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ABsTrRACT. Let .Té(X ) =E5(X )/TO(X) be the J-group of a connected finite CW
complex X. Using Atiyah-Tall [5], we obtain two computable formulae of TO(X),),
the localization of TO(X) at a prime p. Then we show how to use those two formulae
of TO(X ), to find the J-orders of elements of I?é(X ), at least the 2 and 3 primary
factors of the canonical generators of .IO(CP'") Here CP™ is the complex projective
space.

1. Introduction

Let JO(X) = @(X )/TO(X) be the J-group of a connected finite CW
complex X, where KO(X) is the additive subgroup of the KO-ring KO(X) of
elements of virtual dimension zero and TO(X)={E—-F € KO(X): S(E®n)
is fibre homotopy equivalent to S(F @ n) for some neN}. Let y* be the
Adams operations. Then Adams [1] and Quillen [13] showed that TO(X) =
WO(X) = VO(X). Here

WO(X) = ﬂIZE/O(X)f (1)

where the intersection runs over all functions f:N — N and KSO(X )r=
IO (Y% = 1)(u) : ue KSO(X) and k e N), and

Vo(X) = {x € IE:S’b(X) : there exists u € IZS’/O(X) such that

v (1 + )

Orc(x) = 1+u

el+1€5’/0(X)®QkforallkeN} (2)

where 0 are the Bott exponential classes, and Q = {n/k™ :n,me Z}.
For a prime p, let JO( )(p) denote the localization of JO( ) at p. Since
JO(X ) is a finite abelian group, JO(X )(p) is isomorphic to the p-summand of
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f@(X ). Moreover, since the localization is an exact functor on the category
of finitely generated abelian groups, fé(X Jip = 7{5(}( )(p/ TO(X)(,)- Using
Atiyah-Tall [5] we obtain two computable formulae of 7O(X).,. The
significance of those two localized formulae of TO(X) is shown to find the
J-orders of elements of Eé(CP”').

In §2 using the fact that l&b()( ) is an orientable y-ring and the p-adic
completion KSO(X), is an orientable p-adic y-ring, we define a natural ex-
ponential map ;" : KSO(2)(X) — KSO(X), for each positive integer k. If k
is odd, 67" is the extension of 6;" : VectSO(2)(X) — KSO(X) defined in Dieck
[6]. From the main theorem of [5], we obtain the commutative diagram in
Theorem 2.3.

Our main result is the following two formulae of 70(X),, which can be
obtained directly from Theorem 2.3.

TO(X), = (¥* — 1)(KSO(X),,)). (Formula 1)
kP —_—
TO(X),,) = {xel&)mm () =¥ (:; “) 1+ KSO(X),
for some u e IES’/O(X)I,}. (Formula II) -

Formula I (resp. Formula II) of TO(X), may be thought of as the local-
ization of WO(X) (resp. VO(X)) at p.

Let y=rf,(C)—2 where &,(C) is the complex Hopf line bundle
over CP™. In §3 we apply Formulae I and II of 7O(X), to find
bu(Pm(y;mi,...,my)), the J-order of Pu(y;m,...,m)= myy +myy*+

. +m,yjK0(CP’"). Onder [10] has given the formula TO(X)q =
® - 1) (KOX )(z)) by using Dieck [6] Ch. 11, and applied this formula to give
computation of the 2-primary factor of b,(y). We obtain sharper results in
giving a simple formula for the 2 and 3 primary factors of the J-orders of the
canonical generators of fé(cp'"). Finally in §4 we show how Formulae I and
IT of TO(X), can be used to compute the group ib(x ) for our illustrative
example X = CP*.

2. Two computable formulae of TO(X),

Let G be a finitely generated abelian group. For a prime p let G, =
{g/m : g € G and m € Z with (p,m) = 1} denote the localization of G at p, then
G(p) is canonically isomorphic to Z(,) ® G. Also, let G, = lim G/p"G denote

the p-adic completion of G. Then G, is canonically isomo;phic to Z,®G.
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For a rational number ¢,v,(g) denotes the exponent of p in the prime fac-
torization of q.

Lemma 2.1. (1) Let G be a finite abelian group. Then the following
groups are canonically isomorphic:

G(p) = Gp = G(p)
where G(p) = {g € G : the order of g is a power of p}. Consequently, if ge G
has order m, then the order of g/1 in G(,) which is equal to the order of 1 ® g in
G, is equal to prrm,
(ii) If G is a finitely generated abelian group, then G(,) is canonically
embedded in G,.

Proor. Clear.

Now, our aim is to show how to apply the work of Atiyah-Tall [5] to find
Jﬁé(X )(p)- Let KSO(d)(X) be the group obtained by symmetrization of the
semi-group VectSO(d)(X) of all isomorphic classes of real vector bundles over
X with structural group SO(dn) for n=1,2,.... KSO(d)(X) is monomor-
phically embedded in KO(X) as the subgroup of classes x such that w;(x) =0
and dim(x) =dn for some neN, i.e.,

KSO(d)(X) ={E - Fe KO(X) : dim(E — F) = dn and E, F are orientable}.

Let KF'S/O(d)(X) ={E-FeKSO(d)(X):dmE =dimF}. It is easy to
see that KSO(d)(X)=dZ ® KSO(d)(X) and KSO(d)(X) = KSO(1)(X) for
eachd > 1. So, for simplicity, we write KSO(X) instead of KSO(d)(X). It is
well known that KSO(X) is an orientable y-ring and KSO(X ), is an orientable
p-adic y-ring (see [5], or [6] Ch. 3).

Let £ be an odd integer and J be a set of kth roots of unity u # 1 which
contains from each pair u,u~! exactly one element. The operations 6} :
VectSO(2)(X) — KSO(X) are defined in [6] and given by

07 (E) = k™ [ [ A-u(BE)(1 — )" = [ [ A-u(E) (=)™ 3)

uelJ uel
where 2m =dim E. 6;" does not depend on the choice of J [6).

If (k,p)=1 then 6;(E) is invertible in KSO(X),. So 6 can be
extended to KSO(2)(X) with values in KSO(X),. Also, by using the fact that
07" is a natural exponential map, it can be shown that 6;" : KSO(X) — 1+
K/ZS\?)(X ) /v\vllere 1+IES\'/O(X ), is the mulﬂﬂicativc group ff, elements 1+ w
with w e KSO(X),. The operations pg" : KSO(X), — 1+ KSO(X), are given
by

P2 (%) = T D (- (4)

uel
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Now we shall show how to define 65, and pg; for k > 1. If p # 2 then
1/2€Z,. So we may define 0 : KSO(X) — 1 + KSO(X),. by

_1\ 1/2
0 E~F)=| [ 2u®| [I 4P : (5)
—1=0 u¥*—-1=0
u#l u#l
Similarly, we may define
1/2
pg]i(x) = H yu/u—l(x) . (6)
u*—1=0
u#l

LEMMA 2.2 (An analogue of Proposition 5.3 of [5]). If (p,k) =1 then the
following diagram where i(x) =1 ® x is commutative:

KSO(X)

[

or

KSO(X), 2~ 1+ KSO(X),.
ReMArk. If (p,k) =1, then Q, = Z,. So, using Proposition 3.15.2 of [6]
and Examples 5.14 and 5.15 of [1]-II, we see that 6;" agrees with Bott operation

0; which is denoted by p* in [1]-IL
Now, we give our main theorem.

THEOREM 2.3. Let p be a prime number and k, be a generator of
(Z/p*Z)", the group of units in Z/p*Z. Then the following diagram is
commutative:

0

J

KSO(X)(, r —— KSO(X),/TO(X), — 0

. 0'0!
Jrlr Jr ’
or
kp, T

— P —
00— KSO(X)p’r —_— 1+ KSO(X)p,I‘ — 0

Here the index I indicates that we factor out the image of (y*» — 1) and § is the
quotient map.

Proor. First, we show that rows and columns are well-defined and exact.
(a) Using Lemma 2.1, the fact that localization and completion are exact
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functors on the category of finitely generated abelian groups and the naturality
of Adams’ operations, we have the following identifications:

KSO(X),) /(" — 1)(KSO(X),)) = KSO(X),,,/((¥* — 1)(KSO(X))),)
= (KSO(X)/(y"*» — 1)(KSO(X))),)
< KSO(X),/((¥* — 1)(KSO(X)),
= KSO(X),/(¥* - 1)(KSO(X),).

Hence, i:IZS\’/O(X)(p) — IZ?O(X)F defined by i(x/m) = (m)™' ® x induces a
monomorphism ir : IZS'/O(X)(I,),F — IES\’JO(X)p,r.
(b) By Theorem 4.5 of Atiyah-Tall [5], l’/?,f induces an isomorphism

P r: KSO(X), r — 1+ KSO(X), .

(c) To show that (Y% — 1)(KSO(X)(,)) € TO(x)(,. Let

e KSO(X),,.

k k
wh 1)(E—F> _ (w PE—E) ~ (vx nF—F).
m m m
By Quillen [13], there is a fiberwise map of degree a power of k, between Yo E
and E. So, by Dold’s Theorem mod k in [1]-I we have

Then

ki(Y*E — E) e TO(X)

for some integer e. Since (p,k,) =1, we have

yE—E\ ki(Y"E-E)
Similarly,
yoF — F
—— eTO(X )( 2
and hence

(ko — 1)(E;F) e TO(X),.

Thus, we have an epimorphism §: KSO(X Yp)r — KSO(X )(py/ TO(X) ()
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(d) It is easy to see that 0,‘;"KSO( )(p) —>1+KSO(X ), given by
Hzl(x/m) (9,‘;’ (x)"™ is an exponentlal map. Let

E-F

€ TO(X) -

Then nS(E) is stably fibre homotopy equivalent to nS(F) for some »n with
(p,n) =1. So by [1]-(II) Corollary 5.8,

e (1 +
14+u

for some ue@(X). Since (p,n)=1,1+u)/™=1+wel +IE'TS'J0(X)p
for some we KSO(X),. Hence

O/ (E—F)" = yritw gy KSO(X),

or E-F or m or ny1/nm
o (EE) = o — ) = o8- )

Y+ Y1+ w)

A+w™  1tw

Thus ;" induces a homomorphism
0gr : KSO(X)(,)/TO(X) ) — 1 + KSO(X), 1

Finally, we show the commutativity of our diagram.

Let x/meKSO(X),. Then 6 og(x/m+ (y* —1)(KSO(X),)) =
0 (x/m+ TO(X) ) = 67 (x)"/" + (y* — 1)(1 + KSO(X),). On the other
hand, (i r °tr)(x/m+ (W% — 1)(KSO(X),,)) = pkp,r(l(x/m) + (o —1)
(KSO(X),)) = pr(i(x/m)) + (' — 1)(1 + KSO(X),. Now, the result follows
from Lemma 2.2. This completes the proof of Theorem 2.3.

COROLLARY 2.4 (Formula I of TO(X),).
TO(X)(,) = (¥ — 1)(KSO(X) ).

PrOOF. Since é,‘jp’ 0g= p,‘c”: roir,q is injective and hence an isomorphism.
So, TO(X), = (y* — 1)(KSO(X),)).
COROLLARY 2.5 (Formula II of TO(X),))-.

__ k(1 +u __

for some u € IZS*O(X%}.
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Proor. Clearly, the right hand side of the above equality is a well-defined
subgroup of KSO(X),. The fact that ir is injective implies that
i(KSO(X) () N (" — 1)(KSO(X),) = i((¥** - 1)(KSO(X) ). (7)
The fact that pg’ - is an isomorphism implies that
P — 1)(KSO(X),) = (97 — 1)(1 + KSO(X),). )

Now let xeTO(X),. Then by Formula I of TO(X)
(% — 1)KSO(X) . Hence from (7) and (8)
(1 +u)

04y (x) = Py (i(x) = == in 1+ KSO(X),

p)’

for some u e KSO(X)

If X is a finite C W complex, then JO(X ) is a finite abelian group. So, by
Lemma 2.1, the p-primary factor of the order of x+ TO(X) e JO(X) is the
order of x + TO(X),) € .TO(X )(p)> the smallest power of p, p™ such that p™x e
TO(X),,).

3. J-orders of elements of I?é(CP"’)

We will show how to use Formulae I and II of 7O(X), to find the
J-orders of elements of KO(CP’”) As we have shown in [9], we only need
to consider the case when m is even, that is m= 2t for some teN. Let
Pu(yimi,...,m) = my+my*+---+my' €e KO(CP™) = Z[y] (mod y'*!).
In order to find the J-order by, (Pn(y;mi,...,m;)) of P,(y;m,...,m;) the
following two lemmas will be useful.

Lemma 3.1. Let k, be a generator of (Z/p*Z)*. If neN, then
(i) w3 —1) =3+ v(n).
(i) For an odd prime p,

v(k;"—l):{o if 2n # 0 mod(p — 1)
1+ v,(n) if 2n =0 mod(p — 1).

ProoF. (i) is well-known.

(ii) Let vy(k" —1) =s. Then k2" =1 mod p*. If s> 1, then (Z/p°Z)"
is cyclic of order p*~!(p — 1) with generator k, ([7], Theorem 2, p. 43). So, 2n
= p*~1(p — 1)d for some d € N with (d, p) =1 ([7], Lemma 3, p. 42). Hence,
s=1+v,(n).

LemMMA 3.2. Let k, be a generator of (Z/p*Z)* and r,s € N with r > s.
Then
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(i) v([TBG* = 1) =3¢ —s+1) + 3, v(0)
(i) For an odd prime p,v,([T_ (k) — 1))

[er ]+Z[zr/(p Wl (i) — [2; ] SRV, Gy i p<2r 41

0 if p>2r+1.
ProOF. (i) n([I-B% = 1) = ZnB¥ - 1) = XL,B + () =

3(r—s+1)+ > v(i).
(i) If p>2r+1, then vy(k* —1) =0 for each i=s,...,r. Hence

Vp (ﬂ(kj" - 1)) =0.

If p<2r+1, then p—1=2d for some de{l,...,r}.

vp(ﬁ<k3"—1>)=ivp<k3"—1)= > (w0

i=s i=s
2i=0mod(p-1)

{2r/(p 1)] (2(s=1)/(p—1)]
Z 1+ v,(2di)) > (14 v (2d0)).

i=1 i=1

But v,(2di) = v,(i). So

Vp (H(kgi —1

i=s

Z (I +v(i)) - (1 + (i)

i=1 i=1

[2r/(-1)] [2(s—1)/(p—1)]
)] =

[Zr] [2’%‘ l)_[Z(s—l)] [(S—%p_mvp(i).

1 p i=1

This completes the proof.
Now, let k, be an odd generator of (Z/p%*Z)*, say k,=2q+1 (take
ky =3).

REMARK. We take &, to be odd only to reduce the work. Our argument
works equally well for the case when k, is even.

According to Formula I of TO(X),), Vp(bm(Pm(y;m1, ..., my;))) is the
smallest non-negative integer v such that

P Pu(yimi,...omy) = (1= ¢")(w) ©)
in I?E(CP’")W for some ueI?é(CP’”)( 2
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From [2] Theorem 2.2, and [8] Lemma 3.6,

vl (y) = (szH(q“) )—y(zb,yf> (10)

__k (q+] . _
b1_2j+1<2j , j=0,...,q.

So, for r=2,...,t

where

2rq
R () = W (v Z Cjry™
j<t-
where
Gr= Y.  byby...b,.

i+tig =
i1y B2 € {vav q}

Letue If(\é(CP"’)(p). Then u=a;y+---+ a,y' for some a; € Z

(p)- Using
(10), it is easy to see that the coefficient of y” in (1 — y**)(u) is

—ZC-,,a,—l—(l—k”)

_j'
-1
where j, = [57(—] +1.
24

So, from (9), we need to find the smallest v which solves the following
system of equations in Zp:

— Z Cr_iiai+ (1 — kz') = p’m,
i=jr
where r=1,...,¢1.

The above system has the following solutions:

ka (m],...,ml)
Tk -k
=m; and for r=2,...,¢t

r—1
My, (my,...,m) = Cryi(1 —k2ED) (1
i=j,

+m(1—k2)...(1—k2).

r

where My, 1(my,...,m;)

- kj(’_l))Mkp,,-(ml, ey my)
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Now, a, € Z(,) implies that v,(a,) >0. So

v > ‘max {vp (H(] - kj’)) — (Mg, r(my,...,my)),0: My, (my,...,m) # 0}

=i i=1

is a necessary and sufficient condition on v so that (9) is satisfied. Hence, we
have:

THEOREM 3.3.

vp(bM(Pm(y;mla vee aml)))
= max {vp (ﬂ(l - k;i)) — vp(Mg,, r(m,...,my)),
=heo i=1

0: My, ,(my,...,m) #0}.

Now, let us use Formula II.

Let O, (Pm(y;mi,...,m;)) =1+ay(my,...,m)y+---+o(m,... ,m;)y*
for some a;(my,...,m;) € Z, (see [9], Theorem 2.2). vy(b(Pm(y;m,...,m;)))
is the smallest non-negative integer v such that

o Yk (1 4u) . —
P(y; =X 2 T inl+K P 11
gkp( (y;mi, ’m!)) (1 +u) in 1 + KO(C )p ( )
for some u € k\é(CP’”)p. Letu=5b1y+---+b,y' for some b; € Z,. With the
above symbols, the coefficient of y" in l//kp(u) is

r—1
> Croiibi+ bk

i=Jr

To avoid excessive notation, we write 6O (Pm(y;mi,...,m))" =140y
+ ---+o,y' where o; involves quantities containing p in some way.
From (11), we have 1+ y*(u)=14dy+---+d,y' where

dn: Z b,'Ots.

i+s=n
bo=ot0=1

Thus

r—1
> Criibi+ bk =b,+ Y b

i=j, >0
i+s=r
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which implies that

5 leiorbzds Zr_ Crii 1_ Lkp,r(m17~~~7mt)
r= (k[}’—l) (k;—l)...(kgf—l)
where Ly, 1(mi,...,m;) = o and for r=2,...,1¢,

,
L, o(my,...om) = Lig pi(my, .. om)ag (k20D — 1) (k2070 — 1)

Zc, il i(ma, .. .,m) (K2 — 1) (k207D — 1)
i=jr

+oap(ky —1)... (k2D —1).
Now, b;eZ, for i=1,...,t implies that
Vp(Ligy r(mr, ... ymg)) 2 vp((k}F = 1) ... (k" = 1)).

So, we have:

THEOREM 3.4. v, (by(Pm(y;my,...,my))) is the smallest v such that
Vp(Li, r(my,...,mp)) = vp((kF = 1)... (k7" = 1)) for each r=1,...,t

Using Lemma 3.2 and any one of the above two theorems, we directly
obtain:

COROLLARY 3.5. If p>2t+1, then vy(bm(Pm(y;mi,...,m)))=0.
Consequently,

JO(CP™) ~ @  Jocem,
all primes p<m+1

From Theorem 3.3, to find b,,(Pm(y;mi,...,m,;)) we only need to find
vo(My, r(my,...,m)) for r=1,...,t. Therefore, it may be a good problem if
one tries to obtain a general formula for v,(My, ,(m,...,m,)) in term of r,k,,
my,...,m;. Next, we compute v,(My,,(0,...,m =1,0,...,0)) for p=2,3
and then we obtain simple formulae for the 2 and 3 primary factors of the
J-orders of the canonical generators of .Té(CP'”). These simple formulae
have been already conjectured in [9].

For n=1,...,t, the J-order of y"+ TO(CP™) is bpy(Pm(y;0,...,m, =
1,0,...,0)). Let My, , = My, ,(0,...,my=1,0,...,0)/(1 —k2)...(1 — k"),
Then My, , =0 for r<n,My,,=1 and for r=n+1,...,1,
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r—1
My, , = Z Crii(1 - kj('H)) s (= k;(r_l))Mkp»i
i>n
r—1
where j, = [—] +1
kp

Hence, from Theorem 3.3, we have

Vp(bm(¥")) = rzrrllaxt{v,, (ﬁ(l - kj’)) —Vp(My, .),0: My, , # O}.

PROPOSITION 3.6. If p=2 or 3, then

2(—1)/(p-1) 2(=-1)/(p-1)
Vp(Mk,,,r) = Z VP(S) - vp(s)

s=1 s=1
for each r=n,...,1t.
Proor. We prove this proposition for p =2 (the case p =3 is similar).

Recall that k; = 3. So we need to show that vy(M3,)=r—n+ Zs';; va(s) for
r=n+1,...,t, where

r—1 .
. 2i .
My, =Y 3% (r .)(1 — 32040y (1 = 32Dy

— —1
=Jr
i>n

by induction on r. If r=n+1 then v(M;,) =n (21”) =1+v(n). So let
n+1l<r<t We claim that v(3¥"(2)(1—32+D) (1 -32-D)M;;) >
(33 (2('1‘1)) M;, ;) for each max{j,,n} <i<r—1. Suppose that
max{j,,n} <i<r—1. Then by induction hypothesis and Lemma 3.2,

. 2i .
V) (331—r <r l ) (1 _ 32(t+1)) . (1 _ 32(r—l))M3’i>

. r—1
_ vZ(yzl ) +3(r—i= 1) +i—n—v(i)+ Y vals).

On the other hand,
2(r—1 =
v2<32r—3( ( : ))M3,,_1> =r—n-+ S=EnV2(S).

So, we need to show that v,(*) +2(r—i—1)>v,(2i). But this follows
directly from the fact that vo( %)) = v2(2i) — vo(r — i) if v2(2)) > r—i—1. This
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completes the proof of our claim. Hence, v2(M3,) = v, (32"3 (2('1'1)) M3,,_1) =
r—n+ 3"y (s). This completes the proof.

s=n

Unfortunately, the above proof can not be used for p # 2,3.

THEOREM 3.7. If p=2or 3 and 1 <n<t. Then

ey 2(n—1) [ 2n 2t
S = R LA
PrOOF. Let p =2, then vy(bnu(y")) = max{v ([, (1 — 3%)) — vo(M;,) :
r=n,...,t} = max{2r—2n+2+4+v(2r):r = n,...,t} = max{s—2(n—1)+
v(s) : 2n < s < 2t}. The case p =3 is similar.

ReEMARK. If Proposition 3.6 holds for some values of p other than 2 or 3,
then Theorem 3.7 also holds for those values of p.

4. An illustrative example JO(CP?)

If KO(X) =<yy,.--, yn, then JO(X ),y = <a1,p = y1 + TO(X) )5+ Onp
= Y»+ TO(X),>. So to compute JO(X )(p)» We need to find all relations
between ajp,...,%, ,, i.€., we need to find “sufficient” solutions for the
equation:

clay,p + -+ cpltnp =0 infé(X)( cl,...,cneZ. (12)

py
This implies that ¢y, + -+ + ¢ay, € TO(X)(,). Now using formulae I and II
of TO(X )( p)» one may try to find “sufficient” solutions for (12).

KO(CP*) = {a\y + ayy* : aj,ay € Z, y* = 0}. So, .75(CP4)(1,) =y, =
y+ TO(CP“)(p), w0, =y*+ TO(CP“)(p)) = {o,p> +<%,p>. To find relations
between oy, and a,, we need to solve cjoy,, + 202, =0 in JO(CP“)(I,).

JO(CP4)(2) ={u2=y+ TO(CP4)(2)> + (o2 =y + TO(CP4)(2)>-<“1,2>
is cyclic of order 64 and <{ay,)> is cyclic of order 16. Also, 2077 =
40w, Hence JO(CP*), = Z/2Z ® Z/64Z. Similarly, JO(CP*), =~ Z/9Z
and JO(CP“)(S) ~Z/5Z. Thus, by Corollary 3.5, we obtain a well-known
result:

THEOREM 4.1. JO(CP*) ~Z/2Z ® Z/64Z & Z/9Z & Z/5Z.
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