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Abstract. In this paper we characterize the existence of large solutions for a general

class of porous medium logistic equations in the presence of a vanishing carrying

capacity. The decay rate of the carrying capacity at the boundary of the underlying

domain determines the exact blow-up rate of the large solutions. Its explicit knowledge

allows us to obtain a general uniqueness result.

1. Introduction

In this work we study the existence, the blow up rate and the uniqueness of

the classical positive solutions to the singular boundary value problem

�Du ¼ WðxÞuq � aðxÞ f ðuÞ in W

u ¼ y on qW

�
ð1:1Þ

where W is a bounded domain of RN , Nb 1, with boundary qW of class C2,

W A LyðWÞ, 0 < q < 1, and, for some a A ð0; 1Þ, a A CaðW;RþÞ, where Rþ :¼
½0;þyÞ satisfies the following structural assumption:

(H1) The open set

Wþ :¼ fx A W : aðxÞ > 0g

is connected with boundary qWþ of class C2, and the open set

W0 :¼ WnWþ

satisfies W0 HW; thus, a can vanish in some region of W, as well as on

some piece of qW.

The function f is assumed to satisfy the following:
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(H2) f A C1ðRþ;RþÞ satisfies f ð0Þ ¼ 0, f ðsÞ > 0 for each s > 0, f is increas-

ing, and limt#0 t
�qf ðtÞ ¼ 0.

(H3) t 7! t�qf ðtÞ is increasing in R
�

þ :¼ ð0;þyÞ.
(H4)

Ðy
1 ð
Ð s
0 f Þ�1=2

ds < y.

The solutions of (1.1) are usually known as the large solutions of

�Du ¼ WðxÞuq � aðxÞ f ðuÞ in W: ð1:2Þ

Most precisely, by a large solution of (1.2) it is meant any classical strong

solution u such that

lim
distðx;qWÞ#0

uðxÞ ¼ y:

Problem (1.1) arises in studying the large positive solutions of the logistic

porous medium equation

�Dvm ¼ WðxÞv� aðxÞvp in W

v ¼ y on qW

�
ð1:3Þ

where p > m > 1. Indeed, the change of variable u ¼ vm transforms (1.3) into

(1.1) with q ¼ 1

m
and f ðuÞ ¼ up=m, and, in this case, f satisfies all the assump-

tions (H2–4).

Our main existence result reads as follows:

Theorem 1.1. Assume (H1–3) and

lim
t"y

t�qf ðtÞ ¼ y: ð1:4Þ

Then, (1.1) possesses a non-negative solution if and only if (H4) holds.

In the special case when W ¼ 0 and a is separated away from zero on qW,

Theorem 1.1 was found by A. V. Lair [13]. In the special case when f ðuÞ ¼ up

and WðxÞ ¼ l A R, Theorem 1.1 was obtained by M. Delgado et al. [7].

Finally, F. C. Cirstea and V. Radulescu [5], [6], found the existence in the

special case when q ¼ 1 and W ¼ l A R. Theorem 1.1 substantially extends

and unifies all previous existence results.

Subsequently, we denote by n : qW ! RN , x 7! nðxÞ :¼ nx, the outward

unit normal vector-field of W, and, for each o A ð0; p=2Þ,

Cx0;o :¼ x A W : angleðx� x0;�nx0
Þa p

2
� o

� �
:

To state the results concerning the blow-up rate and the uniqueness of the non-

negative large solutions of (1.1) we need to introduce some additional hypothesis

on f . Namely,
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(H5) There exist p > 1 and K > 0 such that limu"y u�pf ðuÞ ¼ K .

(H6) There exist x0 A qW, b :¼ bðx0Þ > 0 and g :¼ gðx0Þb 0 such that

lim
x!x0

aðxÞ
b½distðx; qWÞ�g ¼ 1: ð1:5Þ

(H7) There exist b A CðqW;R
�

þÞ and g A CðqW;RþÞ such that

lim
x!x0

aðxÞ
bðx0Þ½distðx; qWÞ�gðx0Þ

¼ 1 uniformly in x0 A qW: ð1:6Þ

(H8) W b 0 and the map u 7! f ðuÞ
u

is increasing in ð0;yÞ,

Then, our main result reads as follows.

Theorem 1.2. Suppose f satisfies (H2–3) and (H5–6). Then, for each

o A ð0; p=2Þ and any positive solution u of (1.1), one has that

lim
x!x0

x ACx0 ;o

uðxÞ
M½distðx; qWÞ��a ¼ 1; ð1:7Þ

where

a :¼ gþ 2

p� 1
; M :¼ aðaþ 1Þ

bK

� �1=ðp�1Þ
: ð1:8Þ

In particular, for any pair ðu1; u2Þ of positive classical solutions of (1.1),

lim
x!x0

x ACx0 ;o

u1ðxÞ
u2ðxÞ

¼ 1: ð1:9Þ

Moreover, if, in addition, (H7) is satisfied, then lim
x!x0

uðxÞ
Mðx0Þ½distðx; qWÞ��aðx0Þ

¼ 1

uniformly in x0 A qW, where

aðx0Þ :¼
gðx0Þ þ 2

p� 1
; Mðx0Þ :¼

aðx0Þðaðx0Þ þ 1Þ
bðx0ÞK

� �1=ðp�1Þ
; x0 A qW:

Therefore, for any pair ðu1; u2Þ of positive solution of (1.1), lim
x!x0

u1ðxÞ
u2ðxÞ

¼ 1

uniformly in x0 A qW. Furthermore, if, in addition, (H8) holds, then, (1.1)

possesses a unique positive solution.

Note that if (H8) is satisfied, then u 7! f ðuÞ
uq

¼ f ðuÞ
u

u1�q is increasing, since

q < 1, and, hence, (H3) is satisfied. Also, note that (H5) implies (1.4) and,

(H4). Therefore, under the assumptions of Theorem 1.2, Theorem 1.1 guar-

antees that (1.1) possesses a solution. Theorem 1.2 provides us with the blow-

up rate of these solutions and with a su‰cient condition for the uniqueness.
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Theorem 1.2 is a substantial extension of the main result of J. López-

Gómez [16], obtained for the very special case when q ¼ 1 and f ðuÞ ¼ up.

Even in this special situation, Theorem 1.2 is a very sharp improvement of Y.

Du & Q. Huang [8, Theorem 2.8] and J. Garcı́a-Melián et al. [9, Theorem 1],

where it was assumed that

aðxÞ ¼ b½distðx; qWÞ�g½1þ r distðx; qWÞ þ oðdistðx; qWÞÞ� as

distðx; qWÞ # 0

for some constants b > 0, gb 0, and r A R, and, hence,

lim
x!x0

aðxÞ
b½distðx; qWÞ�g ¼ 1 uniformly in x0 A qW;

while, in the present paper, the weight function aðxÞ is allowed to decay

towards zero on qW with arbitrary rates, depending upon the particular

point, or region, of qW. Hence, aðxÞ might exhibit several di¤erent decays

at qW.

Some pioneering results were given by J. B. Keller [11], R. Osserman [17],

C. Loewner & L. Nirenberg [14], C. Bandle & M. Marcus [2], [3], [4], V. A.

Kondratiev & V. A. Nikishin [10], L. Véron [18], and M. Marcus & L. Véron

[12], although most of them were found for very special cases where q ¼ 1 and

a is a positive constant.

The distribution of this paper is as follows. In Section 2 we collect some

preliminary results of a technical nature that are going to be used later. In

Section 3 we give the proof of Theorem 1.1. In Section 4 we prove Theorem

1.2.

2. Some preliminary results

In this section we collect two results of technical character that are going

to be very useful for proving Theorem 1.1. Throughout, we assume f to

satisfy (H2–4).

Lemma 2.1. Suppose f satisfies (H2–4). Then, (1.4) is satisfied. In par-

ticular, lim
t"y

f ðtÞ ¼ y.

Proof. Thanks to (H3),

lim
t"y

t�qf ðtÞ ¼ L A ð0;y�:

Suppose L A R. Then, there exists B1 > 0 such that f ðtÞa ðLþ 1Þtq for each

tbB1 and, hence, for each sbB1,
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ð s
0

f ¼ C þ
ð s
B1

f aC þ Lþ 1

qþ 1
ðsqþ1 � B

qþ1
1 Þ ¼ C1 þ

Lþ 1

qþ 1
sqþ1:

for some constants C;C1 > 0, whose explicit knowledge is not important.

Thus, ðy
1

ð s
0

f

� ��1=2

dsb

ðy
1

C1 þ
Lþ 1

qþ 1
sqþ1

� ��1=2

ds ¼ y

since
qþ 1

2
< 1. As this relation again contradicts (H4), necessarily L ¼ y.

This concludes the proof. r

Subsequently, we consider the function h defined by

hðtÞ :¼ Af ðtÞ � ltq ¼ tqðAt�qf ðtÞ � lÞ ð2:1Þ

for certain constants A > 0 and l > 0 to be chosen later. Due to (H2), h A
C1ðR

�

þ;RþÞ, hð0Þ ¼ 0, limt#0 h
0ðtÞ ¼ �y. Actually,

lim
t#0

t�qhðtÞ ¼ �l:

Moreover, thanks to (H3), t�qhðtÞ is increasing in t > 0, if 0 < t < t0. On the

other hand, thanks to Lemma 2.1, limt"y t�qf ðtÞ ¼ y. Hence, there exists a

unique t0 > 0 such that hðtÞ < 0 if 0 < t < t0, hðt0Þ ¼ 0, and hðtÞ > 0 for each

t > t0. In particular,

hðtÞ > 0 and h 0ðtÞ > 0 for each t > t0: ð2:2Þ

It should be noted that t0 depends on A and l. The value t0 that we have just

constructed satisfies the following result.

Proposition 2.2. Suppose f satisfies (H2–4). Then, for each z > t0,

IðzÞ :¼
ðy
z

ð s
z

hðtÞdt
� ��1=2

ds < y;

and

lim
z#t0

IðzÞ ¼ y:

Proof. Setting

gðsÞ :¼
ð s
z

hðtÞdt; s > z;

IðzÞ, z > t0, can be expressed as
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IðzÞ ¼
ðy
z

½gðsÞ��1=2
ds:

Note that gðzÞ ¼ 0 and g 0ðzÞ ¼ hðzÞ > 0, since z > t0, and, hence,

lim
s#z

½gðsÞ��1=2

ðs� zÞ�1=2
¼ lim

s#z

gðzÞ þ g 0ðzÞðs� zÞ þ oðs� zÞ
s� z

� ��1=2

¼ ½hðzÞ��1=2: ð2:3Þ

Moreover, by l’Hôpital rule and Lemma 2.1,

lim
s"y

gðsÞÐ s
0 f ðtÞdt

¼ lim
s"y

g 0ðsÞ
f ðsÞ ¼ lim

s"y

hðsÞ
f ðsÞ ¼ A;

and, hence,

lim
s"y

½gðsÞ��1=2

½
Ð s
0 f ðtÞdt��1=2

¼ A�1=2: ð2:4Þ

Thanks to (H4), (2.3) and (2.4), it is apparent, by the asymptotic comparison

test for improper integrals, that IðzÞ < y.

Finally, setting

GðuÞ :¼
ð u
t0

hðsÞds; ub t0;

we have

Gðt0Þ ¼ 0 ; G 0ðt0Þ ¼ hðt0Þ ¼ 0:

For which one can easily obtain limz#t0 IðzÞ ¼ y. r

3. Proof of Theorem 1.1

For each b > 0 we consider the following auxiliary boundary value problem

�Du ¼ WðxÞuq � aðxÞ f ðuÞ in W;

u ¼ b on qW:

�
ð3:1Þ

The following result, whose proof can be easily adapted from [7, Theorem 3.1],

is needed in proving Theorem 1.1.

Proposition 3.1. Assume (H2). Then, (3.1) possesses a maximal non-

negative solution, denoted by y½W ;b�. If, in addition, (H3) holds and W ¼ l A R,

or W A Ly
þ ðWÞ, then y½W ;b� is the unique nonnegative solution of (3.1). In any

circumstance, the map b 7! y½W ;b� is increasing.

The most crucial result in proving Theorem 1.1 is the next one.
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Theorem 3.2. Suppose W A LyðWÞ, a A C aðW;R
�

þÞ, 0 < a < 1, and

(H2–4). Then, for each compact subset KHWþ, there exists a constant M :¼
MðKÞ such that any nonnegative regular solution, v, of

�Du ¼ WðxÞuq � aðxÞ f ðuÞ ð3:2Þ

satisfies

kvkCðKÞ aM:

Proof. Let KHWþ be compact, and pick x0 A K . It su‰ces to prove

that there exist rðx0Þ > 0 and Mðx0Þ > 0 such that B :¼ Brðx0Þðx0ÞHWþ
and

kvkCðBÞ aMðx0Þ

for any nonnegative regular solution v of (3.2).

Consider rðx0Þ > 0 such that B :¼ Brðx0Þðx0ÞHWþ and a nonnegative

regular solution of (3.2), say v. Then,

�Dv ¼ WðxÞvq � aðxÞ f ðvÞa lvq � Af ðvÞ;

where we have denoted

l :¼ kWkLyðWÞ; A ¼ min
B

a > 0: ð3:3Þ

Let h be the function defined in (2.1) with the choice (3.3) and t0 the unique

positive zero of h. Now, for each

b > max max
qB

v; t0 þ 1

� �

consider the auxiliary problem

�Du ¼ luq � Af ðuÞ in B

u ¼ b on qB:

�
ð3:4Þ

Thanks to Proposition 3.1, (3.4) possesses a unique nonnegative regular solu-

tion, y½l;b�. Moreover, due to Lemma 2.1 su‰ciently large positive constants

provide us with positive supersolutions of (3.4). Thus, since v is a subsolution,

it is apparent, from the uniqueness, that

va y½l;b�:

By the uniqueness of the positive solution of (3.4) and the rotational invariance

of the Laplacian, for each x A B,

y½l;b�ðxÞ ¼ CbðrÞ; r :¼ jx� x0j;
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where Cb is the unique positive solution of

C 00
b ðrÞ þ

N � 1

r
C 0

bðrÞ ¼ hðCbðrÞÞ; r A ð0; rðx0ÞÞ;

C 0
bð0Þ ¼ 0; Cbðrðx0ÞÞ ¼ b:

8<
: ð3:5Þ

Since bb t0 þ 1, adapting the proof of [7, Theorem 4.1], it is easy to see that

Cb b t0, hðCbÞ > 0, h 0ðCbÞ > 0. The functions Cb satisfy

ðrN�1C 0
bðrÞÞ

0 ¼ rN�1hðCbðrÞÞ ð3:6Þ

and, hence, integrating (3.6) from 0 to r yields

C 0
bðrÞ ¼ r1�N

ð r
0

sN�1hðCbðsÞÞds > 0 ð3:7Þ

This shows that r ! CbðrÞ is increasing, as well as r ! hðCbðrÞÞ. Thus we find

from (3.7) that

C 0
bðrÞa r1�NhðCbðrÞÞ

ð r
0

sN�1 ds ¼ r

N
hðCbðrÞÞ: ð3:8Þ

Now, substituting (3.8) into (3.5) gives C 00
b b

hðCbÞ
N

; moreover, since Cb b 0,

(3.5) gives C 00
b a hðCbÞ and hence,

hðCbÞbC 00
b b

hðCbÞ
N

: ð3:9Þ

We now multiply (3.9) by C 0
b and integrate from 0 to r to obtain

2

ðCbðrÞ

Cbð0Þ
hðzÞdzb ½C 0

bðrÞ�
2
b

2

N

ðCbðrÞ

Cbð0Þ
hðzÞdz: ð3:10Þ

Now, taking the square root of the reciprocal of (3.10) and integrating again

gives

1ffiffiffi
2

p
ðCbðrÞ

Cbð0Þ

ð u
Cbð0Þ

hðsÞds
" #�1=2

dua ra

ffiffiffiffiffi
N

2

r ðCbðrÞ

Cbð0Þ

ð u
Cbð0Þ

hðsÞds
" #�1=2

du ð3:11Þ

and in particular

rðx0Þa
ffiffiffiffiffi
N

2

r ð b
Cbð0Þ

ð s
Cbð0Þ

hðtÞdt
" #�1=2

ds:

Note that Cbð0Þ > t0 and hðtÞ > 0 for each t > Cbð0Þ. Thus, since h 0 > 0,

rðx0Þa
ffiffiffiffiffi
N

2

r ðy
Cbð0Þ

ð s
Cbð0Þ

hðtÞdt
" #�1=2

ds
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and, thanks to Proposition 2.2, Cbð0Þ must be bounded above by a universal

constant—independent of b—. Finally, arguing as in the proof of [7, Theorem

4.1] concludes the proof (see also [15]). r

Now, we establish the su‰ciency part of Theorem 1.1.

Proposition 3.3. Suppose (H1–4). Then, (1.1) possesses a solution.

Proof. The proof follows the general scheme of the proof of [7, Theorem

5.1]. Considering the point-wise limit

Y½W � :¼ lim
b"y

y½W ;b�;

it su‰ces to show that Y½W � solves (1.1).

Thanks to (H1), for each su‰ciently small d > 0,

Kd :¼ fx A W : distðx; qWÞa dgHWþ; Dd :¼ WnKd;

and, for each of those d’s, there exists an open set Od satisfying

qDd HOd HOd HWþ:

Fix one of those d’s. Then, thanks to Theorem 3.2, there exists a constant

M > 0 such that, for each b > 0,

ky½W ;b�kCðqDdÞ a ky½W ;b�kCðOdÞ aM ð3:12Þ

and, hence,

y½W ;b� a y½kWkLyðWÞ;M � in Dd;

where y½kWkLy ðWÞ;M � stands for the unique solution of

�Du ¼ kWkLyðWÞu
q � aðxÞ f ðuÞ in Dd;

u ¼ M on qDd:

�
ð3:13Þ

This shows that the point-wise limit Y½W � is well defined. Now, we take two

open sets O;O1 and a su‰ciently small d > 0 so that

O1 HO1 HOHOHDd HDd HW:

By the elliptic Lp-estimates and Morrey’s theorem, there exists a constant

C > 0 such that, for each b > 0,

ky½W ;b�kC 1ðO1Þ aC:

From these estimates the details of the proof can be easily completed by using

a rather standard compactness argument and the uniqueness of the point-wise

limit. r
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To complete the proof of Theorem 1.1 it remains to show that, under

conditions (H1–3) and (1.4), (H4) is necessary for the existence of a large

solution. We begin by establishing the following result.

Proposition 3.4. Suppose (H1–3), (1.4), m < 0, A > 0, and the problem

�Du ¼ muq � Af ðuÞ in W

u ¼ y on qW

�
ð3:14Þ

possesses a solution. Then, (H4) is satisfied.

Proof. Suppose, in addition, that W ¼ BRðx0Þ is the ball of radius R > 0

centered at x0 A RN , and let u be any solution of (3.14) in this special case.

Then, due to the theory developed in pages 506 and 507 of [11] (cf. [17] as

well), u must be radially symmetric, uðxÞ ¼ jðrÞ, r ¼ jx� x0j, and, setting

hðtÞ :¼ Af ðtÞ � mtq;

gives

1ffiffiffi
2

p
ðy
uðx0Þ

ð z
uðx0Þ

hðsÞds
" #�1=2

dzaR; ð3:15Þ

because of (3.11).

Since ðy
1

ð z
0

f

� ��1=2

dz ¼
ð uðx0Þ

1

ð z
0

f

� ��1=2

dzþ
ðy
uðx0Þ

ð z
0

f

� ��1=2

dz

and the first term of the right hand side of this identity is finite, to prove (H4) it

su‰ces to show that ðy
uðx0Þ

ð z
0

f

� ��1=2

dz < y: ð3:16Þ

Since f > 0, for each M > 0 and z > M we haveð z
0

f b

ð z
M

f ¼
ð z
M

s�qf ðsÞsq dsb f ðMÞ
Mq

ð z
M

sq ds ¼ f ðMÞ
ðqþ 1ÞMq

ðzqþ1 �Mqþ1Þ;

because s 7! s�qf ðsÞ is increasing in ð0;yÞ. Thus, for each M > 0,

lim
z"y

Ð z
0 f

zqþ1
b

f ðMÞ
ðqþ 1ÞMq

and, hence, due to (1.4),

lim
z"y

Ð z
0 f

zqþ1
b

1

qþ 1
lim
M"y

f ðMÞ
Mq

¼ y:
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Consequently,

lim
z"y

Ð z
uðx0Þ hÐ z
0 f

¼ lim
z"y

A
Ð z
0 f � A

Ð uðx0Þ
0 f � m

qþ1 ðzqþ1 � ½uðx0Þ�qþ1ÞÐ z
0 f

¼ A

and, therefore, (3.16) follows straight ahead from (3.15). This concludes the

proof of (H4).

Now, suppose W is a general open set for which (3.14) has a solution v.

Pick x0 A W, choose a su‰ciently large R > 0 so that WHBRðx0Þ, and consider

the auxiliary problems

�Du ¼ muq � Af ðuÞ in BRðx0Þ
u ¼ b on qBRðx0Þ

�
ð3:17Þ

for su‰ciently large b > 0. Thanks to Proposition 3.1 and the proof of [7,

Theorem 4.1], (3.17) has a unique solution which is radially symmetric ubðxÞ ¼
CbðrÞ, r ¼ jx� x0j, and it satisfies

1ffiffiffi
2

p
ð b
Cbð0Þ

ð z
Cbð0Þ

h

 !�1=2

dzaR: ð3:18Þ

We already know that b 7! Cbð0Þ is increasing. Thus, by passing to the limit

as b " y in (3.18), it is apparent that (H4) holds if

lim
b"y

Cbð0Þ < y: ð3:19Þ

To show (3.19) one can argue as follows. Set, for each su‰ciently small d > 0,

Wd :¼ fx A W : distðx; qWÞ > dg:

Then, for any su‰ciently large b > 0 there exists d > 0 such that ub a v on

qWd. Thus, ub a v in Wd, since v is a supersolution of (3.17) and, hence,

ubðx0Þa vðx0Þ. Taking b ! þy, concludes the proof of (3.19). r

The following result concludes the proof of Theorem 1.1.

Proposition 3.5. Suppose (H1–3), (1.4), and (1.1) possesses a solution.

Then, (H4) holds.

Proof. Pick

m A �y;min inf
W

W ; 0

� �� �

and set

A :¼ max
W

a:
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Let u be a solution of (1.1). Then, for each b > 0, u provides us with a

supersolution of

�Du ¼ muq � Af ðuÞ in W

u ¼ b on qW

�
ð3:20Þ

and, hence, y½m;b� a u, where we have denoted by y½m;b� the unique solution of

(3.20). Passing to the limit as b " y, and using a very well known com-

pactness argument, shows that (3.14) possesses a solution. Therefore, thanks

to Proposition 3.4, condition (H4) is satisfied. r

4. Proof of Theorem 1.2

4.1. Two auxiliary radially symmetric problems

In this subsection we include some useful preliminary results. The first

one is an extension of [9, Lemma 4], whose proof easily follows from [1,

Theorem A]; so, we will omit it.

Theorem 4.1. Suppose u and u satisfy

�DuaWðxÞuq � aðxÞ f ðuÞ; �DubWðxÞuq � aðxÞ f ðuÞ; in W;

lim
distðx;qWÞ#0

uðxÞ ¼ y; lim
distðx;qWÞ#0

uðxÞ ¼ y;

and

ua u in W:

Then, (1.1) possesses a solution u in between u and u.

The main result of this subsection is the following theorem. It will be

crucial in proving Theorem 1.2.

Theorem 4.2. Suppose f satisfies (H5) and consider the singular problem

�c 00 �N � 1

r
c 0 ¼ lcq � bðrÞðR� rÞgf ðcÞ in ð0;RÞ

limr"R cðrÞ ¼ y

c 0ð0Þ ¼ 0

8>>><
>>>:

ð4:1Þ

where R > 0, l A R, gb 0, and b A Cð½0;R�;R
�

þÞ. Then, for each e > 0, (4.1)

possesses a positive solution ce such that

1� ea lim inf
r"R

ceðrÞ
MðR� rÞ�a a lim sup

r"R

ceðrÞ
MðR� rÞ�a a 1þ e ð4:2Þ

Manuel Delgado, Julián López-Gómez and Antonio Suárez68



where a and M are defined in (1.8) with b :¼ bðRÞ. Therefore, for each x0 A RN,

the function

ueðxÞ :¼ ceðrÞ; r :¼ jx� x0j;

provides us with a radially symmetric positive large solution of

�Du ¼ luq � bðrÞ½dðxÞ�gf ðuÞ in BRðx0Þ
u ¼ y on qBRðx0Þ

�
ð4:3Þ

satisfying

1� ea lim inf
dðxÞ#0

ueðxÞ
M½dðxÞ��a a lim sup

dðxÞ#0

ueðxÞ
M½dðxÞ��a a 1þ e ð4:4Þ

where

dðxÞ :¼ distðx; qBRðx0ÞÞ ¼ R� jx� x0j ¼ R� r:

Proof. First, we claim that, for each e > 0 su‰ciently small, there exists

a constant Ae > 0 such that for A > Ae

ceðrÞ ¼ Aþ Bþ
r

R

� �2
ðR� rÞ�a

is a positive supersolution of (4.1) where

Bþ ¼ ð1þ eÞ aðaþ 1Þ
Kb

� �1=ðp�1Þ
: ð4:5Þ

Indeed, taking into account that aþ 2þ g� ap ¼ 0, we find that ce is a super-

solution of (4.1) if, and only if,

�2N
Bþ
R2

ðR� rÞ2 � aðN þ 3ÞBþ
R2

rðR� rÞ � aðaþ 1ÞBþ
r

R

� �2

b lðR� rÞað1�qÞþ2
AðR� rÞa þ Bþ

r

R

� �2" #q

� bðrÞ AðR� rÞa þ Bþ
r

R

� �2" #p
f ðceÞ
c

p

e

: ð4:6Þ

Since q < 1, by (H5) the inequality (4.6) at the value r ¼ R becomes into

B
p�1
þ b

aðaþ 1Þ
Kb

:
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Therefore, by making the choice (4.5), the inequality (4.6) is satisfied in

ðR� d;R�, for some d ¼ dðeÞ > 0. Finally, by choosing A su‰ciently large it is

clear that the inequality is satisfied in the whole interval ½0;R�, since p > 1 > q

and b is bounded away from zero. This concludes the proof of the claim

above.

For each su‰ciently small e > 0, there exists C < 0 for which the function

ceðrÞ :¼ max 0;C þ B�
r

R

� �2
ðR� rÞ�a

( )

provides us with a non-negative subsolution of (4.1) if

B� ¼ ð1� eÞ aðaþ 1Þ
Kb

� �1=ðp�1Þ
: ð4:7Þ

Indeed, it is easy to see that ce is a subsolution of (4.1) if in the region where

C þ B�
r

R

� �2
ðR� rÞ�a

b 0 ð4:8Þ

the following inequality is satisfied

�2N
B�
R2

ðR� rÞ2 � aðN þ 3ÞB�
R2

rðR� rÞ � aðaþ 1ÞB�
r

R

� �2

a lðR� rÞ2það1�qÞ
CðR� rÞa þ B�

r

R

� �2" #q

� bðrÞ CðR� rÞa þ B�
r

R

� �2" #p
f ðC þ B�

r
R

� 	2ðR� rÞ�aÞ
ðC þ B�

r
R

� 	2ðR� rÞ�aÞp
: ð4:9Þ

Making the choice (4.7) and using the continuity of bðrÞ, it is easy to see that

there exists a constant d ¼ dðeÞ > 0 for which (4.9) is satisfied in ½R� d;RÞ.
Moreover, for each C < 0 there exists a constant z ¼ zðCÞ A ð0;RÞ such that

C þ B�
r

R

� �2
ðR� rÞ�a < 0 if r A ½0; zðCÞÞ;

while

C þ B�
r

R

� �2
ðR� rÞ�a

b 0 if r A ½zðCÞ;RÞ:

Actually, zðCÞ is decreasing and

lim
C#�y

zðCÞ ¼ R; lim
C"0

zðCÞ ¼ 0: ð4:10Þ
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Thus, thanks to (4.10), there exists C < 0 such that

zðCÞ ¼ R� dðeÞ:

For this choice of C, it readily follows that ce provides us with a subsolution of

(4.1).

Finally, since

lim
r"R

ceðrÞ
BþðR� rÞ�a ¼ lim

r"R

ceðrÞ
B�ðR� rÞ�a ¼ 1;

it follows the existence of a solution of (4.1), denoted by ce, satisfying (4.2).

The remaining assertions of the theorem are easy consequences from these

features. r

As an immediate consequence from Theorem 4.2, combining a translation

together with a reflection around r0 :¼
rþ R

2
it readily follows the corre-

sponding result in each of the annuli

Ar;Rðx0Þ :¼ fx A RN : 0 < r < jx� x0j < Rg:

Corollary 4.3. Consider the problem

�Du ¼ luq � bðrÞ½distðx; qAr;Rðx0ÞÞ�gf ðuÞ in Ar;Rðx0Þ
u ¼ y on qAr;Rðx0Þ

�
ð4:11Þ

where l A R, gb 0, 0 < r < R, and b A Cð½r;R�;R
�

þÞ is the reflection around

r ¼ r0 of some function

~bb A Cð½r0;R�;R
�

þÞ:

Then, for each e > 0 the problem (4.11) possesses a positive solution veðxÞ
satisfying

1� ea lim inf
dðxÞ#0

veðxÞ
M½dðxÞ��a a lim sup

dðxÞ#0

veðxÞ
M½dðxÞ��a a 1þ e ð4:12Þ

where a; b and M are defined through (1.8) and

dðxÞ :¼ distðx; qAr;Rðx0ÞÞ ¼
R� jx� x0j; if r0 a jx� x0j < R;

jx� x0j � r; if r < jx� x0j < r0:

�

4.2. Proof of Theorem 1.2

Let u be a positive strong solution of (1.1) and consider x0 A qW, b ¼
bðx0Þ > 0 and g ¼ gðx0Þb 0 satisfying (1.5). Since W is of class C2, there exist

R > 0 and d0 > 0 such that
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BRðx0 � ðRþ dÞnx0
ÞHW for each d A ½0; d0� ð4:13Þ

and

BRðx0 � Rnx0
ÞV qW ¼ fx0g:

In Figure 4.1 we have represented this one-parameter-dependent family of balls.

Observe that, in BRðx0 � ðRþ dÞnx0
Þ,

distðx; qWÞb distðx; qBRðx0 � ðRþ dÞnx0
ÞÞ

¼ R� distðx; x0 � ðRþ dÞnx0
Þ ¼ R� r

where

r :¼ jx� ½x0 � ðRþ dÞnx0
�j:

Fix a su‰ciently small h > 0. Thanks to (1.5), R > 0 can be shortened, if

necessary, so that, for each d A ½0; d0�,

ab ðb � hÞðR� rÞg in BRðx0 � ðRþ dÞnx0
Þ: ð4:14Þ

Thanks to (4.14), for any d A ð0; d0�, the restriction

ud :¼ ujBRðx0�ðRþdÞnx0 Þ

provides us with a positive smooth subsolution of

�Du ¼ luq � ðb � hÞðR� rÞgf ðuÞ in BRðx0 � ðRþ dÞnx0
Þ

u ¼ y on qBRðx0 � ðRþ dÞnx0
Þ

�
ð4:15Þ

Fig. 4.1. The balls where the supersolutions are supported
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where

l :¼ sup
W

W :

Thus, any positive solution of (4.15) is a supersolution of the equation that u

verifies in Brðx0 � ðRþ dÞnx0
Þ. So, thanks to the uniqueness (cf. Proposition

3.1), it follows from the strong maximum principle that

ud ¼ ujBRðx0�ðRþdÞnx0 Þ
aFd: ð4:16Þ

Now, for each su‰ciently small e > 0, let Ce be any positive radially symmetric

solution of

�Du ¼ luq � ðb � hÞðR� rÞgf ðuÞ in BRðx0 � Rnx0
Þ

u ¼ y on qBRðx0 � Rnx0
Þ

�
ð4:17Þ

satisfying

lim sup
r"R

ceðrÞ
NhðR� rÞ�a a 1þ e ð4:18Þ

where

a :¼ gþ 2

p� 1
; CeðxÞ :¼ ceðrÞ;

r :¼ jx� ½x0 � Rnx0
�j; Nh :¼

aðaþ 1Þ
Kðb � hÞ

� �1=ð p�1Þ
:

It should be noted that its existence is guaranteed by Theorem 4.2. Fix one of

those e’s and for each su‰ciently small d > 0 consider the function Fd defined

by

FdðxÞ :¼ Ceðxþ dnx0
Þ; x A BRðx0 � ðRþ dÞnx0

Þ:

By construction, for each su‰ciently small d > 0, Fd provides us with a large

positive solution of (4.15) and, hence, (4.16) implies

uðxÞaCeðxþ dnx0
Þ for each x A BRðx0 � ðRþ dÞnx0

Þ and d A ð0; d0�:

Thus, passing to the limit as d # 0 gives

uaCe in BRðx0 � Rnx0
Þ

and, hence for each o A ð0; p=2Þ, (4.18) implies

lim sup
x!x0

x ACx0 ;o

uðxÞ
Nh½distðx; qWÞ��a a 1þ e; ð4:19Þ

Singular problems of porous logistic equation 73



where Cx0;o is the wedge defined in the statement of Theorem 1.2. In

obtaining (4.19) we have used

lim
x!x0

x ACx0 ;o

distðx; qWÞ
R� r

¼ lim
x!x0

x ACx0 ;o

distðx; qWÞ
distðx; qBRðx0 � Rnx0

ÞÞ ¼ 1:

As the estimate (4.19) is valid for any su‰ciently small e > 0 and h > 0, for

proving (1.7) it remains to show that

1a lim inf
x!x0

x ACx0 ;o

uðxÞ
M½distðx; qWÞ��a : ð4:20Þ

Since W is of class C2, there exist R2 > R1 > 0 and d0 > 0 such that

WH 7
d A ½0; d0�

AR1;R2
ðx0 þ ðR1 þ dÞnx0

Þ

and

qWV qAR1;R2
ðx0 þ R1nx0

Þ ¼ fx0g:

Moreover, R2 can be taken arbitrarily large. In Figure 4.2 we have repre-

sented these annuli.

Fig. 4.2. The annuli where the subsolutions are supported
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Fix a su‰ciently small h > 0. Thanks to (1.5), there exists a radially

symmetric function

âa : AR1;R2
ðx0 þ R1nx0

Þ ! R
�

þ such that âab a in W

and, for each x A AR1;R2
ðx0 þ R1nx0

Þ,

âaðxÞ ¼ bðjx� x0 � R1nx0
jÞ½distðx; qAR1;R2

ðx0 þ R1nx0
ÞÞ�g

for some continuous function b : ½R1;R2� ! R
�

þ satisfying

bðR1Þ ¼ b þ h:

Moreover, by enlarging R2, if necessary, we can assume that b is the reflection

around the middle point of ½R1;R2� of some continuous positive function.

Indeed, it su‰ces assuming that

jx� x0 � R1nx0
j < R1 þ R2

2
for each x A W:

Furthermore, b can be chosen so that

max
AR1 ;R2

ðx0þR1nx0 Þ
âaa max

W

aþ 1:

Now, consider the auxiliary problem

�Du ¼ muq � âaf ðuÞ in AR1;R2
ðx0 þ R1nx0

Þ
u ¼ y on qAR1;R2

ðx0 þ R1nx0
Þ

�
ð4:21Þ

where

m :¼ inf
W

W :

Thanks to Corollary 4.3, for each su‰ciently small e > 0, (4.21) possesses a

radially symmetric positive solution Ce such that

1� ea lim inf
r#R1

ceðrÞ
Phðr� R1Þ�a ð4:22Þ

where

a :¼ gþ 2

p� 1
; CeðxÞ :¼ ceðrÞ;

r :¼ jx� ½x0 þ R1nx0
�j; Ph :¼

aðaþ 1Þ
Kðb þ hÞ

� �1=ðp�1Þ
:
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Fix one of those e’s and for each d A ð0; d0� consider the function Fd defined

by

FdðxÞ :¼ Ceðx� dnx0
Þ; x A AR1;R2

ðx0 þ ðR1 þ dÞnx0
Þ:

For each su‰ciently small d > 0, Fd provides us with a large positive solution

of

�Du ¼ muq � âað� þ dnx0
Þ f ðuÞ in AR1;R2

ðx0 þ ðR1 þ dÞnx0
Þ

u ¼ y on qAR1;R2
ðx0 þ ðR1 þ dÞnx0

Þ

�
ð4:23Þ

Moreover, by construction, the restriction FdjW provides us with a subsolution

of (1.1). Thus, thanks to Proposition 3.1, for each d A ð0; d0� we have

Ceðx� dnx0
Þa uðxÞ for each x A AR1;R2

ðx0 þ ðR1 þ dÞnx0
Þ and d A ð0; d0�:

Thus, passing to the limit as d # 0 gives

Ce a u in AR1;R2
ðx0 þ R1nx0

Þ;

and, hence, for each o A ð0; p=2Þ

1� ea lim inf
x!x0

x ACx0 ;o

uðxÞ
Phðr� R1Þ�a ;

since

lim
x!x0

x ACx0 ;o

distðx; qWÞ
r� R1

¼ lim
x!x0

x ACx0 ;o

distðx; qWÞ
distðx; qAR1;R2

ðx0 þ Rnx0
ÞÞ ¼ 1:

This concludes the proof of (1.7). Applying (1.7) to any pair of solutions, u1
and u2, (1.9) readily follows.

Now, suppose there are b A CðqW;R
�

þÞ and g A CðqW;RþÞ satisfying (1.6)

and fix h A ð0; 1Þ. Then, there exists d A ð0; 1Þ such that, for each x0 A qW,

aðxÞb ð1� hÞbðx0Þ½distðx; qWÞ�gðx0Þ if distðx; x0Þa d: ð4:24Þ

Fix x0 A qW, set S :¼ Bd=2ðx0ÞV qW and choose R > 0 su‰ciently small so

that

K :¼ 6
y AS

BRðy� RnyÞHBdðx0ÞVW: ð4:25Þ

Then, we find from (4.24) that

aðxÞb ð1� hÞbðx0Þ½distðx; qWÞ�
gðx0Þ

Ex A Bdðx0ÞVW: ð4:26Þ
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Subsequently, for each x A KVW with distðx; qWÞaR we denote by yx the

unique point of Bdðx0ÞV qW for which

distðx; qWÞ ¼ jx� yxj ¼ R� jx� ðyx � RnyxÞj: ð4:27Þ

Set

l :¼ max
K

W ; bL :¼ min
x A qW

bðxÞ; gM :¼ max
x A qW

gðxÞ;

and, for each e > 0, let Ce be any positive radially symmetric solution of

�Du ¼ luq � ð1� hÞbLðR� jxjÞgM f ðuÞ in BRð0Þ
u ¼ y on qBRð0Þ

�
ð4:28Þ

satisfying

lim sup
jxj"R

CeðxÞ
Mh;x0

ðR� jxjÞ�aðx0Þ
a 1þ e; ð4:29Þ

where

aðxÞ :¼ gðxÞ þ 2

p� 1
; x A qW; Mh;x0

:¼ aðx0Þ½aðx0Þ þ 1�
Kð1� hÞbðx0Þ

� �1=ðp�1Þ
:

The existence of Ce is guaranteed by Theorem 4.2. Fix, one of those e’s.

Then, arguing as in the first part of the proof, it is apparent that

uðxÞaCeðx� ðyx � RnyxÞÞ for each x A K: ð4:30Þ

Thus, for each x A KVW with distðx; qWÞaR we find from (4.27) and (4.30)

that

uðxÞ
Mh;x0

½distðx; qWÞ��aðx0Þ
a

CeðzxÞ
Mh;x0

½R� jzxj��aðx0Þ

where we have denoted

zx :¼ x� ðyx � RnyxÞ;

and, hence, we find from (4.29) that

lim sup
distðx;qWÞ#0

x AK

uðxÞ
Mh;x0

½distðx; qWÞ��aðx0Þ
a 1þ e:

Therefore, as this inequality holds for each e > 0, it is apparent that
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lim sup
distðx;qWÞ#0

x AK

uðxÞ
Mh;x0

½distðx; qWÞ��aðx0Þ
a 1: ð4:31Þ

Similarly, reducing d, if it is necessary, one can use the large solutions on the

exterior annuli of the first part of the proof to conclude that

1a lim inf
distðx;qWÞ#0

x AK

uðxÞ
Mh;x0

½distðx; qWÞ��aðx0Þ
: ð4:32Þ

It should be noted that K depends on d and that d depends on h; in such a way

that limh#0 dðhÞ ¼ 0. Thus, limh#0 K ¼ fx0g. Moreover, d, and, hence, K

can be chosen independent of x0 because (1.6) holds uniformly in

x0. Therefore, it follows from (4.31) and (4.32) that

lim
x!x0

uðxÞ
Mh;x0

½distðx; qWÞ��aðx0Þ
¼ 1 ð4:33Þ

uniformly in x0 A qW, since qW is compact.

We now show the uniqueness. Suppose that (1.9) is satisfied uniformly in

qW for any pair of positive solutions ðu; vÞ of (1.1). Then, for any e > 0 there

exists d > 0 such that

ð1� eÞva ua ð1þ eÞv in WnWd;

where, for each small enough d > 0,

Wd :¼ fx A W : distðx; qWÞ > dg:

Now, consider the problem

�Dw ¼ WðxÞwq � aðxÞ f ðwÞ in Wd

w ¼ u on qWd

�
ð4:34Þ

By (H8), which implies (H3), and Proposition 3.1, (4.34) possesses a unique

positive solution, necessarily u. Moreover, thanks to (H8), it is easy to see that

the pair ðð1� eÞv; ð1þ eÞvÞ provides us with an ordered sub-supersolution pair

of (4.34). So, we have

ð1� eÞva ua ð1þ eÞv in Wd

and, therefore,

ð1� eÞva ua ð1þ eÞv in W:

As this is true for any e > 0, we obtain that u ¼ v. This concludes the

proof. r
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