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ABSTRACT. In this work, we consider a class of nonlinear partial neutral functional
differential equations with a nondensely defined Hille-Yosida operator. We first prove
the local existence, uniqueness and regularity of solutions. Second, we study the global
existence and stability. In the end, we extend in the autonomous case, results of Hale
([21], [23]) concerning dissipativeness and existence of a global attractor to our situation.

1. Introduction

In [45], Wu and Xia considered a system of partial neutral functional
differential-difference equations, defined on the unit circle S', of the form

0 02

(1) 5[)6(-,1)*6136(-71*1)]:1(6?2

[x(.,0) —gx(.,t —7)] + f(x2), t>0,
where e S!', K a positive constant and 0 < g < 1. The space of initial
data was chosen to be %([—t,0], H!(S')). This system is a model for a
continuous circular array of resistively coupled transmission lines with mixed
initial boundary conditions. In ([22], [23]) Hale presented the basic theory of
existence and uniqueness, and properties of the solution operator, as well as
Hopf bifurcation and conditions for the stability and instability of periodic
orbits for a more general class of PNFDE on the unit circle S'. Let us briefly
restate the equations considered by Hale in ([22], [23]). Let E = H!(S!). If
¢ € 6p = 6([-7,0],E), we write it as ¢(0,¢), for 0 € [~7,0] and e S'. For
any function fe % *'(%([~1,0],R);R), k>1, we let fe@ (%, L2(S"))
be defined by f(9)(&) = f(o(.,&)), ¢€S'. Let 9e L(%(—,0],R);R) be
defined by
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{ Dl =P (0) — G(),
gw) = [° [dm(0)1y(0),

where 7 is of bounded variation and non-atomic at 0; that is, there exists a
continuous nondecreasing function ¢ : [0,7] — [0,400) such that 6(0) =0 and

0
| @] <owiul.  sep.dved(- LR

We define 2 € #(%g, E) as

(2) 2(0)(€) = D(p(..¢)),  eSh.
Hale considered in ([22], [23]), PNFDE of the form

0 il ,
(3) a@X;ZKa—éz@X[+f(Xf), ZZO,

with %r as a space of initial data. He considered the Laplace operator
2

Ay =K 5_62 with domain H?(S'), which is a generator of a Cy-semigroup.

Motivated by the works discussed by Xia and Wu [45], and Hale ([22],
[23]), we consider the following partial neutral functional differential equations

%[u(t, x) — Bu(t — r,x)]

= AO[u([7 X) - Bu<t - X)] + f(la X, l/l;(' ,X)), = 07 X € Q7
u(t,x) =0, 1>0, x€0Q,
M(G,X) :¢(9,X), 96[—?‘,0]7){'6.{2,

where Q = R” is a bounded open set with regular boundary 02, B e #(E) and
Aoy = 4 is the Laplace operator in the sense of distributions on 2, which is a
generator of a Cy-semigroup in E = H}(Q). If instead of H}(L2), one con-
siders the space of continuous functions %(€,R), the domain of the operator
Ay is

D(4p) = {ue 6(Q,R): Aue ¢(Q,R) and u=0 on 0Q}

and the density property is not satisfied in %(Q,R).

The idea of studying partial neutral functional differential equations with
nondensely defined Hille-Yosida operator begins with [3], for a class of partial
neutral functional differential-difference equations of the type

0

4) o [x(2) — Bx(t — 7)] = Ao[x(¢) — Bx(t — 7)] + Cx(¢t — 7) + L(x;), t>0.
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It was shown in particular that the solutions generate a locally Lipschitz
continuous integrated semigroup. In [5], we considered a class of nonlinear
partial neutral functional differential equations of the type

0
(5) pr [x(1) — Lx;] = Aox(t) + F(x;), t=0,

xo =¢ € Cg,

where Ay : D(4y) = E — E is a Hille-Yosida operator, L is a continuous linear
functional from %g into E such that Range(L) < D(A4p) and ||L|| < 1, and F is
a globally Lipshitz continuous mapping from % into E. Basic existence and
uniqueness results were given. In [4], we considered the following class of
nonlinear partial neutral functional differential equations

0
(6) ot
Xo=@¢€ CE.

[9x, — G(t,x,)] = Ao|Zx; — G(t,x,)] + F(t,x,), t=0,

In particular, we used a principle of linearized stability for strongly continuous
semigroups given by Desh and Schappacher [14] to study, in the nonlinear
autonomous case, the stability of solutions.

In this paper, we consider a class of nonlinear partial neutral functional
differential equations of the type

0
(7) E@u,:AOD@lM"‘F([,ThL ZZO)
Uy = ¢ € g,

where Ay : D(Ay) < E — E is a linear operator on a Banach space (E, |- |), €&
is the space of all continuous functions on [—7,0] with values in E endowed
with the uniform convergence topology, 2 is a bounded linear operator from
% into E defined by

@¢:¢(0)_P¢7 (ﬂe(gEa

F is an E-valued nonlinear continuous mapping on R, X ¢z and for every
t > 0, the function u, € € is defined by

(8) u (0) = u(t +0), 0el-1,0].

One can consider the following more general system

0
9) 591% = AoZu; + G(t,u;), t=0,

up = ¢ € g,
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with two distinct bounded linear operators 2, and Z,. But, for Problem (9)
to be well posed, we need the following assumption

(10) Range(2, — 91) < D(Ay).

This assumption permits to write Equation (9) as an equation (7), with
F=A40(2:— %)+ G and = &,. Thanks to the closed graph theorem, (10)
implies that

Ao(@z — @1) € g((gE, E)

Then, Equation (9) can be solved along the same line as Equation (7) and is,
indeed, covered by our study.

We assume, in this work, that Ay is a Hille-Yosida operator on E. This
means that A, satisfies the usual assumptions of the Hille-Yosida theorem
characterizing the generators of strongly continuous semigroups except the
density of D(A4y) in E, ie.,

—(H1) there exist My >0 and wo € R such that (wg,+o0) < p(4y) and

sup{(A — wo)"||(AI — Ao) "|| :neN, A > wo} < M.

There are many examples where Ay is not densely defined. One can refer
for this to [12] for more details.

The following assumption implies that Problem (7) is well posed and will
be assumed throughout this paper.

—(H2) There exists a continuous nondecreasing function 9 :[0,1] —
[0,400), d(0) =0 and a family of continuous linear operators W, : 6 — E,
g€ 0,7], such that

|Pp — Pepl <6(e)llell,  £€[0,7], 9 € G,
where the linear operator P, : 6x — E, is defined, for ¢ € [0,7], by

P.= W, oz,

T—¢&

o)) = o

(9—8), @€ G, 0e[-r1,0)].

The idea of the assumption (H2) is very simple, it means that the operator
P does not depend very strongly upon ¢(0). In particular, if P depends only
upon of ¢(0) for —7 < 0 < —e < 0, then P satisfies (H2). It is not difficult to
show that the operators 2 considered by Xia and Wu in [45] and Hale in ([22],
[23]), satisfy the assumption (H2). This condition (H2) was introduced in [4],
for the general problem (6).

In this paper, we first prove the local existence, uniqueness and regularity
of solutions under a local condition on the nonlinear part. Second, we study
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the global existence and stability of the trivial solution and we give some simple
examples. In the end, we extend in the autonomous case, results of Hale ([21],
[23]) concerning dissipativeness and existence of a global attractor, to our
situation. For global existence and stability, techniques employed in [27] were
generalized to our equations. The method used in this work is based on the
integrated semigroups theory.

2. Preliminaries
The following definitions are due to Arendt [6].

DeriniTION 2.1 [6]. Let E be a real Banach space. An integrated
semigroup (S(7)),- is a family of bounded linear operators S(#) on E, with the
following properties

(1) S(0)=0
(i1) for any y eE, t— S( ) y is strongly continuous with values in E;
(ii) = [, (S(t+r)— S(r))dr for t,s > 0.

DerINITION 2.2 [6]. An integrated semigroup (S(f)),, is called ex-
ponentially bounded, if there exist constants M >0 and we€ R such that
[|S(2)|| < Me®" for all t >0. Moreover, (S(f)),5, is called non-degenerate, if
S(t)x =0 for all >0 implies that x = 0.

If (S(7)),0 is an integrated semigroup, exponentially bounded, then the

Laplace transform R(A) := /ljﬂc e S(f)dt exists for A with Ze(1) > w, but

R(4) is injective if and only if (S(#)),5 is non-degenerate. R(4) satisfies the
following equation

R(2) = R(p) = (1 — 2)R(A)R(p),

and if R(1) is injective, there exists a unique operator A satisfying (w,+o0) <
p(A4) and

RA=0GI-A)7"  i>o,

where p(A) is the resolvent set of 4. The operator A is called the generator of
(S(1))1=0-

DEerNITION 2.3 [6].  An operator A is called a generator of an integrated
semigroup, if there exists w € R such that (w,+o0) < p(4), and there exists a
strongly continuous exponentially bounded family (S(#),¢ of bounded linear
operators such that S(0) =0 and (A — A4)~' = A [, " e #S(t)dt for all . > .

An important special case is when the integrated semigroup is locally
Lipschitz continuous (with respect to time).
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DerINITION 2.4 [6].  An integrated semigroup (S(7)),., is called locally
Lipschitz continuous, if for all # > 0 there exists a constant k(%) > 0 such that

IS(t) = S(s)|| < k(h)|t — s for all ¢,s€ [0, A].
In this case, we have the following result.

ProOPOSITION 2.5 [6]. Every locally Lipschitz continuous integrated semi-
group is exponentially bounded.

DErFINITION 2.6 [6]. We say that a linear operator A satisfies the Hille-
Yosida condition (HY) if there exist M > 0 and w € R such that (w,+ow0) <
p(A) and

(HY) sup{( — )"\l — A" :neN, 2 > w} < M.

The following theorem shows that the Hille-Yosida condition characterizes
generators of locally Lipschitz continuous integrated semigroups.

THEOREM 2.7 [34]. The following assertions are equivalent
(i) A is the generator of a locally Lipschitz continuous integrated semi-

group,
(i) A satisfies the condition (HY).

This result and the assumption (H1) show that the operator A4, in
Equation (7) is the generator of a locally Lipschitz continuous integrated
semigroup (So(f)),~, on E.

PROPOSITION 2.8 [6]. Let A be the generator of an integrated semigroup
(S(1));=0- Then, for all xe E and t >0
! t
J S(s)x dse D(A) and S(t)x=A4 J S(8)x ds + tx,
0 0
and the part Ay of A in Y := D(A) is the generator of a Co-semigroup (T(t)),,
on Y and we have, for xe Y, t >0, S(t)x = fé T(s)x ds.

We now turn to our problem and remark that Proposition 2.8 implies that
Sg(t) : D(Ag) — D(Ag) is a Cp-semigroup, where (Sy(?)),., is the integrated
semigroup generated by the operator 4y on E. To prove our results on global
existence, stability and existence of global attractor we will need to assume that

—(H3) there exist constants Ky > 1 and wq > 0, such that

[S5(2)y| < Koe™ '] y| for all >0 and y e D(Ap),

and
—(H4) the operator Z is stable, i.e., there exist positive constants o,/
such that the solution of the homogeneous functional equation
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{i@u;zzo, tZ(l
Uo = ¢,

with ¢ € € and Z¢ = 0, satisfies the inequality

el < Be™[| o]l

where u,, t >0, is defined by (8).

We remark that the operator Z¢ = ¢(0) — gp(—7) considered by Xia and
Wu in [45] is stable if 0 < ¢ < 1 and it is not stable if ¢ > 1.

Consider the following Cauchy problem, for ¢ € 4,

u(t) = (1) if 1e[-1,0].

This system is a strong version of an integrated once given by

(12) { Yu, = S()Zp, t=0,
Uo = 9,
where
(13) peY ={peb: Zpec DAy}

Consider the general nonhomogeneous equation
(14) v, = h(t), >0,
with the initial condition

vy =@ € bg.
We have the following preliminary result.

LEmMmA 2.9. Assume that the conditions (H2) and (H4) are satisfied.
Then, there are positive constants a,b, c,d such that, for any ¢ € (0, 1] sufficiently
small and any continuous function h from [0,+00) into E, the solution v of the
equation (14) satisfies the inequality

(15) o] < e 0 [b||vo| fe sup [h(s)

0<s<e

} +d sup |h(s)], r>e.
max(e, i—7) <s<t
Proor. The idea of the proof comes from [11], in which there is the same
estimate (15) but in finite dimensional case. First, it is clear that there exist
positive constants K, K, and K3 such that

(16) ol < [K1|vo|| + K, sup |h(s)|} et t>0.

0<s<t
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To prove (15) we will make a transformation of variables in Equation (14) such
that A(e) = 0.
Consider the mapping A : E — % be defined, for ¢ € E and 0 € [—7,0] by

0, —7<60 < —eg

(17) A(c)(0) = <1+§)c7 e < 0<0.

Since

T—¢
-1 <

0—e< —¢ for all 6 € [—1,0],

(17) implies, for all ¢ e E and 6 € [—7,0], that
7o(A(c))(0) = 0,
where 7, is given by (H2). Hence
P.(4(c)) =0 for all ce E.

Consequently

IP(A()] < 6(e)lc].
We can choose ¢ € (0, 7] sufficiently small such that

o(e) < 1.

We conclude that the linear operator %(A) : E — E defined by

2(4)(c) = 2(4(c)),

is invertible.
We make now the following transformation of variables in Equation (14)

z(t) = v(t) — y(¢) for t>¢e—1.
where y:[e—1,+00) — E is defined by

y(t) = {A([D@(A)]l(h(g)))(l— g), e—1<1<¢
[2(A)]7 (h(2)), > e

Thus, we can rewrite Equation (14) as

(18) 9D(z;) = h*(2), t>e,

where
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h*(t) = h(t) — 2(), t>e.
Note that
Yil0) = e+ 0) = A(Z ()] (W(e))(©0)  for O [~,0].
This gives

Hence

We can now start the proof of the estimate (15).
It is immediate that

™ ()] < [h(2)] + K4l yell, t>¢,
and
|yl = sup |p(s)], t>e.
—Tt<s<t

Let seft—rt,1. Ift—1>¢

and if r—7<¢

Then, we can assert that

(19) Iyl <Ks  sup  |h(s)], 1=¢
max(e, (—7) <s<t

and

(20) WWl<Ks s i), r=e

max(e, i—7) <s<t

Our next objective is to estimate ||z||, for 7> e.
By the superposition principle of solutions of linear systems, we have

z(t) = ' (¢) + 22(0), t>e—1,

where
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and

{ (:f)oz (0, =

Since & is stable, it follows that

21 < Be||z]|.
As z, = v, — y,, we obtain

[1zell < llvell + Kslh(e)].
Applying (16), we conclude that

(21) l[vel| < Ksllvol| + Ks sup [A(s)]-

0<s<e
This gives
|2} < e =9 <K7||Uo||+(K5+K8) sup |h(s)|>.
0<s<e

We also have

Iz7[l < Ko sup [h*(s)],

e<s<t

(see, for example, Theorem 2.1 in [17] which is easy to extend to infinite
dimensional case). Then, (20) implies

22|l < KsKy sup ( sup |h(a)> < Kj sup |h(s)|.
e<s<t \ max(e,s—17)<0o<s max(e, t—7) <s<t
Consequently, for t > ¢
ol = e (Bl + A(Ks + K sup )] )+ K sup__Jh(o)L
0<s<e max(e, i—7) <s<t
Finally, using (19) we obtain

o < e <,6’K7||vo|| T B(Ks + Ks) sup |h<s>|)

0<s<e

+ (Ks + Kl()) sup |/’l(S)‘

max(e, 1—7) <s <t

As the interval (0, 7] is bounded, the constants K; can be chosen independent of
e. This completes the proof. O
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The estimate (15) is very interesting because, if |A(s)| is bounded on
[0,+00), then the ultimate bound on v, as t — +o0 is determined by the bound
on |A(s)| for s in the delay interval [t —1,¢] as ¢ — 4o0.

ProprosITION 2.10 [4]. Assume that the conditions (H1) and (H2)
are satisfied. Then, for given @€Y there exists a unique function ue
€([—7,4+0),E) which solves Equation (12) and, the family of operators
(T(1),¢, defined on Y by T(t)p =u(.,p) is a Co-semigroup on Y.

The estimate (15) for h(t) = S}(1)Z¢ and ¢ — 0, and the condition (H3)
prove the following result.

PROPOSITION 2.11.  Assume that the conditions (H1), (H2), (H3) and (H4)
are satisfied. Then, there exist constants K > 1 and w > 0 such that

(22) IT(0)pl < Ke || for t>0 and peY.

As in [4], we will define a fundamental integral solution Z(¢), associated to
Equation (7). Consider, for ¢ € E given, the following equation

(23) {@zl—So(t)c if t>0,

(t)=0 if 1e[-1,0].

PROPOSITION 2.12.  Assume that the conditions (H1) and (H2) are sat-
isfied. Then, Problem (23) has a unique solution z :=z(.)c which is a con-
tinuous mapping from [—t,+00) into E.  Moreover, the operator Z(t) : E — 6g
defined by

N

Z(t)e = z,(.)c

satisfies the following properties
(i) there exist « >0 and BeR such that |Z(1)| < we®, for t > 0;
(i) Z@)(E)<7Y, for t =0;
(iii) for all H >0 there exists a constant k(H) > 0 such that

|Z(t)e — Z(s)c|| < k(H)|t —s||c|  for t,s€[0,H]| and c€ E;

(iv) for any continuous function f :[0,+o00) — E, the functions
t t
t— J Z(t—s)f(s)ds and t— J So(t —s)f(s)ds
0 0
are continuously differentiable for t > 0 and satisfy
d (! L
%JO Z(t—35)f(s)ds = 111Lr(1)1+ %Jo T(t—s)Z(h)f(s)ds

and
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S

(%J[Z(t—s) f(s)ds) = lim lJ[S(;(t—s)So(h)f (s)ds,

0 =0 h )

t
= %L So(t —s) f(s)ds.

Proor. The proof of the existence, uniqueness and continuity of the
solutions is easy and it is omitted.

The property (i) comes from (16) with h(z) = Sy(¢)c and vy = 0.

If ceE, then Sy(t)c € D(A4y), for t>0. This implies that Z(f)ce Y.
Then (ii) is true.

Since So(.) is locally Lipschitz continuous, then (iii) holds.

We will prove now the assertion (iv). It is clear that the functions

[ JIZ(l—s)f(s)ds and [ JtSo(l—s)f(s)ds
0 0

are continuously differentiable (see for example the proof of Theorem 2.5 in
[34]). We know by the definition of an integrated semigroup that

Sy ())So(h)e = So(t + h)e — So(t)e,

for t,h >0 and ce E. On the other hand, we have

diJISo(t—s)f(s)ds ~ fim (%Jt(so(wrh 5= Solt — ) (s)ds

{ 0 h—0+ 0

1 st s)f(S)dS>-

t

(s — 1), we obtain

NI

If we put, in the second integral of the right-hand side, r =

1 t+h 1
EJ So(t+h—s)f(s)ds = J So(A(1 —r))f(t+ hr)dr.
‘ 0

Since Sy(0) =0, we obtain
) 1 t+h
;,ll,r& ZJ, So(t+h—s)f(s)ds=0.

Hence

thSo(t —8)f(s)ds = lim IJt(So(tJrh —8) — So(t —))f(s)ds.

dt 0 h—0+ h 0

It follows that, for >0
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d Jt Solt — 5)f (s)ds = lim 1Jl S)(t — )So(h) £ (s)ds.
dt ), n—0+ h J
On the other hand, by the definition of 7(¢) and Z(¢)
T()Z(h)c = Z(t+ h)c — Z(1)c.

Then, we can use the same argument as above to prove that

d JIZ(t—s) F(s)ds = Tim lJlT(Z—S)Z(/Z) £(s)ds.

EO =0+ h ]

Consequently

9(:;Jt2(t—s)f(s)ds> = lim }llJtQ(T(t —5)Z(h)f(s))ds.

0 h=0%t 11 Jo
Since
D(T(5)Z(h)e) = Sy(s)2(Z(R)e) = Sy(s)Salh)e,

it follows that

This proves (iv). ]

Let T > 0 and ¢ € ¥ such that Z¢p € D(4y). We consider the following
definitions.

DeFiNiTION 2.13. We say that a function ue % ([—7,T],E) is a mild
solution of Equation (7) if

t
{ Du, = Sé(t)@q)+%] So(t —s)F(s,u)ds, 0<t<T,
0

Uy = @.

Note that the property (iv) of Proposition 2.12 says that the function
tn—>f0t So(t — s)F(s,uy)ds is continuously differentiable. Then, it gives a sense
to Definition 2.13.

DeriNiTION 2.14. We say that a function ue @([—7,T],E) is a strict
solution of Equation (7) if
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(1) tﬁ@ule(gl([ov T]aE)ﬂ(g([07 T]7D(A0)):

(i) ¢+~ u, satisfies Equation (7) on [0, T,

(i) wuo = .

A sufficient condition for the mild solution of Equation (7) to be a strict
solution is given by the following lemma.

LemmAa 2.15. If u is a mild solution of Equation (7) such that t—
Fu; € 6€'([0,T),E), then u is a strict solution.

Proor. We know (see [34]) that if u is a mild solution of Equation (7)
then

Jl So(t — s)F(s,us)ds € D(Ayp)
0

and

t t

So(t — s)F(s,us)ds + J F(s,uy)ds.

(24) G, = S(1)Z9 + Ao J .

0

On the other hand, since Z¢ € D(4,), we have
So(t)Z¢ € D(Ao) and  Si(0)Zp = Do+ AySo(1)Zg.

So, we deduce that

So(H)Z¢ + J(: So(t — $)F(s,ug)ds € D(Ay)

and

t t

So(t— s)F (s, us)ds> + J F (s, uy)ds.

Du, = Do + Ay (Sg(t)@(p + J
0

0

It follows that

t
J Yuyg ds € D(Ay)
0
and

t t
(25) Du, = D9 + Ay (J Du ds) + J F(s,uy)ds.
0 0

If we assume that 1 — Zu, € 4'([0, T], E), then we have the existence of the
limit
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) 1 t+h d
/111115 Ay <ZJ Dug ds) = E@u, — F(t,uy).

t

Since the operator A, is closed, it follows that

) 1 t+h
/1113(1) (E Jt Duy ds) = Yu, € D(Ay)
and

d
A()@u, == E@”[ - }7(1’7 u[).

Consequently, u is a strict solution of Equation (7).

ProrosITION  2.16. If there exists a mild solution

265

a

u:=u(.,p) e

€([—7,T),E) of Equation (7), then the function te[0,T| — u, € €g satisfies

(26) u = T(t)go+%JtZ(t—s)F(s7 uy)ds,
0

=T(t)p+ lim lJZT(Z—S)ZUl)F(S, ug)ds.

h—0+ h 0

Conversely, if there exists a function ve €([0,T], 6r) such that

t

(27) v(t) =T()p+ %J Z(t—s)F(s,0(s))ds, tel0,T],

0

then v(t) = u,, t€l0,T], where

(u00), i 1e(0.7),
”(’)‘{coo), i te o0,

and u(t) is a mild solution of Equation (7).

(28)

Proor. In the beginning we have, from Proposition 2.12, the following

observation. If f:[0,7] — E is a continuous function, then

W (5) ::J Z(t - 5)f(s)ds

0

is continuously differentiable and W’(0) =0. Set

_(W0)0), if =0,
w(i) {o, if 1e[—1,0].

Then w(f) is continuously differentiable, and it is given by
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1

[ 2= 900 = [ @ r6)0as

0

(W (0)(0) = (J 20 s)f(s)ds) (0) = jt<Z<r ~)7($))(0)ds,

0
= JI zZ(t4 6 —s) f(s)ds.

Since z(s) =0 for se[—7,0], we have

t+0

Jz (40— 5) f(s)ds = J (40— 5) [ (s)ds.

0 0

Thus it follows that (W (#))(0) = w(t+ 0), that is W(¢) =w,. Furthermore,
since

i (V4 h) = W(0) = W)

in the sense of supremum norm, it follows that

(W'(1))(0) = lim (1<W<z hy - W(z))) (0),

h—0+ \ h

= lim %(W(t+h)(0) - W(0)(0)),

h=0+
= hlir(r)1+ %(W(l—l— h+0)—w(t+0)=w(t+0),

that is, W'(¢) = (w’),.

We first prove the latter half of the proposition. Suppose that v(z) is a
solution of Equation (27). The function T'(¢)¢ is given by T(f)p = x,, where
X € 6([—1,+ ), E) is the solution of Z(x;) = S;(¢)Z¢ such that xo = ¢. From
the above observation, we set

w(t) = J z(t — $)F (s, v(s))ds.

0
Then it follows that

o(t) = x+ (W), = (x+ W),

Thus, if we set u(¢) = x(¢) + w'(¢), then v(f) = u, and
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u=T(t)p+ %L Z(t— s)F(s,v(s))ds,

=T(t)p+ %Lj Z(t — 5)F (s, uy)ds.
Since
2(T(0)p) = So(1)Zg,
and since
d (! d ('
2 (E Jo Z(t—s)F (s, us)ds) = EJO So(t — $)F (s, uy)ds,

it follows that u(¢) is a mild solution.
If u(r) is a mild solution, then from the definition of 7'(#) we have that

d t
D(uy) = So(1)Zop + EJ So(t — $)F(s,uy)ds,
0
12

— I(T(1)p) + gz(%J

Z(t—s)F(s, us)ds),
0

t
=9 <T(t)go + ij Z(t—s)F (s, us)ds> ,
dt ),
=Z(x,+ W'),),
where x(7) is the solution of Z(x,) = Sj(1)Zp, and w(t) is defined as
t
w(t) = J z(t — $)F (s, uy)ds.
0
Hence Z((u — (x+w’)),) = 0; consequently u — (x+w') =0. Therefore,
u = x,+ (w'),
d t
=T(t)p + —J Z(t — s)F (s, uy)ds.
dr ),

This completes the proof of Proposition 2.16. O

3. Local existence and regularity of solutions

In this section, we will prove the local existence, uniqueness and regularity
of solutions of Equation (7), under the assumptions (H1), (H2) and the
following additional condition.
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—(H5) F:[0,+0) x ¥ — E is continuous and locally Lipschitz con-
tinuous with respect to ¢, i.e., for each r > 0 there exists a constant Cy(r) > 0
such that if 7 >0, ¢,,¢0, € €z and ||¢;]|, |l¢,|| < r then

|F(t,01) — F(t,0,)] < Co(r)lloy — o2l

THEOREM 3.1. Suppose that the assumptions (H1), (H2) and (H5) are
satisfied and ¢ € € such that 99 € D(Ay). Then, there exists a maximal
interval of existence [—t,t,), t, >0, and a unique mild solution u(.,¢) of

Equation (7), defined on [—7,t,) and either t, = +oo0 or

limsup [Jus(., p)[| = +o0.

—th

Moreover, u,(.,p) is a continuous function of ¢, in the sense that if ¢ € €g,

¢ e D(Ay) and t €0,1t,), then there exist positive constants L and o. such that,

for e G, DY € D(Ao) and o — || < o, we have te|0,ty) and

llus(-,0) —us(, )l < Lllp =yl for all s €[0,1].

Proor. Note that (H5) implies that, for each r > 0 there exists Cy(r) > 0
such that

|F(t,0)| < rCo(r) + |F(2,0)] for t >0, pe% and |p|| <r.

Let 77 > 0. Suppose that ¢ € 6z, Y9 € D(Ay), r:=|lp|| +1 and

c1 :=rCy(r)+ sup |F(,0)].
[G[O‘Tl]

Consider the following set

0<s<Ty

Q, = {ve%([o, T\, %) sup |lo(s) — ol < 1},
where %([0, 7], é¢) is endowed with the uniform convergence topology. It is
clear that Q, is a closed set of %([0,7],%r). Consider the mapping
H:Q,— %0, T1], %),
defined, for ve Q, and t€ [0, T1], by

H)(t) =T (t)p+ %L[ Z(t — $)F(s,v(s))ds,

=T(t)p+ hlirél+ %L T(t—s)Z(h)F(s,v(s))ds.

We will show that
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H(Q,) € Q,.

On can remark, as in the proof of Proposition 2.2 of [34], that
. 1
limsup — || Z(h)|| < 4o0.
h—0+ h
Then we can set

(29) k :=lim sup % |1Z(R)].

h—0+

We have for suitable constants M and
t
w *(L)Yl
IH(v)(1) —oll <[ T()p — ol + Me ’Joe " IZIIE (s, vls))lds.

We can assume here without loss of generality that & > 0. Thus we obtain the
estimate

V@) — o]l < |T(0)p— ol] + M j [P (s, o(5))Ids.

Since ||v(s) — ¢|| < 1, for s€ [0, 7] and r = ||¢|| + 1, we obtain that |[v(s)|| < r,
for s€[0,71]. Then

[F(s,v(s)) < Go(r)lle(s)]| +[F(s,0)] < e1.
Consider 77 > 0 sufficiently small for

sup {||T(s)p — || + Mke“ c;s} < 1.

0<s<T
Then, we deduce, for 7€ [0, T]
IH@)(0) — oll < 1T — o]l + Mke® eyt < 1.
Hence
H(Q,) < Q,.
On the other hand, let w,v e Q, and t€[0,77]. We have
I1H (u)(2) = H(0)(1)|| < Mke®" Co(r) T1llu = vll 40,7, )
Note that r > 1. Then, by definition of ¢;, Cy(r) < ¢;. Consequently

Mke®" Co(r) Ty < sup {||T(s)p — || + Mke®cis} < 1.

0<s<Ty
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We conclude that there exists a unique function v e £, such that H(v) =v.
Then, Equation (7) has one and only one mild solution u : [—7, T}] — E defined
by

v(1)(0) ift>0,
u(t) = {(p(l) if 1 e [~z,0].

Let [—7,7,) be the maximal interval of existence of u. Assume that 7, < +o0
and

limsup ||u;(. , 9)|| < +o0.
11—t

[

Then, there exists a constant r > 0 such that |ju(.,¢)| <r, for all t€[0,1,).
Let t,t+he(0,t,), h >0. We obtain

t+h
Uy =T+ h)e+ dlinol ‘—11J T(t+h—5)Z(d)F(s,uy)ds,
0+ d )

=T(t+h)p+ dli_% % <J: T()T(h—s)Z(d)F(s,us)ds

4 JM T(t+h— $)Z(d)E(s, us)ds>

h
and
1 t
u, = T(t)p + lim fJ T(t—s)Z(d)F(s,us)ds.
d—0+ d 0
Since
t+h t
J T(t+h—$)Z(d)F(s,us)ds = J T(t—s)Z(d)F(s+ h,ugy)ds,
h 0
we have

h
(30) was—w = T(t+h)p— T()p+ lim 1 <T(t) JO T(h — $)Z(d)F (s, us)ds

+ Jl T(t—s)Z(d)(F(s+ h,ugp) — F(s, us))ds> .
0

From Proposition 2.12 (iv), we have that

) 1 h d h
dlin(;l+ EJO T(h—s$)Z(d)F(s,us)ds = %L Z(h — s)F (s, us)ds.
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This means that the limit in (30) can be separated in two parts. Hence we
have

h
U —uy =T+ h)p—T()p + llirgl éT(z)J T(h—s)Z(d)F(s,us)ds
d—0+ 0

t
+ lim lJ T(t—s5)Z(d)(F(s+ h,ugp) — F(s,uy))ds.
d—0+ d 0

We estimate each limit in the right-side. In the beginning,

HT([) Jh T(h—s)Z(d)F(s,us)ds

h
< Me”(““h)J 1Z ()| |F (s, u,)|ds,
0 0

SMe“’(’+h)||Z(d)||h<rC0(r)+ sup |F(s70)|>.

s€(0,1,)

Notice that sup |F(s,0)] < oo since 7, < co. Hence we have that
s€(0,1,]

h
lim 1 T(1) J T(h—$)Z(d)F(s,us)ds|| < Me®"khc,,

d—0+ d 0

where

¢y :=rCy(r) + sup |F(s,0)|.

s€(0,1,)
In the next step, we decompose as
t
(31) J T(t — ) Z(d)(F(s+ hy tssn) — F(s,us))ds
0

= J; T(t —$)Z(d)(F(s+ h,usip) — F(s+ h,uy))ds

+ Jo T(t—s)Z(d)(F(s+ h,ug) — F(s,uy))ds.

The first integral is estimated as

(32) JI T(t — $)Z(d)(F(s + h,uss) — F(s + h, us))ds

0

t
< j Me™ 9| Z(d) | Cor) s — sl s,
0

t
< Me”| Z(d) | Co(r) jo ity — ]l ds.
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The second integral is estimated as

Jo T(t—s)Z(d)(F(s+ h,us) — F(s,uy))ds

t
= J Me”" | Z(d)|| [F (s + hyus) — F(s,uy)|ds,
0

t
< Me“s || Z(d)| J |F(s + h,us) — F(s,u,)|ds.
0

We set
t

ft,h) = JO |[F (s + h,us) — F(s, us)|ds.

Then

lim lL T(t — $)Z(d)(F(s + h, us) — F(s,u,))ds

t
< Me“’"”k<C0(r)J letscn — usl|ds + f(t, h))
0
Thus we obtain that
[t — wl| < Me® || T(h)p — o|| + Me®"khe;

t
+ Me®"kCy(r) J lusin — us||ds + Me®kf (¢, h).
0

By Gronwall’s lemma, it follows that

laess — wll < Me®* (| T(h)p — gll + khe + kf (1,h)) exp(Me®kCo(r)),
< Me®(||T(h)p — || + khes + kf (t,, h)) exp(Me“*kCo(r)t,).

The bounded convergence theorem by Lebesgue implies that
lim £ (15, ) = 0.
Therefore,

}llil'(l) ”ulJrh(‘ ) (ﬂ) - ul(' ’ (ﬂ)” =0

uniformly for ¢ € [0,1,), and ,hr? |lus(., @)|| exists; the solution can be continued
to the right of #,, which contradicts the maximality of [—,1,).
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We will now prove that the solution depends continuously on the initial
data. Let g€ %, Ype D(Ay) and t€(0,1,) fixed. We put

r=1+ sup |us(.,0)|l,

0<s<t
c(t) = Me®" exp(Me® Cy(r)kt).

Let oe(0,1) such that c¢(f)a<1 and Y e, DY e D(Ay) such that
llp — | <o We have

Il < llgll + o <1
Let
To =sup{se (0,2y) : |lus(.,¥)|| <r for all o€l0,s]}.

If we suppose that 7j < ¢, we obtain for s e [0, Tp], as in (32)

(. 0) — (. W)]| < Mewf(w ~ I+ Golk |l ) = el w>|da).

By Gronwall’s Lemma, we deduce that

llus(-,0) = us (-, )| < c(D)llg — .
This implies that

lus(., )|l < () +r—1<r for all sel0, Ty

It follows that 7, cannot be the largest number s> 0 such that
lug(.,¥)|| <7, for all oel0,s]. Thus, Top >t and ¢<t,. Furthermore,
llus(.,¥)|| <r, for s€[0,7]. Then, we deduce the continuous dependence on
the initial data. O

Under more restrictive conditions on F and ¢, we obtain strict solutions of
Equation (7).

THEOREM 3.2. Assume that the hypotheses of Theorem 3.1 hold. Fur-
thermore, assume that F :[0,+00) X €g — E is continuously differentiable and
D,F,D,F satisfy the locally Lipschitz condition (HS), i.e., for each r >0 there
exist constants Ci(r), Co(r) > 0 such that if t =0, ¢,y € 6 and |¢|, ||V] <r
then

{ |D.F(t,0) = DiF(1,9)] < Ci(r)llg — v,
1Dy F (2, 0) = Dy F (1, )| < Ca(r)llp — v,

where D,F and D,F denote the derivatives. Let ¢e % such that
peb) =%"([-1,0,E), Zpe D(Ay), Z¢' € D(Ay) and T¢' = AyDp + F(0,p).
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Then, the unique mild solution u(.,¢):[—t,t,) — E of Equation (7) is con-
tinuously differentiable on [—t,t,) and it is a strict solution of Equation (7).

PrOOF. Let pe %, such that Zge D(A4y), Z¢' e D(4y) and Z¢' =
AoZop + F(0,9). Let u:=u(.,p) be the unique mild solution of Equation (7)
on [—7,t,). Consider the linear equation

d t
v, = Si(t)Z¢" + EJ So(t — 8)(DF (s, us) + Dy F (s, us)vy)ds,
0

I
Vo =@ .

It is clear that there is a unique solution v on [—1,?,) of this equation. Define,
for ¢+ > 0, the function

t

g:t— o+ | vds.

Then, for 0 € [—1,0]

If t+6 >0, then

If 146 <0, then

t+0

9(1)(0) = p(0) + j o (E)dE,

=9(0) + (1 +0) — ¢(0),
=gp(t+0).
Thus if we define
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~ [9(1)(0), forz=0,
W) = {(P(I)a for -t <t <0,

then w:[-7,t,) — E is a continuous function, and
g(t) = wy, t>0.
Integrating the equation of v,, we have that
t t
J Gg déE = So(1)Z¢’ + J So(t — 8)(DF (s, us) + D, F (s, us)vs)ds.
0 0
Since the left-hand side becomes
t t
J Gve dE = @(J Ve df) =9(g(t) — 9) = Dw, — Do,
0

0

we have that

Dw; = Do+ So(1)Z9" + Jot So(t — 8)(DF(s,us) + D, F (s, us)vs)ds.
On the other hand, by assumption
99" = AoDp + F(0,9).
Then
So(t)Z9" = So(t)A0Z¢ + So()F(0, ).
Since Z¢ € D(Ay), it follows that
So(t)AoZg = Sy() D — Dg.
Hence
So(1)Z¢" = So(1)Zp — D9 + So(1)F(0, 9).
Thus w, satisfies

(33) 2w, = Si(1)Z¢p + So(t)F(0,9) + L: So(t — 8)(DF(s,u5) + D, F (s, us)vs)ds.

Now we compute Sy(¢)F(0,¢). Notice that

t t

J So(t — s)F(s,wy)ds :J So(s)F(t — s, w,_y)ds.

0 0

Since w, = g(¢) is continuously differentiable, and since F(¢—s,¢) is also
continuously differentiable, it follows that F(t—s,w, ) is continuously dif-
ferentiable with respect to ¢. Thus we have
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d t
7 Jo So(t — $)F (s, wy)ds

1

d
So(s) (DIF(I — 8§, Wi—s) + Do F(t — 5, W) U w,s) ds,

— S)(OF(0,9) + j

t
= So(1)F(0,9) + J So(t — 8)(DF (s, ws) + Dy F (s, wg)vg)ds.
0
So, we deduce that

t

So(£)F(0,¢p) = %L So(t — s)F(s,wy)ds

13
— J So(t — 8)(DF (s, wy) + Dy F (s, ws)vs)ds.
0
Therefore, Equation (33) becomes

t
Dw, = Sy(1)Zp + %J So(t — $)F (s, ws)ds
0

- Jl Solt — $)(DAF (s, w5) + DyF(s, wy)oy)ds
0

+ J[ So(t — 8)(D.F (s, us) + D,F (s, u)vs)ds.
0

Since the mild solution u satisfies

t
Du, = So(1)Z9 + %J So(t — s)F (s, uy)ds,
0

we obtain

D(u, — wy) = %M;SO(I — 8)(F(s,us) — F(s,wy))ds

— ;So(t — 8)(D.F(s,uy) — D.F(s,wy))ds

t
— | So(t = 5)(DyF(s,us) — DyF (s, wy))vyds.
0

If we choose T := min{e, #, — #,/2} and ¢ € (0, 7], we obtain for ¢ € (0, 7) and
0 € [-1,0]

T—¢
—T<t—1<t+—0—-e<t—e<O.
T
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Since u(0) = w(0) = ¢(0), it follows that

7.(u,) (0) :u,(TSO—e) :u<t+T80—s> :(p(l—f—TgO—s),
T T T

To(w)(0) = wt(r_89—8> = w(l—l—r_aé’—s) = go(l+:30—s>.
T T T

Thus we have that

Py(u; — w)) = W0 t,(u; — w,) =0,
and that
D(u, —wy) = u(t) — w(t) — P(uy — wy),
= u(t) — w(t) — (P(uy — wy) — P, — wy)).

Consequently

u(t) —w(t) = P(u, — wy) — P(u, — wy) + %J; So(t — 8)(F(s,us) — F(s,wy))ds

- Jr So(t — 8)(D.F(s,us) — D F(s,wy))ds
0

t
— J So(t — 8)(DyF (s,us) — DyF (s, wy))vs ds.
0
By using Proposition 2.12, we have that

%J So(t = $)(F(s,10) — F(s. w,))ds

- hli%l* %JO T(t - S)Z(h) (F(Sv us) - F(S, WAY))dS_

Hence we obtain, for suitable constants M, @ >0 and for all 7€ [0, T}),

%L So(t — 8)(F(s,us) — F(s,wy))ds

t
< Me”mkj |F(s,us) — F(s,wy)]|ds.
0

Since Sy() is assumed to be exponentially bounded, we have also for suitable
positive constants which we label the same

J; So(t — s)(D.F(s,ugs) — DF(s,wy))ds

t
< MEWTIJ |DtF(S, HS) _DtF(Sa WS)|ds7
0

and
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J; So(t — 5)(DyF(s,us) — D,F(s, wy))vs ds

t
< Me®T J |1 Dy F (s, t5) — Dy F (s, ws)|| ||vs]|ds.
0
Thus for all 7€ [0, 7))

t
|u(r) = w(D)] < 6(e)l[ur — wil| + MelekJ |[F(s,us) = F(s, wy)|ds
0
t
+ Me®T J |DF(s,us) — D F(s,wy)l|ds
0

13
4 Me®Th JO | D, F (s,u5) — D, F (s, wy)]| ||vs]|ds.

Since t < T} < ¢ <, and up = wy = ¢, the function ||u; — w,|| is nondecreasing
with respect to £. Thus we can replace the left-hand side of this last inequality
by [[us —w. As a result,

t
(I =0()|luy — wi|| < Me“’T‘kJ |F(s,uy) — F(s,wy)|ds
0
t
+ Me®T J |D/F(s,us) — D,F(s,wy)|ds
0

t
+ MeoT J 1D, F (s, us) — DyF (s, )| [ ]1ds.
0
We choose ¢ > 0 such that d(g) < 1. Set
i max( sup_[u(s)|, sup [o(s)], sup w<s>|>,
—t<s<T) —t<s<T) —t<s<T)

which is finite since 7 < t,. There exist Cy(r), Ci(r), C2(r) > 0 such that, for
S e [0, T])

[F (s, us) — F (s, wy)| < Co(r)llus — wl],

|DF(t,us) — D F(t,wy)] < C1(r)||us — wsll,

Dy F(t,us) — DyF (1, wy)|| < Co(r)|lug — wyl|.

This implies that

T (kCo(F) + C1(r) + rCa(r)) J; s — ws | .

e, — wy|| <

T 1-94(e)

By the Gronwall’s Lemma, u, = w, for 1€ [0, T}).
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We can repeat the previous argument on [0,7%), where T7,:=
min{2e, 1, — 1,/2*} and e € (0,7], 5(¢) < 1, with the initial condition u(r) for
te[—7,Ti]. In this case, we have also, for ¢ € [0, 7T>),

llur — wi|| <

~1-0(¢)

Then, u;, =w, in [0,75). Proceeding inductively we obtain u, =w; in
[0,7,). Finally, since

t
T (kCo(r) + C1(F) + rOo(r) J s — w4l ds.
0

t t
t— 9w, = 9g(t) = D9+ 9<J Uy ds) =9 —|—J Dy ds
0 0

is continuously differentiable, then the function ¢ — Zu, is continuously dif-
ferentiable. This ends the proof of Theorem 3.2. O

4. Global existence and stability of solutions

In this section, simple results on global existence and stability of solutions
will be given. We add the following assumption

—(H6) there exist r >0 and p e (0,%) such that ¢ € %g, |l¢|| <r and
t > 0 implies

|E(t,0)] < plloll,

where k>0 is given by (29), and K > 1, w >0 are given in Proposition
2.11. A spacial case of this assumption is |F(¢,¢)| = o(|l¢||) uniformly in
t>0.

THEOREM 4.1. If all the assumptions (H1)-(H6) are satisfied, then the
trivial solution u =0 of Equation (7) is exponentially stable.

Proor. Let ¢ € % such that P9 € D(A4p). Consider the problem

d t
(34) uleo9) = T+ | Z0=9FGu ).
We have proved in Theorem 3.1, that under the assumptions (H1), (H2) and
(HS) there exist a maximal interval of existence [—1,1,), f, > 0, and a unique
solution u(.,¢) of Equation (34), defined on [—7,7,) and either 7, = +00 or
limsup [|u;(., p)[| = +o0.

t— tw

Assume that 7, < 400 and let ¢ = %, where r > 0 and K > 1 are given by

the condition (H6). Suppose that ||p|| < ¢ and consider the positive number
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(35) ty =sup{tr e [0,¢,) : ||us(.,p)|| <r for all se0,]}.
By the continuity of the function u, we have |ju,(.,¢)|| <r for all se|0,z].
Then, for ¢ €0, 1],

t
(-, 0) || < Ke™[lg|| + Kk L e UIE (s, us(- ) ds,

and therefore,

t
. ) < Ko+ Khp | e lu..o)]ds.
0

Applying the Gronwall’s lemma to this inequality, we obtain
lu, (., 0)|| < KeeKkp=o)t — poKkp=o)t . tel0,4].
Consequently, there exists 6 > 0 such that
llets (., 0)|| < r, tel0,t +9].

This contradicts (35). We conclude that the solution u is global on [—7,+o0)
and satisfies

lui(., @)|| < re®kp=@ for t >0 and ||¢| < e,

with Kkp — w < 0. ]

Our next objective is to give other sufficient conditions for the global
existence and stability of the trivial solution of Problem (7). We keep the
assumptions (H1)—(H4) and instead of the hypotheses (H5) and (H6), we make
the following conditions.

—(H7) F:Ry x% — E is continuous, F(z,0)=0 and F satisfies the
following local Lipschitz condition

[E(t,01) = F(t,0:) < 75 Nl s loalDllor — o2l

for ¢,,¢, € €5, where y(t,y;,y,) is continuous with respect to feR,,
1, y2 € Ry, and is monotonically nondecreasing with respect to y; and y».
Since F(¢,0) =0, (H7) implies that

[F(2,0)| < 2(t, [loll,0)[le]-
Set

G(t,x) = y(t,x,0)x for t >0 and x> 0.
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Then, G(¢,x) is monotonically nondecreasing with respect to its second
argument.

—(H8) There exist r >0 and ge %(R; x [0,r),R;) such that for each
pe0,r), (r can take the value +o0)

t
g(t, p) = Kpe™ ' + J Kke™®"=9G(s,g(s, p))ds, >0,
0

where, & >0 and K > 1 are given in Proposition 2.11.

THEOREM 4.2. Let ¢ € 6 such that Z¢ € D(Ay) and |lo|| <r. If all the
assumptions (H1), (H2), (H3), (H4), (H7) and (HS8) are satisfied, then Problem
(7) has a unique global mild solution u(.,¢) : [—t,+000) — Gg, and the following
inequality holds

lu o)l < g(t:llol), = 0.

In addition, the following properties hold.
(i) 1If, for any & > 0, there is an n =n(e) > 0 such that 0 < p < 5 implies
g(t, p) <e for t =0, then, the trivial solution of Problem (7) is stable. This
means that for any ¢ >0, there is a 6 =35(¢) > 0 such that |p|| <J implies
I (., @)|| < & for t > 0.
(i) I
lim g(¢t,p) =0  for small p >0,

t——+0o0

then the trivial solution of Problem (7) is asymptotically stable.

ProOF. Let ¢ €% such that 9¢pe D(Ay) and ||p|| <r. By virtue of
Proposition 2.16, it suffices to prove Theorem 4.2 for the following equation

t
u,=T({)p+ EJ Z(t — 5)F (s, uy)ds.
dt )y

Let (v"),.n be a sequence of continuous functions defined for 7> 0 by

v"(£) = v°(2) +%L Z(t — 8)F(s,v" (s))ds, n>1.

We have, from Proposition 2.11 and Condition (HS8), that

[0°(0)]l < Ke™llgll < g(t. llol).

Proposition 2.12 and Condition (H7) yield
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t
[0 (D)l < Ke™||o]| + JU Kke™"y(s, [[0°(s)|], 0)[° (s) | ds,

t
gwawn+ijw“ﬂGmnw®mm-
0

Since

1)1 < g(s, lloll)

and G(s,x) is nondecreasing with respect to x, we obtain

G(s, [ (5)1) < Gls. g(s. llo])-

Hence (H8) implies that

t

lo* (1)} < Ke™"llg]| + L Kke™ "= G(s, g(s, ||oll))ds,

<g(t ol
By using induction, we prove
"Dl < g(z llpl)  for all neN.

On the other hand, we have
t
[0 (1) = ()| < JO Kke™"=)y(s, [[0°(s)[],0)[|0°(s) | ds.
Then

lo*(r) = (1)]] < JlKke““”)G(& 10°(s) I,
0

t
SJKMme@mmmmm
0

Let 7> 0. Since ¢(.,||¢||) and y are both continuous, we can set

a= sup g(s, |l
s€[0,T]

p= sup y(s,9(s, llol),g(s l[ol))-
s€(0,T]

In particular

sup G(s,9(s, [lgll)) < ap.
s€l0,T]
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Hence
0" (1) = °(2)|| < Kkapt.

In general case, we have
t
[0" (1) =" ()| < JO Kke™ =) y(s, 0" ()]s [lo" 2 () ID 10" (s) = 0" (s) lds,

12
< JO Kke™"y(s, g(s, loll), g(s. @I (s) = v" () | s,

t
< Kkﬁj 0" (s) — v"2(s)]||ds.
0
So, by induction

(Kkpr)"

lo" (1) = o" (D)l < 2=

Consequently, the limit v := lim v” exists uniformly on [0, T], it is continuous
. . n—oo
on [0, 7] and it satisfies

[o() < g(t llgll)  for 1€ [0, T].

On the other hand, we have from Proposition 2.12 and (H7)

1

%L Z(t — 8)F(s,v" ! (s))ds — %L Z(t— s)F(s,v(s))ds

t

< kK JO (s, 0" ) o)D" (s) = v(s) s,

< kK J; 2(s,9(s, ol g (s, llg ) llo" " (s) = v(s)llds,

< kKBT sup |[v""'(s) — v(s)|.
s€(0,T]
Then
thZ(l—s)F(s v"1(s))ds thZ(t—s)F(s v(s))ds
dl 0 ’ n—-+40o0 dt 0 ’
uniformly on [0, 7]. Consequently, v satisfies
t

v(t) =T()p + %L Z(t—s)F(s,0(s))ds, tel0,T].
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Then, if we consider the function u:[—7,T] — E defined by
H0) ifr=0
sy {FO0) =0
(1) if 1<0,
we obtain
u, = o(t), t>0.

To show uniqueness, suppose that w(z) is also a mild solution of Equation (7)
with the initial condition ¢. Then,

lo(r) = w(o)|| < kK Lt [[v(s) = w(s)l|ds,

where f = sup (s, |o(s)]|,|[w(s)]|). By Gronwall’s inequality, w = v on [0, T].
s€l0,T]
This proves the theorem. ]

We end this part with simple examples.

EXAMPLES

Let 2 < R"” be a bounded open set with smooth boundary 0Q, 4 the
Laplace operator on Q, 6g := %([—1,0], E) with E =%(Q,R) and & : ¢z — E
the operator defined by (Z¢)(x) = ¢(0)(x) — gp(—1)(x) for ¢ € 6r, x € Q and
q€0,1). We consider the problem

%Qu,(.,x):A@u[(.,x)—u3(t—r,x), t>0,xe,
(36) u(t,x) =0, t>0, xe0Q,
u(0,x) = p(0,x), 0el-1,0], xeQ.

Problem (36) can be reformulated as an abstract semilinear neutral
functional differential equations

ot

0
{—@Ut:Aob@U[+F(UI), l207
U0) =g,

with

{D(AO) ={ue%Q,R): Aue%(Q,R) and u=0 on 0Q},
Aou = Au,

and F : % — E the nonlinear mapping defined by
F(p)(x) = —p*(=17)(x)  for pe %y and xe Q.
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We have D(4y) = {ue%(Q,R);u=0 on 0Q} #E.
Moreover

p(4o) = (0, +c0)

| =

(A — o) '|| < for A > 0.

~

This implies that A, satisfies (H1) on E. Then, Ay is the generator of a locally
Lipschitz continuous integrated semigroup (Sy(?)),-, on E.
We know that there are positive constants Ky > 1 and wg > 0 such that

1S5(1) y] < Koe™™'|y], t>0, ye D(A).

Then, (H3) is satisfied. The operator & satisfies the assumption (H2) and for
¢ €10,1) the assumption (H4). Furthermore, we have

3 3
(o)l = lo(=0)" < loll", ¢ €%k,
and
2 2
|F(py) — F(2)| < (log[I” + lloa [ loall + o2l ) Moy — o2l

We choose

y(p,q) =p*+pq+ q*,
g(t, p) = 2Kpe™*".

Then (HS5), (H6) and (H7) are satisfied. Let p >0 and

t

1(t,p) := g(t, p) — Kpe ™' — J kKe " G(g(s,p))ds,  1=0,
0
where G(p) :=y(p,0)p = p>. Then,

t
I(t,p) = Kpe " — 8kK4p3e’w’J €728 ds,
0

4kK3p?
_ erwt(l _ a)p (1 _ eZwr)>’
4kK3p?
> er“"(l - P )
W
1 .
Consequently, for 0 < p < K kg’ we have I(¢, p) > 0. Hence, the condition

(H8) holds. So, we have from Theorem 4.1 or 4.2, the following result.
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THEOREM 4.3.  Suppose that ¢ € €g, p(0) — gp(—7) € D(Ap), 0 < g < 1 and
llol| sufficiently small. Then, Problem (36) has a unique global mild solution
ueb(—t,+w),E). Furthermore, the inequality

llu(-, )l < 2K|lplle™, >0,

holds, and hence its trivial solution is exponentially asymptotically stable.

The same results can be obtained for the following examples
a) F(p)(x) = —¢*(=1)(x)p(0)(x),

b) F(p)(x) = —o(~7)(x)9*(0)(x),

¢) Fp)(x) = —(p(0)(x) — gp(—7)(x))’.

5. Dissipativeness and existence of global attractor

In this section, we investigate the dissipativeness and the existence of
global attractor of the solution operator in the autonomous case, that is, the
system

0
(37) Egut = AoPu + F(u;), t=0,

uyg = .

We assume the following.

—(H9) F : % — E satisfies enough smoothness conditions to ensure that

(a) for each initial condition pe Y := {pe @ : Zp e D(4)}, Problem
(37) has a unique global mild solution defined on [—7,+0c0) and this solution is
continuous in ¢;

(b) F maps bounded subsets of Y into bounded subsets of E.

For example, if F is locally Lipschitz continuous and satisfies |F(p)| <
a|lp|| + b, then F satisfies the assumption (H9).

Define, for each ¢ > 0, the nonlinear operator U(t) : ¥ — %g by

U(t)(p) = ul.,9),

where u(., @) is the unique mild solution of Equation (37). We know from [4],
that

unly)ey for all 1> 0.
Furthermore, we have the following result.

ProOPOSITION 5.1 [4]. Assume that the conditions (H1), (H2) and (H9)
hold.  Then, the family of operators (U(t)),s is a nonlinear strongly continuous
semigroup of continuous operators on Y, that is
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i) U -1,
(i) U(t+s)=U)U(s) for all t,s >0,
(iii) for all pe Y, U(t)(p) is a continuous function of t >0 with values
in 'Y,
(iv) for all t >0, U(t) is continuous from Y into Y.
Moreover,
(v) (U(1),so satisfies, for pe Y, t>0 and 0€[-1,0], the translation

property
(U(t+0)(9)(0) if t+0=0,

wowne {5 i it 0=o0

Let us consider, in addition, the following assumption.

—(H10) The Cy-semigroup S;(¢) : Y — Y is compact for each ¢ > 0.
0

THEOREM 5.2. Assume that the assumptions (H1)-(H4), (H9) and (H10)
hold and for all t >0, U(t) maps bounded subsets of Y into bounded subsets.
Then, the semigroup (U(t)),s, is an a-contraction on Y in the sense that

Ut)p) =Tt)p+V()(p), ¢eV,

where V(&) is a compact operator for each t >0 and T(t) is the Cy-semigroup
given by Proposition 2.10.

ProOF. We will use the same arguments as in [23] in the paper. In the
beginning, Proposition 2.10 implies that

2(T(1)p) = Sy(1)Z9.
On the other hand, by Proposition 2.11
IT(1)pll < Ke™ o],

and from definition of mild solutions

AU) = 5070+ || Sil1=IF (UG

Let V(#)(p) =v, = U(t)(p) — T(t)p. Then

a8) { 70, = AV ) - Si(090 =5 Sile - IF UG @)
Uy = 0.

Consequently, from Proposition 2.12 we obtain

0= {(t.9) = Jimy 5 | S0 =W )
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Let B be a bounded subset of Y, we will show that for each 1 >0, 2V (¢)(B)
is totally bounded in E. By assumption U(7)(B) is bounded in Y and
F(U(#)(B)) is bounded in E. Since Sy(.) is locally Lipschitz continuous and
So(0) =0, it is not difficult to see that the following set

{%Sg(h)F(U(l)(go)) :he(0,H],te0,0] and g€ B}

is contained in a bounded subset of E; that is, there exists a constant ¢ such
that

’;So(h)F(U(t)((p))‘ <e, for he (0,H], t€[0,0] and ¢ € B.

We prove that, for 7€ [0,0],

L(1) == {%J; SU(5)So(R)F(U(t — 5)(¢))ds - h e (0, H] and ¢ e B}

is totally bounded in E. If 0 <J <t <o, we can write

1 1

t 0
| s Fw=sends = | sy 7 si0FwG- 90

+ [ 5109 o FWI 9o
0

At first we obtain, from (H3)

5
< J Koye ™ @%¢ ds,

")
|| sits) g satmr (e - o) 0

0 h

< ﬂ(l o 8—0105).
(on)
Let ¢ > 0. Then we can take a 6 > 0 such that

)
| sstorg sumr(e = syena| <z

Next we rewrite

|| 51655 Sum (U = 5)(01)ds = 50) | Si(5 - 0) 5 SoMFWe =) ).

Then
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t
< J Koe 6= ¢ ds,
s

|| sits =00 sum (e = syeas

CK()

1 — o—@o(t=0)y
21— lt)

Since S;(d) is compact, the set

! 1

{S(;(&) J So(s — 6)ESg(h)F(U(t —5)(p))ds:he(0,H] and p e B}
s

is totally bounded. Hence the set L(z) is totally bounded, that is, it is

contained in a compact subset of E. Then the following set is contained in the

same compact subset:

{1im 3] i3G50 pe B).

Next we will show that the family {r— f(z,¢)}, ¢ € B, is equicontinuous in
t. Suppose that 0 <t <. Then

1

7 (Jr So(t' = )So()F(U(s)())ds — J[ So(t— S)So(h)F(U(S)(cﬂ))dS>

SATA .

< [ 18k =l I o)las
+] [ =0 = Dsife =93 s 0)

The first term in the right side of (39) is estimated as

ds.

J [1S0(2’ —S)II%ISo(h)F(U(S)(w))Ids < JI Koe*m(f’fs)%IISo(h)II [E(U(s)(9))lds,

t
1
< (' — 1)Ky sup{ﬁ 1So(M) || |F(U(s)(p))] :0<h<H,t<s<t,pe B}.
Let 0 <Jd <t The second term in the right side of (39) is separated as

w [

0

(S3(4' = 1) = 1)}t = 5) 7 SN F(U(s) (o) |ds

(S)(" — 1) — D)SY(t — ) - SeWF(U(s)())|ds

h
t
]
t—0

(Sy(" — 1) — DS}t — ) - SeWF(U(s)(9))

7 ds.
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The second term in the right side of (40) is estimated as

t
J\tf(i

(34— 1)~ 1)}t~ 5) 7 SWF(U(s) () |ds

< [ (Kot 1 Kog IS0 TF(UG)p)lds,

t—0

<d(Ko+ 1)Ky sup{}llHSo(h)H [F(U($)(9)]:0<h<HO0<s< t,goeB}.

Let £ > 0. Then we can take a J > 0 such that the last term in this inequality
is less than &.  Fix such a d > 0. The first term in the right side of (40) is then
estimated as

t—0
J 0

(SY" — 1) — D)Sy(t — ) - SoWF(U(s)(p))ds

h
t—o0
-

S4(0 -6 = )3 D FUE)(0)| < Kae™ > IS0 [FU()(0)

(Sy(" — 1) — D)SYO)Sylt — 8 — 5) L So(VF(U(s)(9)|ds.

h

Since

1
< Kp sup{ZHSo(h)H [F(U(s)(9)]:0<h<HO0<s< t—&,qpeB},

and Sj(0) is a compact operator, there exists a J; >0 such that if 1 <¢' <
t+0; then
1 e
(SH(¢ = 0 = DSOSi(e ~ 5 - 9) DAV < 5.
for O<h<H, 0<s<t—0 and pe B. This implies that if 1 < < ¢+,
0<h<H and ¢pe B the first term in the right side of (40) is less than
&. Therefore, if |/ —¢| is small enough, 0 </ < H and ¢ € B, then

3 st = 9smEw @ [ st smris e
0 0

<é&.

Let (¢;)r>o be a bounded sequence in Y. Then there exists a sub-
sequence, which we label the same, such that the sequence (f( ¢;))is0
converges in E as k — +oo uniformly on [0, o] to some function f(¢) € E. Let
vk be the solution of Equation (38) in the paper with ¢ = ¢,. Then,
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{ D —vl) = f(t,0) — [t 9,),

v({ — vé =0.
From Lemma 2.9 in the paper, we deduce that there exists a positive constant ¢
such that
k j - ~
oy = vill < ¢ sup |f(s, o) = f(5,0)|-
0<s<t
This implies that the sequence (vf‘) x>0 1s a Cauchy sequence, which proves that
V() is a completely continuous operator on Y. This completes the proof of
the theorem. ]

Let (X,|-|) be a Banach space. We recall the following definitions.

DEerFINITION 5.3 [21]. A family of mappings W (r): X — X, ¢ >0, is said
to be a C’-semigroup, r > 0, provided that

Q) wo)=1,

(i) W(t+s)=W()W(s) for all £,5>0,

(iii) W(f)x is continuous in #,x together with Fréchet derivatives in x
up through order r for (z,x) e Ry x X.

DeFINITION 5.4 [21]. Let W(f): X — X be a C’-semigroup for some
r=0.

(i) A set B X is said to attract a set C< X under W(r) if
disttW(t)C,B) — 0 as t — +o0.

(i) A set S< X is said to be invariant if, for any x € S, there is a
complete orbit y(x) through x such that y(x) = S.

(iii) W(.) is asymptotically smooth if, for any nonempty, closed, bounded
set B< X for which W (f)B < B, there is a compact set J < B such that J
attracts B.

(iv) A compact invariant set .o/ is said to be a maximal compact
invariant set if every compact invariant set of the semigroup belongs to .o7.

(v) An invariant set ./ is said to be a global attractor if .o/ is maximal
compact invariant set which attracts each bounded set B — X.

As a consequence of Theorem 5.2, we obtain the following result.

ProOPOSITION 5.5.  Under the same assumptions as in Theorem 5.2, the
semigroup U(.) is asymptotically smooth on Y.

The proof is based on the following lemma.

LemmA 5.6 [21]. For each t >0, suppose that W(t) = Wi(t) + Wa(t) :
X — X has the property that W, (t) is completely continuous and there is a
continuous function k: Ry x Ry — Ry such that k(t,r) — 0 as t — +oo and
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|Wa(t)x| < k(t,r) if |x| <r. Then, the semigroup W (t) is asymptotically smooth
on X.

DerINITION 5.7. The semigroup (W(f)),., on X is said to be point
dissipative (compact dissipative) if there is a bounded set B — X that attracts
each point of X (each compact set of X) under W(¢).

It follows from Hale [21] and Theorem 5.2 that the following result is true.

THEOREM 5.8. Assume that the assumptions of Theorem 5.2 are satisfied.

(i) If the semigroup U(.) is compact dissipative, then there exists a global
attractor <f for U(.).

(i) If the semigroup U(.) is point dissipative and orbits of bounded sets are
bounded, then there exists a global attractor <f for U(.).
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