ0) « K T(t)(uθ9 y J for

t > τ for some τ > 0. Hence (u(t), v(t))eC? x C2

+ for ί > τ.

Concerning the restrictions on the boundary Cf x {0} and {0} x C 2

+ , w e

assume

(HI) Ct x {0} is an invariant set under T(t) for all t > 0

(H2) £ = (w, 0) is a fixed point in Cf x {0}

(H3) The basin of attraction of E in Cx

+ x {0} is Cx

+ x {0}\£ 0

and

(HI) {0} x C2

+ is an invariant set under T(ί) for all t > 0

(H2) £ = (0, v) is a fixed point in {0} x C2

+

(H3) The basin of attraction of E in {0} x C2

+ is {0} x C 2

+ \ £ 0

The hypotheses (H1)-(H3) or (H1)-(H3) reflect the fact that each population,

given nonzero initial conditions in the appropriate space, will grow

to a "fixed" element in its space.

The principal result is:

THEOREM 2.1. Suppose that (H1)-(H2), (H1)-(H3) and (H1)-(H3) hold.

Assume Eo and E are repellers with respect to CΊ+ x C^. If £ is a local

attractor, then £ is a global attractor of Cx

+ x C2

+ provided there are no rest

points in Cx

+ x C2

+.
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3. The Proof

Before we prove Theorem 2.1, we establish the following lemma:

LEMMA 3.1. Under the assumptions of Theorem 2.1, T(t) is dissipative

and the set

A = {(w, v)eC? x C2

+ : E < (u, v) < E}

is positively invariant and attracts all orbits.

PROOF. A simple comparison argument shows that T is dissipative on

Cι x C2". From Remark 2.1 we may consider (u0, υ0) in Cx

+ x C2

+. Let

Άt)(u09 v0) = (u(t)9 v(t)). From (H2) we have T(t)(uθ9 v0) < κ T(t)(uθ9 0) and

from (H1)-(H3) lim T(t)(uθ9 0) = (w, 0). Similarly (0, vo)e{0} x C2

+ and (0, v0)
t-* 00

< ( U O , D O ) . From (H2) and (H1)-(H3), we have T{t)(0, υ0) < κT(t)(u0, υ0)

and lim T(t)(0, υ0) = (0, v). Hence the orbit of (u0, v0) tends to the bounded
ί~* oo

set A = {(u, v)eCf x C2

+ : £ < (w, v) < E}. The positive in variance of A under

the flow T{t) follows from (H2). Since T(t)E < κ T{t){u, υ) < κ T(t)E for all

t > 0, (M, t;)ei4, then £ < ^ Γ(ί)(w, v) < KE, or Γ(ί)(w, ι;)e^l for all t > 0,

(w, ι?)

REMARK 3.2. The set A contains a global attractor [3, p. 40].

PROOF OF THEOREM 2.1.

Let W + (E) be the basin of attraction of the rest point E and B be the

boundary of W + (E). From Lemma 3.1 and Remark 2.1, it suffices to show

that (w, v)e W + (E) for any (u, v) in Cx

+ x C2

+ with u « Cί w, v « Clv. The proof

is established by contradiction. Suppose there exists z = (zx, z2)^Cι x C2

+,

zγ « C l tϊ, z2 « C 2 0, zφ W + (E). Obviously z » E. From [5], Theorem 5.2,

there are at most countable number of nonconvergent points of a totally

ordered set. We note that, in order to apply Hirsch's result, Ch i = 1, 2 are

assumed to be separable. From the assumptions that E, Eo are repellers with

respect to the interior of the cone and there is no rest point in the interior,

every convergent point must be in W + (E). Choose s > 0 such that

(1 - s)E + SZE W + (E). From (H2) and the fact that (1 - s)E + sz « z « £, it

follows that lim T(t)z = E. Thus, zeW + (E), which is the desired contradic-
r->oo

tion.

4. Applications

In this section we shall apply Theorem 2.1 to the problem (1.1)—(1.3) and
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obtain new results for each. First we consider the reduced problem (1.1) from
the unstirred chemostant with equal diffusions.

Let T{t) be the operator defined by the flow generated by (1.1).

T(ί): Ct x C2

+ — > Ct x C2

+,

Ci = C2 = C([0, 1], R)

T ( t ) { u 0 9 υ 0 ) = (u{ , ί ) , υ(> , ί ) )

From [3], the operator T(t) is compact. Consider the following case in [6]

(4.1) m1 > dλ0, m2 > dμ0

where λ0 > 0, μ0 > 0 are the first eigenvalues of

r + λ

+ φ(x)

= 0, tfr'(l) + ^(1) = 0

and

ψ'(0) = 0, ιA'(l) + r^(l) = 0

respectively.
Under the conditions (4.1), it follows (Theorem 3.2 [6]) that the

equilibrium E = (ύ, 0) and E = (0, v) attract each point in Cf x {0} and
{0} x C2

+ respectively. Thus (H1)-(H3) and (H1)-(H3) hold. The strongly
order preserving of T(t) follows directly from the competitive properties of
the reaction terms in (1.1) and the maximum principle [7]. Thus (H1)-(H2)
hold. If E is asymptotically stable and E is unstable (i.e. m2 < m% and
mx > mj in [6]), then, from the proof of Theorem 4.1 in [6], it follows that
£ is a repeller with respect to the interior Cf x C2 - Since Eo is obviously
a repeller, E is globally asymptotically stable if and only if there is no interior
equilibrium in Cx

+ x C2 .
We conjecture there is no interior equilibrium provided E is locally

asymptotically stable and E is unstable. In the following we provide a
sufficient condition for the nonexistence of the positive solutions for the steady
state problem of (1.1),

- „ , " h ( φ ( x ) - u- v)
du + u = 0,

aγ + (φ(x) -u-v)
(4.2)
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a2 + (φ(x) -u-v)

u'(0) = ι/(0) = 0,

tt'(l) + ru(l) = 0, ι/(l) + rι?(l) = 0,

subject to the condition

(4.3) S(x) = φ(x) - u(x) - v(x) > 0, for 0 < x < 1.

Let (w(x), f (x)) be a positive solution of (4.2), (4.3) and

From (4.2), (4.3), we have

u v'
= - , W 2 = - .

1 miSw[ + wf = , 0 < x < 1,

(4.4)

w1(0) = 0, W l ( l ) = - r ,

and

2 1 m2S

wf

2 + W2 = — , 0 < x < 1,
(4.5)

w2(0) = 0, w 2 ( l ) = - r .
If

(4.6) - ^ > ^ - for all S > 0,
ax + S a2 + S

then (4.4), (4.5) and the standard comparison theorem lead to wx(x) < w2(x)
for 0 < x < 1. Then wi(l) < w2(l) is a desired contradiction. Next we need
to verify that, under the assumption (4.6), E is locally asymptotically stable
and E is locally unstable. From [6], E is locally asymptotically stable if and
only if X(m2) < 0 where

(4.7) X(m2) = sup
q>0

and S{x) = φ{x) - ύ{x).
From the assumption (4.6) and (4.7), one has
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- drq2(l) - d ί1 q\x)dx + Γ " " ^ q2(x)dx
,. o , *, , i Jo Jo fli +S(x)
(4.8) λ(m2) < sup f

Jo

q2(x)dx

Since the right hand side of (4.8) is the largest eigenvalue of

m^S(x)
dq" + ̂ -y-q = λq,

q'(0) = 0, q'{ί) + rq{\) = 0,

the fact that it is zero follows directly from the identity

du"+

 mΛ?? ύ 0.
S(x)

From [6] E is unstable if and only if λ(m1)> 0. λim^ > 0 follows by a

similar argument.

We note that Theorem 3.7 of [6], we showed that under the assumption

(4.6), v(x, t) decays to zero exponentially and u(x, t) converges to ύ(x) as

t -• oo. The result is consistent with the present one and, indeed, it is a

special case.

Next we consider the classical Lotka-Volterra two-species competition

model with diffusions and Dirichlet boundary conditions (1.2).

Let T(t) be the operator defined by the flow generated by (1.2)

T(ί): C+ x C2

+ >Ct x C2

+

T ( t ) ( u 0 9 Ό 0 ) = ( u ( ' , t ) 9 υ ( , 0 )

where Cγ = C2 = C0(Ω) = {feC(Ω):f\dΩ = 0} is a separable space. As in

example (1.1), the operator T(t) is compact and strongly order preserving. Let

λ1 be the first eigenvalue of - Λ with Dirichlet boundary conditions. From

[1], if a > λx then there exists a unique nontrivial nonnegative steady state ύ of

Lut = Δu + u(a — ύ) in Ω x U +,

u = 0 on dΩ x IR + ,

and ύ attracts each point in CQ(Ω) [3]. Similarly if d > λί9 then there exists

a unique nontirivial nonnegative steady state v of

vt = dv + v(d - v ) i n β χ ϋ + ,

v = 0 on dΩ x [R + ,
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and v attracts each point in Co

+ (Ω). Hence (H 1)-(H3) and (H 1)-(H3) hold. It

is proved in [1] that there exists e > 0 such that (ύ, 0) is locally stable if

e > e and is unstable if e < e. Similarly there exists c > 0 such that (0, v) is

locally asymptotically stable if c > c and is unstable if c < c. Consider the

case (u, 0) is locally asymptotically stable and (0, v) is unstable, i.e., e > e,

0 < c < c. It can be verified that (0, v) is a repeller with respect to the interior

of C£(Ω) x C0

+(ί2). Then Theorem 2.1 says that (tί, 0) is globally stable iff

there is no positive solution of the elliptic problem.

— Δu = u(a — u — cv)
(4.9) in Ω

— Λv = v(d — v — eύ)

u = v = 0 on dΩ

It is interesting to note that in Theorem 2 (ii) of [1] Dancer shows for almost

all (a, d) in (λl9 oo) x (λl9 oo) there exist c > 0 and e > 0 such that (w, 0) is

locally asymptotically stable and (0, v) is unstable, and there exists a positive

solution for (4.9). Thus the global stability of (ύ, 0), in general, does not hold

and Theorem 2.1 is of limited applicability.

The third application of Theorem 2.1 is the study of the reduced problem

(1.3) of the two-species delayed chemostat model (1.3)',

Let T(t) be the operator denned by the flow generated by (1.3)

T(t): Ct x C2

+ > Ct x C2

+,

where for i = 1, 2

(Zi)t(θ) = z,(ί + 6/), - τ£ < K < 0.

From [4], the operator T(t) is compact for t > max(τ 1 ? τ 2).

Let λt > 0, i = 1, 2 satisfy

The basic assumption for the two-species delayed chemostat equation is

(4.10) 0 < λι < λ2 < S ( 0 ).

From [2], under the assumption (4.10) the equilibrium (E)1 = (λl9 xf, 0) of

(1.3)', λλ 4- xf = S(0\ is a local attractor and the equilibrium (E)2 = (A2, 0, xf)

of (1.3)', λ2 + x* = 5 ( 0 ) , is a repeller with respect to the interior of the positive
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cone Co x C + x C2

+ where C o = C ( [ - τ, 0], R), τ = max(τ l 9 τ 2). For the

reduced system (1.3), the equilibrium (xf, 0) is locally stable and the equilibrium

(0, xfj is a repeller with respect to the interior of the cone Cx

+ x C£ Since

the flow generated by (1.3) is eventually strongly monotone ([8] Section 4)

with repect to the partial order < where

(φί9 φ2) < (Ψi, Φi) if and only if

φi(θ)^Ψi(β) for all - ^ < 0 < 0,

φ2(θ) > Φi(θ) for all - τ 2 < θ < 0,

[9], the assumption (H1)-(H2) hold. From [1] and (4.10), (xf, 0) and (0, xj)

attract each point in C± x {0} and {0} x C2

+ respectively. Hence (H1)-(H3)

and (H1)-(H3) hold. Since there exists no positive equilibrium, from Theorem

2.1 it follows that (xf, 0) is a globalattractor in Cx

+ x C2

+ or (E)1 is a global

attractor in C£ x Cf x C2

+ for system (1.3).
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