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ABSTRACT. We investigate the existence of immersions and embeddings of orientable

manifolds in the Euclidean space up to unoriented cobordism, and we get the best

estimates in some cases. Our study is an orientable version of the work investigated

by R. L. Brown.

1. Introduction

In this paper, we investigate immersions and embeddings of orientable
closed manifolds in the Euclidean space Rm up to unoriented cobordism.
Manifolds are always assumed to be C°° differentiate, and two closed n-
dimensional manifolds Ml and Mn

2 are cobordant if there exists a compact
manifold Nn+1 whose boundary dN is the disjoint union of M± and M2. We
refer to a closed manifold simply as a manifold.

The source of our study is the next theorem by Brown [1]:

THEOREM 1.1 (Brown). Let α(n) denote the number of 1 in the dyadic
expansion of n.

(1) For n > 2, any manifold Mn is cobordant to a manifold which immerses
in R2"-α<") and embeds in R2»-α<»)+ι.

(2) For each n>2 with n Φ 3, there is an n-dimensional manifold such
that any manifold cobordant to it does not immerse in R2"-^)-1 and does not
embed in R2n~^n\

Our main results are stated as follows:

THEOREM A. Let β(n) = 2n — α(n) — min{α(/ι), v(n)}, where v(ή) is the inte-
ger determined by n = (2m + l)2v(n).

(1) Any orientable manifold Mn is cobordant to a manifold which immerses
in Rβ(n) and embeds in Rβ(n)+1 for n>4.

(2) // n satisfies one of the following conditions (i)-(iii), then there is an
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n-dimensional orίentable manifold such that any manifold cobordant to it does
not immerse in R^"1 and does not embed in Rβ(n):

(i) n > 4 and α(w) < v(n);
(ii) <x(n) = 3 and n = 2 (mod 4);
(iii) α(n) = 2 and n = 1 (mod 4).

In this theorem, (2) implies that (1) is the best estimate in the cases
(i)-(iii). On the other hand, we will have a better estimate in the following
cases, where min{α(n), v(w)} is always equal to v(ή).

THEOREM B. // n satisfies one of the following conditions (i)-(iv), then
any orientable manifold Mn is cobordant to a manifold which immerses in Ry(n)

and embeds in Ry(π)+1 for y(n) = 2n — α(n) — v(n) — 1, and there is an n-dimen-
sional orientable manifold such that any manifold cobordant to it does not
immerse in R^"1 and does not embed in Ry(π):

(i) α(n) = 2 and n = 2 (mod 8);
(ii) α(n) = 3 and n = 4 (mod 8);
(iii) α(n) = 4 and n = 2 (mod 4);
(iv) n Φ 1 is odd and α(n) = 3.

We note that, for all n < 26 but n = 15 and 23, Theorems A and B give
the best estimate.

The paper is organized as follows: In §2 we recall some results concern-
ing the cobordism theory. In §3 we prove Theorem A(l) and a part of
Theorem B. In §4 we complete the proof of Theorems A and B.

The author wishes to thank Prof. T. Matumoto and Prof. M. Imaoka
for their many helpful suggestions.

2. Preliminaries

Let Λ^ be the unoriented cobordism ring, Ω^. the oriented cobordism
ring, and /: Ώ^ -> Λ^ the natural map obtained by ignoring orientation. We
call ω = (al9..., ak) a partition of n if it consists of positive integers with

Σkj=ιaj = n> and Put \o}\ = n. We regard that two partitions which consist
of the same integers are the same, for example (2, 2, 5, 6) = (6, 2, 5, 2). For the
partitions ωj = (aj±9..., ajm.) (1 <j < k\ we denote (ωl9..., ωk) = (all9..., α l m ι,
..., akl,..., akmι). Let P = {ω = (al9...9 ak)} be the set of all partitions.
Then, we consider the following subsets of P:

PO = {(al9..., ak) e P|for 1 <j < fe, aj / 2' - 1 for any i > 1};
P1 = {(α l9..., ak) E P0|the number of/s with α,- = 21 is even for any i};
P2 = {(2al9..., 2ak) e P^ Φ aj for any i
P3 = {(2α,2α)eP1};
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P4 = {(2aί,...,2aj-l9...,2ak)eP1\l<j<k, (2al9 ..., 2ak) e P2};
P5 = {ω = (ωl9 . .., ωfc) e PJω,. 6 P3 (1 <j < fc)};

P6 = {ω = (ωl5 . .., ωk) e PJω,. 6 P3 UP4 (1 <j < k)} => P5.
The following result of Wall [4] is crucial in our study.

THEOREM 2.1 (Wall). There are elements x g eΛ^ (q^2ί-l\ h4qeΩ4q

(q > 1) and gω e β|ω(_ι (ω = (2al9 . .., 2ak) e P2) which satisfy the following (i)-
(iii):

(i) *̂ = Z2l>J<?*2 ί-l];
(ii) h4q (q > 1) and gω (ωeP2) form a set of generators for Ω^;

(iii) I(h4q) = x2

2q and I(gω) = £*=1 x2aι x2fl._1 x2θk.

We put xω = Πί=ιxfl/ f°r a Partition ω = (αl5 ..., ak). Then, we have
the following corollary.

COROLLARY 2.2. Concerning the image of I: Ω^ -> Λ^, we /ιαt;^ ί/iαί
is generated by I(h4q) (q > 1) and /(gfω) (ω e P2). Hence, for any y e Ω^9 I(y)
is a finite sum of xω with ωeP6.

Remark that the cobordism class [Mn] is indecomposable in Λ^ if and
only if it equals xn up to decomposable elements by Theorem 2.1(i). Brown
[1; §6] has shown some manifolds representing indecomposable elements in
Λ^ as follows:

THEOREM 2.3 (Brown). For every positive integer n ̂  2l — 1 (i > 1), there
are manifolds {Wn} which satisfy the following (i)-(iϋ):

(i) [Wπ] is indecomposable in Λς, and hence jς = Z2[[P^w]|π Φ 2l - 1

(i > 1)];
(ii) Wn immerses in R2"-α<Λ> and embeds in R2n-α<w>+1;

(iii) Wn immerses in R2"-^)-1 if n ̂  2\ 2* + 1 (i > 1), and embeds in

R2π-α(n) if n^6, 2\ 2' 4- 1 (i > 1).

We need the precise construction of Wn, and we recall it below:
First, let n be even. When α(n) < 2, we put Wn = RPn the real projective

space. When α(n) > 3, for the dyadic expansion n = £*ίί r7 of n, where
fe + 1 = α(n), 2 < rl < - - - < rk+1 and each η is a power of 2, we put

Kw+1 = f] RP5J for s; = η (j <k- 2), sk_! = rk^ + 1 and sk = rk + rk+1.

Then, H*(Kn+l) = Z2[αl9 . . . , αj/(αί1+1, . . . , α^+1) with deg(α, ) = 1, and we
define VF" as a submanifold of KM+1 which represents the Poincare dual of
Yj=1Λj€ Hl(Kn+1) (see [3; pp. 78-81]), where the cohomology is always as-
sumed to be with the coefficient group Z2.
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Next, consider the definition of Wn for odd n φ 2l - 1. Since n φ 2 - 1,

we can write n uniquely as n = a + 2b, a — 2r—\ and b = 2rs (r, s > 1). By

using Wb for even fe, we define Wn to be

(2.4) Wn = P(α, Wb) = Sa x Wb x WVfa x, )>) ~ (-w, y, x).

We notice that, if Mm > immerses in R5' (1 < j < fc), then ΠJ?=ι MW' immerses

in Rs where s = £*=1 Sj. We need the following result to prove the possibilities

of embeddings.

THEOREM 2.5 (Cf. [1]). // Mm immerses in Rs and Nn embeds in R' for

s + t > 2m + 1, f/ien Mm x N" embeds in Rs+ί.

COROLLARY 2.6. (i) // Mm immerses in Rs (m < s) and Nn embeds in Rt

(n < t) for m<n, then Mm x Nn embeds in Rs+ί.

(ii) Let m! < < mk. If Mm* immerses in Rs* (1 <j < k - 1, w,- < Sj)

and Mmk embeds in RSk (mk < sk), then Y\kj=ι Mm* embeds in Rs where s = Σ*=ι sj

3. Possibilities of immersions and embeddings

In this section, we verify the possibilities of immersions and embeddings

of manifolds stated in Theorems A and B. Let ω = (a^ . . . , ak) be a partition,

and put /(ω) = k and α(ω) = £J=1 α(α7 ), where α(α, ) is the number of 1 in the

dyadic expansion of α, . For the manifolds {Wn} of Theorem 2.3, we define
wω = Π;=ι w"j' We ^present xω (ωeP6) by using the manifolds {Wn}.
Since xα equals the cobordism class [Wa~\ up to decomposable elements, xα

is represented by Wa plus a finite union of Wω° with \ωa\ = a and /(ωfl) > 1

and ωa e P0. Thus, xω is represented by Wω plus a finite union of Wω> with

/(ω') > /(ω) and α/ = (ωΊ, . . . , ωj^) e P0 where ωj is a partition of α,- (1 < j < fe).

We denote by Xω this manifold which represents xω. Here, we remark that

α(ω') > α(ω), since α(α) + α(b) > α(α + b) for any integers a and b.

LEMMA 3.1. If \ω\ = n and α(ω) > <5, then Xω immerses in R2n~δ and

embeds in R2"~a+1.

PROOF. Let ω = (al9...9 ak). Then, 2n — α(ω) = Σ5=ι {^αj ~~ α(αj)}»
^ω immerses in R2n~*w and embeds in R2"-*(«»+1 by Theorem 2.3(ii) and

Corollary 2.6 (ii). Thus, Wω immerses in R2""*5 and embeds in R2n~δ+l since

α(ω) > δ. For the other components Wω' as above, each Wω' also immerses

in R2n~δ and embeds in R2n~δ+\ because α(ωr) > α(ω) > <5. Π

PROOF OF THEOREM A(l). Since any element of the subgroup I(ΩJ of

Λ^ is a finite sum of xω with ω e P6 by Corollary 2.2, any orientable manifold

Mn is cobordant to a finite union of Xω with ω e P6 and |ω| = n. We show
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the following for a partition ω with |ω| = n:

(3.2) // ω e P5, then α(ω) > 2α(n);

(3.3) // ω e P6 - P5, ί/iew α(ω) > α(n) + v(n).

Then, by Lemma 3.1, any manifold Xω with ωeP 6 and |ω| = n immerses in
R2n-2«(n) Qr R2n-α(π)-v(n) an(j embeds in R2n-2«(n)4-l QΓ R2n-α(n)-v(n)+l Jhus?

Xω immerses in RβM and embeds in R^">+1 for β(n) = In - α(n) - min{α(n),

v(n)}, and we have the required result for an orientable manifold Mn.

We show (3.2) and (3.3). Remark that α(2α) = <φ), α(2α + 1) = α(2α) + 1,

α(α) + α(b) > α(α + b) and α(α - 1) + 1 = α(α) + v(α). Let ω = (2al9 2α 1 ?...,

2ak,2ak)eP5. Then, we have α(ω) = Σ*=ι2α(2θy) ^ 2a(^=12a7-) =
2a(Σ;=ι 4a/) = 2a(n)» and (3 2) is proved. Next, let ω = (α 1 ?..., flj e P6 - P5,
then ω has at least one odd number. So we assume ak is odd, and put

ω' = (al9..., 0fc-ι) and αfc = 21 + 1. Then, n = |ω'| + αfc, and α(ω) = αίω') H-

α(αk) > α(n - αk) + α(αk) = α(n - 2/ - 1) -h α(2/) + 1 > α(n - 1) + 1 =
α(n) -h v(π). Thus, we have (3.3). Π

Now, we prepare two lemmas to prove the possibilities of immersions

and embeddings in Theorem B.

LEMMA 3.4. Let ωeP6 — P5. Then, we have the following:

(i) // \ω\ is even and /(ω) > 3 (resp. /(ω) = 2), then α(ω) > 6 (resp.

α(ω) > 4);
(ii) If \ω\ is odd and l(ω) > 2, then α(ω) > 4.

PROOF, (i) By assumptions, ω has at least two odd numbers αf Φ 1 and

a^Φ l. When /(ω) > 4, ω has at least two other numbers, and so

α(ω) > (φ;) + (φ,-) + l + l > 2 + 2 + l + l = 6 as required. When /(ω) = 3,

ω has another even number ak. Since ω e Pl9 0fc is not a power of 2. Hence,

α(ω) = α(αf) + α(^) + <φfc) >2 + 2 + 2 = 6 as required. When /(ω) = 2, ω

has just two odd numbers at φ 1 and α,- ̂  1, and thus α(ω) = α(αf) + α(θj) >

2 + 2 = 4 as required.

(ii) By assumptions, ω has at least one odd number at φ 1. When

/(ω) > 3, ω has at least two other numbers, and so α(ω) > α(αf) -f 1 H- 1 >

2+1 + 1=4 as required. When /(ω) = 2, ω has another even number

a,-. Since ω e Pl9 flj is not a power of 2. Hence, α(ω) = α(fl f) + α(fly) > 2 +

2 = 4 as required. Π

We remark that, if n is odd and α(n) < 3, then Wn of (2.4) is cobordant

to a Dold manifold which is orientable. In fact, in this case, Wn = P(fl, RPb)

for n = a + 26, a = 2r - 1 and fc = 2rs (r, s > 1) by (2.4). Brown [1; Cor. 7.4]

showed that P(fl, RPb) is cobordant to the Dold manifold P(fl, b) = Sa x

CPb/(u, Z)-(-M,Z), and Dold [2; Satz 1, p. 29 and Satz 2, p. 30] proved
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that the total Stiefel-Whitney class of P(α, b) is

(3.5) w(P(α, b)) = (1 + c)Λ(l + c + d)*+1.

Here, c e ff ^Pfa b)) and 4 e #2(P(α, &)), which satisfy cΛ+1 = 0 and db+ί = 0.
Thus, in this case, P(α, b) is an orientable manifold, because w1(P(a,b)) =
(α + b + l)c = 0.

LEMMA 3.6. Lei ω e P6 and |ω| = n. Then,
(i) wnen a(n) = 3, n = 4 (mod 8) and /(ω) = 2, Xω is cobordant to a mani-

fold which immerses in R2n~6 and embeds in R2n~5;
(ii) when a(n) = 4, n = 2 (mod 4) and l(ω) = 2, Xω is cobordant to a

manifold which immerses in R2π~6 and embeds in R2π~5;

(iii) when n ^1 is odd, a(n) = 3 and l(ω) = 1, Xω is cobordant to a mani-

fold which immerses in R2n~4 and embeds in R2n~3.

PROOF, (i) When ω e P5 or a(ω) > 6, Xω itself immerses in R2n~6 and
embeds in R2/I~5 from Lemma 3.1 and (3.2). So we assume that ω e P6 — P5

and α(ω) < 5. Since l(ω) = 2, ω = (ah α7 ) for odd numbers αf φ 1 and α7 φ 1.
By (3.3), α(ω) > 3 H- 2 = 5. Thus, we can assume that α(αf) = 2 and α^ ) = 3.
Then, by the above remark, Wω = WaiWaj is cobordant to an orientable
manifold, and hence, Wω is cobordant to Xω plus a finite union of Xω, with
ω' € P6 — P5 and /(ω') > 3. In other words, Xω is cobordant to Wω plus a
finite union of Xω, as above. By Theorem 2.3(ii), (iii) and Corollary 2.6(i),
Wω immerses in R2π~6 and embeds in R2π~5, and, by Lemmas 3.1 and 3.4(i),
each Xω, as above immerses in R2n~6 and embeds in R2w~5. Therefore, Xω

is cobordant to a manifold which immerses in R2π~6 and embeds in R2w~5

as required.
(ii) We remark that ω φ P5. When α(ω) > 6, we have the required result

by Lemma 3.1. So we assume that α(ω) < 5. Since /(ω) = 2, ω = (ah α,-) for
odd numbers at φ 1 and α7 ̂  1. By (3.3), α(ω) > 4 + 1 = 5, and we can as-
sume that α(αf) = 2 and α(α7 ) = 3. Then, we have the required result by
doing just the same way as in (i).

(iii) In this case, ω = (n) since /(ω) = 1. Then, similarly as in (i), Wn is
cobordant to an orientable manifold, and hence, Wn is cobordant to X(n} plus
a finite union of Xω, with ω' e P6 - P5 and ί(ω') > 2. In other words, X(n}

is cobordant to Wn plus a finite union of Xω, as above. Then, Wn immerses
in R2"-4 and embeds in R2w~3 by Theorem 2.3 (iii), and each Xω, as above
immerses in R2π~4 and embeds in R2π~3 by Lemmas 3.1 and 3.4(ii). Hence,
we have the required result. Π

Now, the proof of the possibilities of immersions and embeddings stated
in Theorem B is given as follows: Recall that any orientable manifold Mn
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is cobordant to a finite union of Xω with ωeP6 and |ω| = n. If n satisfies

(i), the condition n = 2 (mod 8) implies ω φ P5. Since n is even, each ω e P6 —

P5 has at least two odd numbers, so /(ω) > 2. Thus, by Lemmas 3.1 and

3.4(i), each manifold Xω as above immerses in R2w~4 and embeds in R2n~3,

and so we have that any orientable manifold M" is cobordant to a manifold
which immerses in R2w~4 and embeds in R2π~3 as required. Similarly, when

n satisfies (ii) (resp. (iii); resp. (iv)), we have the required result, by Lemmas

3.1, 3.4(i) and 3.6(i) (resp. Lemmas 3.1, 3.4(i) and 3.6(ii); resp. Lemmas 3.1,

3.4(ii) and 3.6(iii)).

4. Best possibilities

In this section, we prove Theorem A(2) and the rest of Theorem B.

Let Wi(Mn) for i > 0 be the dual Stiefel-Whitney classes of a manifold M".

That is, they satisfy (£i>0vvi(M/l)) x (£;>o ̂ (M")) = 1. Then, we have the

following:

LEMMA 4.1. Let Ln and L? be manifolds with Ln = Π?=ι £?'• If each L?<
satisfies the following (i) and (ii) for some σ£ < ni9 then w/(Lw) = 0 for any

j>n-σ and wσwn.σ(Ln) Φ 0, where σ = £*=ι σ{\

(i) w/L?0 = 0 for any j>ni- σ,;
(ii) wσiwni.σi(L^) Φ 0.

PROOF. Remark that the total dual Stiefel-Whitney classes satisfy w(L") =

Π?=ι vv(L"0 Hence, by the hypothesis (i), we have w^L") = 0 for any j > n —

σ, and thus wn.σ(Ln) = Π?=ι vvΠι-σί(LΛ). Also, wσ(Ln) equals Π?=ι*ML?') UP
to terms which consist of w7 (L"0 for some i and j > σ( . Hence, wσwn_σ(Ln) =

ΠtιW f f ι.wWi_σι.(L?0^0. Π

Since the manifold L" in the lemma satisfies wσwπ_σ(Lw) φ 0, any manifold

Mn cobordant to Ln satisfies wσwn_σ(Mn) Φ 0. In particular, ww_<τ(M") φ 0.
As a necessary condition for Mn to immerse in R2"-*-1

 Or embed in R2n~σ

is that w^M") = 0 for j > n — σ, we have the following:

COROLLARY 4.2. Let Ln and σ be those given in Lemma 4.1. Then, any

manifold cobordant to Ln does not immerse in R2/1-ff~1 and does not embed in
R2n a

LEMMA 4.3. (i) Let n = 2r, where r >2 and r is a power of 2. Then,

Wj(CPr) = 0 for any j > n - 2, and vv2wπ_2(CPr) φ 0.

(ii) Let n = 2t + s — 1, where t > s >2 and ί, s are both power of 2.

Then, Wj(P(s - 1, t)) = 0 for any j > n - s, and wswn_s(P(s - 1, ί)) Φ 0.
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PROOF, (i) Let d e H2(CPr) =- Z2 be the generator. Then, it satisfies
dr+1 = 0, and the total Stiefel-Whitney class of CPr is given by w(CPΓ) =

(1 + d)r+1. Then, w(CPr) = (1 + d)~r~\ and thus w(CPr) = (1 + d)1"1, since r is
a power of 2 and dl = 0 (/ > r). Hence, w, (CPr) = 0 for any j > 2r - 2 = n - 2,

and wπ_2(CPr) = d11"1. Also, since vv2(CPΓ) = (r - l)d = d, w2wn_2(CPΓ) = dr φ
0 as required.

(ii) By (3.5), w(P(s - 1, ί)) = (1 + cf~\l + c + d)m where ce
H1(P(s - 1, t)) and d 6 #2(P(s - 1, ί)), and they satisfy cs = 0 and d'*1 = 0.

Then, w(P(s - 1, ί)) = (1 + c)~s+1(l + c + d)"'"1 = (1 + c)(l + c + dΓ1, be-
cause £ and s are both powers of 2, c1 = 0 (/ > s) and d* = 0 (/ > i). Hence,
w, (P(s - 1, ίj) = 0 for any j > 2t - 1 = n - s, and ww_s(P(s - 1, ί)) = cd*~l. Let

{x, y, z} = (x + y + z)!/(x!y!z!). Then, ws(P(S - 1, t)) = {t - s, s - 2, l}c'-2d
up to other terms consisting of c1 for some / > s — 2 or dl for some / > 1.

Hence, wswπ_s(P(s - 1, *)) ={t-s,s-29 l}cs~1dt = cs~vdl ^0. Π

Now, we can complete the proofs of Theorem A and Theorem B. By
Corollary 4.2, the assertion of Theorem A(2) (resp. Theorem B) will be estab-

lished if we find an orientable manifold Ln satisfying the conditions of Lemma
4.1 for σ = α(n) + min{α(n), v(n)} (resp. σ = α(n) + v(n) + 1). In the below, we
assume that each r or rf is a power of 2. In each case, the following Ln

satisfies the required conditions:

For Theorem A (2):

(i) Let n = 2rj + + 2rk where 2rl > - - > 2rk > 2k. We put Ln = f]?=ι CPr',
then Ln satisfies the required conditions for σ = 2/c = 2α(n) by Lemma 4.3;
(ii) Let n = 2rl + 2r2 + 2 where ^ > r2 > 2. We put Ln = P(l, rx) x P(l, r2),

then σ = 2 + 2 = 4;
(iii) Let n = 2r + 1 where r > 2. We put L" = P(l, r), then σ = 2.

For Theorem B:

(i) Let n = 4r + 2 where r > 2. We put Ln = P(l, r) x P(l, r), then σ = 2 +
2 = 4;
(ii) Let w = 2rt + 2r2 + 4 where r1>r2> 4. We put L" = P(l, rj x P(3, r2),
then σ = 2 + 4 = 6;

(iii) Let n = 2rx + 2r2 + 2r3 + 2 where rx > r2 > r3 > 2. We put Lπ = CPΓl x
P(l, r2) x P(l, r3), then σ = 2 + 2 + 2 = 6;
(iv) If n = 2rx + 2r2 + 1 where rt > r2 > 2, then we put Ln = CPΓl x P(l, r2),
and we have σ = 2 + 2 = 4. I f n = 2r + 3 where r > 4, then we put Ln =

P(3, r), and we have σ = 4.

REMARK. When n = 6 or 7, then there is no partition ω e P6 such that

n = \ω\. It means that any closed orientable manifold of dimension 6 or 7 is
cobordant to 0 (e Λ^). Hence, we omit the case n = 6 and 7 from Theorem B.
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