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ABSTRACT. Nonlinear continuous perturbations of (Cp)-semigroups are treated from
the point of view of the theory of semigroups of nonlinear operators. Given a (Cp)-
semigroup 7'(¢) with generator 4 in a Banach space X, a general class of nonlinear
perturbations is introduced by means of a ls.c. functional ¢. Generation and char-
acterization of locally Lipschitzian semigroups are discussed in terms of semilinear
stability condition and subtangential condition. The local Lipschitz continuity and
growth condition for the semigroups are restricted by a lower semicontinuous functional
@ on a Banach space X under consideration. In the case in which both ¢ and the
domain D of the perturbing operator B are convex, it is shown that the semilinear
stability condition is replaced by the standard quasidissipativity condition, and that a
Hille-Yosida type theorem is obtained. Moreover, generation and characterization of
locally Lipschitzian groups are investigated.

1. Introduction

As widely recognized, the theory of semilinear evolution equations plays an
important role in the studies of semilinear problems arising in various fields.
Of special interest are generation theorems for the corresponding nonlinear
semigroups in terms of necessary and sufficient conditions. A start for the
semilinear Hille-Yosida theory in a general Banach space framework was made
by Oharu and Takahashi in [13], and their results were significantly generalized
in [12], where fundamental properties of the semilinear generators are also
investigated.

One of the features of our semilinear Hille-Yosida theory is that
generation theorems are not necessarily covered by well-known results con-
cerning nonlinear contraction semigroups. An important example in this sense
is a generalized Kortweg-deVries equation, which is treated in [2] and the
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global well-posedness is obtained using a suitable semilinear Hille-Yosida type
theorem.
The paper is concerned with semilinear equations of the form

(SE) u'(t) = (A + B)u(r); t>0.

Here A is the generator of a (Cp)-semigroup on a Banach space X and B is a
possibly nonlinear operator in X which is defined on a subset D of X. It is
assumed that B is continuous in a local sense with respect to a lower sem-
icontinuous functional ¢ on X such that D = D(¢p) = {ve X;¢p(v) < o}. The
functional ¢ also restricts the growth of mild solutions u(¢) to (SE) in the sense
that ¢(u(r)) satisfies an exponential growth condition. The nonlinear operator
B is not necessarily assumed to be quasidissipative by itself. In fact, there are
many cases where the nonlinear part B is not quasidissipative but the whole
semilinear operator 4 + B is quasidissipative. Furthermore, the level sets D, =
{ve D;p(v) <a}, « >0 are assumed to be closed. In this setting we discuss
generation and characterization of a nonlinear semigroup on D which provides
solutions to (SE) in a generalized sense.

The generation theorem is treated under a combination of a subtangential
condition, a growth condition and a semilinear stability condition. One of the
main points of our argument is to deal with the case in which D and ¢ are not
necessarily convex. In the convex case we show that the above-mentioned
conditions may be replaced by the well-known range condition, exact expo-
nential growth condition and quasidissipativity condition, and so a semilinear
Hille-Yosida theorem is obtained.

In general, the resulting semigroups are not differentiable with respect to ¢
and it is not expected to find their infinitesimal generators in a standard way.
In this paper a notion of semilinear infinitesimal generator is introduced,
although convexity of the functionals ¢ and domains D are essential to make it
possible to investigate such generators, as discussed in [12]. See also [3], [11]
and [13].

This paper is organized as follows: In Section 2 our main results are
stated along with remarks and comments. Section 3 deals with the so-called
local uniformity of the subtangential condition. In Section 4, this local
uniformity is applied to discuss the relationship between the semilinear stability
condition and quasidissipativity condition. Moreover, a uniqueness theorem
for the mild solution to (SE) is also given. Section 5 is devoted to the
construction of approximate solutions to (SP) through a precise discrete scheme
consistent with (SP). Our main result is established in Section 6 in the case in
which D is not necessarily convex. The corresponding results under convexity
assumptions are given in Section 7. Here a generation theorem for nonlinear
operator groups is also established.
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2. Main results

Let (X,]-|) be a Banach space, D a subset of X and ¢ : X — [0, o0] a Ls.c.
functional on X such that D < D(p) = {x € X;¢p(x) < w0}. We denote by X*
the dual space of X and, given x € X and f € X*, {x,f) stands for the value
of fat x. The duality mapping of X is the function F : X — 2%  defined by
Fx = {x* € X*;{x,x*> = |x|* = |x*|*}. Given a pair x and y in X, we define
the lower and upper semiinner products <{y,x»; {y,x», by the infimum and
supremum of the set {{y,f>;f € Fx}, respectively.

A nonlinear operator B: D < X — X is said to be locally quasidissipative
(respectively, strongly locally quasidissipative) on D(B) with respect to ¢ if for
each o > 0 there exist w, € R such that

<Bx_Byax_y>iSwoc|x_y|2 for x,y € D,,
(respectively,
(Bx—By,x—y); <w,lx—y]>  for x,yeD,).

For further properties of the duality mapping and those of quasidissipative
operators, see [10] or [14].

By a locally Lipschitzian semigroup on D with respect to ¢ is meant a one-
parameter family S = {S(¢);¢ > 0} of (possibly nonlinear) operators from D
into itself satisfying the following three conditions below:

(S1) For xe D and s,t >0, S(s5)S(t)x = S(t+s)x, S(0)x = x.

(S2) For xe D, S(-)xe C([0,0), X).

(S3) For each o >0 and each 7 > 0 there is w = w(o,7) € R such that

IS(0)x — S(t)y| < e”|x — | for x,y € D, and t€[0,71].
We consider the semilinear evolution problem
(SP) u'(t) = (A + B)u(t), t>0; u(0) =xeD.

The semilinear problem (SP) may, sometimes, not have strong solutions and the
variation of constants formula is employed to obtain solutions in a generalized
sense. It is then said that a function u(-) € C([0,00); X) is a mild solution to
(SP) if u(z) e D for t >0, Bu(-) € C([0,00); X) and the integral equation

t

u(t)=T()x+ J T(t — s)Bu(s)ds

0

is satisfied for each 7> 0.
In this paper we are concerned with the case in which (SP) is well-posed in

the sense of semigroups. We say that a semigroup S is associated with (SP), if
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it provides mild solutions to (SP) in the sense that for each x € D the function
u(-) = S(-)x is a mild solution to (SP).

In what follows, the operators 4 and B are assumed to satisfy the fol-
lowing conditions:

(A) 4:D(4) = X — X generates a (Cy)-semigroup T = {T(¢);z> 0} on
X such that |T(f)x| < e®|x| for xe X, t >0 and some weR.

(B) The level set D, is closed for each « >0 and B: Dc X — X is
continuous on each D,.

We now state our main result.

THEOREM 1. Let a,b >0 and suppose that (A) and (B) hold. Then the
following statements are equivalent:
(I)  There is a nonlinear semigroup S ={S(t);t >0} on D satisfying the
following properties:
(L1) S(t)x=T()x+ [y T(t—s)BS(s)x ds for t >0 and x € D.
(I.2) For >0 and 7> 0 there is w; = wi(a,7) € R such that

1S(t)x — S(1)y| < e ®|x —y|

for x,y€e D, and t€|0,1].
(L3) o(S()x) < e“(p(x) + bt) for xe D and t > 0.
(I)  The semilinear operator A + B satisfies the explicit subtangential condition
and semilinear stability condition stated below:
(I.1) For xe D and ¢ >0 there is (h,xy) € (0,¢] X D such that

(1/h)|T(h)x + hBx — x| <& and ¢(x;) < e™(p(x) + (b + &)h).
(IL2) For a> 0 there is wy, € R such that
tim(1 /)| 7 (5) (=) + h(B — By)| — = 31) < ol 1
n
for x,y € D,.
Moreover, if the subset D and the functional ¢ are assumed to be convex, then
(I), (I1) and the following statements are equivalent:
(IIT) The semilinear operator A+ B satisfies the following density condition,
quasidissipativity condition and range condition:

(III.1)  The domain D(A+ B) = D(A)N D is dense in D.
(II1.2)  For a > 0 there is w, € R such that

A+ B)x — (A +B)y,x — p); < ox — y|?

for each x,y € D(A)ND,.
(II1.3)  For a > 0 there is Ay = Ao() € (0,1/a) such that for each x € D,
and 7 € (0,20) there is x; € D(A)ND satisfying
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x)—MA+B)x; =x and ¢(x;) < (1 —al) " (p(x)+bA).

(IV) The semilinear operator A+ B satisfies the density condition, quasidissi-
pativity condition and implicit subtangential condition which permits errors
as stated below
(IV.1) D(A)ND is dense in D.

(IV.2) For o> 0 there is wy, € R such that

A+ B)x — (A + B)y,x — y> < w,|x — y|*

for x,y € D(A)N D,.

(IV.3) For a>0 and ¢>0 there exists Ay = Ao(a,&) such that for
A€ (0,4) and xe D, there exist x, € D(A)ND and z,e X
satisfying |z;| < e,

X; — A(A + B)x/; = x+ Az,
p(x;) < (1= 4a) " (p(x) + (b +8)2).

(V)  The semilinear operator A + B satisfies the quasidissipativity condition and
sequential implicit subtangential condition stated below:
(V.1) For each o> 0 there is w, € R such that

((A+ B)x — (A +B)y,x — y>; < lx — y|*

Jor x,y € D(A)N D,.

(V.2) For each xe€ D there exists a null sequence {h,} of positive
numbers and a sequence {x,} in D(A)ND such that
(V.2a) nlglgc(l/hn)‘xn — hy(A + B)x, — x| =0,

(v.2b) Tim (1/h,) o) - ()] < ap(x) + b,
(V.2¢) nlLH}: |x, — x| =0.

The equivalence between (I) and (III) may be regarded as a semilinear
version of Hille-Yosida theorem, while the implication from (II) to (I) gives a
generation theorem in the nonconvex case. The application of our result to
semilinear approximation theory will be discussed in the forthcoming paper [1].
It is important to establish Theorem 1 in general Banach spaces. In fact, in
many significant evolution equations such as quasilinear conservation laws and
convection reaction-diffusion systems are formulated in the nonreflexive Leb-
esgue space L'(Q). Also, a Kisynski space ¢(X) employed in a convergence
theorem is always nonreflexive even if X is a Hilbert space. Since the implicit
subtangential condition stated in (IV) permits errors, the implication from (IV)
to (I) is particularly useful for establishing the well-posedness of concrete
evolution problems. A similar result is obtained in [5] under much stronger
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assumptions, although our paper is affected by the work done in [5]. Also,
some of the results and methods devised in [4], [9], [11] and [16] are applied
here. It should be also noted that the representation A + B of a semilinear
operator must be restricted in such a way that BS(-)x € C([0, c0); X) for x in
D. In particular, 4 may be written (4 + wl) —wl. Hence, in what follows
we assume that 4 generates a (Cp)-contraction semigroup for the sake of
simplicity.

3. Local uniformity in the subtangential condition

In the proof of our main theorem it is straightforward to check the
implication from (I) to (I). In fact, by Lemma 3.1 in [12], lgH)l(l/hHS(h)x—

T(h)x —hBx| =0 for each xe D. This shows that for each &> 0 there is
he € (0,¢] such that (1/h)|S(h)x — T(h)x — hBx| < ¢ for he (0,h]. Moreover,
p(S(h)x) < e (p(x) + bh), and it follows that (IL.1) holds for x; = S(h)x. In
order to derive (IL.2), we observe that

(1/h)(IT (h)(x = y) + h(Bx — By)| — |x — y|)
< (1/h)(|T(h)x + hBx — S(h)x| + |T(h)y + hBy — S(h)y|)
+ (1/h)(|S(h)x = S(h)y| =[x = ¥]).
Passing to the inferior limit as & | 0 we get

tim(1/A)(|T () (x ) + h(Bx — B)| ~ ¥~ )

< lgTrf)l(l/h)(lS(h)x = S(h)yl = |x—=yl)

IA

(tm o1 )~

hl0
for x,y € D,, which shows that (II.2) is satisfied.

Therefore, the most of the proof must be devoted to show the implication
from (II) to (I). To this end, we necessitate making full use of the sub-
tangential condition (II.1) together with the continuity of B on a level set D,.
In this section we discuss the so-called local uniformity of the subtangential
condition (II.1).

THEOREM 3.1. Suppose that (11.1) hold. Let xe D, ¢ (0,1), f > p(x),
and let r =r(x,[,¢) be chosen such that

(3.1) |Bx — By| <e¢/4  and sup |T'(s)Bx — Bx| <¢/4
s€0,r]

for each y e DgN B(x,r),
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where B(x,r) ={y;|y — x| <r}. We then choose M >0 satisfying
(3.2) |By| <M for each y e DgN B(x,r),
and define

(3.3) h(x,p, &) = sup {h > 0;(M + 1)+ sup |T(s)x — x| <r and
s€(0,h]

e (p(x) + (b +2)h) < ﬂ}.
Let he|0,h(x,p,¢)) and y € D satisfy
(3.4) ly=T(h)x| <h(M+1)  and  ¢(p) < e™(p(x) + (b +&)h).
Then for each n >0 with h+n < h(x,p,¢) there is z € DgN\ B(x,r) satisfying

(3.5) (/mlz=Tmy—-nBy)<e and  ¢(z) <e”(p(y) + (b+e)n).

Proor. Let 1€ [0,h(x,f,¢)) and y € D satisfy (3.4). The definition (3.3)
means that 4(x, 5, &) specifies a maximal forward time interval which does not
exceed the modulus of continuity, r(x,f,¢), of B. We often use the fact that
h < r which follows from (3.3).

We then find the desired elements z by constructing a sequence {s,},-, in
[0,#] and the associated sequence {x,},., in D such that

1) s0=0, xo=y, 0< 5,1 <83, <7;
(i) lim s, =7, lim x, =z
n— o0 n— o0
|xn - T(Sn - Snfl)xnfl - (Sn - Snfl)an71| < (8/4)(Sn - Snfl);

|xp — T(sp +h)x| < (s, + h)(M + 1)

(ii

(iv

9(xn) < e (p(x0) + (b +&/4)sn);
Xy € DgN B(x,r)

)
)
(V) o(x) < e (1) + (b +2/4) (50— 50-1));
(vi)
)

(vii

for each n > 0. Here, (i) is considered for n > 1; estimates (iii) and (v) are not
formulated for n = 0.

The proof is given through an induction argument. First, x, satisfies (iv)
by the first inequality in (3.4). Estimate (vi) is trivial for n =0. From (3.3)
and (3.4) one obtains

ly—x|<h(M+1)+|T(h)x—x|<r and o(y) < B

Hence (iv), (vi) and (vii) are satisfied for » = 0. Estimates (iii) and (v) are not
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considered for n = 0. The first step of the induction argument is completed in
this sense.

Suppose now that {s,}, and {x,}Y, have been constructed in such a
way that (i) and (iii) through (vii) hold for 0 <n < N. We first note that, by
(vil), |Bxy| < M. Then by (II.1) one finds &€ (0,7) and xy ¢ € D such that
sy +¢&<ny and

(3.6) (1/8)|xn,e — T(E)xy — EBxy| < ¢/4,
p(xn,c) < e“(p(xn) + (b +e/4)E).

Let iy be the supremum of such numbers & hence iy > 0. We then choose
an appropriate number hNe(ﬁN/2,l_zN) and set sy.; =sy +hy. Also, we
define xy4; to be an element xy ¢ which is obtained for & = hy by (3.6). It
should be noted that sy;; and xy,; are constructed without properties (iii) and
(iv) with n = N (which do not make sense for n=0). It is seen from the
construction that (iii) and (v) hold for n = N 4+ 1. Also, applying (iii), we have

lxnvi1 — T(snvg1 — sv)xn| < |xnvg1 — T(svy1 — sv)xny — (sv1 — sw)Bxy|

+ (sv+41 — sv) | Bxn|

< (sn41 —sn)(M +1).

Condition (iv) with n = N then implies
lxns1 = T(sn1 +)x| < [xnv1 — T(sve1 — sw)xw|

+ T (sv+1 = sn)xy — Tsy+1 + h)x|

< (w41 = sv)(M + 1) + [xy — T(sy + h)x|

< (sy41 +h) (M +1),

which shows that (iv) is valid for n = N + 1. Moreover, the above estimate
implies

IXnvar = X[ < |xnver = T(swer + h)x| 4+ [T (sye1 + h)x — x|
< (Svp1+h) (M + 1) + T (sy1 + h)x — x|
and so

(3.7) xye1 = x| <+ (M+1)+ sup |T(s)x—x| <r
s€(0,n-+h]

Since (v) holds for n =N + 1, we have

(3.8) e p(xpr1) < e Prp(x,) + e (b + &/4) (Spr1 — Sn) for 0 <n < N.
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Summing up the inequalities in (3.8) with respect to n=0,..., N gives
N

(3.9) plxns1) < e€Vip(xo) + Y e (b 4 g/d) (s — 51)
k=0

< e (p(xg) + (b +¢&/4)(sny11 — o)),

which implies the desired estimate (vi) for n = N 4+ 1. Finally, combining (3.4)
and (vi) for n =N +1 we see that

p(xn1) < eI (p(x) + (b + &) (snr1 + ).

This, together with (3.3) implies that ¢(xy;1) < f and, since |xyi; — x| <r,
xn41 satisfies (vil) for n = N 4+ 1. Thus we may extend the sequences {s,,},y: 0
and {x,}, up to N + 1. By induction, it is concluded that we can construct
a sequence {s,},-, in [0,7] and {x,},., in D with the properties (i) and (iii)
through (vii).

It now remains to prove that (ii) holds for the sequences {s,},., and
{Xn},>o constructed above. To this goal, we need the following lemmas given
in [5].

Lemma 3.1, Let {s,},., be a nondecreasing sequence and {x,},., a
sequence in D. Then the following identity holds:

n—

(310) Xn — T(Sn - SO)XO - (Sk+1 - Sk)T(sn - Sk+l)Bxk
0

=
i

N
|
—_

T(sn — Ska1) X1 — T (St — k) Xk — (k1 — 8 ) Bxg).
0

=~
Il

LemMa 3.2, Let {su},-o be a nondecreasing sequence and {x,},., a
sequence in D satisfying |Bx,| < M and

[Xni1 = T (St = Sn)Xn — (Sps1 — $p) Bxn| < (Spg1 — Sn)e

forn>0. If's,1sasn— oo, then the sequence {x,},- is a Cauchy sequence
in X.

We now verify (ii) by contradiction. In view of the construction of the
sequence {s,},-, we see that 5, converges to some s <#. Hence, by Lemma
3.2 the sequence {x,},-, in Dy is convergent in X to some z and z € Dy by the
closedness of Dg.

Suppose then that s <#. Letde (0,7 —s). Then we may apply (IL.1) to
find an element zs € D such that

(3.11) (1/8)|T(8)z + 0Bz — z5| < ¢/5,
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and

(3.12) 0(z5) < e®(p(z) + (b +2/5)9).

Let N be an integer such that s —s, <J/2 forn > N. Let n > N and let
h, be the supremum of />0 such that s,+/4 <# and (3.6) holds for N
replaced by n, as it was considered earlier. In the construction of the
sequences {s,},-o and {x,},., we have chosen #, € (h./2,h,) and set s,,1 =
Sp+h, and x,.; =xy, with n=N and h=h, Hence 0<h, <2h, <
2(s—sy) <0<n—s, and so0 s,+0 <s,+n—s<n. By the maximality of
h,, this means that we must have either (1/6)|zs — T(6)x, —0Bx,| > (¢/4),
or ¢(z5) > e®(p(x,) + (b +¢/4)6) for infinitely many n > N. Passing here
to limit as n— oo we get either (1/5)|zs — T(0)z —6Bz| > ¢/4 or ¢(zs) >
e®(p(z) + (b +&/4)5), which contradicts either (3.12) or (3.11).

Thus it is concluded that lim s, =#. Finally, we demonstrate that the
element z satisfies (3.5). Using Temma 3.1, we obtain

xn — T(sp)y — suBy

= T(Sp — k1) X1 — T (k1 — Sk) Xk — (Ske1 — k) Bxy]

+ > (skrt = sK) T (s — sir1) [ Bk — Bx]
k=0

n—1
+ Z(Sk+1 — 5k )(T(sy — Sg+1)Bx — Bx) + 5,(Bx — By)
k=0
and so, by (iii)

(3.13) |x, — T(sn)y — suBy|

n—1 n—1
<) (Skp1 —sk)e/4+ Z(SkH — Sk )|Bxx — Bx|
k=0 k=0

+ > (skr1 = )| T(sy — sx1)Bx — Bx| + 5, Bx — By,
=0

In view of (3.3) and the fact that s, < # for all n, we see that s, — g1 <
hix,p,e) <r(x,f,¢) for 0<k<n—1and n>1. Hence combining (3.1) and
(3.13) implies

|xn — T(s0)y — SuBY| < sp&/4 + sue/d + sp6/4 + s,6/4
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Letting n — oo, we obtain

(I/m)|z—=T(n)y —nBy| <&

Also, it is seen from (vi) that

p(2) < e™(p(y) + (b +&/4)n).

Thus it is concluded that z is the desired element. The proof of Theorem 3.1
is now complete. O

Remark 3.1. If in particular # =0 and y = x in Theorem 3.1, then the
above assertion states that for every # >0 with 5 < h(x,f,¢) there is
z€ DgN B(x,r) such that

(I/mz—=Tm)x —uBx| <e,  ¢(z) <e“(p(x)+ (b+e)n).

This means that we can make full use of the subtangential condition (II.1)
coupled with the continuity of B on level sets D,, as we will see in the following
sections.

4. The semilinear stability condition

The explicit subtangential condition (II.1) is essentially weaker than the
range condition (IIL.3). Therefore it is natural to impose a stronger condition
than the standard quasidissipativity condition (IV.2) in order to compensate the
gap. Following the previous work [5], we here employ condition (I1.2), which
we call the semilinear stability condition. In order to compare these con-
ditions, we first show that if B itself is assumed to be locally quasidissipative
with respect to the ls.c. functional ¢, then the semilinear stability condition
(IL.2) follows from the subtangential condition (II.1).

THEOREM 4.1. Suppose that A is w4-dissipative and for each o >0 B is
g, y~quasidissipative on D,. Then (11.1) implies (I11.2) with w, = w4+ lim wg p.
Pla
Proor. Let o >0, x,yeD,, f>a and ¢>0. Then, as mentioned in
Remark 3.1, one finds /2 € (0,¢] and x;, y, € Dg such that

4.1) (1/M)|T(h)x + hBx — x;| < &, (1/h)|T(h)y +hBy — yp| < ¢
(4.2) |Bx — Bx;| < e, |By — Byy| < ¢
(4.3) p(xn) < e (p(x) + (b+o)h),  o(y) < e(p(r) + (b +e)h).

Hence we obtain
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(4.4) (1/W)(IT(h)(x = y) + h(Bx — By)| — |x — y])
< (1/m)(IT(h)x + hBx — xp| + [T (h)y + hBy — yul)
+ (1/h)(Ixn = yal =[x = y])
< 2e+ (1/h)(|xn = yul — |x = y[)-
Since B is quasidissipative on Dg, we have
xh — il < (1= heog g)~"|(xh — ) — h(Bxy, — Byy).

Writing x; — yi — h(Bx;, — Byy) as (xp — T(h)x — hBx) — (yy — T'(h)y — hBy) —
h(Bxy — Bx) + h(By, — By) + (T (h)x — T(h)y) and applying (4.1), (4.2), we
obtain

(4.5) or =yl < (1= haop ) e x — y]| + 4he.
Combining (4.4) and (4.5) gives
(4.6)  (1/R)(IT(h)(x = y) + h(Bx — By)| = |x — y[)
< 26+ (e“Mx — y| + dhe — (1 — hop g)|x — y|)/(h(1 — hog )
< 2+ (e — D)lx — y|/(h(1 — heop,p))
+4e/(1 = hop p) + op glx = y|/(1 = hog p).
Taking the inferior limit on both sides of (4.6) as 4 | 0 we have
1hiTHOl(1/h)(|T(h)(x =) +h(Bx — By)| =[x — y]) < 66+ (04 + wpp)|x = |-

Since ¢ and [ are arbitrary so far as ¢ > 0 and f > o, we obtain the desired
result. O

The next proposition states that the semilinear stability condition (IL.2)
implies the so-called strong quasidissipativity condition.

THEOREM 4.2. If x,y € DN D(A), we have
Hm(1/R)[|T(1)(x — ) + h(Bx = By)| = |x = ylllx = y|

={(A+B)x—(A+B)y,x —y),.
ProOF. Let x,ye D(A)ND and fix any x* € F(x —y). Then
(1/m)(IT (h)(x = y) + h(Bx = By)| — |x = y|)|x = y|
= (1/h) (KT (h)(x — ) + h(Bx — By),x") = {x = ,x7))
= L(/h)(T(h)x = x) + Bx — (1/h)(T(h)y — y) = By, x™)
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for h > 0. Hence

lhiTrg[(l/h)(lT(h)(x —¥) +h(Bx = By)| = |x = y])]|]x - y|

> {(A+ B)x— (4 + B)y,x*).
Since x* was arbitrary, we get

(4.7) lgTIg(l/h)[lT(h)(x —») + h(Bx = By)| — |x = y[l}x - )|

> ((A+ B)x — (A+ B)y,x — ¥,

In order to derive the desired identity, we choose any element x; e
F(T(h)(x —y)+ h(Bx— By)) for he(0,1]. Then there is an upper bound
M >0 such that

x| = T (h)(x — ») + h(Bx — By)| < M

for he (0,1]. Hence, by Alaoglu’s theorem, the generalized sequence {x;},-,
has a weak* cluster point x*. Since T'(h)(x —y) + h(Bx — By) — x — y in X as
h |0, it follows that for any ¢ > 0 there is /i, € (0,¢) such that

% = 2,5 = CT(h)(x — ) + hu(Bx — By), x> < .
This implies that
(4.8) x =y, x7) = Hm [T (h)(x —y) + h(Bx — By)* =[x - yI*.
On the other hand, for any ve X and & > 0, there is A(e) € (0,¢) such that
[<v, x* = xj,, 2| <& Hence
<o, x| < <0, x50 0 + & < Jol x| + &
< [0l | T(h(e)(x = ) + ) (Bx — By)] +2.
Letting ¢ | 0, we have
<o, x| < [of |x =yl
This shows that
< fx =1,
and so that x* € F(x —y) by (4.8). Since
(U/)(T(h)(x = ») + h(Bx — By)| — |x — y)| T(h) (x — ») + h(Bx — By)|
< L(/h)(T(h)x = x) + Bx — (1/h)(T (h)y — y) = By, x;>,

we see in the same way as in the derivation of (4.8) that
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(4.9) %(l/h)[lT(h)(x —¥) +h(Bx — By)| — |x — y|l[x — y|
<{(A+B)x—(A+ B)y,x*>
<A+ B)x—(A+ B)y,x — y),.

Combining (4.7) and (4.9) we obtain the desired relation. O

We now demonstrate that the semilinear stability condition (I1.2) guarantees the
uniqueness of mild solutions to the semilinear problem (SP).

THEOREM 4.3.  Suppose that the semilinear stability condition (I1.2) holds.
Let u(-) and v(-) be mild solutions with initial data u(0),v(0) in D,, respectively.
Then

ju(t) = v(0)] < e u(0) — v(0)]

Jor >0, B> e“(a+bt) and t€0,1].

Proor. Let 1€ [0,7]. In view of the definition of mild solutions to (SP)
we have

(1/h)(Ju(t + h) = o(t 4+ h)| = |u(2) = v(0)])

_ <1/h>]T<h><u<z> o) + j”h T(+ I — 5)(Bu(s) — Bo(s))ds

— (1/h)]u(z) = o(1)]
< (I/W)(IT(h)(u(t) = v(2)) + h(Bu(r) — Bu(1))| — [u(t) — v(1)])

t+h

+ (1/h) J |T(t+ h — s)Bu(s) — Bu(t)|ds

t

t+h
+(1/h) J \T(t + h — 5)Bo(s) — Bo(1)|ds

t
and so

(4.10) 1}%1(1//1)(\%“L h) = o(t+ h)| = [u(t) = v(1)])

< %UM)UT(WU(Z) — v(1)) + h(Bu(z) — Bo(1))| — |u(2) — v(1)])

t+h
+ %(1 /h) J, \T(t + h — 5)Bu(s) — Bu(t)|ds

+lm(1/h) J’M \T(t + h — 5)Bu(s) — Bo(1)|ds.

t
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Since ¢(u(s)) < e®“(p(u(0)) + bs) < f for se[0,7+h] and k>0 sufficiently
small, the continuity of B on Dy implies

(@.11) Tim(1/1) J:+h Tt + h — 5)Bu(s) — Bu(r)|ds = 0
and
(4.12) %fw (¢ 4+ h — ) Bu(s) — Bo(t)|ds = 0.

The relations (4.10), (4.11) and (4.12) together imply
D |u(t) — v(1)| < wplu(t) — v(1)],

or

(4.13) D (e™|u(t) — v(1)]) < 0.

From this we obtain the desired result

lu(2) — v(®)| < e”'|u(0) — v(0)]. O

5. Construction of the approximate solutions

In this section we discuss the construction of approximate solutions to the
problem (SP) in terms of method of discretization in time. First, we prepare a
result for constructing local approximate solutions.

THEOREM 5.1.  Suppose that condition (11.1) is satisfied. Let x € D, R > 0,
P > ¢(x) and let M > 0 be such that |By| < M for ye DgNB(x,R). Lett>0
and ¢ € (0,1) be chosen so that
o(M+1)+ sup |[T(t)x—x| <R and e“(p(x) + (b+eo)r) <P
tel0,7]

Then for each ¢ € (0,&)] there exist a sequence {t,}fi o and a sequence {x,}fi o in
DgN B(x,R) such that

(i) t0=0, xo=x, ty =1/

(11) O<li+1—liﬁﬁf0r0SiSN—l,'

(i) |x; — T(t)x] < t:(M + 1) and o(x;) < e (p(x) + (b+&)t;) for 0 <i < N;
(V) |xip1 = T(ti1 — t;)xi — (i1 — 1) Bxi| < (ti01 — ;)& and

9(xip1) < e(tiv1 — 1) (9(xi) + (b + &) (tip1 — ;) for 0 <i< N -1,

(v) x;eDgNB(x,R) for 0 <i<N;

(vi) For 0<i<N-—1 there is r;e(0,¢] such that |By — Bx;| <¢/4 for
y€B(x;,r;)NDpg, sup |T(t)Bx; — Bx;| <e/4 and (ti1 —t;)(M+1)+

te[0,r]
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sup | T(6)x; — xi| <.
1e(0, 11—

Proor. First, it is interesting to compare the above assertion with the
proof of Theorem 3.1. In Theorem 3.1 # and z in (3.5) were attained by
infinite sequences {s,},-; and {x,},., since uniformity in the subtangential
condition with respect to /& and y is required. Here 7 and x can be attained
in a finite number of steps {(s,»,x,-)}i]i o- Obviously, 7 is understood to be
small and so we obtain only local existence.

Set 1) =0 and xo=x. Suppose that {7}/, and {x;};_, have been
constructed in such a way that conditions (i) through (vi) are fulfilled. We
then define

(5.1) rp = sup{r € (0,¢]; |By — Bx,| < ¢/4 for y e DgN B(xy, 1),
and sup |T(s)Bx, — Bx,| < 8/4}.
s€0,r]
and
(5.2) 7, = sup{t >0;t(M + 1)+ sup |T(s)x, — x,| <r, and
s€e0,1]
(o) + b+ o)) < B

Referring to the proof of Theorem 3.1, we define A, = min(r — ¢,,%,) and
tyr1 = t, + h,. Applying Theorem 3.1 with h=0, n=h,, y=x=x, and
r=ry, one finds x,.1 € DgN B(x,,r,) satisfying

|xn1 — T (hy)xy — hyBx,| < ¢hy, and P(xpi1)e™™ (p(x,) + (b + &)hy).
By the induction hypothesis (i) through (vi), it is easily seen that
|Xnt1 — T(tn1)X| < By + t,(M + 1) + h, M
=t (M + 1)
and thereby

|Xp1 — x| <ty (M + 1)+ |T(ty1)x — x| <t(M + 1)+ sup |[T(s)x—x| <R
s€e0,1]

and
P(xni1) < e () + (b + &) (tys1 — 1))
< e (p(x) 4 (b + &) 1)
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Thus we have constructed sequences {z,-};j)‘ and {xi}f':ol satisfying (i) through
(vi). It now remains to show that t can be attained in some finite, say N,
steps. Suppose to the contrary that this is not the case. Then we would
obtain two infinite sequences {;},., in [0,7) and {x;};,., in DgNB(x,R).
Hence x; would converge to some z € DgN B(x,R). It should be noted here
that ¢(z) < f by (iii).

Let 7€ (0,¢/2) and k, > 1 be such that |T(s)Bz — Bz| < &/12 for s € [0, 7],

(5.3) |By — Bz| < ¢/6 for each y e DyN B(z,7)
and
(5.4) |Bxj — Bz| < ¢/12 and |xx — z| < min(e/12,7/16)

for each k >k, Then |T(s)Bx; — Bxy| <|T(s)Bz — Bz| +2|Bx; — Bz| < ¢/4
for each k >k, and se[0,7. Also, (5.4) implies that B(xx,7/2)N Dy <
B(z,7)N Dy for k > k.. Hence, for k >k, and y € DgN B(xy,7/2), we have

(5.5) |By — Bxy| < |By — Bz| + |Bxy — Bz]
<e/6+¢/12=¢/4

by (5.3) and (5.4). These estimates together show that r, > 7/2 for k > k,.
We next choose 0 =d(z, 7) so that |T'(s)z —z| < 7/8 for s€[0,0]. By the
choice of 7, there is 0 > 0 such that

(5.6) ") (p(x) + (b + &) ( +0)) < p.

In view of the construction of the sequence {#;},. ,, we see that #; converges to
some ¢ < 7. In order to derive the contradiction, we put dp =7+ J — ¢ > 0 and
define

(5.7) ¢ = min(F/4(M + 1),0,3).
First, it is seen that #, + & <t +0 and

e (p(x) + (b + 8)E) < e (p(x) + (b + ) (12 + &) < .
From (5.4), (5.6) and (5.7) we deduce

sup |T(s)xx — xi| < sup (|T(s)xk — T(s)z| + |T(s)z — 2| + [z — x])
s€(0,¢] s€(0,¢]

IA

sup (2|xx —z| + |T(s)z — z|)
se(0,¢]

< 27/16 + 7/8 = 7/4
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for k >k, and ¢(M + 1) < 7/4. These estimates together imply

EM + 1)+ sup |T(s)xk — xi| < F/2 < 1.
se[0,¢]
This means that 7, > ¢ for k > k,. We now recall that h; = min{z — #,7,}.
If there is ko > k, such that Nky = T — k> then hy, = 7 — ty,. This implies that
T=tg, + Mg, = ti+1- This is a contradiction. If #, < 7 —# for k > k,, then
hi =, > & for k > k,. This implies that 7 can be reached in a finite number
of steps. This is again a contradiction. It is then concluded that 7 is attained
by some ¢y, and the proof of Theorem 5.1 is completed. O

Using the finite sequences {f;}~, in [0,7] and {x;},Y, in DsN B(x,R)
obtained for x € D by Theorem 5.1, we may define an approximate solution
u, : [0,7] — X to (SP) by

(5.8)  u.(r) =
T(t— t;)x; + (t — ;) Bx; for te [t ti1), 0 <i<N-1
T(T — tN—l)xN—l + (‘L’ - thl)Bfol for t=r1.

Then for t€[t;,t;41) and 0 <i < N —1 we have
Xip1 — Ue(1) = [Xip1 — Tt — 11)Xi — (tiv1 — 1) Bxi]
+ [T (tis1 — ti)x; — T(¢t — t)x;) + (tiy1 — 1) Bx;
and hence
[Xis1 — ()] < (tir1 — ti)e + [T (ti1 — 0)Xi — Xi| + (tiy1 — 1)|Bxi]
<t — ) (M 4+ 1)+ |T(ti — )x; — x| <&

by conditions (ii), (iv), (v) and (vi). Also, noting that 7 = ¢y, we obtain

|xy — u.(7)| = |xy — T(7t — ty—1)xy-1 — (T — ty—1)Bxy_1]

<(t—ty_1)e<e

In the next section we demonstrate that for any null sequence {e,}
of positive numbers the sequence of the corresponding approximate solutions
{u,,} on the interval [0,7] converges uniformly to a mild solution of (SP)
satisfying the exponential growth condition with respect to ¢. To this end, one
necessitates preparing a method for estimating the difference between ap-
proximate solutions. The first step for this is to establish the following
theorem which may be regarded as a “coupled” subtangential condition.

In order to formulate the statement, we introduce four kinds of quantities
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which depend upon choices of base data x,Xxe D and error bounds ¢ ée
(0,1/3). Let a and b be constants given in condition (II) and fix any pair
x,X e D and any pair ¢ &€ (0,1/3). First, we choose f so that

(5.9) B > max{p(x), (%)}

Next, by the continuity of B on Dpg, one finds positive numbers r = r(x, f5,¢),
F=r(x,p,8), M(x,p,¢) and M(x,p,¢) such that

(5.10) |By—Bx| <e¢/4  and |By| < M(x,B,¢) for y e DyN B(x,r),
(5.10)" |By—Bx| <é/4 and  |By| < M(%,8,8)  for ye DN B(%,7).
We then choose M so that

M > max{M(x,p,¢e), M(X,p,é)}.
Since the function s+ T'(s)Bx is strongly continuous, we may assume that

(5.11) sup |T(s)Bx — Bx| < ¢/4.
s€0,r]

Also, in view of (5.9), there exists 4 > 0 such that

(5.12) h(M+1)+ sup |[T(s)x —x|<r and e™(p(x) + (b +e)h) < .
s€[0,h]

In view of this, we define /(x,f,¢) by

(5.13)  h(x,pB,e) = sup{h >0;(M + 1)+ sup |T(s)x — x| <r and
s€(0,h]

e(p(x) + (b +e)h) < l)’}.

We are now in a position to state the comparison theorem.

THEOREM 5.2.  Suppose that conditions (11.1) and (11.2) are satisfied. Let
X, X be any pair of base data in D and ¢,& a pair of error bounds in (0,1/3).
Let he|0,h(x,p,¢), hel0,h(x,p,¢) and y,p € D be chosen so that

(5.14) |y — T(h)x| < h(M+1), p(y) < e“h(g/)(x) + (b+&)h)
and
(5.14)' - T <h(M+1),  9() <e (@) + b+ 8)h).

Then for each 5 >0 and each >0 satisfying h+n < h(x, &) and h+n <
h(x,B,€) there exist ze DgN B(x,r) and 2 e DpN B(X,#) such that
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(5.15) |z =Ty —nBy| <2ne,  ¢(z) <e“(p(y) + (b +e)n),
(5.15)’ 2=TWm)y—nByl <2né,  ¢(2) <e(p(y) + (b+&)n),
and the elements z,Z satisfy
(5.16) |z — 2| < e®|y — J| + ne™" (e + & +0)
where @g = max{wg,0}.
Proor. First, we note that y € DgN B(x,r) and j e Dy B(X,7) since
ly=x|<|y—=TWx|+|Th)x—x|<h(M+1)+|T(h)x—x|<r

by (5.12) and the corresponding estimate for %, p, hand 7. Let n > 0 be such
that & +7 < h(x,B,¢) and h+n < h(%,B,8).

We then demonstrate that three sequences {s,},~q, {Xi},>0 and {X,},s
can be inductively constructed in such a way that

(1) S0:07 X0 =), )ACO:JA/a

(i) 0<sy_1 <8y and lim s, = #;

n— o0
(i) |xp — T(Sn — Sn—1)Xn—1 — (S — Su—1)Bxu—1| < (5 — Sn—1)8;
(111), | - T(Sn — Sn—1)Xn—-1 — (Sn - Sn—l)BX‘n—l| < (Sn - Sn—l)é;

)X
(V) p(xn) < e (p(x-1) + (b + ) (5w = $0-1));
(V)" @) < e (@(Z01) + (b +8) (50 — $-1));
(v) eS| T (s, — 5,21) (Xumt — Ract) + (Sn — $a—1) (Bxu—t — Bt
< X1 = Xn—t1] + (S = Sn-1)0;
(Vi) |xn = T(su)x0| < 50(M +1);
(Vi)' |%, — T(sn)%o0| < (M +1);
(Vi) p(x) < e (p(x) + (0 + 1) (b +e));
(vii) p(%a) < e (%) + (b + &) (s + h));
(viii)  x, € B(x,r) N Dg;
(viii)" X, € B(%,#) N Dg
hold for each n > 0. The estimates (iii) and (iii)’ insure the convergence of
the sequences {x,} and {x,} and the inequalities (iv) and (iv)’ lead us to the
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exponential growth condition for mild solutions. The estimates (v) will be
used to obtain (5.16).

First, we infer from (5.14) and (5.14)" that (vi) through (viii)’ are all valid
for n =0. Estimates (iii) through (v) are not formulated for n =0. In the
same way as in the proof of Theorem 3.1, we complete the first step of the
induction argument in this sense.

We then suppose that three finite sequences {s,}",, {x,}.\, and {%,},
have been constructed in such a way that (i), (iii) through (viii) and the
corresponding (iii)’, (iv)’ and (vi)’ through (viii)’ are satisfied.

Let Ay be the supremum of the positive numbers ¢ such that sy +¢& <y
and

(5.17) e~ |T(E) (xn — Xn) + E(Bxy — Biy)| < |xy — Xn| + &0.

We then fix any hy € (hy/2,hy) and put sy, =sy+hy. We note that
p(xy) < f and ¢(xy) < f by (vii) and (vii)’. Hence we may apply Theorem
3.1 to find xyy1, Xyi1 € D satisfying

(5.18) [xni1 — Tlsny1 — Sn)xn — (Sne1 — sv)Bxy| < (syi1 — swv)e,
(5.18)’ |Xn11 — T(sni1 — Sn)Xn — (1 — sv)Bxn| < (sn41 — sw)é
and

(5.19) p(xni1) < e (p(xy) + (b + &) (swa1 — sw)),

(5.19)' p(Xn41) < e (p(ky) + (b + &) (swi1 — sv)),

This shows that sy+1, xy+1 and Xy41 are constructed without properties (iii)
through (v), and that syi, xy41 and Xy, satisfy (iii) through (iv)" with n =
N + 1. Then, letting & = hy in (5.17) we see that (v) is satisfied for n = N + 1.
Our next aim is to show that the constructed sy;1, xy4+1 and Xy satisfy (vi)
through (viii), respectively (vi)’ through (viii)’ for n = N + 1. Applying (5.10)
and (5.18) we obtain

lxn et — T(snvi1)xol < (syp1—sw)M + |xy — T(sn)xo| + (sni1 — sw)e
<syi1(M+1)

and, in the same way |Xyi1 — T(sn+1)X0] < snv41(M +1). This proves that
xn41 and Xy, satisfy (vi) respectively (vi)’ for n = N + 1. Combining (vi) for
n=N+1 with (5.14), one obtains

(5.20) |xni1 — T(sny1 + h)x|
< [xni1 = T(swr1)xo| + [T (sv41)x0 — T(sn1 + h)x|

< (sy41 +h)(M+1)
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and, in the same way as above,
(5.21) [Xn1 — T(snir 4+ )X < (sy1 +h)(M +1).

Therefore, in view of the definitions of r(x,f,¢) and r(%,f,¢), we infer from
(5.20) and (5.21) that

|Xn+1 = x| < (sve1 +A) (M + 1) + [T (sn11 + h)x — x| < r(x, B,¢)

and |Xyi11 — X| < #(%,0,6). This shows that xy;; and Xy, satisfy (viii) re-
spectively (viii)’ for n =N+ 1. To show that xy;; and Xy.; satisfy (vii)
respectively (vii)’ for n = N + 1, we apply (5.19) and the induction hypothesis
to get

Plxns1) < = (@ () 4 (b4 &) (s + 7)) + (b + &) (w41 — 5w)
< eI (p(x) + (b + &) (sw 41 + )
and

p(Fnin) < e (p(R) 4 (b +8)(swar + ).
It now remains to show that lim s, =#. Suppose to the contrary that lim s,
n—aoo n—o0
=s<#. Then, by Lemma 3.2, there would exist some elements z, Ze D

such that lim x, =z and lim X, =2Z. Since Dy is closed, z, Ze Ds. More
n—aoo n— oo

precisely, it follows from the above relations that ¢(z) < f and ¢(2) <. On
the other hand, by the semilinear stability condition (II.2), there must exist
some ¢ € (0,7 —s) such that

(5.22) T (E)(z — 2) + E(Bz — BE)| < |z — 2] + (1/2)&9,

where 0 is the number employed in the estimate (v). Choose N > 1 so that
s—s, <&/2 for each n>N. Set &, =s—s,+¢& Then s,+&, =s+&<y
and h, < 2h, < 2(s —s,) < &,. Hence it would follow from (5.17) that

eiwﬁé"‘T(én)(xn - )AC,,) + én(an - chn” > |xn - )ACH| +&ud
for n > N. Now letting n — oo implies
e~ T(E)(z — 2) + E(Bz — BZ)| > |z — 2| 4 &0.

This contradicts (5.22) and hence lim s, =#. We now demonstrate that the
.. ~ . n—o0 . . . .

limits z and Z are the desired elements. First, using (iv) and recalling xo = y,
we have
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p(2) < e“(p(y) + (b +&)n)
and, in the same way,
9(2) <e”(p(3) + (b+é)n).
Next, by Lemma 3.1 we see that x, — T(s,)y — s,By can be rewritten as

n—1

D T(sw— sk asr — Tsker — 51)Xk — (Skv1 — 5k) B
=0

—

+ (Sg1 — Sk) T (8y — Sg1)Bxk — s, By.
0

~
i

Hence, applying this property we have

< AT (s = sean)| [Xin = Tsiqr — s0)Xk — (k1 — 56) B
=0
n—1
+ ) (Sk1 = S| T (5w — Sic41)Bxie = T(sw — si41)Bx|
=0

n—1

+ Z(Sk“ — 8i)| T (sn — Sk+1)Bx — Bx| + s,|Bx — By|

k=0
n—1 n—1
< (Skr1 — Sk )e + Z(Sk+1 — s )|Bxy — Bx]|
k=0 k=0
n—1
+ Z(Sk“ — 8i)| T (8w — k1) Bx — Bx| + s,| Bx — By|
k=0

< Spé + pe/4 + spe/d + spe/4.
In the same way as above we obtain the estimate
[0 — T(su)7 — B3| < (T6/4)s,.
Passing to the limit as » — oo in the above estimates, we have
|z=T()y—nBy| <2  and  |2—T(n)y—nBy| <2én.

The above-mentioned inequalities shows that (5.15) and (5.15)" hold.
Finally, we show that the elements z and Z satisfy (5.16). From (iii) and
(v) one can deduce
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Nt = St | < T (st — 51) (X — Fi) + (w1 — ) (Bxg — By)|
+ (k1 — sk)(e+8)
< 258179 (i — | + (5601 — 56)0) + (601 — 50 (& + )
for 0 <k <n, or
(5.23) e Xy — Xpq1| < e X — X + e PP (S — Sk )0
+ e P (s — si) (e + 8),

for 0 < k <n. Summing up these inequalities side by side, we obtain

n
e iy = Srt] < € xg = ol + 3 €PN (11 — 500
k=0

n
+ ) e (s — sk) (e +E).
k=0

Putting @y = max{wg,0}, we have

n
(524)  [xust — Funa| < e |y =51+ Y e (501 — 51)(e + 6 +0)
k=0

< ety — jl + s,p1€™ (e + £+ 6).

Passing to the limit as n — oo in (5.24) we conclude that (5.16) holds. The
proof of Theorem 5.2 is now complete. O

6. Global existence for mild solutions

In this section we discuss the construction of global mild solution to (SP).
To this end, we mainly employ Theorems 4.3 and 5.2. Theorem 4.3 is not
only the uniqueness theorem, but also gives the a priori estimates concerning
the uniform continuity of mild solutions to (SP). Hence we may apply a
standard continuation argument for local mild solutions. Also, Theorem 5.2
is understood to be a comparison theorem for subtangential conditions.
Applying this result, we construct the local mild solutions as uniform limit of
approximate solutions. We first establish the local existence theorem.

THEOREM 6.1. Suppose that (11.1) and (11.2) are satisfied. Let x € D,
R>0,¢6¢€(0,1/3) and f > ¢(x). Let M >0 and v > 0 be such that |By| < M

for ye DgNB(x,R), t(M + 1)+ sup |T(t)x — x| < R and e*(p(x) + (b + &)7)
tel0,1]
< B. Then there exists a unique mild solution u(-) to (SP) on [0, 1] satisfying the

initial condition u(0) = x and the growth condition ¢(u(t)) < e“(p(x) + bt).
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REMARK 6.1. It is noted that conditions (5.9), (5.10) and (5.12) are
satisfied for ¢, r, M(x,f,¢), h replaced respectively by ¢, R, M and t.

PROOF OF THEOREM 6.1.  Let {¢,},-; be any null sequence in (0,&). For
each ¢, we apply the argument employed in the proof of Theorem 5.1. By an
induction argument, we construct decreasing seruences {r"} y {nl :7 in
(0,¢,), a sequence {t”} % in [0,7] and a sequence {x”} % in Dﬂ ﬂB(x R), such
that (i) through (vi) listed in the proof of Theorem 5.1 are valid for ¢ = ¢, and
N = N,, and such that the partition P, = {7} of [0,7] is finer than the
previous partition P, | = {f/='}\' of [0,1].

First, one can construct {/ } X", {n}}X5 ", {#1}}Y, in [0,7] and {x}Y, for
e =¢, in the same way as in the proof of Theorem 5.1. Suppose that we
have constructed sequences {¢’}™ in [0,7] and {x/}",. We then construct
{ert 1 Vet and {xpH1} Ve by setting A2 = min{pp 2 — 1) and g =
(! + b provided that i<t <. It should be noted here that A" is
deﬁned by taking the minimum of r]”“ and | — t,’f“, instead of taking the
minimum of 77! and 7 — ¢! (as in Theorem 5.1).

In accordance with this we define a sequence of approximate solutions

u,(+) : [0,7] = X by

T(t—t)x!+ (¢t —t7)Bx! for teft], 1)
(6.1) u,(t) = and 0 <i< N, -1,
T(t—1ty _)xy |+ (t—tn,-1)Bxn,-1 for t=1

Then
(1) = x| < AT (0 = 6)x;" + (1 = 1) Bx; = T4y, — )X — (44, — ) Bx] |
+ (171 — 4)en
< |T(y = 0x7 = x| + (1 = OIBX]| + (6 = 1)én

< (G = )M+ D) +[T(5 = Ox] = xi[ <ri <&

for teft, ') by the properties (i), (iv) and (vi). In particular, d(u,(z),
Dg) < ¢, for t€]0,1].

We then demonstrate that the sequence u,(-) is uniformly convergent on
[0,7]. To this end, we apply Theorem 5.2 to estimate the difference between
two approximate solutions u,(-) and u,(-).

Let 1 <n<m, te[0,7) and choose 0 <i<N,—1 and 0 <j< N, —1
such that 7€ [, 2], ) N[t 11},), or let 1=r1.

First, we introduce a new subdivision {sl}f+1 of [0,7] by s, =1" for
0</<jand s;;; =t. We then apply Theorem 5.2 with 6 = ¢, to construct
the sequences {z/}/°) and {2}/ satisfying zy = Z) = x and (6.2) through (6.7)
below.
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Ifs; =1, weput x=x}, x=x", y=x, p =%, h:fz:O, n=s1—5 In

Theorem 5.2 and construct z;;; and Z;,; satisfying
(6.2) |zie1r — T(sip1 — s0)x3 — (81401 — 1) Bxg| < 2(s141 — 81)én,

201 = T(sia1 — s0)x7" = (s141 — 50)BX]"| < 25141 — 51)ém,
(6.3) 0(z101) < O (p(x) + (b + &) (5141 — 1)),

P(z11) < e (") + (b + ) (511 — )

and
(6.4) 201 = Zia] < eI — X 4 (51— 51) (80 + 26))-

If s;e(tf,8,,), we put x=x7, X=x/", y=1z, =X, h=185—1], h=0
and # = s;41 —s; in Theorem 5.2 and infer that z;;; and z;,; satisfy

(6.5) |zes1 = T(s141 = 81)21 — (S101 — 81)Bzi| < 2(s141 — $1)en
1Zie1 — T(sip1 — s0)x]" — (S0 — 1) Bx[| < 28151 — $1)éms
(6.6) p(z121) < e (p(z)) + (b + &) (5101 — 1))
p(2i1) < e“C D (o(x]") + (b + &m) (s11 — 51))
and
(6.7) |zie1 = 21| < €S0z — X (511 — 1) (80 + 26m)]-

It should be noted here that in (6.5), (6.6) and (6.7) the element z; is employed
instead of the element x}, and the time interval (¢, ;) may contain several
uncommon points s;’s. We now make some comments about the use of
Theorem 5.2 in the latter case. To apply this theorem in our situation, it must
be verified first that z; satisfies

(6.8) |zt — T(si — t)xp| < (s1 — ) (M + 1)

and
(6.9)  o¢(z) < ea(s’_’:)((p(x,’:) +(b+e)(si— 1)) for each s, € (¢,1,,),

which correspond to the estimates in (5.14). We now verify (6.8) and (6.9).
Suppose that ¢ = s;,, and hence that s;,,; is the first uncommon point in
(¢, t¢,1). Then (6.2) implies

|Zi11 = T (101 — )¢ = (s101 — 1) BX| < 2(s5y1 — 1 )én,
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and so
(6.10) |zt — Tlsun — (501 < (st — ()M +28,) < (501 — () (M + 1),

which implies that z;.; € DgN B(x},r). Also, by (6.3), we have

(6.11) 0(z1y01) < 070 (p(x) + (b + &) (54,01 — 1))
Next let sy € (¢, ,,) and [ = [y +2. Then by (6.5) with / =l + 1, condition
(5.10) and the fact that z;_; € DgN B(x},r}!), we have
|21 — T(s1 — 2)x¢
<l|zi—T(sy = s1-1)zim1 — (81 — i) Bzima | + | T (st — s1-1)zir — T(sp — t)xy,
+ (51 — s1-1)(|Bzi—1 — Bx}| + | Bx}|)
<281 —Si—1)én + |z — T(s—1 — )X + (81— s1-1) (M + &,/4),
where (5.10) implies that |Bz;_; — Bx}| <¢,/4, and so that |Bz;_; — Bx}|+

|Bx}| < M +¢,/4. Hence we infer that (6.8) holds for / =/ +2. Also, by
(6.6) with /=1y + 1, we have

0(z1) < e (p(z1 1) + (b4 &) (51— 51-1))
< ea(SI—SI—l)(ea(ryl—l—l,:‘)(gp(x]?) + (b4 ) (s1-1 — t,f)) +(b+e) (s — s1-1))
< e (p(x) + (b + ) (51 — 1))

This shows that (6.9) is satisfied for / =1/y+ 2. The case of the next un-
common s; can be treated in the same way. Finally, we see that (6.8) and (6.9)
are valid for all s in (¢, 1],,).

We now estimate the difference u,(-) — u,(-) on [0,7]. To this end, we
write

(6.12) |t (1) = (O] < [ (1) = Zp1| + 12010 = Zpa 4 [z701 = wa(1)],

and make an estimate of each term on the right-hand side of (6.12).
We begin by estimating the first term. We infer from the definition of
um (1), (6.2) or (6.5) with / = that

(6.13) 201 — T(t — ¢")x" — (t — ") Bx]"| <2(¢ — 1]")em.

We then make an estimate of the third term. If 7" is a common point for P,
and P, then (6.2) together with the definition of u,(r) implies |z, — u,(7)] <
2(t —t")en, for te [t o ) N[, 171)).

Next, suppose that 7" is not a common point for P, and P,. We es-

timate |z — T(sj41 — t7)X! — (8541 — ¢/')Bx]'| under the assumption that s; =
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m n o4n L __4n J+l1
e (1, 1y). Let s;, =¢ and {s}; ., be a sequence constructed above.

We have already constructed the elements x! and z; (I=jo+1,...,j+1),
which correspond to s;, and s; (/=jo+1,...,j+ 1), respectively. The ap-
plication of Lemma 3.1 then implies

|Zj+1 = T(sje1 — £7)x]" — (5541 — ') Bx]|
< |zZjpr1 = T(Sjpr1 = Sip)X7 — (Sjpe1 — 85) Bx]'|

J J
+ Z |Z[+1 - T(S]_H - S])Z] — (S1+1 — S])BZ[l + Z(S].H — S[)‘BZ[ — Bxl"|
I=jo+1 I=jo

J
+ > (5101 = 5)IT (8501 — s101) Bx] — Bx]|.

I=jo
This estimate together with conditions (6.2), (6.5), (5.10) and (5.11) gives
5501 = Tlspor — )] = (5501 — 1) B
J J
<2 (s — s +2) (si1—1)(6n/4)
I=jo I=jo
< 3811(Sj+l - 1;1)'
Thus, we obtain
(6.14) |Zj1 — un(0)] < 3(s541 — 17 )én

whether or not t/’” is a common point of P, and P,,.

We next make an estimate of the second term on the right-hand side of
(6.12). For this purpose we apply (6.2) and the property (iv) in Theorem 5.1
to get the estimate

(6.15) ‘2/ - x}"| < |f[ — T(S] — S1,1)x[n11 - (S] — 31,1)Bx,’f1|
A+ X" = Tsr = si-1)x"y — (51— s1-1) Bx" |
<3(s;— S1,1)8m.

Suppose that [¢, ¢}, ] = [si,s;]. In the same way as in the derivation of
(6.15), one obtains

(6.16) |z, = x| < [z, = Tlsy — ) — (s — 1) Bx|

iy = Tl = t)xg — (s — 4) Bxg| < 4t — 1)en:
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Applying (6.15) and (6.16) we have the following estimates.
If 5; is a common point ;! of P, and P, then we apply (6.4) to get

11 = Zal < POk — 2 21 = 2]+ 121 = 3|+ sre1 = 1)+ 26)]
< eI — 1 e + |z — £]

+ eI B (s — s 1)em A+ (st — 1) (En + 26)];
hence we obtain
(6.17) ez — 21|

< ez — 2| + e At — 1) )en + 3(S1 — Si—1)ém

(5101 = 1) (6 + 26).
If 5; is not a common point for P, and P, then we use (6.7) to obtain
|zee1 = 21| < PO |zp — 2| + 12 = X'+ (511 — 81 (6n + 26m))]

< ez — 2] 4 3(sp — $1-1)ém + (S141 — 51) (n + 26m)];
hence we get
(6.18) ™z — 21| < ez — 2]

+ e B — si-1)em + (S0 — 1) (en + 26m)]-

We then sum up the inequalities (6.17) and (6.18) with respect to /=1,..., .
We also use the inequality

|Zl - ZAl| < ewﬂ(sliso)(sl - SO)(en + 28}71)7

which follows from (6.4), and we obtain

J J
ez = 2] < Z e P (s — 81)(&n + 26m) + 3 Z e (s — 81-1)ém
1=0 =1

i
+4Ze*“’ﬁ’/"(t," — 1" | )én-
=1

This means that
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J
(6.19) Ziyl — Zip] < Zewﬂ(m '*5’)(s,+1 — ;) (en + 2&m)
=0

J
+3 Z €wﬁ(sj“_sl)(sl — S],l)é‘m
=1

i

43 e — i
I=1

< e“Mt(ey + 26y) + 3emt]" + de,t!],

and the desired estimate for the second term on the right-hand side is
obtained.

We now combine the estimates (6.13), (6.14) and (6.19) for the first, third
and the second term of the right-hand side of (6.12) to deduce that u,,(¢) — u,(¢)
is estimated as

(6.20) |t (1) — (1) < 20 (2 — ") + e (1 — 1}')
+ e [(ey + 2&m)t + 3em t}" +de,t] ]
< 516 (e + &m) < 5t (en + &m)

This means that the sequence {u,(-)} of the approximate solutions converges
uniformly on [0, 7] to some X-valued function u(-) on [0,7]. Since d(u,(t), Dg)
< ¢, as mentioned after the definition of u,(-), it follows that u(¢) € Dy for each
tel0,7].

The limit function u(-) so obtained on [0, 7] gives the desired mild solution
to (SP) on [0,7]. To verify this we define a step function
t! for teftf,t!,),0<i<N,—1

)

(6.21) (f) = {

N1 for t=1

and an X-valued function

(6.22) vu(t) = T(t)x + J; T(t — s)Buy(y,(s))ds  for t€]0,1].

In view of the definition of u,(-) and y,(), it is easily seen that the function
vy(+) is strongly continuous on [0, 7].

If et ¢,), then
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uy (1) — v,(1)

=T(t—t")x!+ (t—1t/)Bx! — T(t)x — Jo T(t — 5)B(uy(y,(s)))ds

i—1 L
=T(t—t")x"+ (t — t")Bx) — ZJ T(t - 5)Bx]' ds
k=071
t
- J T(t—s)Bx!"ds— T(t)x
= T =t )b = T = 5)xg = (g — 1) Bxy]

i—1
_ ZJ ‘ T(r— $)Bx) — T(t— 1!, Bx!')ds
k=l '

- Jt (T(t— s)Bx]' — Bx]")ds.

Applying the properties (iv) through (vi) of Theorem 5.1 possessed by the
double sequence {x*}, we have
i1
(1) — va(0)] <> (1 — gﬁZ 0o — then /44 (t— t1)e, /4
0

< 5/4te,.

=~
Il

It is also shown in the same way that the above estimate holds for ¢ = 1.
Therefore the function v,(-) converges uniformly on [0, 7] to u(-) and it follows
that u(-) is strongly continuous on [0,7]. On the other hand, we have

[tn (7)) = un ()] = |57 = T (2 = 17)x]" + (1 = 17) Bx]'|
S (="M +|T(t—1)x! — x| < &

fortef] 1), i=0,...N, — 1. This estimate is also valid for ¢ = 7 since y(t)

=ty - Therefore, it follows that

un(a()) = u()  as n— oo

and the convergence is uniform on [0,7]. Since u,(y,(¢)) and u() belong to Dy
for each 7€ (0,7], the continuity of B on Dy asserts that

Buy,(y,(2)) — Bu(?) as n — oo uniformly on [0,7].
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One can now pass to the limit as » — oo in (6.22) to conclude that

u(t)=T()x+ Jr T(t — s)Bu(s)ds
0

holds for 7€ [0,7]. Also, we have

9 (un(7,(0)) = p(x]) < e (p(x) + (b + en)t),

for te [t t!,), i=0,...,N,—1 and for t =7. Letting n — co in the above

estimate and applying the lower semicontinuity of ¢, we get
pu(?)) < lim (u,(7,(1) < e“(p(x) +br)  for 1€0,7].
n— o0
This concludes that the limit function u(-) gives a unique mild solution to (SP)
on [0,7]. The proof of Theorem 6.1 is now complete. O

We are now in a position to state our global existence theorem.

THEOREM 6.2. Suppose that a semilinear operator A+ B satisfies the
explicit subtangential condition (I1.1) and semilinear stability condition (I1.2).
Then for each x in D there exists a unique global mild solution u(-) = u(-;x) to
(SP) on [0, c0).

Proor. Let xeD. Then xe Dy for some >0 and Theorem 6.1
asserts via the standard continuation argument that one finds a nonextensible
mild solution u(-) = u(-,x) : [0,Tmax) — X satisfying the exponential growth
condition ¢(u(t)) < e“(p(x) + bt) for t€[0,tmax). Suppose that Tmay < 0.
Then, by Theorem 4.3, we would have

(6.23) lu(t + h) — u(t)] < e”'|u(h) — x|

for ff > e (ot + btmax), o = max{p(x),p(u(h))}, and h € (0, tmax — ). It now
follows from (6.23) that there would exist a limit lim u(¢) =w in D. Now the

T Tmax

application of Theorem 6.1 implies that there must exist a unique local mild
solution #(?) : [Tmax,ZT) — X to the (nonautonomous) semilinear problem

(SP)’ u' (1) = (A + B)u(t), t> Tmax; U(Tmax) = W

subject to the growth condition ¢(u(f)) < eU"™)(p(w) + b(t — Tymax)) for
! € [Tmax, T)-
We then define a new function (-) : [0,7) — X by

(1) = {u(z), t €0, Tmax)

u(t), t € [Tmax, T)-
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It is easily seen that the strongly continuous function #(-) on [0, 7] gives a
mild solution to (SP) satisfying the exponential growth condition with respect to
@. This contradicts the maximality of u(:), and so we must have Ty, = 0.
The proof is now complete. O

In view of Theorem 6.2, we may demonstrate that condition (II) implies the
assertion (I) in our main result, Theorem 1. In fact, given x € D, let u(-; x) be
the associated mild solution to (SP) on [0, o) given by Theorem 6.2. For any
fixed 1 > 0, we define an operator S(¢) from D into itself by S(¢)x = u(t;x),
x€D. Then the family S = {S(¢);z >0} of the solution operators to (SP)
forms a semigroup on D satisfying conditions (I.1) and (I.2). This shows that
(II) implies (I). Consequently, the proof of Theorem 1 in the nonconvex case
is now complete.

7. Semigroups in the convex case and groups of nonlinear operators

In this section we treat a characterization theorem for nonlinear semi-
groups, Theorem 1, in the convex case and also discuss generation and
characterization of groups of nonlinear operators. Under the convexity
assumptions for the domain D and the functional ¢ we consider conditions (I)
through (V) which are stated in Theorem 1.

THEOREM 7.1. If D and ¢ are convex, then conditions (I) through (V) are
equivalent to each other.

Proor. It is obvious that (IIT) implies (IV). To show that (IV) implies
(V), let xe D and {e&,} any null sequence of positive numbers. Given o > 0
with x € D,, we may take a null sequence {4,} of positive numbers, x, €
D(A)ND and z, with |z,| < ¢, under condition (IV.3), which states that for
o >0 and ¢ > 0 there exists A9 = Ag(, &) such that for 1€ (0,49) and x € D,
there exist x;, € D(A)ND and z; € X satisfying |z)| < ¢,

x;—AMA+B)x; =x+7z; and  o(x;) < (1 —2a) (p(x) + (b +¢€)A).
Accordingly, (1/2,)x, — A4(4 + B)x, — x| = |z),| <& — 0 as n — 0. Also,
(1/2)(9(xn) — 9(x)) < [ap(x) + (b + &4)]/ (1 = Zna),
and hence
T (1/4)(p() — p(x)) < ap(x) + b

Let ¢ > 0 and y € D(4) N D be such that [x — y| <¢&/2. Since y and {x,},., lie
in Dy for some f > a, we have
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| — x| < (1= Zueog) " [|Xn = Zu(A + B)Xy — y — 2n(A + B)y|] + |x — y|
< (1= 4up) " 5w = 2l A+ B)xw — x| + |x = 3] + 4l (4 + B)y]
+ 1y —xl,
and so n@|xn—x| <2y—x|<e.
Since ¢ was arbitrary, it follows that }}L_n; |x, — x| =0. Thus we conclude

that (IV) implies (V). The implication from (V) to (I) is verified by applying
known generation results given for instance in [12]. See also [6], [8], and [15].
Notice that no convexity assumptions are required for the proof. As for the
proof of the fact that (III) implies (I), we first recall that (I) and (II) are
equivalent, and so that the semilinear operator 4 + B is strongly quasidissi-
pative. One can then apply Theorem 2.4 in [11] and follow the proof
of Theorem 3.1 in [11] line by line to derive (III). This completes the
proof. O

We end this paper with a characterization theorem for nonlinear operator
groups. As described in [3], it is possible to formulate generation theorems for
nonlinear groups defined as below.

Let D be a convex subset of X and ¢ a ls.c. and convex functional on X
such that D = D(p). A one-parameter family G = {G(¢);1 € R} of operators
from D into itself is called a locally Lipschitzian group on D with respect to ¢,
if it satisfies the following three conditions:

(Gl) G(t+s)x=G()G(s)x, G(0)x =x for xe D and s,7€R.
(G2) For xe D, G(-)xe C(R; X).
(G3) For each o >0 and 7> 0 there is @ = w(x,7) € R such that

1G(1)x — G(1)y] < v — w)|

for x,ye D, and 1€ [—1,1].
Suppose now that 4+ B and —A4 — B generate locally Lipschitzian
semigroups S, and S_ in the sense of Theorem 1. Then we have

(7.1) (d*/d0)[S.(1)S_(t)x] = 0, for each +>0 and x e D.

This can be proved in the same way as in [3]. Note that the assumption
of local Lipschitz continuity for B and —B is not necessary to derive this
identity. Using (7.1), one defines a nonlinear group G on D by setting

[ S() for 1t >0,
Glo) = {S_(t) for 1 <O0.

In view of this, one applies Theorem 1 to establish the following theorem for
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the characterization of nonlinear operator groups of locally Lipschitz operators
with respect to the functional ¢. See also [3].

THEOREM 7.2. Let a,b >0, A a linear operator in X such that + A satisfy
condition (A) and let B be a nonlinear operator on D such that B satisfies
condition (B). Let ¢ be a ls.c. functional on X with D < D(p) and denote by
G4 ={G4(t)} the (Cy)-group generated by A. Then the following statements
are equivalent:

(I) There is a nonlinear group G = {G(t);te R} of locally Lipschitz
operators on D satisfying the properties given below:

(L1)  G(t)x = G4(t)x + [, Ga(t — 5)BG(s)x ds for teR and x € D.

(I.2) For each o> 0 and © >0 there is w; = wi(«,7) € R such that

|G(1)x — G(n)y] < e M ]x — |

for each x,y € D,.

(13) o(G(t)x) < el(p(x) + b|t|) for teR and x e D.

(IT)  The following subtangential condition and semilinear stability condition
are satisfied:

(I.1) For xe D and ¢ > 0 there exist (hy,xy,) € (0,¢] x D and (hy, xp,) €
[—&,0) x D such that

(1/h:)|Ga(hi)x + hiBx — xp,| <&, o(xn) < eMl(p(x) + (b + &)h;) i=1,2.
(IL2) For each o> 0 there is w, € R such that

ETH(I)(I/IhI)HGA(h)(x—y) +h(Bx — By)| — |x = y|] < @ufx -y

for each x,y € D,.

Moreover, if D and ¢ are both convex, then the above statements aree-
quivalent to the following:

(III)  The following denseness condition, quasidissipativity condition and
implicit subtangential condition are satisfied:

(II.1) D(A)ND is dense in D.

(II1.2) For o> 0 there is wy, € R such that

{(A+B)x— (A4 B)y,x —y); < w,|x —y|2
(A+B)x— (A+B)y,x —y>, > — wylx -y’

for x,y e D,ND(A).

(IML.3) To o0>0 and ¢> 0 there corresponds Ay = Ao(a,e) >0 and for
vE€ Dy and 1. € R with |A| < Ag(a) there exist vy € D(A)ND and z; € X such that
AR
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v, — AA+ B)v, =v+ Az,

w(v2) < (1= |20a) " (p(v) + (b + )| A]).

It should be noted here again that convexity conditions for the domain D
and functional ¢ are not required in the implication from (III) to (I). This
result can be extended to the case where several lower semicontinuous func-
tional ¢,---,¢, on X are used and those extensions are applicable to various
quasilinear equations. For typical applications to the generalized KdV
equation, see the forthcoming paper [2].
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