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Stability of F-harmonic maps into pinched manifolds
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ABSTRACT. We extend two stability theorems due to Howard and Okayasu to the
case of F-harmonic maps. In fact we show that every stable F-harmonic map into
sufficiently pinched simply-connected Riemannian manifold is constant.

1. Introduction

Many variational problems are to find critical points of a given functional
on an infinite dimensional manifold and to study their properties. In par-
ticular, there are many studies on harmonic maps, which are critical points of
the Dirichlet energy functional defined on the space of smooth maps between
Riemannian manifolds. Also, the studies on p-harmonic maps and exponen-
tially harmonic maps were started by Hardt-Lin [8] and Eells-Lemaire [4]
respectively, and have been developed. We are interested in critical points of
more general functionals. So the author [1] introduced the notion of F-
harmonic maps which unifies p-harmonic maps and exponentially harmonic
maps. This notion was suggested by Eells-Sampson [5], and provides many
variational problems of differential geometric interest.

To state our main theorems, we spell out the definition of F-harmonic
maps. Let F:[0,00) — [0,00) be a C? strictly increasing function. For a
smooth map ¢: (M,g) — (N,h) between Riemannian manifolds (M,g) and
(N,h), we define the F-energy Er(¢) of ¢ by

2
Er() = Lﬁ(@) 0,

where v, is the volume element of (M,g). We call ¢ an F-harmonic map if it
is a critical point of the F-energy functional.

Leung [10] showed that there exist no nonconstant stable harmonic maps
from any compact Riemannian manifold into a unit sphere. A natural question
is “Does the above fact hold also for the case that the target is a simply-
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connected J-pinched Riemannian manifold (i.e., the sectional curvature Ky of
the target manifold satisfies 0 < Ky < 1)?”. Howard [9] proved that there exist
no nonconstant stable harmonic maps into a compact simply-connected d(n)-
pinched Riemannian manifold of dimension n > 2 for some d(n) with 1/4 <
o(n) < 1 and lim,_,., d(n) = 1. Okayasu [11] then replaced d(n) by a dimension
independent pinching constant ¢ = 0.83. Takeuchi [12] showed similar theo-
rems for p-harmonic maps. In this paper, we extend their works to the case of
F-harmonic maps as Theorems 3.1 and 4.1. Note that there are many C?
strictly increasing functions which satisfy the assumption of our theorems, for
instance, F(£) =t#(p=1or 2<p < ), (1+)*(a>1), (1+1¢) log(1+1)—1,
and so on. In the case where F(¢) =¢”, the constant cp equals (p/2) — 1.
Then our Theorem 3.1 becomes the following due to Takeuchi.

THEOREM ([12, Theorem 3|). Let N be a compact simply-connected o-
pinched n-dimensional Riemannian manifold.  Assume that n and 6 satisfy n > p
and

. n—1
J (p — 1)ga(1,9) <&\/‘3/E’> — (n—1)d cos*(1) sin" (1) $dr < 0,
0

where  g>(1,0) = max {cos(7),0 sin’(¢) cot®(v/or)}.  Then for any compact
Riemannian manifold M, every stable p-harmonic map ¢ : M — N is constant.

Thus our result contains the stability theorem previously known in the case of
p-harmonic maps. Also our Theorem 4.1 contains the theorem of Takeuchi
for p-harmonic maps (cf. [12, Theorem 4]).

The author wishes to express his gratitude to Professor Hajime Urakawa
for his constant encouragement and valuable advice, and also to Professor
Makoto Sakaki for his suggestions in improving this work. Finally, he thanks
the referee who gives him valuable comments.

2. Preliminaries

Let F:[0,00) — [0,0) be a C? strictly increasing function. Let ¢ : M —
N be a smooth map from an m-dimensional Riemannian manifolds (M,g) to a
Riemannian manifold (N,/). We call ¢ an F-harmonic map if it is a critical
point of the F-energy functional. That is, ¢ is an F-harmonic map if and
only if

d

EEF(¢1)|1:O =0

for any compactly supported variation ¢,: M — N(—e < t < ¢) with ¢, = ¢.
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Let V and VV denote the Levi-Civita connections of M and N, respec-
tively. Let V be the induced connection on ¢ 'TN defined by VyW =
Ny, y W, where X is a tangent vector of M and W is a section of ¢ 'TN. We
choose a local orthonormal frame field {e;}"; on M. We define the F-tension

field 7r(¢) of ¢ by
= F (@) (4) + 4. grad{F' (@) }

where t(¢) = 37 (V,,p.e; — 4, V,e;) is the tension field of ¢.
Under the notation above we have the following:

m

() = |V

i=1

THEOREM 2.1 (The first variation formula).

GE o=~ | Ve,

where V = d¢,/dt|,_.

Therefore a smooth map ¢ : M — N is an F-harmonic map if and only if
the F-tension field tr(¢) = 0.
Next we give the second variation formula for F-harmonic maps.

THEOREM 2.2 (The second variation formula). Let ¢: M — N be an F-
harmonic map. Let ¢, : M — N(—e<s,t<e) be a compactly supported
two-parameter variation such that ¢, = ¢, and set V =0¢, ,/ot| o, W =
s, /6s|s’ o Then

62
@EF(% )

X,I:O:J ”(' 49 ><VV 45T, dgd,
M

d 2 B 5 m
+J F,<| §| >{<VV,VW> _Zh(RN(V7¢*el)¢*el7W)}Uqa
M i=1
where {, ) is the inner product on T*M ® ¢71TN and RY is the curvature tensor
of N.

We put

52
10V, W) =~ Er(d oo
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An F-harmonic map ¢ is called F-stable or stable if I(V,V) >0 for any
compactly supported vector field V along ¢.
Some geometric properties of F-harmonic maps are described in [1].

3. The Howard type theorem
In this section, we show the Howard type theorem.

THEOREM 3.1. Let F :[0,00) — [0,0) be a C? strictly increasing function.
Assume that there exists a constant cp := inf{c > 0| F'(t)/t° is nonincreasing}.
Let N be a compact simply-connected d-pinched n-dimensional Riemannian mani-
fold.  Assume that n and ¢ satisfy n > 2(cp+ 1) and

sin Vot
Vo

n—1
) — (n—1)d cos*(¢) sin" (1) pdt < 0,
0

%,F(é) = Jn (201«‘4’1)92(1,5)(

where  g>(1,0) = max {cos(1),0 sin’(¢) cot®(v/o1)}.  Then for any compact
Riemannian manifold M, every stable F-harmonic map ¢ : M — N is constant.

REMARK. In the case where F(r) = )" (p=2o0rd<p< o), the
constant c¢p equals (p/2) —1. So the above theorem is an extension of [9,
Theorem 6.1] for harmonic maps and [12, Theorem 3] for p-harmonic maps.

Proor. The proof is a complete analogue to that due to Howard [9].
For the gradient vector field V' of a smooth function f on N, we define a self-
adjoint map on the tangent bundle TN of N by

AY(X)="VyV  for XeT,N, yeN.
Then we see that
<A¥(X),Y) =Hess f(X,Y),

where Hess f* denotes the hessian of f. Note that from pinching conditions
of sectional curvatures, the injectivity radius of N is greater than n, due to W.
Klingenberg [3]. Define a function f: R — R by f(¢) = —cos(z) for |t1] <=,
S(t)=1for [t{| > . Let p, denotes the geodesic distance from y € N, and V'”
be the vector field defined by V» =V(fop,)=f"'(p,)Vp,. V? is continuous
and smooth away from the cut locus defined by p, ==, and V'” =0 on the
set defined by p, >=m. So we must approximate the function f by smooth
functions f; (k=1,2,...) as follows. We choose ¢ >0 so that 7 +¢ is less
than the injectivity radius of N, and f; with fi(¢) = fi(—1?), fx converging to f
uniformly, f; converging to f” uniformly, f” converging to f/” uniformly on all
compact sets disjoint from {7, —x}, f” uniformly bounded with respect to both
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t and k, and f; constant on the interval [z + ¢, 00). Then for each k and each
y € N the vector field 1;" = V(f; op,) is smooth on N and converges uniformly
to V¥ as k — oo. Let {4;} be the eigenvalues of the map A" on the tangent
space T,,N for a fixed point yo e N. Noting p,(yy) = p,,(») for p, (y) <=
and putting p = p, , by the Hessian comparison theorem (cf. [6]) we have

(3.1) cos(p(y)) < 4i < Vo sin(p(y)) cot(Vop(y)), l<i<n
Set
g, (t,6) = middle value of {cos(7),0,Vd sin(z) cot(Vr)},
g1(1,6) = (§,(1,6))?, O<r<m
Then by squaring (3.1) we have

(32) gl(paé) = )*12 = 92(,075)'

Let U, N be the unit sphere in 7,,N. For we U, N we can view (p,w)
as polar coordinates on N near yo. Then V(p,) = —»'(¢) for a geodesic y(7) =
exp(tw). Denote the volume density on N by vy and the volume density on
U, N by UUN,, - Then we have

. n—1
(3.3) Sin"_l(ﬂ)dPUUN,.O(W)SUN(y)S{Sm(\/\ggp)} dp vow, ()

on the open set N\cut(y,), cut(y,) being the cut locus of yo. And we can find
the following inequality in [9, 4-14].

(3.4) jN RN (V7 X)X, V7o ()

> (n—1)|X|? Vol(S”’l)J d cos?(p) sin" ! (p)dp.
0

Now we put as a one-parameter variation, ¢, =u,(V)o ¢, where u, (V") :
N — N is a one parameter diffeomorphism of N such that d¢,/d1],_, = V;”. It
follows from the second variation formula and the Schwarz inequality that

k— o0

2 m 2
- JN JM F (@) <Zl:<ﬁe,» V"’,¢*e,~>> vy

.5)  Jim [ 107 ex() = [ 107 77en()
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d ug
[ () g

\S)

l d¢|2>Z<RN Vy¢€)¢€ V>U]U
5 «€i )P«Cis g N()

1
[ M{F "<d¢' >|d¢| +F (Id¢| >}Z —

[ (1) S5 R 0 e o o)
Iy b} — s P Ci )W €y g | UN\DY)-

Now we assume that ¢ is not constant. Since F’(¢)/t“" is nonincreasing,
F"(1)t < cpF'(t) on te(0,00). So we have

(3.6) lim JN IV V) on ()

k— o0
|d¢| = 2
< JN EIJ ( >{(2CF+1)IVe,-V |

— RY(V?, g.e)d.ei, V) ogon ().
By the definition of 4" and A;, we get from (3.2)
(37) ‘ﬁt’z Vy|2 = <AV}AV}.(¢*61‘)7¢*81‘> < gZ(p75)|¢*€i|2-
Combining (3.3), (3.4), (3.6) and (3.7), we have

lim JNI(ka, V. yon < Vol(S™1) - ¥, £ (0) - JM <|d¢| >Id¢|

k— o0
Since ¥, r(d) < 0 by the assumption, for some k > 1 there is a certain vector

field " such that the second variation for ¥/ is negative. This means that ¢
is unstable, which is a contradiction. Thus ¢ is constant. |

4. The Okayasu type theorem

We assume that N is a compact simply-connected J-pinched
Riemannian manifold. Let E denote the Whitney sum E = TN @ &(N) of the
tangent bundle 7N and the trivial line bundle ¢(N) = N x R with the canonical
metric.
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Then E admits a natural fiber metric. Let e be a cross-section of unit length in

¢(N). We define a metric connection V” on E as follows:

150

VIY = Vvpy - %(X,Y>e7
Y

Vie= %X,

where X and Y are vector fields on N, <, ) is the Riemannian metric.

define the distance of two connections V', V" by
V' —V"| .= Max{|[V.Y —V/Y;X € TN,|X| = 1,Y € E,|Y| = 1},

and four functions as follows:

Then there exists (cf. [7]) a flat connection V' such that

V' = V" < Lky(6).

TueOREM 4.1.  Let F : [0,0) — [0, 00) be a C? strictly increasing function.
Assume that there exists a constant cp := inf{c > 0| F'(t)/t¢ is nonincreasing}.

Let N be a compact simply-connected d-pinched n-dimensional Riemannian mani-

fold.  Assume that n and ¢ satisfy n > 2(cp + 1) and

2
@, 7(0) == (2cr + 1) (V ”; L) + \/12”) —(n—1)6<0.

Then for any compact Riemannian manifold M, every stable F-harmonic map

¢: M — N is constant.
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REMARK. In the case where F(r)= (20)"*(p=2 or 4<p < ), the
constant ¢ equals (p/2) — 1. So the above theorem is an extension of [I1,
Theorem 1] for harmonic maps and [12, Theorem 4] for p-harmonic maps.

Proor. The proof is a complete analogue to that due to Okayasu [11].
Suppose that ¢ is not constant. Let # = {V e I'(E);V'V =0}, and for V e
¥ we denote by VT and V¢ the TN-component and &(N)-component of V'
respectively. Then we obtain

2 m 2
IvThvT :J F" ("@') <Z<\Z,VT, ¢*ei>> vg
M -

1 |d¢|2 2
+JMF (T) gm,rﬂ
| F ('d¢' )Z RNV, g.e)p.en VT,
M i=1

" d¢ d¢ S
SJM{F (' '>|d¢| L F <' ')};mﬂ%

J <|d¢| >Z<RN(VT¢e,>¢ e Vo,
M

i=1

where we have used Schwarz’s inequality. Since F'(¢)/t‘" is nonincreasing,
F"(t)t < cpF'(¢) on t€(0,00). So we have

(4.1) Ivhvh < JMF’ (@) izm;{(ch + D,V
—(RN(VT p.e)p.e, VT>}vg.
On the other hand, we observe that
VT =V, = VO

=WV T =V, (Ve ee)) T

1+0\"?
= (e V—(;) Ve

This leads to the inequality
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_ 146
4 BT S 00 (1) S5 el
14k N\ 1+0
< @ VR el + (147) 50 v el

where k is a positive constant which will be fixed below. Since N is a o-
pinched manifold, we have

(4.3) RV poe)poer, VI 20V el — <V hoeid’}.
Define a quadratic form Q on #~ by

2 m
o) = | F’(df' > > {<ch+ )
M i=1

+ (1 +}{)”5<V eI, ] 5<|VT|2-|¢*ei2—<VT,¢*ei>2>}vg~

LR a0 VP e

Substituting (4.2) and (4.3) into (4.1), we obtain

IVILVT)y < oV).

Taking an orthonormal basis { Wy, Wa, ..., W,, W,1} of # with respect to a
natural inner product, we obtain

n+1 n+1
@4 D orwhwh <> o
j=1

Jj=1

= | Jaser (' 49 >{<2cF+1> (d+kn+1)
M
+<1+%)¥ —(n—l)é}vg.

We take k = \/2(0 + 1)/(n + 1)(kq(6))”". From (4.4) we have
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which is negative by the assumption. Therefore, we obtain [ (VI;T, VIjT) <0
for some j, ¢ is unstable, which is a contradiction. Thus ¢ is constant. []

We assume that n > 2(cp + 1), and put
or(n) :=inf{d|1/4 <0 <1 and ¥, r(6) < 0},
Op(n) :==inf{d]|1/4 <5 <1 and @, r(6) < 0}.

ReMarRk. The functions ¥, r(6) and @, ¢(6) are continuous on (1/4,1],
and ¥, r(1) <0, @, p(1) <0. So note that dp(n) <1 and dx(n) < 1.

Combining Theorems 3.1 and 4.1, we obtain the following:

THEOREM 4.2. Let F : [0,00) — [0,0) be a C? strictly increasing function.
Assume that there exists a constant cp :=inf{c > 0| F'(t)/t° is nonincreasing}.
Let N be a compact simply-connected o g-pinched Riemannian manifold of dimen-
sion n > 2(cp 4 1) and op = sUp,-y(e, 1) (Min{dr(n),0p(n)}) < 1. Then for any
compact Riemannian manifold M, every stable F-harmonic map ¢ : M — N is
constant.

Proor. We prove Jr < 1. From

2
v/ 1 146
Dy, r(0) = (2cr + 1)< n; ka(0) + %) —(n—-1)0 <0,
we have
1+ 2 240 vn—1
ka(8) + ) — L W0 WD
2 Vn+l N2 +1 Vn+1
So we obtain
20/0
ks(0) < —— — .
O < Joat B
Let do(< 1) be the value satisfying
X 240
ka(B0) = — 2.
V2er +1

Then 65(n) — d9 as n— oo. Therefore, for a sufficiently small &> 0 there
exists a constant ng such that d(n) <dg+e <1 for all n > no. O
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