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ABSTRACT. In this paper we characterize the existence of large solutions for a general
class of porous medium logistic equations in the presence of a vanishing carrying
capacity. The decay rate of the carrying capacity at the boundary of the underlying
domain determines the exact blow-up rate of the large solutions. Its explicit knowledge
allows us to obtain a general uniqueness result.

1. Introduction

In this work we study the existence, the blow up rate and the uniqueness of
the classical positive solutions to the singular boundary value problem

{ —Au=W(x)u? —a(x)f(u) inQ
U= o0 on 02

(1.1)

where Q is a bounded domain of R, N > 1, with boundary 0Q of class %2,
WelL*(Q), 0<q¢<1, and, for some o€ (0,1), ae €*(Q;R,), where R, :=
[0,400) satisfies the following structural assumption:

(H1) The open set

Q,:={xe:a(x) >0}
is connected with boundary 6Q. of class %2, and the open set
Q() = Q\[_)+

satisfies Qo = Q; thus, a can vanish in some region of @, as well as on
some piece of 09Q.
The function f is assumed to satisfy the following:
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(H2) fe%'(R,;R,) satisfies f(0) =0, f(s) > 0 for each s > 0, f is increas-
ing, and lim,, 91 () = 0.

(H3) ¢+~ t79f(¢) is increasing in loh == (0,4+00).

(H4) [ (fs )" ds < oo

The solutions of (1.1) are usually known as the large solutions of

—du = W(x)u? — a(x)f(u) in Q. (1.2)

Most precisely, by a large solution of (1.2) it is meant any classical strong
solution u such that
lim  u(x) = co.
dist(x, 092)10
Problem (1.1) arises in studying the large positive solutions of the logistic
porous medium equation

(1.3)

{ —Av™ = W(x)v —a(x)v” in Q
V=00 on 0€2

where p > m > 1. Indeed, the change of variable u = v™ transforms (1.3) into

. 1 S .
(1.1) with ¢ = — and f(u) = u?/”, and, in this case, f satisfies all the assump-
. m
tions (H2-4).
Our main existence result reads as follows:

THEOREM 1.1.  Assume (H1-3) and

lim 1 (¢) = o0. (1.4)

t] oo
Then, (1.1) possesses a non-negative solution if and only if (H4) holds.

In the special case when W = 0 and « is separated away from zero on 0Q,
Theorem 1.1 was found by A. V. Lair [13]. In the special case when f(u) = u?
and W(x)=/1€eR, Theorem 1.1 was obtained by M. Delgado et al. [7].
Finally, F. C. Cirstea and V. Radulescu [5], [6], found the existence in the
special case when ¢ =1 and W =AeR. Theorem 1.1 substantially extends
and unifies all previous existence results.

Subsequently, we denote by n:0Q — RY, x+ n(x) :=n,, the outward
unit normal vector-field of Q, and, for each w e (0,7/2),

To state the results concerning the blow-up rate and the uniqueness of the non-
negative large solutions of (1.1) we need to introduce some additional hypothesis
on f. Namely,

NS}

Cypo0 1= {x € Q : angle(x — xg, —ny,) <
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(H5) There exist p > 1 and K > 0 such that lim,j, v 7f(u) = K.
(H6) There exist xo € 02, ff:= f(xo) >0 and y:=y(xo) = 0 such that

. a(x) B
Bty a0 (15)

(H7) There exist ﬁe%(&.@;fh) and y e 4(0Q;R.) such that
a(x)

lim — =1 uniformly in xp € 0Q2. (1.6)
¥=x0 B(x)[dist(x, 02)]7

S (u)

(H8) W >0 and the map u+— —— is increasing in (0, c0),
u

Then, our main result reads as follows.

THEOREM 1.2. Suppose f satisfies (H2-3) and (H5-6). Then, for each
w € (0,7/2) and any positive solution u of (1.1), one has that

. u(x)
lim o= = (1.7)
x)&fzfoow M [dist(x, 0Q)] "
where
/(p=1)
y+2 oo+ 1)1
= M = . 1.
In particular, for any pair (uy,uy) of positive classical solutions of (1.1),
lim M (19)
Xe CYOO_(u U (x)
Moreover, if, in addition, (H7) is satisfied, then lim u(x) =1

X—X 1 7“(«‘(0)
uniformly in x¢ € 0Q, where 0 M (xo)[dist(x, 0Q)]

y(x0) +2 (%) (o(x0) + 1] V7Y
= —— M ==l aQ.
o) = EIEE, antn = [P LT
Therefore, for any pair (u1,up) of positive solution of (1.1), lim Zlgjg =1
X—=X0 Up

uniformly in xo € 0Q. Furthermore, if, in addition, (H8) holds, then, (1.1)
possesses a unique positive solution.

Note that if (H8) is satisfied, then u — % = %u)ul’q is increasing, since
¢ < 1, and, hence, (H3) is satisfied. Also, note that (HS5) implies (1.4) and,
(H4). Therefore, under the assumptions of Theorem 1.2, Theorem 1.1 guar-
antees that (1.1) possesses a solution. Theorem 1.2 provides us with the blow-

up rate of these solutions and with a sufficient condition for the uniqueness.
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Theorem 1.2 is a substantial extension of the main result of J. Ldpez-
Gomez [16], obtained for the very special case when ¢ =1 and f(u) = u’.
Even in this special situation, Theorem 1.2 is a very sharp improvement of Y.
Du & Q. Huang [8, Theorem 2.8] and J. Garcia-Melian et al. [9, Theorem 1],
where it was assumed that

a(x) = B[dist(x, 0Q)]’[1 + p dist(x, 0Q) + o(dist(x, 0Q))] as
dist(x,0Q) | 0
for some constants >0, y >0, and p € R, and, hence,

a(x)

lim —————— =1 iformly i Q
erEO Bldist(x, 6Q)]7 uniformly in x¢ € 02,

while, in the present paper, the weight function a(x) is allowed to decay
towards zero on 02 with arbitrary rates, depending upon the particular
point, or region, of dQ. Hence, a(x) might exhibit several different decays
at 0Q.

Some pioneering results were given by J. B. Keller [11], R. Osserman [17],
C. Loewner & L. Nirenberg [14], C. Bandle & M. Marcus (2], [3], [4], V. A.
Kondratiev & V. A. Nikishin [10], L. Véron [18], and M. Marcus & L. Véron
[12], although most of them were found for very special cases where ¢ = 1 and
a is a positive constant.

The distribution of this paper is as follows. In Section 2 we collect some
preliminary results of a technical nature that are going to be used later. In
Section 3 we give the proof of Theorem 1.1. In Section 4 we prove Theorem
1.2.

2. Some preliminary results

In this section we collect two results of technical character that are going
to be very useful for proving Theorem 1.1. Throughout, we assume f to
satisfy (H2-4).

Lemma 2.1.  Suppose f satisfies (H2-4).  Then, (1.4) is satisfied. In par-
ticular, liTm f(t) = oo.
tToo
ProOF. Thanks to (H3),
lim 9 (¢) = L € (0, o0].

t]oo

Suppose L € R.  Then, there exists B; > 0 such that f(r) < (L+ 1)t? for each
t > By and, hence, for each s > B,
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N S L l L 1
Jf:C—&—J f<C+ i (S‘1+1—Bf+l):C1+—qils"“.
0

B g+1

for some constants C,C; > 0, whose explicit knowledge is not important.

Thus,
© /s \—1/2 o I41 ~1/2
J (J f) dsZJ (CH—quH) ds = o0
1 0 1 q+1

1 . . . . .
7+ < 1. As this relation again contradicts (H4), necessarily L = co.

since

This concludes the proof. []
Subsequently, we consider the function / defined by
h(t) := Af (1) — 9 = t9(A (1) — A) (2.1

for certain constants 4 >0 and A >0 to be chosen later. Due to (H2), he
%' (R;R.), h(0) =0, lim,o 4'(f) = —co. Actually,

L gria g
l}glt h(t) = —A

Moreover, thanks to (H3), ~9A(¢) is increasing in ¢t > 0, if 0 < ¢ < z5. On the
other hand, thanks to Lemma 2.1, lim, ¢ 9 () = co. Hence, there exists a
unique 7o > 0 such that i(¢) <0 if 0 < 7 < to, h(to) =0, and A(¢) > 0 for each
t > tg. In particular,

h(r)>0 and  A'(t) >0  for each ¢ > 1. (2.2)

It should be noted that 7y depends on 4 and A. The value ¢y that we have just
constructed satisfies the following result.

PROPOSITION 2.2.  Suppose f satisfies (H2-4). Then, for each z > t,

1(z) == r Ush(z)dz] e 0,

z z

and

PrOOF. Setting

1(z), z > ty, can be expressed as
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162) = [ ot s,

Note that g(z) =0 and ¢'(z) = h(z) > 0, since z > o, and, hence,

i UL g (U0 n oy

Moreover, by I’Hopital rule and Lemma 2.1,

tim 90 fim 06 _ gy 2O _

st [o f(t)dt st f(s) st f(s) ’

and, hence,

~1/2
im 7}9(”] = A2, (2.4)
st [Jo f(0d] Y
Thanks to (H4), (2.3) and (2.4), it is apparent, by the asymptotic comparison

test for improper integrals, that I(z) < co.
Finally, setting

we have
G(l()) =0, G/(lo) = h(lo) =0.

For which one can easily obtain lim.|,, /(z) = c0. [

3. Proof of Theorem 1.1

For each b > 0 we consider the following auxiliary boundary value problem

{ —Au=W(x)u! —a(x)f(u) inQ, (3.1)

u==>= on 0%.

The following result, whose proof can be easily adapted from [7, Theorem 3.1],
is needed in proving Theorem 1.1.

ProposITION 3.1.  Assume (H2). Then, (3.1) possesses a maximal non-
negative solution, denoted by Opy . If, in addition, (H3) holds and W = /. € R,
or WeLY(Q), then Oy ) is the unique nonnegative solution of (3.1). In any
circumstance, the map b Oy p is increasing.

The most crucial result in proving Theorem 1.1 is the next one.
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THEOREM 3.2. Suppose W e L*(Q), ae C*(2,R,), 0<a<]1, and
(H2-4).  Then, for each compact subset K = Q, there exists a constant M :=
M(K) such that any nonnegative regular solution, v, of

—Au = W(x)u? — a(x) f(u) (3.2)
satisfies
[olley < M.

Proor. Let K = Q, be compact, and pick xo € K. It suffices to prove
that there exist p(xo) >0 and M(xg) >0 such that B:= B, (x¢) < Q4
and

||U||c(§) < M(xo)

for any nonnegative regular solution v of (3.2).
Consider p(xg) >0 such that B:= B, (xo) = 2, and a nonnegative
regular solution of (3.2), say v. Then,

—Av = W(x)v? — a(x)f(v) < 0! — Af (v),
where we have denoted
A= Wl e ) A =min a > 0. (3.3)
B

Let /& be the function defined in (2.1) with the choice (3.3) and ¢y the unique
positive zero of h. Now, for each

b > max{max v, ty + 1}
B

consider the auxiliary problem

{ —Au = Au?— Af (u) in B

34
u==~- on 0B. (34)

Thanks to Proposition 3.1, (3.4) possesses a unique nonnegative regular solu-
tion, 0}; 5. Moreover, due to Lemma 2.1 sufficiently large positive constants
provide us with positive supersolutions of (3.4). Thus, since v is a subsolution,
it is apparent, from the uniqueness, that

v< 9[/1‘;,].

By the uniqueness of the positive solution of (3.4) and the rotational invariance
of the Laplacian, for each x e B,

H[;”b](x) = ‘Pb(r), 7= |x_ x0|’
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where ¥, is the unique positive solution of

{vf;’<r>+NT‘lvf;<r>=h<%<r>>, re (0. plxo), .

Y,(0) =0, ¥(p(xo)) =b.

Since b >ty + 1, adapting the proof of [7, Theorem 4.1], it is easy to see that
¥y, > to, h(¥P) >0, h'(¥,) > 0. The functions ¥, satisfy

V() = Y (W (r) (3.6)
and, hence, integrating (3.6) from 0 to r yields
() = rHVJ SV UR(Wh(s))ds > 0 (3.7)
0

This shows that r — ¥, (r) is increasing, as well as r — h(¥,(r)). Thus we find
from (3.7) that

" r
P < ) | N ds = Caer). (3.)
e . . v h(P) . ;
Now, substituting (3.8) into (3.5) gives ¥, > o moreover, since ¥, >0,
(3.5) gives ¥, < h(¥,) and hence,
N
We now multiply (3.9) by ¥, and integrate from 0 to r to obtain
(1) , 2 (B0
2J h(z)dz > [P, (r)]” = —J h(z)dz. (3.10)
(0) N S0

Now, taking the square root of the reciprocal of (3.10) and integrating again
gives

1 Y(r) | pu -1/2 i w0 [ pu -1/2
—J J h(s)ds du<r< —J h(s)ds du  (3.11)
V2w | Jwo 2 w0 w0

and in particular
' 1-172
N b N
p(xg) < \/‘J J h(t)dt ds.
2 Jw0) [Jw00)

Note that ¥,(0) > ¢ty and h(¢) > 0 for each ¢ > ¥,(0). Thus, since 4’ >0,

. } ~1/2
p(xo) < gj o U h(t)dl] ds

¥, #,(0)



Singular problems of porous logistic equation 65

and, thanks to Proposition 2.2, ¥,(0) must be bounded above by a universal
constant—independent of 5—. Finally, arguing as in the proof of [7, Theorem
4.1] concludes the proof (see also [15]). [

Now, we establish the sufficiency part of Theorem 1.1.
PropPOSITION 3.3.  Suppose (H1-4). Then, (1.1) possesses a solution.

Proor. The proof follows the general scheme of the proof of [7, Theorem
5.1]. Considering the point-wise limit

Oy = [im Oy,
it suffices to show that @y solves (1.1).
Thanks to (H1), for each sufficiently small ¢ > 0,
K5 :={xeQ:dist(x,0Q2) <o} c Q,, D; .= Q\Kj,
and, for each of those ¢’s, there exists an open set (5 satisfying
0Ds < U5 < O5 < Q.

Fix one of those ¢’s. Then, thanks to Theorem 3.2, there exists a constant
M > 0 such that, for each b > 0,

10w .0l conyy < 10wl g,y <M (3.12)
and, hence,

Ow.p) < Oy, im0 Dy,

where Oy, @), u) stands for the unique solution of

{ —Au = ” W| L""'(Q)uq - a(x)f(u) in D;, (3 13)
u=M on 0D;. '

This shows that the point-wise limit @y is well defined. Now, we take two
open sets @, (1 and a sufficiently small 6 > 0 so that

Oyc0ycO0c0cDscDsc Q.

By the elliptic L?-estimates and Morrey’s theorem, there exists a constant
C > 0 such that, for each b > 0,

HG[W,h]Hcl((ZI) <C.

From these estimates the details of the proof can be easily completed by using
a rather standard compactness argument and the uniqueness of the point-wise
limit. [
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To complete the proof of Theorem 1.1 it remains to show that, under
conditions (H1-3) and (1.4), (H4) is necessary for the existence of a large
solution. We begin by establishing the following result.

ProposITION 3.4.  Suppose (H1-3), (1.4), u<0, 4> 0, and the problem
A= uud — i
{ Au= pu? — Af (u) in Q (3.14)
U= oo on 0Q

possesses a solution. Then, (H4) is satisfied.

PrROOF. Suppose, in addition, that 2 = Bgr(x() is the ball of radius R > 0
centered at xo € RY, and let u be any solution of (3.14) in this special case.
Then, due to the theory developed in pages 506 and 507 of [11] (cf. [17] as
well), ¥ must be radially symmetric, u(x) = ¢(r), r = |x — x¢|, and, setting

W) = Af (1) — i,

i —1/2
1 (® z
J U - h(s)ds] dz < R, (3.15)

gives

\/z u(xo)
because of (3.11).

Since
() e[ () "o ()

and the first term of the right hand side of this identity is finite, to prove (H4) it

suffices to show that
0 z —1/2
J <J f) dz < o0. (3.16)
u(xo) 0
Since f > 0, for each M >0 and z > M we have

: . s f(M)JZ /(M) 1 1
— q q S\ g e S gvl gt
Jofz JMf JMS 'f (5)s9 ds > T Ms ds G+ 1) q(z M,
because s — s79f(s) is increasing in (0,00). Thus, for each M >0,

- Jo S S (M)
E-ITI;} 22“ = (g+1)M1

and, hence, due to (1.4),

; 1 (M
lim Jofz lim /( ):oo.
o z0HD T g+ 1 Miw MY
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Consequently,
DAL = AR o))
S Ji s

and, therefore, (3.16) follows straight ahead from (3.15). This concludes the
proof of (H4).

Now, suppose £ is a general open set for which (3.14) has a solution v.
Pick xo € Q, choose a sufficiently large R > 0 so that Q < Bg(x), and consider
the auxiliary problems

{ —Au = pu? — Af (1) in Br(xo)

1
u==at on dBgr(xg) (3.17)

for sufficiently large 5 > 0. Thanks to Proposition 3.1 and the proof of [7,
Theorem 4.1], (3.17) has a unique solution which is radially symmetric u;(x) =
Y(r), r=|x—xo|, and it satisfies

1 b - -1/2
— h dz < R. 3.18
\/ZJ w,(0) (J ,(0) ) (3.18)

We already know that b — ¥,,(0) is increasing. Thus, by passing to the limit
as b1 oo in (3.18), it is apparent that (H4) holds if

lim #3,(0) < 0. (3.19)

To show (3.19) one can argue as follows. Set, for each sufficiently small 6 > 0,
Qs = {x e Q2 :dist(x, 0Q) > J}.

Then, for any sufficiently large » > 0 there exists 6 > 0 such that u;, < v on
0Qs5. Thus, up <v in @y, since v is a supersolution of (3.17) and, hence,
up(x9) < v(xp). Taking b — 400, concludes the proof of (3.19). [

The following result concludes the proof of Theorem 1.1.

ProrosiTION 3.5.  Suppose (H1-3), (1.4), and (1.1) possesses a solution.
Then, (H4) holds.

Proor. Pick
Ue (—oo,min{igf W,()})

A = max a.

and set
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Let u be a solution of (I1.1). Then, for each b >0, u provides us with a
supersolution of

{ —Au = pu? — Af (u) in Q (3.20)
u=>=b on 082 '

and, hence, 0, < u, where we have denoted by 0, ; the unique solution of
(3.20). Passing to the limit as b ] co, and using a very well known com-
pactness argument, shows that (3.14) possesses a solution. Therefore, thanks
to Proposition 3.4, condition (H4) is satisfied. []

4. Proof of Theorem 1.2
4.1. Two auxiliary radially symmetric problems

In this subsection we include some useful preliminary results. The first
one is an extension of [9, Lemma 4], whose proof easily follows from [I,
Theorem A]; so, we will omit it.

THEOREM 4.1. Suppose u and u satisfy

Cdu < W - a(0)f (W), —Aiz W —a(x)f(@), i Q,
lim  u(x) = oo, lim  a(x) = oo,
dist(x,292) [0 dist(x, 002) |0

and
u<su in Q.
Then, (1.1) possesses a solution u in between u and .

The main result of this subsection is the following theorem. It will be
crucial in proving Theorem 1.2.

THEOREM 4.2. Suppose [ satisfies (HS) and consider the singular problem

Ty =t bR -0 W) i (O.R)

lim,TR lﬁ(r) = O
Y'(0)=0
where R>0, LeR, y >0, and b e €([0, R];lol+). Then, for each ¢ >0, (4.1)

possesses a positive solution s, such that

o W, (r) . W, (r)
l—-e<1 f————— <1 — <1 4.2
=N MR =P RS (42)

4.1)
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where o and M are defined in (1.8) with § := b(R). Therefore, for each xo € R,
the function

u(x) =y (r), ri=|x — x|,

provides us with a radially symmetric positive large solution of

—Au = Ju? — b(r)[d(x)]"f(u) in Br(xo)
(4.3)
U= oo on 0Br(xo)
satisfying
1—e<1iminfﬂ<limsupﬂ<l+e (4.4)
T A0 M) T g0 MA@ T '
where

d(x) :=dist(x,0Br(x0)) = R—|x —xo| =R —r.

Proor. First, we claim that, for each ¢ > 0 sufficiently small, there exists
a constant 4, > 0 such that for 4 > A4,

B = A+ B, (%)2@ )

is a positive supersolution of (4.1) where

OC(OC+ 1):| 1/(1)71). (45)

Kp

Indeed, taking into account that o+ 2 +y — op = 0, we find that i, is a super-
solution of (4.1) if, and only if]

B = (149

2
“L(R—1)* —a(N + 3)%;’(R —r)—o(e+1)By <%)

q

2
> AR —r)"""DF2 | A(R - r)* + B, (%)

7

Since ¢ < 1, by (H5) the inequality (4.6) at the value r = R becomes into

A(R—-r)*+ B, <%)2

— b(r) (4.6)

-1 oa(a+1)
B = T
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Therefore, by making the choice (4.5), the inequality (4.6) is satisfied in
(R — 0, R], for some d =4J(¢) > 0. Finally, by choosing A4 sufficiently large it is
clear that the inequality is satisfied in the whole interval [0, R], since p > 1 > ¢
and b is bounded away from zero. This concludes the proof of the claim
above.

For each sufficiently small ¢ > 0, there exists C < 0 for which the function

i =masfo.con (3 e}

provides us with a non-negative subsolution of (4.1) if

a(a+ 1) 1/(p=1)
W

Indeed, it is easy to see that y, is a subsolution of (4.1) if in the region where

= _6)[ (4.7)

2
C+B. (%) (R—r) " >0 (4.8)
the following inequality is satisfied

2
_2N__(R—r)2_o((N+3)%r(R—r) — oo+ 1)B<L>

S /’L(R . r)2+0((17q)

f(C+B_(% )™
—b(r)|C(R—1)* + B(’) + B () (R )
R) | (C+B (5)*(R
Making the choice (4.7) and using the continuity of b(r), it is easy to see that

there exists a constant J =d(¢) > 0 for which (4.9) is satisfied in [R —J, R).
Moreover, for each C < 0 there exists a constant z = z(C) € (0, R) such that

2
C+B_ <%) (R—r)"<0 if rel0,z(C)),
while
\2
C+B_ (§> (R—r)">0 if re[z(C),R).
Actually, z(C) is decreasing and

clf{noc z(C) = R, lé% z(C) =0. (4.10)
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Thus, thanks to (4.10), there exists C < 0 such that
z(C) = R —d(¢).
For this choice of C, it readily follows that ¥, provides us with a subsolution of
(4.1).
Finally, since

U r
riR B (R—) riR B_(R—)
it follows the existence of a solution of (4.1), denoted by y,, satisfying (4.2).
The remaining assertions of the theorem are easy consequences from these
features. [

As an immediate consequence from Theorem 4.2, combining a translation
p+R

together with a reflection around rj:=
sponding result in each of the annuli

it readily follows the corre-

A, r(x0) == {xeRY:0 < p < |x—xo| <R}
CoroOLLARY 4.3. Consider the problem

{ —Au = Au? — b(r)[dist(x, 04, r(x0))])"f (u) in A, r(x0)

4.11
U= o0 on 04, r(xo) ( )

where 2eR, y>0, 0<p <R, and be é([p, R];IOQ) is the reflection around
r=ry of some function

b e %([ro, RI;R,).
Then, for each ¢ >0 the problem (4.11) possesses a positive solution v,(x)
satisfying
v (X)

. . & . Uﬁ(x)
l—e< liminf ————— < limsup ———— < 1+¢ 4.12
R P = TSP (0] (4.12)

where o, f and M are defined through (1.8) and

. R—|x—x0|, if ro <|x—x0| <R,
o(x) = dist(x, 04, r(x0)) = { x—xol—p. i p< |x— 0l <.

4.2. Proof of Theorem 1.2

Let u be a positive strong solution of (1.1) and consider xy € 0Q, f=
B(x0) > 0 and y = p(x¢) > 0 satisfying (1.5). Since Q is of class %2, there exist
R >0 and dy > 0 such that
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Fig. 4.1. The balls where the supersolutions are supported

Br(xo — (R+0d)ny,) < Q for each ¢ € [0,0] (4.13)
and
Br(xo — Rny,) N2 = {x¢}.

In Figure 4.1 we have represented this one-parameter-dependent family of balls.
Observe that, in Br(xg — (R+0J)ny,),

dist(x, 0Q2) > dist(x, 0Br(xo — (R +J)ny,))
= R —dist(x,xo — (R+J)ny,) =R —r
where
ri=|x —[xo — (R+0)ny,]|.

Fix a sufficiently small # > 0. Thanks to (1.5), R >0 can be shortened, if
necessary, so that, for each o € [0,0),

a>(B—n(R—-r) in Br(xp — (R+0)ny,). (4.14)
Thanks to (4.14), for any ¢ € (0,d], the restriction

Us = Ul (xy—(Riom,,)
provides us with a positive smooth subsolution of

{ —du =% — (B~ n)(R~r)’f(u) in Brlxo— (R+0)ny,)

4.1
U= o0 on 0Br(xo — (R +0J)ny,) (*.13)
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where
A:=sup W.
Q
Thus, any positive solution of (4.15) is a supersolution of the equation that u

verifies in B,(xo — (R+J)ny,). So, thanks to the uniqueness (cf. Proposition
3.1), it follows from the strong maximum principle that

Us = U gy (Rtom,,) < Po- (4.16)

Now, for each sufficiently small ¢ > 0, let ¥; be any positive radially symmetric
solution of

—du=Ju? — (f—n)(R—r)’f(u) in Br(xo— Rny,)
(4.17)
U= oo on aBR(X() — Rl'lx())
satisfying
: ¥, (r)
lim sup — <l+e¢ 4.18
e Ny(R—r) (*.18)
where
_r+2 .7
o 7[7_1’ TE(X) T ,‘pé(r)7
a(a+1) ] 1(r=1)
r:=|x—[xo — Rny||, Ny = | ———= .
B

It should be noted that its existence is guaranteed by Theorem 4.2. Fix one of
those ¢’s and for each sufficiently small 6 > 0 consider the function @;s defined
by

®s(x) = Y(x +0ny,),  x€Br(xo— (R+0)ny,).

By construction, for each sufficiently small 6 > 0, @; provides us with a large
positive solution of (4.15) and, hence, (4.16) implies

u(x) < Y.(x+ony,) for each x € Bgr(xo— (R+9)ny,) and 6 € (0,d).
Thus, passing to the limit as ¢ | 0 gives
u<Y, in Bgr(xo — Rny,)

and, hence for each w e (0,7/2), (4.18) implies

. u(x)
1 _— <1 4.19
TSP N, st ) = TE (4.19)

xX€Cxj.0
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where C,, . is the wedge defined in the statement of Theorem 1.2. In
obtaining (4.19) we have used

dist(x, 092) . dist(x, 0Q)
lim ———== lim — =1
Y;—C'Aoo R—r Yz—vi)o dist(x, 0Br(xo — Rny,))

As the estimate (4.19) is valid for any sufficiently small ¢ > 0 and # > 0, for
proving (1.7) it remains to show that

- u(x)

I < liminf —— =Y 42

= W M{dist(x, 0Q)] (4.20)
xeCyp0

Since @ is of class %2, there exist R, > R; >0 and Jy > 0 such that

Qc () Ag.r,(xo+ (Ri+0)ny,)
56[0,(50]

and
QN OAR, r,(x0 + Riny,) = {xo}.

Moreover, R, can be taken arbitrarily large. In Figure 4.2 we have repre-
sented these annuli.

Fig. 4.2. The annuli where the subsolutions are supported
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Fix a sufficiently small # > 0. Thanks to (1.5), there exists a radially
symmetric function

a: Ag, r,(xo+ Riny,) —>101Jr such that ¢ >a in Q
and, for each x € Ag, g,(xo+ Riny,),
a(x) = b(]x — xo — Riny,|)[dist(x, 04g, r,(x0 + Riny,))]”
for some continuous function b : [R, Ry] — R , satisfying
b(Ry) =B +n.

Moreover, by enlarging R», if necessary, we can assume that b is the reflection
around the middle point of [Rj, Ry] of some continuous positive function.
Indeed, it suffices assuming that

Ri + R,

5 for each x e Q.

‘X—XO —RlnxO| <

Furthermore, » can be chosen so that

_ max a< max a+ 1.
ARy, Ry (Yo+Riny,) Q

Now, consider the auxiliary problem

{ —Au = uu? — af (u) in Ag, r,(xo + Riny,)

4.21
u = oo on aARl_’RZ(Xo =+ Rlnx()) ( )

where

W= 1r§12f w.

Thanks to Corollary 4.3, for each sufficiently small ¢ > 0, (4.21) possesses a
radially symmetric positive solution ¥, such that

1 — ¢ < liminf AY)

el 4.2
rlRy P”(V — R]) ( )

where
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Fix one of those &¢’s and for each J € (0,dy] consider the function @; defined
by

Ds(x) := P,(x —dny,), X € Ar, r,(x0 + (R; +J)ny,).

For each sufficiently small 6 > 0, @5 provides us with a large positive solution
of

{ —Au = pu? —a(-+ony,) f(u) in Ag, r,(xo+ (R +)ny,) (423)

U= o0 on 0Ag, r,(xo + (R +9J)ny,)

Moreover, by construction, the restriction @;|, provides us with a subsolution
of (1.1). Thus, thanks to Proposition 3.1, for each J € (0,09] we have

Y, (x —dny,) < u(x) for each x € Ag, g,(xo+ (Ri +9)ny,) and J € (0,0o).
Thus, passing to the limit as ¢ | 0 gives
Y.<u in ARth(onrRlnxO),

and, hence, for each w e (0,7/2)

l—¢e< lixn—l»,ixrolf ﬁ,
xeCopo
since
dist(x, 0Q) — lim dist(x, 0Q) _1
x;?foou r—Ry X;H\*Oow dist(x, 04g, r,(xo + Rny,))

This concludes the proof of (1.7). Applying (1.7) to any pair of solutions, u;
and uy, (1.9) readily follows.

Now, suppose there are f e %(6Q;lol+) and y € €(02;R,) satisfying (1.6)
and fix 7€ (0,1). Then, there exists 0 € (0,1) such that, for each xy € 09,

a(x) > (1 — n)p(xo)[dist(x, 6Q))"* if dist(x,x0) <. (4.24)

Fix x¢€0Q, set 2 := E(;/z(xo)ﬂa.Q and choose R > 0 sufficiently small so
that

A = |) Br(y — Rn,) = Bs(xo) N Q. (4.25)
yeX

Then, we find from (4.24) that

a(x) > (1 — g)B(xo)ldist(x,02)]""  V¥x e Bs(xo) N Q. (4.26)
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Subsequently, for each x e # NQ with dist(x,dQ) < R we denote by y, the
unique point of Bjs(xo) N R for which

dist(x,0Q2) =[x — y| = R— |x — (yx — Rn,)|. (4.27)
Set
Aw=max W, fp=min f(x), oy = max p(x),

and, for each ¢ >0, let ¥, be any positive radially symmetric solution of

=t = (1= ) (R~ X)) i Bx(0) s
U= oo on 0Bg(0) ’
satisfying
lim sup o) e = 1 +e, (4.29)
TR My (R — |x[)
where
a(x) = /() +2 X € oQ M, . = {O‘(XO)[“(XO) + 1}} M=)
p—1" ’ T LK = n)B(xo) '

The existence of ¥, is guaranteed by Theorem 4.2. Fix, one of those é&’s.
Then, arguing as in the first part of the proof, it is apparent that

u(x) < ¥.(x— (yx — Rn,)))  for each xe . (4.30)

Thus, for each x € # NQ with dist(x,02) < R we find from (4.27) and (4.30)
that
u(x) < lPs(Zx)
M, [dist(x, 02)] 00 = My, [R— |z ")

where we have denoted
Ix ‘=X — (yx - Rnyx)a
and, hence, we find from (4.29) that

lim's u(x)
up - ey = 1 +e
dist(x,02)10 M, . [dist(x, 0Q2)]

xeA

Therefore, as this inequality holds for each ¢ > 0, it is apparent that
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. u(x)
lim sup - G =
dist(x,02)10 M, v, [dist(x, 0Q)]

xex

(4.31)

Similarly, reducing 9, if it is necessary, one can use the large solutions on the
exterior annuli of the first part of the proof to conclude that

< liminf u(x) .
[dist(x, 802)] 7

dist(x,002)10 M,
xeA X0

(4.32)

It should be noted that .#" depends on ¢ and that ¢ depends on #; in such a way
that lim,o d(y) =0. Thus, lim, o # = {xo}. Moreover, 6, and, hence, %
can be chosen independent of x( because (1.6) holds uniformly in
xo. Therefore, it follows from (4.31) and (4.32) that

u(x)

lim . =1 (4.33)
¥=xo M, [dist(x, 0Q)) )

uniformly in x¢ € 0Q2, since 02 is compact.

We now show the uniqueness. Suppose that (1.9) is satisfied uniformly in
0L for any pair of positive solutions (u,v) of (1.1). Then, for any ¢ > 0 there
exists J > 0 such that

(I-ev<u<(l+ev in Q\Q;,
where, for each small enough 6 > 0,
Q5 :={x e Q:dist(x, 0Q) > J}.
Now, consider the problem

{ —dw = W(x)w? —a(x)f(w) in Qs (4.34)

w=u on 0925

By (HS8), which implies (H3), and Proposition 3.1, (4.34) possesses a unique
positive solution, necessarily u. Moreover, thanks to (H8), it is easy to see that
the pair ((1 —¢)v, (1 +¢)v) provides us with an ordered sub-supersolution pair
of (4.34). So, we have

(I—egw<u<(l4+ev in Qs
and, therefore,
(Il—gv<u<(l+ew in Q.

As this is true for any ¢ >0, we obtain that u=v. This concludes the
proof. [
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