HIROSHIMA MATH. J.
27 (1997), 149-157

Immersions and embeddings of orientable manifolds up to
unoriented cobordism

Isao TAKATA
(Received November 27, 1995)

ABSTRACT. We investigate the existence of immersions and embeddings of orientable
manifolds in the Euclidean space up to unoriented cobordism, and we get the best
estimates in some cases. Our study is an orientable version of the work investigated
by R. L. Brown.

1. Introduction

In this paper, we investigate immersions and embeddings of orientable
closed manifolds in the Euclidean space R™ up to unoriented cobordism.
Manifolds are always assumed to be C*® differentiable, and two closed n-
dimensional manifolds M} and M} are cobordant if there exists a compact
manifold N**! whose boundary ON is the disjoint union of M, and M,. We
refer to a closed manifold simply as a manifold.

The source of our study is the next theorem by Brown [1]:

THEOREM 1.1 (Brown). Let a(n) denote the number of 1 in the dyadic
expansion of n.

(1) For n > 2, any manifold M" is cobordant to a manifold which immerses
in R?*™*™ and embeds in R2"~*®M+1

(2) For each n>2 with n # 3, there is an n-dimensional manifold such
that any manifold cobordant to it does not immerse in R***™~1 gnd does not
embed in R*"™™,

Our main results are stated as follows:

THEOREM A. Let f(n) = 2n — a(n) — min{a(n), v(n)}, where v(n) is the inte-
ger determined by n = (2m + 1)2'™,

(1) Any orientable manifold M" is cobordant to a manifold which immerses
in R*™ and embeds in R*™* for n > 4.

(2) If n satisfies one of the following conditions (i)-(iii), then there is an
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n-dimensional orientable manifold such that any manifold cobordant to it does
not immerse in R*™~1 and does not embed in RP™:

(i) n=>4 and a(n) < v(n);

(i) a(n)=3 and n=2 (mod 4);

(i) o(n)=2 and n=1 (mod 4).

In this theorem, (2) implies that (1) is the best estimate in the cases
(i)—(ii). On the other hand, we will have a better estimate in the following
cases, where min{a(n), v(n)} is always equal to v(n).

THEOREM B. If n satisfies one of the following conditions (i)—(iv), then
any orientable manifold M" is cobordant to a manifold which immerses in R"™
and embeds in R"™*! for y(n) = 2n — a(n) — v(n) — 1, and there is an n-dimen-
sional orientable manifold such that any manifold cobordant to it does not
immerse in R*™™! and does not embed in R'™:

(i) a(n)=2 and n=2 (mod 8),

(ii) a(n)=3 and n=4 (mod 8),

(iii) a(n) =4 and n =2 (mod 4);

(iv) n#7 is odd and a(n) = 3.

We note that, for all n < 26 but n =15 and 23, Theorems A and B give
the best estimate.

The paper is organized as follows: In §2 we recall some results concern-
ing the cobordism theory. In §3 we prove Theorem A(l1) and a part of
Theorem B. In §4 we complete the proof of Theorems A and B.

The author wishes to thank Prof. T. Matumoto and Prof. M. Imaoka
for their many helpful suggestions.

2. Preliminaries

Let 4, be the unoriented cobordism ring, 2, the oriented cobordism
ring, and I: Q, — 4 the natural map obtained by ignoring orientation. We
call w =(ay,...,a,) a partition of n if it consists of positive integers with
Yk ,a;=n, and put |w| =n. We regard that two partitions which consist
of the same integers are the same, for example (2, 2, 5, 6) = (6, 2, 5,2). For the
partitions w; = (41, ..., 4jm,) (1 <j < k), we denote (wy, ..., @) = (31, .-, Aym,>
ceos Qpys ey O ). Let P ={w=(a,,...,a)} be the set of all partitions.
Then, we consider the following subsets of P:

Py ={(ay,...,4)ePlfor 1 <j<k, aj#2"—1 for any i > 1};

P, = {(ay, ..., @) € Py|the number of j’s with a; =2 is even for any i};

P, ={(2ay, ..., 2a;) € P|a; # a; for any i # j};

Py = {(2a,2a) € P, };
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P,={Qay,...,2a;—1,...,2a)e P,|1 <j <k, 2a,...,2a4,) € P,};
Ps={w=(0y,...,0) € Plwje P, (1 <j<k)};

P6 = {w=(w1,...,wk)EP1|ijP3UP4 (1 Sjsk)} ) P5.

The following result of Wall [4] is crucial in our study.

THEOREM 2.1 (Wall). There are elements x,€ N, (q #2' — 1), hy €y,
(@=1) and g, € Q- (0= (2ay,...,2a,) € P,) which satisfy the following (i)—
(i):

) Ny =Zylx,lg#2"—1];

(i) hyy (@=1) and g, (w € P,) form a set of generators for Q.;

(i) I(hy) = x%q and 1(g,,) = Y %, X2q, """ X2a;~1" " X2g,-

We put x, =[]%,x, for a partition w=(a,,...,a). Then, we have
the following corollary.

COROLLARY 2.2. Concerning the image of I: Q, — N, we have that 1(£2,)
is generated by I(h,,) (@ > 1) and I(g,) (w € P,). Hence, for any ye Q,, I(y)
is a finite sum of x, with w € Ps.

Remark that the cobordism class [M"] is indecomposable in 4, if and
only if it equals x, up to decomposable elements by Theorem 2.1(i). Brown
[1; §6] has shown some manifolds representing indecomposable elements in
N, as follows:

THEOREM 2.3 (Brown). For every positive integer n # 2\ — 1 (i > 1), there
are manifolds {W"} which satisfy the following (i)—(iii):

(i) [W"] is indecomposable in N,, and hence N, = Z,[[W"]in#2' —1
(i=1]

(ii) W™ immerses in R*"™*™ and embeds in R?" e®+1,

(iii) W" immerses in R2" ™~ jf p 2 2041 (i>1), and embeds in
R2M if n 26,2, 20+ 1 (i>1)

We need the precise construction of W", and we recall it below:

First, let n be even. When a(n) < 2, we put W" = RP" the real projective
space. When a(n) >3, for the dyadic expansion n=Y*lr, of n, where
k+1=am), 2<r <'<ny and each r; is a power of 2, we put
k

I<n+1 = Rst for s]=r} (]Sk—2), Sk_l =rk_1 + 1 and Sk=rk+rk+1.

Jj=1

Then, H¥K"™')=Z,[ay,..., x]/@*, ..., af<*!) with deg(e;) =1, and we
define W" as a submanifold of K"*! which represents the Poincaré dual of
Yk yo;€ HY(K™?') (see [3; pp. 78-81]), where the cohomology is always as-
sumed to be with the coefficient group Z,.
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Next, consider the definition of W" for odd n # 2 — 1. Since n # 2\ — 1,
we can write n uniquely as n=a+2b,a=2"—1and b=2"s (r,s >1). By
using W? for even b, we define W" to be

(2.4) W" = P(a, Wb) = §° x Wb x W*/(u, x, y) ~ (—u, y, X).

We notice that, if M™ immerses in R¥ (1 <j < k), then [ [%; M™ immerses
in R* where s = ) %_;s;, We need the following result to prove the possibilities
of embeddings.

THEOREM 2.5 (Cf. [1]). If M™ immerses in R® and N" embeds in R* for
s+t>2m+ 1, then M™ x N" embeds in R°*.

COROLLARY 2.6. (i) If M™ immerses in R* (m <s) and N" embeds in R’
(n<t) for m < n, then M™ x N" embeds in R*",

(i) Let m; <---<my. If M™ immerses in R% (1<j<k—1,m;<s;)
and M™-< embeds in R™ (m,, < s;), then []%-; M™ embeds in R® where s = Y %_, ;.

3. Possibilities of immersions and embeddings

In this section, we verify the possibilities of immersions and embeddings
of manifolds stated in Theorems A and B. Let w =(a,, ..., a;) be a partition,
and put l(w) = k and a(w) = )5, a(a;), where a(a;) is the number of 1 in the
dyadic expansion of ;. For the manifolds {W"} of Theorem 2.3, we define
We =[]k W% We represent x, (w€ Ps) by using the manifolds {W"}.
Since x, equals the cobordism class [W*] up to decomposable elements, x,
is represented by W*° plus a finite union of W®= with |w,| = a and l(w,) > 1
and w,e P,. Thus, x, is represented by W plus a finite union of W*' with
(@) > l(w) and o' = (@}, ..., ;) € P, where wj is a partition of q; (1 <j <k).
We denote by X, this manifold which represents x,. Here, we remark that
a(w’) > a(w), since a(a) + a(b) > a(a + b) for any integers a and b.

LemmA 3.1. If |w|=n and d(w)Zé, then Xw immerses in R®*"° and
embeds in R?"~%*1,

PrOOF. Let w=(ay,...,q). Then, 2n — a(w) =Y %, {2a; — a(a;)}, and
W immerses in R?"*® and embeds in R2""*@*! by Theorem 2.3(ii) and
Corollary 2.6(ii). Thus, W* immerses in R?"~® and embeds in R?"7%*! since
a(w) > 6. For the other components W' as above, each W' also immerses
in R?"™% and embeds in R?"7%*!  because a(w’) > a(w) > 6. O

PrOOF OF THEOREM A(l). Since any element of the subgroup I(£2,) of
N is a finite sum of x,, with w € Ps by Corollary 2.2, any orientable manifold
M" is cobordant to a finite union of X, with w € P; and |w| =n. We show
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the following for a partition w with |w| = n:

(3.2) If we Ps, then a(w) > 2a(n);

(3.3) If we Py — Ps, then a(w) = a(n) + v(n).

Then, by Lemma 3.1, any manifold X, with w € P; and |w| = n immerses in
R2n—2a(n) or RZn—a(n)—v(n) and embeds in R2n—2a(n)+1 or R2n—a(n)—v(n)+1_ Thus,
X,, immerses in R#™ and embeds in RP™*! for B(n) = 2n — a(n) — min{a(n),
v(n)}, and we have the required result for an orientable manifold M".

We show (3.2) and (3.3). Remark that a(2a) = a(a), a(2a + 1) = a(2a) + 1,
a(a) + a(b) > afa + b) and afa — 1)+ 1 = a(a) + v(a). Let o= (2a,,2ay,...,
2a,,2a;) € Ps. Then, we have a(w) = X 2¢(2a) > 2234 2a) =
20() k., 4a;) = 2a(n), and (3.2) is proved. Next, let w = (ay,..., @)€ Ps — Ps,
then @ has at least one odd number. So we assume g, is odd, and put

o =(ay,...,a.,) and a,=2l+ 1. Then, n= ||+ a,, and a(w) = a(w’) +
aa) = am—a) + ag) = am—21—1) + a2 + 1 > amr—1) + 1 =
a(n) + v(n). Thus, we have (3.3). O

Now, we prepare two lemmas to prove the possibilities of immersions
and embeddings in Theorem B.

LeMMA 3.4. Let we P — Ps. Then, we have the following:

(i) If |w| is even and lw) >3 (resp. l(w)=2), then a(w)=>6 (resp.
o(w) > 4);

(i) If |w| is odd and l(w) > 2, then a(w) > 4.

Proor. (i) By assumptions, w has at least two odd numbers a; # 1 and
a;#1. When l(w)>4, w has at least two other numbers, and so
a(w) > aa) +a@)+1+1>24+2+1+1=6 as required. When l(w) = 3,
o has another even number a,. Since w € Py, g, is not a power of 2. Hence,
a(w) = a(a;) + a(a;) + a(a) 22+ 2+ 2=6 as required. When l(w)=2,
has just two odd numbers g; # 1 and g; # 1, and thus a(w) = a(a;) + a(a;) >
2 + 2 =4 as required.

(i) By assumptions, w has at least one odd number qg; # 1. When
l(w) >3, o has at least two other numbers, and so a(w)>a(g;)+1+ 1>
2+1+4+1=4 as required. When l(w)=2, w has another even number
a;. Since we Py, a; is not a power of 2. Hence, a(w) = a(a;) + a(a;) > 2 +
2 =4 as required. |

We remark that, if n is odd and a(n) < 3, then W" of (2.4) is cobordant
to a Dold manifold which is orientable. In fact, in this case, W" = P(a, RP?)
forn=a+2b,a=2"—1and b=2"s (r,s > 1) by (24). Brown [1; Cor. 7.4]
showed that P(a, RP%) is cobordant to the Dold manifold P(a, b) = S* x
CP®/(u, z) ~ (—u, z), and Dold [2; Satz 1, p. 29 and Satz 2, p. 30] proved
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that the total Stiefel-Whitney class of P(a, b) is
(3.5) w(P(a, b)) = (1 + ¢)*(1 + ¢ + d)***.

Here, c € H*(P(a, b)) and d € H%(P(a, b)), which satisfy c*! =0 and d**' = 0.
Thus, in this case, P(a, b) is an orientable manifold, because w,(P(q, b)) =
@+b+ 1c=0.

LeMMA 3.6. Let we Py and |w| =n. Then,

(i) when a(n) =3, n=4 (mod 8) and l(w) = 2, X, is cobordant to a mani-
fold which immerses in R*"~% and embeds in R?"~%;

(i) when a(n)=4, n=2 (mod4) and l(w)=2, X, is cobordant to a
manifold which immerses in R*"~® and embeds in R?"~5;

(ili) when n # 7 is odd, a(n) = 3 and l(w) = 1, X, is cobordant to a mani-
fold which immerses in R*"™* and embeds in R*""3,

PrROOF. (i) When w € Ps or a(w) > 6, X, itself immerses in R?"~® and
embeds in R?*~° from Lemma 3.1 and (3.2). So we assume that w € Ps — Ps
and a(w) < 5. Since l(w) = 2, o = (a;, a;) for odd numbers a; # 1 and q; # 1.
By (3.3), a(w) >3+ 2 =5. Thus, we can assume that a(a;) = 2 and a(g;) = 3.
Then, by the above remark, W = W*W% is cobordant to an orientable
manifold, and hence, W is cobordant to X, plus a finite union of X, with
o' € Py — Ps and l(w') > 3. In other words, X, is cobordant to W plus a
finite union of X, as above. By Theorem 2.3(ii), (iii) and Corollary 2.6(i),
We immerses in R?""¢ and embeds in R?"5, and, by Lemmas 3.1 and 3.4(i),
each X, as above immerses in R?""® and embeds in R?"~%, Therefore, X,
is cobordant to a manifold which immerses in R?>""® and embeds in R?"~3
as required.

(i) We remark that w ¢ Ps. When a(w) > 6, we have the required result
by Lemma 3.1. So we assume that a(w) < 5. Since l(w) =2, w = (a;, a;) for
odd numbers g; # 1 and a; # 1. By (3.3), a(w)>4+1=35, and we can as-
sume that a(a;) =2 and «(a;)) =3. Then, we have the required result by
doing just the same way as in (i).

(i) In this case, w = (n) since l(w) = 1. Then, similarly as in (i), W" is
cobordant to an orientable manifold, and hence, W" is cobordant to X, plus
a finite union of X, with @' e Ps — Ps and l(w’) > 2. In other words, X,
is cobordant to W” plus a finite union of X, as above. Then, W” immerses
in R2*™* and embeds in R?""3 by Theorem 2.3(iii), and each X, as above
immerses in R?""* and embeds in R?""3 by Lemmas 3.1 and 3.4(ii). Hence,
we have the required result. O

Now, the proof of the possibilities of immersions and embeddings stated
in Theorem B is given as follows: Recall that any orientable manifold M"
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is cobordant to a finite union of X, with w e P; and |w| =n. If n satisfies
(i), the condition n = 2 (mod 8) implies w ¢ Ps. Since n is even, each w € Pg —
P; has at least two odd numbers, so l(w) > 2. Thus, by Lemmas 3.1 and
3.4(i), each manifold X, as above immerses in R?""* and embeds in R2"3,
and so we have that any orientable manifold M" is cobordant to a manifold
which immerses in R>""* and embeds in R>""3 as required. Similarly, when
n satisfies (ii) (resp. (iii); resp. (iv)), we have the required result, by Lemmas
3.1, 3.4(i) and 3.6(i) (resp. Lemmas 3.1, 3.4(i) and 3.6(ii); resp. Lemmas 3.1,
3.4(ii) and 3.6(iii)).

4. Best possibilities

In this section, we prove Theorem A(2) and the rest of Theorem B.
Let wy(M") for i >0 be the dual Stiefel-Whitney classes of a manifold M".
That is, they satisfy (3 ;50 Wi(M")) x (Yisowi(M™)=1. Then, we have the
following:

LEMMA 4.1. Let L™ and L} be manifolds with L" = %, L%. If each L%
satisfies the following (1) and (ii) for some o; <n;, then Wi(L")=0 for any
j>n—o and W,W,_,(L") #0, where 6 =3 % o;:

() WLI)=0 for any j>n — o

(i) W, Wy, (LI) # 0.

Proor. Remark that the total dual Stiefel-Whitney classes satisfy w(L") =
[T=: W(L¥). Hence, by the hypothesis (i), we have w(L") = 0 for any j > n —
o, and thus W,_,(L") = [ [f=; W,—0,(L™). Also, W,(L") equals [[f, W, (LY) up
to terms which consist of w;(L}") for some i and j > ;. Hence, w,w,_,(L") =
[T¥=1 %o, Fp—a (LT) # 0. 0

Since the manifold L" in the lemma satisfies w,w,_,(L") # 0, any manifold
M" cobordant to L" satisfies w,w,_,(M") #0. In particular, w,_,(M") # 0.
As a necessary condition for M" to immerse in R2""*"! or embed in R?*"°
is that wy(M") =0 for j > n — o, we have the following:

COROLLARY 4.2. Let L" and o be those given in Lemma 4.1. Then, any
manifold cobordant to L" does not immerse in R**~°~! and does not embed in
R2n—a.

LemMA 4.3. (i) Let n=2r, where r > 2 and r is a power of 2. Then,
wi(CP") =0 for any j>n—2, and Ww,w,_,(CP") # 0.

(i) Let n=2t+s—1, where t>s>2 and t, s are both power of 2.
Then, w,(P(s — 1,t)) =0 for any j>n—s, and w;w,_((P(s — 1,t)) # 0.
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Proor. (i) Let de H*(CP")~Z, be the generator. Then, it satisfies
d™*!' =0, and the total Stiefel-Whitney class of CP" is given by w(CP') =
(1 + dy**. Then, W(CP) = (1 +d)", and thus W(CP") = (1 + dy", since r is
a power of 2 and d' =0 (I >r). Hence, w(CP)=0forany j>2r—2=n-2,
and w,_,(CP") = d". Also, since W,(CP") = (r — 1)d = d, W,W,_,(CP")=d" #
0 as required.

(i) By (3.5, w(P(s — 1, 8) = (1 + ¢f*1 + ¢ + d)y*™ where ce
HY(P(s —1,t) and de H?>(P(s — 1,t)), and they satisfy ¢*=0 and d'*! =0.
Then, W(P(s — 1,t)) = 1+ A +c+d)"' = 1+ +c+d)™?, be-
cause t and s are both powers of 2, ¢!=0 (I>5s) and d'=0 (I >t). Hence,
Wi(P(s —1,1)) =0 for any j > 2t — 1 =n—s, and W,_(P(s — 1,1)) = cd'™". Let
{x,y,z} = (x+y+2)(x!y!z!). Then, W(P(s — 1,t)) = {t—s,5—2,1}c*"%d
up to other terms consisting of ¢’ for some | >s—2 or d' for some [ > 1.
Hence, w,w,_((P(s — 1,8)) = {t —s,5s — 2, 1}c*7'd"' = ¢*'d' #£ 0. 0

Now, we can complete the proofs of Theorem A and Theorem B. By
Corollary 4.2, the assertion of Theorem A(2) (resp. Theorem B) will be estab-
lished if we find an orientable manifold L" satisfying the conditions of Lemma
4.1 for ¢ = a(n) + min{a(n), v(n)} (resp. ¢ = a(n) + v(n) + 1). In the below, we
assume that each r or r; is a power of 2. In each case, the following L"
satisfies the required conditions:

For Theorem A(2):

(i) Let n=2r + -+ 2r, where 2r, >--->2r, >2* We put L" =[], CP",
then L" satisfies the required conditions for ¢ = 2k = 2a(n) by Lemma 4.3;
(i) Let n=2r, +2r,+2 where r; >r, >2. We put L"=P(1,r,) x P(1,r,),
then 0 =2+2=4

(iii) Let n=2r + 1 where r >2. We put L" = P(l,r), then ¢ =2.

For Theorem B:

(i) Let n=4r + 2 where r >2. We put L"= P(1,r) x P(1,r), then 6 =2 +
2=4

(i) Letn=2r, +2r, +4 where r, >r, >4. We put L"=P(1,r,) x P(3,1,),
then 6 =2+4=6;

(i) Letn=2r, + 2r, + 2r; + 2 where r, >r, >r; > 2. We put L" = CP" x
P(l,r,) x P(1,r;), then 6 =2+ 2+ 2=6;

(iv) If n=2r, +2r, + 1 where r, >r, > 2, then we put L" = CP"t x P(1,r,),
and we have 0 =2+2=4. If n=2r+ 3 where r >4, then we put L"=
P(3,r), and we have o =4.

REMARK. When n =6 or 7, then there is no partition w € P such that
n = |w|. It means that any closed orientable manifold of dimension 6 or 7 is
cobordant to 0 (¢ .#,). Hence, we omit the case n = 6 and 7 from Theorem B.
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