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Abstract. In this work, we consider a class of nonlinear partial neutral functional

di¤erential equations with a nondensely defined Hille-Yosida operator. We first prove

the local existence, uniqueness and regularity of solutions. Second, we study the global

existence and stability. In the end, we extend in the autonomous case, results of Hale

([21], [23]) concerning dissipativeness and existence of a global attractor to our situation.

1. Introduction

In [45], Wu and Xia considered a system of partial neutral functional

di¤erential-di¤erence equations, defined on the unit circle S1, of the form

q

qt
½xð: ; tÞ � qxð: ; t� tÞ� ¼ K

q2

qx2
½xð: ; tÞ � qxð: ; t� tÞ� þ f ðxtÞ; tb 0;ð1Þ

where x A S1, K a positive constant and 0a q < 1. The space of initial

data was chosen to be Cð½�t; 0�;H 1ðS1ÞÞ. This system is a model for a

continuous circular array of resistively coupled transmission lines with mixed

initial boundary conditions. In ([22], [23]) Hale presented the basic theory of

existence and uniqueness, and properties of the solution operator, as well as

Hopf bifurcation and conditions for the stability and instability of periodic

orbits for a more general class of PNFDE on the unit circle S1. Let us briefly

restate the equations considered by Hale in ([22], [23]). Let E ¼ H 1ðS1Þ. If

j A CE :¼ Cð½�t; 0�;EÞ, we write it as jðy; xÞ, for y A ½�t; 0� and x A S1. For

any function ~ff A Ckþ1ðCð½�t; 0�;RÞ;RÞ, kb 1, we let f A Ckþ1ðCE ;L
2ðS1ÞÞ

be defined by f ðjÞðxÞ ¼ ~ff ðjð: ; xÞÞ, x A S1. Let ~DD A LðCð½�t; 0�;RÞ;RÞ be

defined by
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~DDc ¼ cð0Þ � ~ggðcÞ;
~ggðcÞ ¼

Ð 0
�t
½dyhðyÞ�cðyÞ;

(

where h is of bounded variation and non-atomic at 0; that is, there exists a

continuous nondecreasing function d : ½0; t� ! ½0;þyÞ such that dð0Þ ¼ 0 andð0
�s

½dyhðyÞ�cðyÞ
����

����a dðsÞkck; s A ½0; t�; c A Cð½�t; 0�;RÞ:

We define D A LðCE ;EÞ as

DðjÞðxÞ ¼ ~DDðjð: ; xÞÞ; x A S1:ð2Þ

Hale considered in ([22], [23]), PNFDE of the form

q

qt
Dxt ¼ K

q2

qx2
Dxt þ f ðxtÞ; tb 0;ð3Þ

with CE as a space of initial data. He considered the Laplace operator

A0 ¼ K
q2

qx2
with domain H 2ðS1Þ, which is a generator of a C0-semigroup.

Motivated by the works discussed by Xia and Wu [45], and Hale ([22],

[23]), we consider the following partial neutral functional di¤erential equations

q

qt
½uðt; xÞ � Buðt� r; xÞ�

¼ A0½uðt; xÞ � Buðt� r; xÞ� þ f ðt; x; utð� ; xÞÞ; tb 0; x A W;

uðt; xÞ ¼ 0; tb 0; x A qW;

uðy; xÞ ¼ jðy; xÞ; y A ½�r; 0�; x A W;

8>>>>>><
>>>>>>:

where WHRn is a bounded open set with regular boundary qW, B A LðEÞ and
A0 ¼ D is the Laplace operator in the sense of distributions on W, which is a

generator of a C0-semigroup in E ¼ H 1
0 ðWÞ. If instead of H 1

0 ðWÞ, one con-

siders the space of continuous functions CðW;RÞ, the domain of the operator

A0 is

DðA0Þ ¼ fu A CðW;RÞ : Du A CðW;RÞ and u ¼ 0 on qWg

and the density property is not satisfied in CðW;RÞ.
The idea of studying partial neutral functional di¤erential equations with

nondensely defined Hille-Yosida operator begins with [3], for a class of partial

neutral functional di¤erential-di¤erence equations of the type

q

qt
½xðtÞ � Bxðt� tÞ� ¼ A0½xðtÞ � Bxðt� tÞ� þ Cxðt� tÞ þ LðxtÞ; tb 0:ð4Þ
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It was shown in particular that the solutions generate a locally Lipschitz

continuous integrated semigroup. In [5], we considered a class of nonlinear

partial neutral functional di¤erential equations of the type

q

qt
½xðtÞ � Lxt� ¼ A0xðtÞ þ FðxtÞ; tb 0;

x0 ¼ j A CE ;

8<
:ð5Þ

where A0 : DðA0ÞHE ! E is a Hille-Yosida operator, L is a continuous linear

functional from CE into E such that RangeðLÞJDðA0Þ and kLk < 1, and F is

a globally Lipshitz continuous mapping from CE into E. Basic existence and

uniqueness results were given. In [4], we considered the following class of

nonlinear partial neutral functional di¤erential equations

q

qt
½Dxt � Gðt; xtÞ� ¼ A0½Dxt � Gðt; xtÞ� þ Fðt; xtÞ; tb 0;

x0 ¼ j A CE :

8<
:ð6Þ

In particular, we used a principle of linearized stability for strongly continuous

semigroups given by Desh and Schappacher [14] to study, in the nonlinear

autonomous case, the stability of solutions.

In this paper, we consider a class of nonlinear partial neutral functional

di¤erential equations of the type

q

qt
Dut ¼ A0Dut þ Fðt; utÞ; tb 0;

u0 ¼ j A CE ;

8<
:ð7Þ

where A0 : DðA0ÞHE ! E is a linear operator on a Banach space ðE; j � jÞ, CE

is the space of all continuous functions on ½�t; 0� with values in E endowed

with the uniform convergence topology, D is a bounded linear operator from

CE into E defined by

Dj ¼ jð0Þ � Pj; j A CE ;

F is an E-valued nonlinear continuous mapping on Rþ � CE and for every

tb 0, the function ut A CE is defined by

utðyÞ ¼ uðtþ yÞ; y A ½�t; 0�:ð8Þ

One can consider the following more general system

q

qt
D1ut ¼ A0D2ut þ Gðt; utÞ; tb 0;

u0 ¼ j A CE ;

8<
:ð9Þ
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with two distinct bounded linear operators D1 and D2. But, for Problem (9)

to be well posed, we need the following assumption

RangeðD2 �D1ÞJDðA0Þ:ð10Þ

This assumption permits to write Equation (9) as an equation (7), with

F ¼ A0ðD2 �D1Þ þ G and D ¼ D1. Thanks to the closed graph theorem, (10)

implies that

A0ðD2 �D1Þ A LðCE ;EÞ:

Then, Equation (9) can be solved along the same line as Equation (7) and is,

indeed, covered by our study.

We assume, in this work, that A0 is a Hille-Yosida operator on E. This

means that A0 satisfies the usual assumptions of the Hille-Yosida theorem

characterizing the generators of strongly continuous semigroups except the

density of DðA0Þ in E, i.e.,

–(H1) there exist M0 b 0 and o0 A R such that ðo0;þyÞH rðA0Þ and

supfðl� o0ÞnkðlI � A0Þ�nk : n A N; l > o0gaM0:

There are many examples where A0 is not densely defined. One can refer

for this to [12] for more details.

The following assumption implies that Problem (7) is well posed and will

be assumed throughout this paper.

–(H2) There exists a continuous nondecreasing function d : ½0; t� !
½0;þyÞ, dð0Þ ¼ 0 and a family of continuous linear operators We : CE ! E,

e A ½0; t�, such that

jPj� Pejja dðeÞkjk; e A ½0; t�; j A CE ;

where the linear operator Pe : CE ! E, is defined, for e A ½0; t�, by

Pe ¼ We � te;

teðjÞðyÞ ¼ j
t� e

t
y� e

� �
; j A CE ; y A ½�t; 0�:

8><
>:

The idea of the assumption (H2) is very simple, it means that the operator

P does not depend very strongly upon jð0Þ. In particular, if P depends only

upon of jðyÞ for �ta ya�e < 0, then P satisfies (H2). It is not di‰cult to

show that the operators D considered by Xia and Wu in [45] and Hale in ([22],

[23]), satisfy the assumption (H2). This condition (H2) was introduced in [4],

for the general problem (6).

In this paper, we first prove the local existence, uniqueness and regularity

of solutions under a local condition on the nonlinear part. Second, we study
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the global existence and stability of the trivial solution and we give some simple

examples. In the end, we extend in the autonomous case, results of Hale ([21],

[23]) concerning dissipativeness and existence of a global attractor, to our

situation. For global existence and stability, techniques employed in [27] were

generalized to our equations. The method used in this work is based on the

integrated semigroups theory.

2. Preliminaries

The following definitions are due to Arendt [6].

Definition 2.1 [6]. Let E be a real Banach space. An integrated

semigroup ðSðtÞÞtb0 is a family of bounded linear operators SðtÞ on E, with the

following properties

(i) Sð0Þ ¼ 0;

(ii) for any y A E, t ! SðtÞy is strongly continuous with values in E;

(iii) SðsÞSðtÞ ¼
Ð s
0ðSðtþ rÞ � SðrÞÞdr for t; sb 0.

Definition 2.2 [6]. An integrated semigroup ðSðtÞÞtb0 is called ex-

ponentially bounded, if there exist constants Mb 0 and o A R such that

kSðtÞkaMeot for all tb 0. Moreover, ðSðtÞÞtb0 is called non-degenerate, if

SðtÞx ¼ 0 for all tb 0 implies that x ¼ 0.

If ðSðtÞÞtb0 is an integrated semigroup, exponentially bounded, then the

Laplace transform RðlÞ :¼ l
Ðþy
0 e�ltSðtÞdt exists for l with ReðlÞ > o, but

RðlÞ is injective if and only if ðSðtÞÞtb0 is non-degenerate. RðlÞ satisfies the

following equation

RðlÞ � RðmÞ ¼ ðm� lÞRðlÞRðmÞ;

and if RðlÞ is injective, there exists a unique operator A satisfying ðo;þyÞH
rðAÞ and

RðlÞ ¼ ðlI � AÞ�1; l > o;

where rðAÞ is the resolvent set of A. The operator A is called the generator of

ðSðtÞÞtb0.

Definition 2.3 [6]. An operator A is called a generator of an integrated

semigroup, if there exists o A R such that ðo;þyÞH rðAÞ, and there exists a

strongly continuous exponentially bounded family ðSðtÞÞtb0 of bounded linear

operators such that Sð0Þ ¼ 0 and ðlI � AÞ�1 ¼ l
Ðþy
0 e�ltSðtÞdt for all l > o.

An important special case is when the integrated semigroup is locally

Lipschitz continuous (with respect to time).
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Definition 2.4 [6]. An integrated semigroup ðSðtÞÞtb0 is called locally

Lipschitz continuous, if for all h > 0 there exists a constant kðhÞ > 0 such that

kSðtÞ � SðsÞka kðhÞjt� sj for all t; s A ½0; h�:

In this case, we have the following result.

Proposition 2.5 [6]. Every locally Lipschitz continuous integrated semi-

group is exponentially bounded.

Definition 2.6 [6]. We say that a linear operator A satisfies the Hille-

Yosida condition ðHY Þ if there exist Mb 0 and o A R such that ðo;þyÞH
rðAÞ and

supfðl� oÞnkðlI � AÞ�nk : n A N; l > ogaM:ðHY Þ

The following theorem shows that the Hille-Yosida condition characterizes

generators of locally Lipschitz continuous integrated semigroups.

Theorem 2.7 [34]. The following assertions are equivalent

(i) A is the generator of a locally Lipschitz continuous integrated semi-

group,

(ii) A satisfies the condition ðHY Þ.

This result and the assumption (H1) show that the operator A0 in

Equation (7) is the generator of a locally Lipschitz continuous integrated

semigroup ðS0ðtÞÞtb0 on E.

Proposition 2.8 [6]. Let A be the generator of an integrated semigroup

ðSðtÞÞtb0. Then, for all x A E and tb 0ð t
0

SðsÞx ds A DðAÞ and SðtÞx ¼ A

ð t
0

SðsÞx dsþ tx;

and the part AY of A in Y :¼ DðAÞ is the generator of a C0-semigroup ðTðtÞÞtb0

on Y and we have, for x A Y, tb 0, SðtÞx ¼
Ð t
0 TðsÞx ds.

We now turn to our problem and remark that Proposition 2.8 implies that

S 0
0ðtÞ : DðA0Þ ! DðA0Þ is a C0-semigroup, where ðS0ðtÞÞtb0 is the integrated

semigroup generated by the operator A0 on E. To prove our results on global

existence, stability and existence of global attractor we will need to assume that

–(H3) there exist constants K0 b 1 and o0 > 0, such that

jS 0
0ðtÞyjaK0e

�o0tjyj for all tb 0 and y A DðA0Þ;

and

–(H4) the operator D is stable, i.e., there exist positive constants a; b

such that the solution of the homogeneous functional equation
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Dut ¼ 0; tb 0;

u0 ¼ j;

�
with j A CE and Dj ¼ 0, satisfies the inequality

kutka be�atkjk;

where ut, tb 0, is defined by (8).

We remark that the operator Dj ¼ jð0Þ � qjð�tÞ considered by Xia and

Wu in [45] is stable if 0a q < 1 and it is not stable if qb 1.

Consider the following Cauchy problem, for j A CE ,

q

qt
Dut ¼ A0Dut if tb 0;

uðtÞ ¼ jðtÞ if t A ½�t; 0�:

8<
:ð11Þ

This system is a strong version of an integrated once given by

Dut ¼ S 0
0ðtÞDj; tb 0;

u0 ¼ j;

�
ð12Þ

where

j A Y :¼ fj A CE : Dj A DðA0Þg:ð13Þ

Consider the general nonhomogeneous equation

Dvt ¼ hðtÞ; tb 0;ð14Þ

with the initial condition

v0 ¼ j A CE :

We have the following preliminary result.

Lemma 2.9. Assume that the conditions (H2) and (H4) are satisfied.

Then, there are positive constants a; b; c; d such that, for any e A ð0; t� su‰ciently

small and any continuous function h from ½0;þyÞ into E, the solution v of the

equation (14) satisfies the inequality

kvtka e�aðt�eÞ bkv0k þ c sup
0asae

jhðsÞj
� �

þ d sup
maxðe; t�tÞasat

jhðsÞj; tb e:ð15Þ

Proof. The idea of the proof comes from [11], in which there is the same

estimate (15) but in finite dimensional case. First, it is clear that there exist

positive constants K1;K2 and K3 such that

kvtka K1kv0k þ K2 sup
0asat

jhðsÞj
� �

eK3t; tb 0:ð16Þ
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To prove (15) we will make a transformation of variables in Equation (14) such

that hðeÞ ¼ 0.

Consider the mapping L : E ! CE be defined, for c A E and y A ½�t; 0� by

LðcÞðyÞ ¼
0; �ta ya�e;

1þ y

e

� �
c; �e < ya 0:

8><
>:ð17Þ

Since

�ta
t� e

t
y� ea�e for all y A ½�t; 0�;

(17) implies, for all c A E and y A ½�t; 0�, that

teðLðcÞÞðyÞ ¼ 0;

where te is given by (H2). Hence

PeðLðcÞÞ ¼ 0 for all c A E:

Consequently

kPðLðcÞÞka dðeÞjcj:

We can choose e A ð0; t� su‰ciently small such that

dðeÞ < 1:

We conclude that the linear operator DðLÞ : E ! E defined by

DðLÞðcÞ ¼ DðLðcÞÞ;

is invertible.

We make now the following transformation of variables in Equation (14)

zðtÞ ¼ vðtÞ � yðtÞ for tb e� t:

where y : ½e� t;þyÞ ! E is defined by

yðtÞ ¼ Lð½DðLÞ��1ðhðeÞÞÞðt� eÞ; e� ta ta e;

½DðLÞ��1ðhðtÞÞ; t > e:

(

Thus, we can rewrite Equation (14) as

DðztÞ ¼ h�ðtÞ; tb e;ð18Þ

where
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h�ðtÞ ¼ hðtÞ �DðytÞ; tb e:

Note that

yeðyÞ ¼ yðeþ yÞ ¼ Lð½DðLÞ��1ðhðeÞÞÞðyÞ for y A ½�t; 0�:

This gives

DðyeÞ ¼ DðLð½DðLÞ��1ðhðeÞÞÞÞ ¼ hðeÞ:

Hence

h�ðeÞ ¼ 0:

We can now start the proof of the estimate (15).

It is immediate that

jh�ðtÞja jhðtÞj þ K4kytk; tb e;

and

kytk ¼ sup
t�tasat

jyðsÞj; tb e:

Let s A ½t� t; t�. If t� tb e

yðsÞ ¼ ½DðLÞ��1ðhðsÞÞ;

and if t� t < e

yðsÞ ¼ Lð½DðLÞ��1ðhðeÞÞÞðs� eÞ; t� ta sa e;

½DðLÞ��1ðhðsÞÞ; e < sa t:

(

Then, we can assert that

kytkaK5 sup
maxðe; t�tÞasat

jhðsÞj; tb e;ð19Þ

and

jh�ðtÞjaK6 sup
maxðe; t�tÞasat

jhðsÞj; tb e:ð20Þ

Our next objective is to estimate kztk, for tb e.

By the superposition principle of solutions of linear systems, we have

zðtÞ ¼ z1ðtÞ þ z2ðtÞ; tb e� t;

where

Dðz1t Þ ¼ 0; tb e;

z1e ¼ ze;

�
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and

Dðz2t Þ ¼ h�ðtÞ; tb e;

z1e ¼ 0:

�

Since D is stable, it follows that

kz1t ka be�aðt�eÞkzek:

As ze ¼ ve � ye, we obtain

kzeka kvek þ K5jhðeÞj:

Applying (16), we conclude that

kvekaK7kv0k þ K8 sup
0asae

jhðsÞj:ð21Þ

This gives

kz1t ka be�aðt�eÞ K7kv0k þ ðK5 þ K8Þ sup
0asae

jhðsÞj
� �

:

We also have

kz2t kaK9 sup
easat

jh�ðsÞj;

(see, for example, Theorem 2.1 in [17] which is easy to extend to infinite

dimensional case). Then, (20) implies

kz2t kaK6K9 sup
easat

sup
maxðe; s�tÞasas

jhðsÞj
 !

aK10 sup
maxðe; t�tÞasat

jhðsÞj:

Consequently, for tb e

kztka e�aðt�eÞ bK7kv0k þ bðK5 þ K8Þ sup
0asae

jhðsÞj
� �

þ K10 sup
maxðe; t�tÞasat

jhðsÞj:

Finally, using (19) we obtain

kvtka e�aðt�eÞ bK7kv0k þ bðK5 þ K8Þ sup
0asae

jhðsÞj
� �

þ ðK5 þ K10Þ sup
maxðe; t�tÞasat

jhðsÞj:

As the interval ð0; t� is bounded, the constants Ki can be chosen independent of

e. This completes the proof. r
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The estimate (15) is very interesting because, if jhðsÞj is bounded on

½0;þyÞ, then the ultimate bound on vt as t ! þy is determined by the bound

on jhðsÞj for s in the delay interval ½t� t; t� as t ! þy.

Proposition 2.10 [4]. Assume that the conditions (H1) and (H2)

are satisfied. Then, for given j A Y there exists a unique function u A
Cð½�t;þyÞ;EÞ which solves Equation (12) and, the family of operators

ðTðtÞÞtb0, defined on Y by TðtÞj ¼ utð: ; jÞ is a C0-semigroup on Y .

The estimate (15) for hðtÞ ¼ S 0
0ðtÞDj and e ! 0, and the condition (H3)

prove the following result.

Proposition 2.11. Assume that the conditions (H1), (H2), (H3) and (H4)

are satisfied. Then, there exist constants Kb 1 and o > 0 such that

kTðtÞjkaKe�otkjk for tb 0 and j A Y :ð22Þ

As in [4], we will define a fundamental integral solution ZðtÞ, associated to

Equation (7). Consider, for c A E given, the following equation

Dzt ¼ S0ðtÞc if tb 0;

zðtÞ ¼ 0 if t A ½�t; 0�:

�
ð23Þ

Proposition 2.12. Assume that the conditions (H1) and (H2) are sat-

isfied. Then, Problem (23) has a unique solution z :¼ zð:Þc which is a con-

tinuous mapping from ½�t;þyÞ into E. Moreover, the operator ZðtÞ : E ! CE

defined by

ZðtÞc ¼ ztð:Þc

satisfies the following properties

(i) there exist ab 0 and b A R such that kZðtÞka aetb, for tb 0;

(ii) ZðtÞðEÞJY, for tb 0;

(iii) for all H > 0 there exists a constant kðHÞ > 0 such that

kZðtÞc� ZðsÞcka kðHÞjt� sj jcj for t; s A ½0;H� and c A E;

(iv) for any continuous function f : ½0;þyÞ ! E, the functions

t 7!
ð t
0

Zðt� sÞ f ðsÞds and t 7!
ð t
0

S0ðt� sÞ f ðsÞds

are continuously di¤erentiable for tb 0 and satisfy

d

dt

ð t
0

Zðt� sÞ f ðsÞds ¼ lim
h!0þ

1

h

ð t
0

Tðt� sÞZðhÞ f ðsÞds

and
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D
d

dt

ð t
0

Zðt� sÞ f ðsÞds
� �

¼ lim
h!0þ

1

h

ð t
0

S 0
0ðt� sÞS0ðhÞ f ðsÞds;

¼ d

dt

ð t
0

S0ðt� sÞ f ðsÞds:

Proof. The proof of the existence, uniqueness and continuity of the

solutions is easy and it is omitted.

The property (i) comes from (16) with hðtÞ ¼ S0ðtÞc and v0 ¼ 0.

If c A E, then S0ðtÞc A DðA0Þ, for tb 0. This implies that ZðtÞc A Y .

Then (ii) is true.

Since S0ð:Þ is locally Lipschitz continuous, then (iii) holds.

We will prove now the assertion (iv). It is clear that the functions

t 7!
ð t
0

Zðt� sÞ f ðsÞds and t 7!
ð t
0

S0ðt� sÞ f ðsÞds

are continuously di¤erentiable (see for example the proof of Theorem 2.5 in

[34]). We know by the definition of an integrated semigroup that

S 0
0ðtÞS0ðhÞc ¼ S0ðtþ hÞc� S0ðtÞc;

for t; hb 0 and c A E. On the other hand, we have

d

dt

ð t
0

S0ðt� sÞ f ðsÞds ¼ lim
h!0þ

�
1

h

ð t
0

ðS0ðtþ h� sÞ � S0ðt� sÞÞ f ðsÞds

þ 1

h

ð tþh

t

S0ðtþ h� sÞ f ðsÞds
�
:

If we put, in the second integral of the right-hand side, r ¼ 1

h
ðs� tÞ, we obtain

1

h

ð tþh

t

S0ðtþ h� sÞ f ðsÞds ¼
ð1
0

S0ðhð1� rÞÞ f ðtþ hrÞdr:

Since S0ð0Þ ¼ 0, we obtain

lim
h!0þ

1

h

ð tþh

t

S0ðtþ h� sÞ f ðsÞds ¼ 0:

Hence

d

dt

ð t
0

S0ðt� sÞ f ðsÞds ¼ lim
h!0þ

1

h

ð t
0

ðS0ðtþ h� sÞ � S0ðt� sÞÞ f ðsÞds:

It follows that, for tb 0
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d

dt

ð t
0

S0ðt� sÞ f ðsÞds ¼ lim
h!0þ

1

h

ð t
0

S 0
0ðt� sÞS0ðhÞ f ðsÞds:

On the other hand, by the definition of TðtÞ and ZðtÞ

TðtÞZðhÞc ¼ Zðtþ hÞc� ZðtÞc:

Then, we can use the same argument as above to prove that

d

dt

ð t
0

Zðt� sÞ f ðsÞds ¼ lim
h!0þ

1

h

ð t
0

Tðt� sÞZðhÞ f ðsÞds:

Consequently

D
d

dt

ð t
0

Zðt� sÞ f ðsÞds
� �

¼ lim
h!0þ

1

h

ð t
0

DðTðt� sÞZðhÞ f ðsÞÞds:

Since

DðTðsÞZðhÞcÞ ¼ S 0
0ðsÞDðZðhÞcÞ ¼ S 0

0ðsÞS0ðhÞc;

it follows that

D
d

dt

ð t
0

Zðt� sÞ f ðsÞds
� �

¼ lim
h!0þ

1

h

ð t
0

S 0
0ðt� sÞS0ðhÞ f ðsÞds;

¼ d

dt

ð t
0

S0ðt� sÞ f ðsÞds:

This proves (iv). r

Let T > 0 and j A CE such that Dj A DðA0Þ. We consider the following

definitions.

Definition 2.13. We say that a function u A Cð½�t;T �;EÞ is a mild

solution of Equation (7) if

Dut ¼ S 0
0ðtÞDjþ d

dt

ð t
0

S0ðt� sÞFðs; usÞds; 0a taT ;

u0 ¼ j:

8<
:

Note that the property (iv) of Proposition 2.12 says that the function

t 7!
Ð t
0 S0ðt� sÞF ðs; usÞds is continuously di¤erentiable. Then, it gives a sense

to Definition 2.13.

Definition 2.14. We say that a function u A Cð½�t;T �;EÞ is a strict

solution of Equation (7) if
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(i) t ! Dut A C1ð½0;T �;EÞVCð½0;T �;DðA0ÞÞ,
(ii) t 7! ut satisfies Equation (7) on ½0;T �,
(iii) u0 ¼ j.

A su‰cient condition for the mild solution of Equation (7) to be a strict

solution is given by the following lemma.

Lemma 2.15. If u is a mild solution of Equation (7) such that t !
Dut A C1ð½0;T �;EÞ, then u is a strict solution.

Proof. We know (see [34]) that if u is a mild solution of Equation (7)

then ð t
0

S0ðt� sÞF ðs; usÞds A DðA0Þ

and

Dut ¼ S 0
0ðtÞDjþ A0

ð t
0

S0ðt� sÞFðs; usÞdsþ
ð t
0

F ðs; usÞds:ð24Þ

On the other hand, since Dj A DðA0Þ, we have

S0ðtÞDj A DðA0Þ and S 0
0ðtÞDj ¼ Djþ A0S0ðtÞDj:

So, we deduce that

S0ðtÞDjþ
ð t
0

S0ðt� sÞF ðs; usÞds A DðA0Þ

and

Dut ¼ Djþ A0 S0ðtÞDjþ
ð t
0

S0ðt� sÞF ðs; usÞds
� �

þ
ð t
0

Fðs; usÞds:

It follows that ð t
0

Dus ds A DðA0Þ

and

Dut ¼ Djþ A0

ð t
0

Dus ds

� �
þ
ð t
0

Fðs; usÞds:ð25Þ

If we assume that t ! Dut A C1ð½0;T �;EÞ, then we have the existence of the

limit
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lim
h!0

A0
1

h

ð tþh

t

Dus ds

� �
¼ d

dt
Dut � Fðt; utÞ:

Since the operator A0 is closed, it follows that

lim
h!0

1

h

ð tþh

t

Dus ds

� �
¼ Dut A DðA0Þ

and

A0Dut ¼
d

dt
Dut � F ðt; utÞ:

Consequently, u is a strict solution of Equation (7). r

Proposition 2.16. If there exists a mild solution u :¼ uð: ; jÞ A
Cð½�t;T �;EÞ of Equation (7), then the function t A ½0;T � ! ut A CE satisfies

ut ¼ TðtÞjþ d

dt

ð t
0

Zðt� sÞFðs; usÞds;ð26Þ

¼ TðtÞjþ lim
h!0þ

1

h

ð t
0

Tðt� sÞZðhÞFðs; usÞds:

Conversely, if there exists a function v A Cð½0;T �;CEÞ such that

vðtÞ ¼ TðtÞjþ d

dt

ð t
0

Zðt� sÞFðs; vðsÞÞds; t A ½0;T �;ð27Þ

then vðtÞ ¼ ut, t A ½0;T �, where

uðtÞ ¼ vðtÞð0Þ; if t A ½0;T �;
jðtÞ; if t A ½�t; 0�;

�
ð28Þ

and uðtÞ is a mild solution of Equation (7).

Proof. In the beginning we have, from Proposition 2.12, the following

observation. If f : ½0;T � ! E is a continuous function, then

WðtÞ :¼
ð t
0

Zðt� sÞ f ðsÞds

is continuously di¤erentiable and W 0ð0Þ ¼ 0. Set

wðtÞ ¼ ðWðtÞÞð0Þ; if tb 0;

0; if t A ½�t; 0�:

�

Then wðtÞ is continuously di¤erentiable, and it is given by
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wðtÞ ¼
ð t
0

Zðt� sÞ f ðsÞds
� �

ð0Þ ¼
ð t
0

ðZðt� sÞ f ðsÞÞð0Þds;

¼
ð t
0

zðt� sÞ f ðsÞds:

Furthermore, for tb 0 and y A ½�t; 0�

ðWðtÞÞðyÞ ¼
ð t
0

Zðt� sÞ f ðsÞds
� �

ðyÞ ¼
ð t
0

ðZðt� sÞ f ðsÞÞðyÞds;

¼
ð t
0

zðtþ y� sÞ f ðsÞds:

Since zðsÞ ¼ 0 for s A ½�t; 0�, we haveð t
0

zðtþ y� sÞ f ðsÞds ¼
ð tþy

0

zðtþ y� sÞ f ðsÞds:

Thus it follows that ðWðtÞÞðyÞ ¼ wðtþ yÞ, that is WðtÞ ¼ wt. Furthermore,

since

lim
h!0þ

1

h
ðWðtþ hÞ �WðtÞÞ ¼ W 0ðtÞ

in the sense of supremum norm, it follows that

ðW 0ðtÞÞðyÞ ¼ lim
h!0þ

1

h
ðWðtþ hÞ �WðtÞÞ

� �
ðyÞ;

¼ lim
h!0þ

1

h
ðWðtþ hÞðyÞ �WðtÞðyÞÞ;

¼ lim
h!0þ

1

h
ðwðtþ hþ yÞ � wðtþ yÞÞ ¼ w 0ðtþ yÞ;

that is, W 0ðtÞ ¼ ðw 0Þt.
We first prove the latter half of the proposition. Suppose that vðtÞ is a

solution of Equation (27). The function TðtÞj is given by TðtÞj ¼ xt, where

x A Cð½�t;þyÞ;EÞ is the solution of DðxtÞ ¼ S 0
0ðtÞDj such that x0 ¼ j. From

the above observation, we set

wðtÞ ¼
ð t
0

zðt� sÞF ðs; vðsÞÞds:

Then it follows that

vðtÞ ¼ xt þ ðw 0Þt ¼ ðxþ w 0Þt:

Thus, if we set uðtÞ ¼ xðtÞ þ w 0ðtÞ, then vðtÞ ¼ ut and
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ut ¼ TðtÞjþ d

dt

ð t
0

Zðt� sÞFðs; vðsÞÞds;

¼ TðtÞjþ d

dt

ð t
0

Zðt� sÞFðs; usÞds:

Since

DðTðtÞjÞ ¼ S 0
0ðtÞDj;

and since

D
d

dt

ð t
0

Zðt� sÞFðs; usÞds
� �

¼ d

dt

ð t
0

S0ðt� sÞFðs; usÞds;

it follows that uðtÞ is a mild solution.

If uðtÞ is a mild solution, then from the definition of TðtÞ we have that

DðutÞ ¼ S 0
0ðtÞDjþ d

dt

ð t
0

S0ðt� sÞF ðs; usÞds;

¼ DðTðtÞjÞ þD
d

dt

ð t
0

Zðt� sÞFðs; usÞds
� �

;

¼ D TðtÞjþ d

dt

ð t
0

Zðt� sÞF ðs; usÞds
� �

;

¼ Dðxt þ ðw 0ÞtÞ;

where xðtÞ is the solution of DðxtÞ ¼ S 0
0ðtÞDj, and wðtÞ is defined as

wðtÞ ¼
ð t
0

zðt� sÞF ðs; usÞds:

Hence Dððu� ðxþ w 0ÞÞtÞ ¼ 0; consequently u� ðxþ w 0Þ ¼ 0. Therefore,

ut ¼ xt þ ðw 0Þt

¼ TðtÞjþ d

dt

ð t
0

Zðt� sÞFðs; usÞds:

This completes the proof of Proposition 2.16. r

3. Local existence and regularity of solutions

In this section, we will prove the local existence, uniqueness and regularity

of solutions of Equation (7), under the assumptions (H1), (H2) and the

following additional condition.
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–(H5) F : ½0;þyÞ � CE ! E is continuous and locally Lipschitz con-

tinuous with respect to j, i.e., for each r > 0 there exists a constant C0ðrÞ > 0

such that if tb 0, j1; j2 A CE and kj1k; kj2ka r then

jFðt; j1Þ � F ðt; j2ÞjaC0ðrÞkj1 � j2k:

Theorem 3.1. Suppose that the assumptions (H1), (H2) and (H5) are

satisfied and j A CE such that Dj A DðA0Þ. Then, there exists a maximal

interval of existence ½�t; tjÞ, tj > 0, and a unique mild solution uð: ; jÞ of

Equation (7), defined on ½�t; tjÞ and either tj ¼ þy or

lim sup
t!t�j

kutð: ; jÞk ¼ þy:

Moreover, utð: ; jÞ is a continuous function of j, in the sense that if j A CE,

Dj A DðA0Þ and t A ½0; tjÞ, then there exist positive constants L and a such that,

for c A CE, Dc A DðA0Þ and kj� ck < a, we have t A ½0; tcÞ and

kusð: ; jÞ � usð: ;cÞkaLkj� ck for all s A ½0; t�:

Proof. Note that (H5) implies that, for each r > 0 there exists C0ðrÞ > 0

such that

jF ðt; jÞja rC0ðrÞ þ jF ðt; 0Þj for tb 0; j A CE and kjka r:

Let T1 > 0. Suppose that j A CE , Dj A DðA0Þ, r :¼ kjk þ 1 and

c1 :¼ rC0ðrÞ þ sup
t A ½0;T1�

jF ðt; 0Þj:

Consider the following set

Wj :¼ v A Cð½0;T1�;CEÞ : sup
0asaT1

kvðsÞ � jka 1

( )
;

where Cð½0;T1�;CEÞ is endowed with the uniform convergence topology. It is

clear that Wj is a closed set of Cð½0;T1�;CEÞ. Consider the mapping

H : Wj ! Cð½0;T1�;CEÞ;

defined, for v A Wj and t A ½0;T1�, by

HðvÞðtÞ :¼ TðtÞjþ d

dt

ð t
0

Zðt� sÞFðs; vðsÞÞds;

¼ TðtÞjþ lim
h!0þ

1

h

ð t
0

Tðt� sÞZðhÞFðs; vðsÞÞds:

We will show that
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HðWjÞJWj:

On can remark, as in the proof of Proposition 2.2 of [34], that

lim sup
h!0þ

1

h
kZðhÞk < þy:

Then we can set

k :¼ lim sup
h!0þ

1

h
kZðhÞk:ð29Þ

We have for suitable constants M and o

kHðvÞðtÞ � jka kTðtÞj� jk þMeot
ð t
0

e�os 1

h
kZðhÞk jFðs; vðsÞÞjds:

We can assume here without loss of generality that o > 0. Thus we obtain the

estimate

kHðvÞðtÞ � jka kTðtÞj� jk þMkeot
ð t
0

jFðs; vðsÞÞjds:

Since kvðsÞ � jka 1, for s A ½0;T1� and r ¼ kjk þ 1, we obtain that kvðsÞka r,

for s A ½0;T1�. Then

jFðs; vðsÞÞjaC0ðrÞkvðsÞk þ jFðs; 0Þja c1:

Consider T1 > 0 su‰ciently small for

sup
0asaT1

fkTðsÞj� jk þMkeosc1sg < 1:

Then, we deduce, for t A ½0;T1�

kHðvÞðtÞ � jka kTðtÞj� jk þMkeotc1t < 1:

Hence

HðWjÞJWj:

On the other hand, let u; v A Wj and t A ½0;T1�. We have

kHðuÞðtÞ �HðvÞðtÞkaMkeoT1C0ðrÞT1ku� vkCð½0;T1�;CEÞ:

Note that rb 1. Then, by definition of c1, C0ðrÞa c1. Consequently

MkeoT1C0ðrÞT1 a sup
0asaT1

fkTðsÞj� jk þMkeosc1sg < 1:
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We conclude that there exists a unique function v A Wj such that HðvÞ ¼ v.

Then, Equation (7) has one and only one mild solution u : ½�t;T1� ! E defined

by

uðtÞ ¼ vðtÞð0Þ if tb 0;

jðtÞ if t A ½�t; 0�:

�

Let ½�t; tjÞ be the maximal interval of existence of u. Assume that tj < þy
and

lim sup
t!t�j

kutð: ; jÞk < þy:

Then, there exists a constant r > 0 such that kutð: ; jÞka r, for all t A ½0; tjÞ.
Let t; tþ h A ½0; tjÞ, h > 0. We obtain

utþh ¼ Tðtþ hÞjþ lim
d!0þ

1

d

ð tþh

0

Tðtþ h� sÞZðdÞFðs; usÞds;

¼ Tðtþ hÞjþ lim
d!0þ

1

d

�ð h
0

TðtÞTðh� sÞZðdÞFðs; usÞds

þ
ð tþh

h

Tðtþ h� sÞZðdÞFðs; usÞds
�

and

ut ¼ TðtÞjþ lim
d!0þ

1

d

ð t
0

Tðt� sÞZðdÞFðs; usÞds:

Since ð tþh

h

Tðtþ h� sÞZðdÞFðs; usÞds ¼
ð t
0

Tðt� sÞZðdÞF ðsþ h; usþhÞds;

we have

utþh � ut ¼ Tðtþ hÞj� TðtÞjþ lim
d!0þ

1

d

�
TðtÞ

ð h
0

Tðh� sÞZðdÞF ðs; usÞdsð30Þ

þ
ð t
0

Tðt� sÞZðdÞðFðsþ h; usþhÞ � F ðs; usÞÞds
�
:

From Proposition 2.12 (iv), we have that

lim
d!0þ

1

d

ð h
0

Tðh� sÞZðdÞF ðs; usÞds ¼
d

dh

ð h
0

Zðh� sÞFðs; usÞds:
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This means that the limit in (30) can be separated in two parts. Hence we

have

utþh � ut ¼ Tðtþ hÞj� TðtÞjþ lim
d!0þ

1

d
TðtÞ

ð h
0

Tðh� sÞZðdÞF ðs; usÞds

þ lim
d!0þ

1

d

ð t
0

Tðt� sÞZðdÞðFðsþ h; usþhÞ � F ðs; usÞÞds:

We estimate each limit in the right-side. In the beginning,

TðtÞ
ð h
0

Tðh� sÞZðdÞFðs; usÞds
����

����aMeoðtþhÞ
ð h
0

kZðdÞk jFðs; usÞjds;

aMeoðtþhÞkZðdÞkh rC0ðrÞ þ sup
s A ½0; tj�

jFðs; 0Þj
 !

:

Notice that sup
s A ½0; tj�

jF ðs; 0Þj < y since tj < y. Hence we have that

lim
d!0þ

1

d
TðtÞ

ð h
0

Tðh� sÞZðdÞFðs; usÞds
����

����aMeotjkhc2;

where

c2 :¼ rC0ðrÞ þ sup
s A ½0; tj�

jFðs; 0Þj:

In the next step, we decompose asð t
0

Tðt� sÞZðdÞðFðsþ h; usþhÞ � Fðs; usÞÞdsð31Þ

¼
ð t
0

Tðt� sÞZðdÞðF ðsþ h; usþhÞ � Fðsþ h; usÞÞds

þ
ð t
0

Tðt� sÞZðdÞðFðsþ h; usÞ � Fðs; usÞÞds:

The first integral is estimated asð t
0

Tðt� sÞZðdÞðFðsþ h; usþhÞ � F ðsþ h; usÞÞds
����

����ð32Þ

a

ð t
0

Meoðt�sÞkZðdÞkC0ðrÞkusþh � uskds;

aMeotjkZðdÞkC0ðrÞ
ð t
0

kusþh � uskds:
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The second integral is estimated asð t
0

Tðt� sÞZðdÞðF ðsþ h; usÞ � Fðs; usÞÞds
����

����
a

ð t
0

Meoðt�sÞkZðdÞk jF ðsþ h; usÞ � F ðs; usÞjds;

aMeotjkZðdÞk
ð t
0

jF ðsþ h; usÞ � F ðs; usÞjds:

We set

f ðt; hÞ :¼
ð t
0

jF ðsþ h; usÞ � F ðs; usÞjds:

Then

lim
d!0þ

1

d

ð t
0

Tðt� sÞZðdÞðFðsþ h; usþhÞ � F ðs; usÞÞds
����

����
aMeotjk C0ðrÞ

ð t
0

kusþh � uskdsþ f ðt; hÞ
� �

:

Thus we obtain that

kutþh � utkaMeotjkTðhÞj� jk þMeotjkhc2

þMeotjkC0ðrÞ
ð t
0

kusþh � uskdsþMeotjkf ðt; hÞ:

By Gronwall’s lemma, it follows that

kutþh � utkaMeotjðkTðhÞj� jk þ khc2 þ kf ðt; hÞÞ expðMeotjkC0ðrÞtÞ;

aMeotjðkTðhÞj� jk þ khc2 þ kf ðtj; hÞÞ expðMeotjkC0ðrÞtjÞ:

The bounded convergence theorem by Lebesgue implies that

lim
h!0

f ðtj; hÞ ¼ 0:

Therefore,

lim
h!0

kutþhð: ; jÞ � utð: ; jÞk ¼ 0

uniformly for t A ½0; tjÞ, and lim
t!t�j

kutð: ; jÞk exists; the solution can be continued

to the right of tj, which contradicts the maximality of ½�t; tjÞ.
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We will now prove that the solution depends continuously on the initial

data. Let j A CE , Dj A DðA0Þ and t A ½0; tjÞ fixed. We put

r ¼ 1þ sup
0asat

kusð: ; jÞk;

cðtÞ ¼ Meot expðMeotC0ðrÞktÞ:

8<
:

Let a A ð0; 1Þ such that cðtÞa < 1 and c A CE , Dc A DðA0Þ such that

kj� ck < a. We have

kcka kjk þ a < r:

Let

T0 ¼ supfs A ð0; tcÞ : kusð: ;cÞka r for all s A ½0; s�g:

If we suppose that T0 < t, we obtain for s A ½0;T0�, as in (32)

kusð: ; jÞ � usð: ;cÞkaMeot kj� ck þ C0ðrÞk
ð s
0

kusð: ; jÞ � usð: ;cÞkds
� �

:

By Gronwall’s Lemma, we deduce that

kusð: ; jÞ � usð: ;cÞka cðtÞkj� ck:

This implies that

kusð: ;cÞka cðtÞaþ r� 1 < r for all s A ½0;T0�:

It follows that T0 cannot be the largest number s > 0 such that

kusð: ;cÞka r, for all s A ½0; s�. Thus, T0 b t and t < tc. Furthermore,

kusð: ;cÞka r, for s A ½0; t�. Then, we deduce the continuous dependence on

the initial data. r

Under more restrictive conditions on F and j, we obtain strict solutions of

Equation (7).

Theorem 3.2. Assume that the hypotheses of Theorem 3.1 hold. Fur-

thermore, assume that F : ½0;þyÞ � CE ! E is continuously di¤erentiable and

DtF ;DjF satisfy the locally Lipschitz condition (H5), i.e., for each r > 0 there

exist constants C1ðrÞ;C2ðrÞ > 0 such that if tb 0, j;c A CE and kjk; kcka r

then

jDtF ðt; jÞ �DtFðt;cÞjaC1ðrÞkj� ck;
kDjF ðt; jÞ �DjFðt;cÞkaC2ðrÞkj� ck;

�

where DtF and DjF denote the derivatives. Let j A CE such that

j A C1
E :¼ C1ð½�t; 0�;EÞ, Dj A DðA0Þ, Dj 0 A DðA0Þ and Dj 0 ¼ A0Djþ Fð0; jÞ.
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Then, the unique mild solution uð: ; jÞ : ½�t; tjÞ ! E of Equation (7) is con-

tinuously di¤erentiable on ½�t; tjÞ and it is a strict solution of Equation (7).

Proof. Let j A C1
E such that Dj A DðA0Þ, Dj 0 A DðA0Þ and Dj 0 ¼

A0Djþ F ð0; jÞ. Let u :¼ uð: ; jÞ be the unique mild solution of Equation (7)

on ½�t; tjÞ. Consider the linear equation

Dvt ¼ S 0
0ðtÞDj 0 þ d

dt

ð t
0

S0ðt� sÞðDtF ðs; usÞ þDjFðs; usÞvsÞds;

v0 ¼ j 0:

8><
>:

It is clear that there is a unique solution v on ½�t; tjÞ of this equation. Define,

for tb 0, the function

g : t ! jþ
ð t
0

vs ds:

Then, for y A ½�t; 0�

gðtÞðyÞ ¼ jðyÞ þ
ð t
0

vðsþ yÞds;

¼ jðyÞ þ
ð tþy

y

vðxÞdx:

If tþ yb 0, then

gðtÞðyÞ ¼ jðyÞ þ
ð0
y

j 0ðxÞdxþ
ð tþy

0

vðxÞdx;

¼ jðyÞ þ jð0Þ � jðyÞ þ
ð tþy

0

vðxÞdx;

¼ jð0Þ þ
ð tþy

0

vðxÞdx;

¼ gðtþ yÞð0Þ:

If tþ y < 0, then

gðtÞðyÞ ¼ jðyÞ þ
ð tþy

y

j 0ðxÞdx;

¼ jðyÞ þ jðtþ yÞ � jðyÞ;

¼ jðtþ yÞ:

Thus if we define
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wðtÞ ¼ gðtÞð0Þ; for tb 0;

jðtÞ; for �ta ta 0;

�

then w : ½�t; tjÞ ! E is a continuous function, and

gðtÞ ¼ wt; tb 0:

Integrating the equation of vt, we have thatð t
0

Dvx dx ¼ S0ðtÞDj 0 þ
ð t
0

S0ðt� sÞðDtF ðs; usÞ þDjFðs; usÞvsÞds:

Since the left-hand side becomesð t
0

Dvx dx ¼ D

ð t
0

vx dx

� �
¼ DðgðtÞ � jÞ ¼ Dwt �Dj;

we have that

Dwt ¼ Djþ S0ðtÞDj 0 þ
ð t
0

S0ðt� sÞðDtFðs; usÞ þDjFðs; usÞvsÞds:

On the other hand, by assumption

Dj 0 ¼ A0Djþ Fð0; jÞ:

Then

S0ðtÞDj 0 ¼ S0ðtÞA0Djþ S0ðtÞFð0; jÞ:

Since Dj A DðA0Þ, it follows that

S0ðtÞA0Dj ¼ S 0
0ðtÞDj�Dj:

Hence

S0ðtÞDj 0 ¼ S 0
0ðtÞDj�Djþ S0ðtÞF ð0; jÞ:

Thus wt satisfies

Dwt ¼ S 0
0ðtÞDjþ S0ðtÞF ð0; jÞ þ

ð t
0

S0ðt� sÞðDtFðs; usÞ þDjFðs; usÞvsÞds:ð33Þ

Now we compute S0ðtÞFð0; jÞ. Notice thatð t
0

S0ðt� sÞF ðs;wsÞds ¼
ð t
0

S0ðsÞF ðt� s;wt�sÞds:

Since wt ¼ gðtÞ is continuously di¤erentiable, and since Fðt� s; jÞ is also

continuously di¤erentiable, it follows that F ðt� s;wt�sÞ is continuously dif-

ferentiable with respect to t. Thus we have
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d

dt

ð t
0

S0ðt� sÞFðs;wsÞds

¼ S0ðtÞFð0; jÞ þ
ð t
0

S0ðsÞ DtFðt� s;wt�sÞ þDjF ðt� s;wt�sÞ
d

dt
wt�s

� �
ds;

¼ S0ðtÞFð0; jÞ þ
ð t
0

S0ðt� sÞðDtF ðs;wsÞ þDjFðs;wsÞvsÞds:

So, we deduce that

S0ðtÞFð0; jÞ ¼
d

dt

ð t
0

S0ðt� sÞFðs;wsÞds

�
ð t
0

S0ðt� sÞðDtF ðs;wsÞ þDjFðs;wsÞvsÞds:

Therefore, Equation (33) becomes

Dwt ¼ S 0
0ðtÞDjþ d

dt

ð t
0

S0ðt� sÞF ðs;wsÞds

�
ð t
0

S0ðt� sÞðDtFðs;wsÞ þDjF ðs;wsÞvsÞds

þ
ð t
0

S0ðt� sÞðDtFðs; usÞ þDjFðs; usÞvsÞds:

Since the mild solution u satisfies

Dut ¼ S 0
0ðtÞDjþ d

dt

ð t
0

S0ðt� sÞFðs; usÞds;

we obtain

Dðut � wtÞ ¼
d

dt

ð t
0

S0ðt� sÞðF ðs; usÞ � F ðs;wsÞÞds

�
ð t
0

S0ðt� sÞðDtFðs; usÞ �DtF ðs;wsÞÞds

�
ð t
0

S0ðt� sÞðDjFðs; usÞ �DjF ðs;wsÞÞvsds:

If we choose T1 :¼ minfe; tj � tj=2g and e A ð0; t�, we obtain for t A ð0;T1Þ and

y A ½�t; 0�

�t < t� ta tþ t� e

t
y� ea t� e < 0:
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Since uðyÞ ¼ wðyÞ ¼ jðyÞ, it follows that

teðutÞðyÞ ¼ ut
t� e

t
y� e

� �
¼ u tþ t� e

t
y� e

� �
¼ j tþ t� e

t
y� e

� �
;

teðwtÞðyÞ ¼ wt

t� e

t
y� e

� �
¼ w tþ t� e

t
y� e

� �
¼ j tþ t� e

t
y� e

� �
:

Thus we have that

Peðut � wtÞ ¼ We � teðut � wtÞ ¼ 0;

and that

Dðut � wtÞ ¼ uðtÞ � wðtÞ � Pðut � wtÞ;

¼ uðtÞ � wðtÞ � ðPðut � wtÞ � Peðut � wtÞÞ:

Consequently

uðtÞ � wðtÞ ¼ Pðut � wtÞ � Peðut � wtÞ þ
d

dt

ð t
0

S0ðt� sÞðFðs; usÞ � Fðs;wsÞÞds

�
ð t
0

S0ðt� sÞðDtFðs; usÞ �DtF ðs;wsÞÞds

�
ð t
0

S0ðt� sÞðDjFðs; usÞ �DjF ðs;wsÞÞvs ds:

By using Proposition 2.12, we have that

d

dt

ð t
0

S0ðt� sÞðF ðs; usÞ � F ðs;wsÞÞds

¼ lim
h!0þ

1

h

ð t
0

Tðt� sÞZðhÞðFðs; usÞ � Fðs;wsÞÞds:

Hence we obtain, for suitable constants M, o > 0 and for all t A ½0;T1Þ,

d

dt

ð t
0

S0ðt� sÞðF ðs; usÞ � F ðs;wsÞÞds
����

����aMeoT1k

ð t
0

jFðs; usÞ � Fðs;wsÞjds:

Since S0ðtÞ is assumed to be exponentially bounded, we have also for suitable

positive constants which we label the sameð t
0

S0ðt� sÞðDtF ðs; usÞ �DtFðs;wsÞÞds
����

����aMeoT1

ð t
0

jDtFðs; usÞ �DtFðs;wsÞjds;

and
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ð t
0

S0ðt� sÞðDjFðs; usÞ �DjFðs;wsÞÞvs ds
����

����
aMeoT1

ð t
0

kDjFðs; usÞ �DjFðs;wsÞk kvskds:

Thus for all t A ½0;T1Þ

juðtÞ � wðtÞja dðeÞkut � wtk þMeoT1k

ð t
0

jF ðs; usÞ � F ðs;wsÞjds

þMeoT1

ð t
0

jDtF ðs; usÞ �DtF ðs;wsÞjds

þMeoT1

ð t
0

kDjF ðs; usÞ �DjFðs;wsÞk kvskds:

Since t < T1 a ea t, and u0 ¼ w0 ¼ j, the function kut � wtk is nondecreasing

with respect to t. Thus we can replace the left-hand side of this last inequality

by kut � wtk. As a result,

ð1� dðeÞÞkut � wtkaMeoT1k

ð t
0

jF ðs; usÞ � F ðs;wsÞjds

þMeoT1

ð t
0

jDtF ðs; usÞ �DtFðs;wsÞjds

þMeoT1

ð t
0

kDjFðs; usÞ �DjFðs;wsÞk kvskds:

We choose e > 0 such that dðeÞ < 1. Set

r :¼ max sup
�tas<T1

juðsÞj; sup
�tas<T1

jvðsÞj; sup
�tas<T1

jwðsÞj
 !

;

which is finite since T1 < tj. There exist C0ðrÞ;C1ðrÞ;C2ðrÞ > 0 such that, for

s A ½0;T1Þ

jF ðs; usÞ � F ðs;wsÞjaC0ðrÞkus � wsk;
jDtF ðt; usÞ �DtFðt;wsÞjaC1ðrÞkus � wsk;
kDjFðt; usÞ �DjFðt;wsÞkaC2ðrÞkus � wsk:

8><
>:

This implies that

kut � wtka
M

1� dðeÞ e
oT1ðkC0ðrÞ þ C1ðrÞ þ rC2ðrÞÞ

ð t
0

kus � wskds:

By the Gronwall’s Lemma, ut ¼ wt for t A ½0;T1Þ.
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We can repeat the previous argument on ½0;T2Þ, where T2 :¼
minf2e; tj � tj=2

2g and e A ð0; t�, dðeÞ < 1, with the initial condition uðtÞ for

t A ½�t;T1�. In this case, we have also, for t A ½0;T2Þ,

kut � wtka
M

1� dðeÞ e
oT2ðkC0ðrÞ þ C1ðrÞ þ rC2ðrÞÞ

ð t
0

kus � wskds:

Then, ut ¼ wt in ½0;T2Þ. Proceeding inductively we obtain ut ¼ wt in

½0; tjÞ. Finally, since

t ! Dwt ¼ DgðtÞ ¼ DjþD

ð t
0

vs ds

� �
¼ Djþ

ð t
0

Dvs ds

is continuously di¤erentiable, then the function t ! Dut is continuously dif-

ferentiable. This ends the proof of Theorem 3.2. r

4. Global existence and stability of solutions

In this section, simple results on global existence and stability of solutions

will be given. We add the following assumption

–(H6) there exist r > 0 and r A

�
0;

o

kK

�
such that j A CE , kjka r and

tb 0 implies

jF ðt; jÞja rkjk;

where k > 0 is given by (29), and Kb 1, o > 0 are given in Proposition

2.11. A spacial case of this assumption is jFðt; jÞj ¼ oðkjkÞ uniformly in

tb 0.

Theorem 4.1. If all the assumptions (H1)–(H6) are satisfied, then the

trivial solution u ¼ 0 of Equation (7) is exponentially stable.

Proof. Let j A CE such that Dj A DðA0Þ. Consider the problem

utð: ; jÞ ¼ TðtÞjþ d

dt

ð t
0

Zðt� sÞFðs; usð: ; jÞÞds:ð34Þ

We have proved in Theorem 3.1, that under the assumptions (H1), (H2) and

(H5) there exist a maximal interval of existence ½�t; tjÞ, tj > 0, and a unique

solution uð: ; jÞ of Equation (34), defined on ½�t; tjÞ and either tj ¼ þy or

lim sup
t!t�j

kutð: ; jÞk ¼ þy.

Assume that tj < þy and let e ¼ r

K
, where r > 0 and Kb 1 are given by

the condition (H6). Suppose that kjk < e and consider the positive number
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t1 ¼ supft A ½0; tjÞ : kusð: ; jÞka r for all s A ½0; t�g:ð35Þ

By the continuity of the function u, we have kusð: ; jÞka r for all s A ½0; t1�.
Then, for t A ½0; t1�,

kutð: ; jÞkaKe�otkjk þ Kk

ð t
0

e�oðt�sÞjF ðs; usð: ; jÞÞjds;

and therefore,

eotkutð: ; jÞkaKeþ Kkr

ð t
0

eoskusð: ; jÞkds:

Applying the Gronwall’s lemma to this inequality, we obtain

kutð: ; jÞkaKeeðKkr�oÞt ¼ reðKkr�oÞt < r; t A ½0; t1�:

Consequently, there exists d > 0 such that

kutð: ; jÞk < r; t A ½0; t1 þ d�:

This contradicts (35). We conclude that the solution u is global on ½�t;þyÞ
and satisfies

kutð: ; jÞka reðKkr�oÞt for tb 0 and kjk < e;

with Kkr� o < 0. r

Our next objective is to give other su‰cient conditions for the global

existence and stability of the trivial solution of Problem (7). We keep the

assumptions (H1)–(H4) and instead of the hypotheses (H5) and (H6), we make

the following conditions.

–(H7) F : Rþ � CE ! E is continuous, Fðt; 0Þ ¼ 0 and F satisfies the

following local Lipschitz condition

jF ðt; j1Þ � Fðt; j2Þja gðt; kj1k; kj2kÞkj1 � j2k

for j1; j2 A CE , where gðt; y1; y2Þ is continuous with respect to t A Rþ,

y1; y2 A Rþ, and is monotonically nondecreasing with respect to y1 and y2:

Since F ðt; 0Þ ¼ 0, (H7) implies that

jFðt; jÞja gðt; kjk; 0Þkjk:

Set

Gðt; xÞ ¼ gðt; x; 0Þx for tb 0 and xb 0:
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Then, Gðt; xÞ is monotonically nondecreasing with respect to its second

argument.

–(H8) There exist r > 0 and g A CðRþ � ½0; rÞ;RþÞ such that for each

p A ½0; rÞ, (r can take the value þy)

gðt; pÞbKpe�ot þ
ð t
0

Kke�oðt�sÞGðs; gðs; pÞÞds; tb 0;

where, o > 0 and K b 1 are given in Proposition 2.11.

Theorem 4.2. Let j A CE such that Dj A DðA0Þ and kjk < r. If all the

assumptions (H1), (H2), (H3), (H4), (H7) and (H8) are satisfied, then Problem

(7) has a unique global mild solution uð: ; jÞ : ½�t;þyÞ ! CE, and the following

inequality holds

kutð: ; jÞka gðt; kjkÞ; tb 0:

In addition, the following properties hold.

(i) If, for any e > 0, there is an h ¼ hðeÞ > 0 such that 0a p < h implies

gðt; pÞ < e for tb 0, then, the trivial solution of Problem (7) is stable. This

means that for any e > 0, there is a d ¼ dðeÞ > 0 such that kjk < d implies

kutð: ; jÞk < e for tb 0.

(ii) If

lim
t!þy

gðt; pÞ ¼ 0 for small p > 0;

then the trivial solution of Problem (7) is asymptotically stable.

Proof. Let j A CE such that Dj A DðA0Þ and kjk < r. By virtue of

Proposition 2.16, it su‰ces to prove Theorem 4.2 for the following equation

ut ¼ TðtÞjþ d

dt

ð t
0

Zðt� sÞFðs; usÞds:

Let ðvnÞn AN be a sequence of continuous functions defined for tb 0 by

v0ðtÞ ¼ TðtÞj;

vnðtÞ ¼ v0ðtÞ þ d

dt

ð t
0

Zðt� sÞF ðs; vn�1ðsÞÞds; nb 1:

8><
>:

We have, from Proposition 2.11 and Condition (H8), that

kv0ðtÞkaKe�otkjka gðt; kjkÞ:

Proposition 2.12 and Condition (H7) yield
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kv1ðtÞkaKe�otkjk þ
ð t
0

Kke�oðt�sÞgðs; kv0ðsÞk; 0Þkv0ðsÞkds;

aKe�otkjk þ
ð t
0

Kke�oðt�sÞGðs; kv0ðsÞkÞds:

Since

kv0ðsÞka gðs; kjkÞ

and Gðs; xÞ is nondecreasing with respect to x, we obtain

Gðs; kv0ðsÞkÞaGðs; gðs; kjkÞÞ:

Hence (H8) implies that

kv1ðtÞkaKe�otkjk þ
ð t
0

Kke�oðt�sÞGðs; gðs; kjkÞÞds;

a gðt; kjkÞ:

By using induction, we prove

kvnðtÞka gðt; kjkÞ for all n A N:

On the other hand, we have

kv1ðtÞ � v0ðtÞka
ð t
0

Kke�oðt�sÞgðs; kv0ðsÞk; 0Þkv0ðsÞkds:

Then

kv1ðtÞ � v0ðtÞka
ð t
0

Kke�oðt�sÞGðs; kv0ðsÞkÞds;

a

ð t
0

Kke�oðt�sÞGðs; gðs; kjkÞÞds:

Let T > 0. Since gð: ; kjkÞ and g are both continuous, we can set

a ¼ sup
s A ½0;T �

gðs; kjkÞ;

b ¼ sup
s A ½0;T �

gðs; gðs; kjkÞ; gðs; kjkÞÞ:

8><
>:

In particular

sup
s A ½0;T �

Gðs; gðs; kjkÞÞa ab:
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Hence

kv1ðtÞ � v0ðtÞkaKkabt:

In general case, we have

kvnðtÞ � vn�1ðtÞka
ð t
0

Kke�oðt�sÞgðs; kvn�1ðsÞk; kvn�2ðsÞkÞkvn�1ðsÞ � vn�2ðsÞkds;

a

ð t
0

Kke�oðt�sÞgðs; gðs; kjkÞ; gðs; kjkÞÞkvn�1ðsÞ � vn�2ðsÞkds;

aKkb

ð t
0

kvn�1ðsÞ � vn�2ðsÞkds:

So, by induction

kvnðtÞ � vn�1ðtÞka a
ðKkbtÞn

n!
:

Consequently, the limit v :¼ lim
n!y

vn exists uniformly on ½0;T �, it is continuous

on ½0;T � and it satisfies

kvðtÞka gðt; kjkÞ for t A ½0;T �:

On the other hand, we have from Proposition 2.12 and (H7)

d

dt

ð t
0

Zðt� sÞFðs; vn�1ðsÞÞds� d

dt

ð t
0

Zðt� sÞFðs; vðsÞÞds
����

����
a kK

ð t
0

e�oðt�sÞgðs; kvn�1ðsÞk; kvðsÞkÞkvn�1ðsÞ � vðsÞkds;

a kK

ð t
0

gðs; gðs; kjkÞ; gðs; kjkÞÞkvn�1ðsÞ � vðsÞkds;

a kKbT sup
s A ½0;T �

kvn�1ðsÞ � vðsÞk:

Then

d

dt

ð t
0

Zðt� sÞFðs; vn�1ðsÞÞds ���!
n!þy

d

dt

ð t
0

Zðt� sÞF ðs; vðsÞÞds

uniformly on ½0;T �. Consequently, v satisfies

vðtÞ ¼ TðtÞjþ d

dt

ð t
0

Zðt� sÞFðs; vðsÞÞds; t A ½0;T �:
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Then, if we consider the function u : ½�t;T � ! E defined by

uðtÞ ¼ vðtÞð0Þ if tb 0;

jðtÞ if ta 0;

�

we obtain

ut ¼ vðtÞ; tb 0:

To show uniqueness, suppose that wðtÞ is also a mild solution of Equation (7)

with the initial condition j. Then,

kvðtÞ � wðtÞka kKb

ð t
0

kvðsÞ � wðsÞkds;

where b ¼ sup
s A ½0;T �

gðs; kvðsÞk; kwðsÞkÞ. By Gronwall’s inequality, w ¼ v on ½0;T �.

This proves the theorem. r

We end this part with simple examples.

Examples

Let WHRn be a bounded open set with smooth boundary qW, D the

Laplace operator on W, CE :¼ Cð½�t; 0�;EÞ with E ¼ CðW;RÞ and D : CE ! E

the operator defined by ðDjÞðxÞ ¼ jð0ÞðxÞ � qjð�tÞðxÞ for j A CE , x A W and

q A ½0; 1Þ. We consider the problem

q

qt
Dutð: ; xÞ ¼ DDutð: ; xÞ � u3ðt� t; xÞ; tb 0; x A W;

uðt; xÞ ¼ 0; tb 0; x A qW;

uðy; xÞ ¼ jðy; xÞ; y A ½�t; 0�; x A W:

8>>><
>>>:ð36Þ

Problem (36) can be reformulated as an abstract semilinear neutral

functional di¤erential equations

q

qt
DUt ¼ A0DUt þ F ðUtÞ; tb 0;

Uð0Þ ¼ j;

8<
:

with

DðA0Þ ¼ fu A CðW;RÞ : Du A CðW;RÞ and u ¼ 0 on qWg;
A0u ¼ Du;

�

and F : CE ! E the nonlinear mapping defined by

F ðjÞðxÞ ¼ �j3ð�tÞðxÞ for j A CE and x A W:
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We have DðA0Þ ¼ fu A CðW;RÞ; u ¼ 0 on qWg0E.

Moreover

rðA0ÞH ð0;þyÞ

kðlI � A0Þ�1ka 1

l
for l > 0:

8<
:

This implies that A0 satisfies (H1) on E. Then, A0 is the generator of a locally

Lipschitz continuous integrated semigroup ðS0ðtÞÞtb0 on E.

We know that there are positive constants K0 b 1 and o0 > 0 such that

jS 0
0ðtÞyjaK0e

�o0tjyj; tb 0; y A DðA0Þ:

Then, (H3) is satisfied. The operator D satisfies the assumption (H2) and for

q A ½0; 1Þ the assumption (H4). Furthermore, we have

jF ðjÞj ¼ jjð�tÞj3 a kjk3; j A CE ;

and

jFðj1Þ � Fðj2Þja ðkj1k
2 þ kj1k kj2k þ kj2k

2Þkj1 � j2k:

We choose

gðp; qÞ ¼ p2 þ pqþ q2;

gðt; pÞ ¼ 2Kpe�ot:

�

Then (H5), (H6) and (H7) are satisfied. Let p > 0 and

Iðt; pÞ :¼ gðt; pÞ � Kpe�ot �
ð t
0

kKe�oðt�sÞGðgðs; pÞÞds; tb 0;

where GðpÞ :¼ gðp; 0Þp ¼ p3. Then,

Iðt; pÞ ¼ Kpe�ot � 8kK 4p3e�ot

ð t
0

e�2os ds;

¼ Kpe�ot 1� 4kK 3p2

o
ð1� e�2otÞ

� �
;

bKpe�ot 1� 4kK 3p2

o

� �
:

Consequently, for 0 < pa
1

2K

ffiffiffiffiffiffiffi
o

kK

r
, we have Iðt; pÞb 0. Hence, the condition

(H8) holds. So, we have from Theorem 4.1 or 4.2, the following result.
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Theorem 4.3. Suppose that j A CE, jð0Þ � qjð�tÞ A DðA0Þ, 0a q < 1 and

kjk su‰ciently small. Then, Problem (36) has a unique global mild solution

u A Cð½�t;þyÞ;EÞ. Furthermore, the inequality

kutð: ; jÞka 2Kkjke�ot; tb 0;

holds, and hence its trivial solution is exponentially asymptotically stable.

The same results can be obtained for the following examples

a) FðjÞðxÞ ¼ �j2ð�tÞðxÞjð0ÞðxÞ,
b) F ðjÞðxÞ ¼ �jð�tÞðxÞj2ð0ÞðxÞ,
c) FðjÞðxÞ ¼ �ðjð0ÞðxÞ � qjð�tÞðxÞÞ3.

5. Dissipativeness and existence of global attractor

In this section, we investigate the dissipativeness and the existence of

global attractor of the solution operator in the autonomous case, that is, the

system

q

qt
Dut ¼ A0Dut þ F ðutÞ; tb 0;

u0 ¼ j:

8<
:ð37Þ

We assume the following.

–(H9) F : CE ! E satisfies enough smoothness conditions to ensure that

(a) for each initial condition j A Y :¼ fj A CE : Dj A DðA0Þg, Problem

(37) has a unique global mild solution defined on ½�t;þyÞ and this solution is

continuous in j;

(b) F maps bounded subsets of Y into bounded subsets of E.

For example, if F is locally Lipschitz continuous and satisfies jFðjÞja
akjk þ b, then F satisfies the assumption (H9).

Define, for each tb 0, the nonlinear operator UðtÞ : Y ! CE by

UðtÞðjÞ ¼ utð: ; jÞ;

where uð: ; jÞ is the unique mild solution of Equation (37). We know from [4],

that

UðtÞðY ÞJY for all tb 0:

Furthermore, we have the following result.

Proposition 5.1 [4]. Assume that the conditions (H1), (H2) and (H9)

hold. Then, the family of operators ðUðtÞÞtb0 is a nonlinear strongly continuous

semigroup of continuous operators on Y, that is
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(i) Uð0Þ ¼ I ,

(ii) Uðtþ sÞ ¼ UðtÞUðsÞ for all t; sb 0,

(iii) for all j A Y, UðtÞðjÞ is a continuous function of tb 0 with values

in Y,

(iv) for all tb 0, UðtÞ is continuous from Y into Y.

Moreover,

(v) ðUðtÞÞtb0 satisfies, for j A Y, tb 0 and y A ½�t; 0�, the translation

property

ðUðtÞðjÞÞðyÞ ¼ ðUðtþ yÞðjÞÞð0Þ if tþ yb 0;

jðtþ yÞ if tþ ya 0:

�
Let us consider, in addition, the following assumption.

–(H10) The C0-semigroup S 0
0ðtÞ : Y ! Y is compact for each t > 0.

Theorem 5.2. Assume that the assumptions (H1)–(H4), (H9) and (H10)

hold and for all tb 0, UðtÞ maps bounded subsets of Y into bounded subsets.

Then, the semigroup ðUðtÞÞtb0 is an a-contraction on Y in the sense that

UðtÞðjÞ ¼ TðtÞjþ VðtÞðjÞ; j A Y ;

where VðtÞ is a compact operator for each t > 0 and TðtÞ is the C0-semigroup

given by Proposition 2.10.

Proof. We will use the same arguments as in [23] in the paper. In the

beginning, Proposition 2.10 implies that

DðTðtÞjÞ ¼ S 0
0ðtÞDj:

On the other hand, by Proposition 2.11

kTðtÞjkaKe�otkjk;

and from definition of mild solutions

DðUðtÞðjÞÞ ¼ S 0
0ðtÞDjþ d

dt

ð t
0

S0ðt� sÞFðUðsÞðjÞÞds:

Let VðtÞðjÞ ¼ vt ¼ UðtÞðjÞ � TðtÞj. Then

Dvt ¼ DðUðtÞðjÞÞ � S 0
0ðtÞDj ¼ d

dt

ð t
0

S0ðt� sÞFðUðsÞðjÞÞds;

v0 ¼ 0:

8<
:ð38Þ

Consequently, from Proposition 2.12 we obtain

Dvt ¼ f ðt; jÞ :¼ lim
h!0þ

1

h

ð t
0

S 0
0ðt� sÞS0ðhÞFðUðsÞðjÞÞds:
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Let B be a bounded subset of Y , we will show that for each tb 0, DVðtÞðBÞ
is totally bounded in E. By assumption UðtÞðBÞ is bounded in Y and

F ðUðtÞðBÞÞ is bounded in E. Since S0ð:Þ is locally Lipschitz continuous and

S0ð0Þ ¼ 0, it is not di‰cult to see that the following set

1

h
S0ðhÞF ðUðtÞðjÞÞ : h A ð0;H�; t A ½0; s� and j A B

� 


is contained in a bounded subset of E; that is, there exists a constant c such

that

1

h
S0ðhÞF ðUðtÞðjÞÞ

����
����a c; for h A ð0;H�; t A ½0; s� and j A B:

We prove that, for t A ½0; s�,

LðtÞ :¼ 1

h

ð t
0

S 0
0ðsÞS0ðhÞFðUðt� sÞðjÞÞds : h A ð0;H� and j A B

� 


is totally bounded in E. If 0 < d < ta s, we can write

1

h

ð t
0

S 0
0ðsÞS0ðhÞFðUðt� sÞðjÞÞds ¼

ð d
0

S 0
0ðsÞ

1

h
S0ðhÞF ðUðt� sÞðjÞÞds

þ
ð t
d

S 0
0ðsÞ

1

h
S0ðhÞF ðUðt� sÞðjÞÞds:

At first we obtain, from (H3)

ð d
0

S 0
0ðsÞ

1

h
S0ðhÞF ðUðt� sÞðjÞÞds

����
����a

ð d
0

K0e
�o0sc ds;

a
cK0

o0
ð1� e�o0dÞ:

Let e > 0. Then we can take a d > 0 such thatð d
0

S 0
0ðsÞ

1

h
S0ðhÞFðUðt� sÞðjÞÞds

����
����a e:

Next we rewriteð t
d

S 0
0ðsÞ

1

h
S0ðhÞFðUðt� sÞðjÞÞds ¼ S 0

0ðdÞ
ð t
d

S 0
0ðs� dÞ 1

h
S0ðhÞFðUðt� sÞðjÞÞds:

Then
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ð t
d

S 0
0ðs� dÞ 1

h
S0ðhÞFðUðt� sÞðjÞÞds

����
����a

ð t
d

K0e
�o0ðs�dÞc ds;

a
cK0

o0
ð1� e�o0ðt�dÞÞ:

Since S 0
0ðdÞ is compact, the set

S 0
0ðdÞ

ð t
d

S 0
0ðs� dÞ 1

h
S0ðhÞF ðUðt� sÞðjÞÞds : h A ð0;H� and j A B

� 

is totally bounded. Hence the set LðtÞ is totally bounded, that is, it is

contained in a compact subset of E. Then the following set is contained in the

same compact subset:

lim
h!0þ

1

h

ð t
0

S 0
0ðsÞS0ðhÞFðUðt� sÞðjÞÞds : j A B

� 

:

Next we will show that the family ft 7! f ðt; jÞg, j A B, is equicontinuous in

t. Suppose that 0a t < t 0. Then

1

h

ð t 0
0

S 0
0ðt 0 � sÞS0ðhÞFðUðsÞðjÞÞds�

ð t
0

S 0
0ðt� sÞS0ðhÞF ðUðsÞðjÞÞds

 !�����
�����ð39Þ

a

ð t 0
t

kS 0
0ðt 0 � sÞk 1

h
jS0ðhÞFðUðsÞðjÞÞjds

þ
ð t
0

ðS 0
0ðt 0 � tÞ � IÞS 0

0ðt� sÞ 1
h
S0ðhÞF ðUðsÞðjÞÞ

����
����ds:

The first term in the right side of (39) is estimated asð t 0
t

kS 0
0ðt 0 � sÞk 1

h
jS0ðhÞFðUðsÞðjÞÞjdsa

ð t 0
t

K0e
�o0ðt 0�sÞ 1

h
kS0ðhÞk jFðUðsÞðjÞÞjds;

a ðt 0 � tÞK0 sup
1

h
kS0ðhÞk jFðUðsÞðjÞÞj : 0 < haH; ta sa t 0; j A B

� 

:

Let 0 < d < t. The second term in the right side of (39) is separated asð t
0

ðS 0
0ðt 0 � tÞ � IÞS 0

0ðt� sÞ 1
h
S0ðhÞFðUðsÞðjÞÞ

����
����dsð40Þ

¼
ð t�d

0

ðS 0
0ðt 0 � tÞ � IÞS 0

0ðt� sÞ 1
h
S0ðhÞFðUðsÞðjÞÞ

����
����ds

þ
ð t
t�d

ðS 0
0ðt 0 � tÞ � IÞS 0

0ðt� sÞ 1
h
S0ðhÞFðUðsÞðjÞÞ

����
����ds:
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The second term in the right side of (40) is estimated asð t
t�d

ðS 0
0ðt 0 � tÞ � IÞS 0

0ðt� sÞ 1
h
S0ðhÞF ðUðsÞðjÞÞ

����
����ds

a

ð t
t�d

ðK0 þ 1ÞK0
1

h
kS0ðhÞk jF ðUðsÞðjÞÞjds;

a dðK0 þ 1ÞK0 sup
1

h
kS0ðhÞk jFðUðsÞðjÞÞj : 0 < haH; 0a sa t; j A B

� 

:

Let e > 0. Then we can take a d > 0 such that the last term in this inequality

is less than e. Fix such a d > 0. The first term in the right side of (40) is then

estimated asð t�d

0

ðS 0
0ðt 0 � tÞ � IÞS 0

0ðt� sÞ 1
h
S0ðhÞFðUðsÞðjÞÞ

����
����ds

¼
ð t�d

0

ðS 0
0ðt 0 � tÞ � IÞS 0

0ðdÞS 0
0ðt� d� sÞ 1

h
S0ðhÞFðUðsÞðjÞÞ

����
����ds:

Since

S 0
0ðt� d� sÞ 1

h
S0ðhÞFðUðsÞðjÞÞ

����
����aK0e

�o0ðt�d�sÞ 1

h
kS0ðhÞk jFðUðsÞðjÞÞj

aK0 sup
1

h
kS0ðhÞk jF ðUðsÞðjÞÞj : 0 < haH; 0a sa t� d; j A B

� 

;

and S 0
0ðdÞ is a compact operator, there exists a d1 > 0 such that if t < t 0 <

tþ d1 then

ðS 0
0ðt 0 � tÞ � IÞS 0

0ðdÞS 0
0ðt� d� sÞ 1

h
S0ðhÞF ðUðsÞðjÞÞ

����
����< e

t� d
;

for 0 < haH, 0a sa t� d and j A B. This implies that if t < t 0 < tþ d1,

0 < haH and j A B the first term in the right side of (40) is less than

e. Therefore, if jt 0 � tj is small enough, 0 < haH and j A B, then

1

h

ð t 0
0

S 0
0ðt 0 � sÞS0ðhÞFðUðsÞðjÞÞds� 1

h

ð t
0

S 0
0ðt� sÞS0ðhÞF ðUðsÞðjÞÞds

�����
�����< e:

Let ðjkÞkb0 be a bounded sequence in Y . Then there exists a sub-

sequence, which we label the same, such that the sequence ð f ðt; jkÞÞkb0

converges in E as k ! þy uniformly on ½0; s� to some function f ðtÞ A E. Let

vk be the solution of Equation (38) in the paper with j ¼ jk. Then,
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Dðvkt � v
j
t Þ ¼ f ðt; jkÞ � f ðt; jjÞ;

vk0 � v
j
0 ¼ 0:

(

From Lemma 2.9 in the paper, we deduce that there exists a positive constant c

such that

kvkt � v
j
t ka c sup

0asat

j f ðs; jkÞ � f ðs; jjÞj:

This implies that the sequence ðvkt Þkb0 is a Cauchy sequence, which proves that

VðtÞ is a completely continuous operator on Y . This completes the proof of

the theorem. r

Let ðX ; j � jÞ be a Banach space. We recall the following definitions.

Definition 5.3 [21]. A family of mappings WðtÞ : X ! X , tb 0, is said

to be a Cr-semigroup, rb 0, provided that

(i) Wð0Þ ¼ I ,

(ii) Wðtþ sÞ ¼ WðtÞWðsÞ for all t; sb 0,

(iii) WðtÞx is continuous in t; x together with Fréchet derivatives in x

up through order r for ðt; xÞ A Rþ � X .

Definition 5.4 [21]. Let WðtÞ : X ! X be a Cr-semigroup for some

rb 0.

(i) A set BHX is said to attract a set CHX under WðtÞ if

distðWðtÞC;BÞ ! 0 as t ! þy.

(ii) A set SHX is said to be invariant if, for any x A S, there is a

complete orbit gðxÞ through x such that gðxÞHS.

(iii) Wð:Þ is asymptotically smooth if, for any nonempty, closed, bounded

set BHX for which WðtÞBHB, there is a compact set JHB such that J

attracts B.

(iv) A compact invariant set A is said to be a maximal compact

invariant set if every compact invariant set of the semigroup belongs to A.

(v) An invariant set A is said to be a global attractor if A is maximal

compact invariant set which attracts each bounded set BHX .

As a consequence of Theorem 5.2, we obtain the following result.

Proposition 5.5. Under the same assumptions as in Theorem 5.2, the

semigroup Uð:Þ is asymptotically smooth on Y.

The proof is based on the following lemma.

Lemma 5.6 [21]. For each tb 0, suppose that WðtÞ ¼ W1ðtÞ þW2ðtÞ :
X ! X has the property that W1ðtÞ is completely continuous and there is a

continuous function k : Rþ � Rþ ! Rþ such that kðt; rÞ ! 0 as t ! þy and
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jW2ðtÞxja kðt; rÞ if jxja r. Then, the semigroup WðtÞ is asymptotically smooth

on X.

Definition 5.7. The semigroup ðWðtÞÞtb0 on X is said to be point

dissipative (compact dissipative) if there is a bounded set BHX that attracts

each point of X (each compact set of X ) under WðtÞ.

It follows from Hale [21] and Theorem 5.2 that the following result is true.

Theorem 5.8. Assume that the assumptions of Theorem 5.2 are satisfied.

(i) If the semigroup Uð:Þ is compact dissipative, then there exists a global

attractor A for Uð:Þ.
(ii) If the semigroup Uð:Þ is point dissipative and orbits of bounded sets are

bounded, then there exists a global attractor A for Uð:Þ.
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