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ABSTRACT. The oscillatory behavior of fourth order functional differential equations

(A) (17" ()" sgn y"(1)" + q(0)| ¥(g(0)]” sgn ¥(g(1) =0

is investigated. First, criteria are given for the existence of nonoscillatory solutions
with specific asymptotic behavior, and then criteria for all solutions to be oscillatory are
derived by comparing (A) with the associated differential equation without functional
argument.

1. Introduction

The objective of this paper is to study the oscillatory and nonoscillatory
behavior of fourth order nonlinear functional differential equations

(A) (17" (0)]" sgn y"(1))" + a(6)| p(g(D)|” sgn y(g(r)) =0
where

(a) o and f are positive constants;

(b) ¢:[0,00) — (0,00) is a continuous function;

() g¢g:]0,00) — (0,00) is a continuously differentiable function such that

g'(t) >0, t >0, and tlin}d g(t) = o0.

By a solution of (A) we mean a function y: [T}, ) — R which is twice
continuously differentiable together with |y”|* sgn y” and satisfies the equation
(A) at all sufficiently large . Those solutions which vanish in a neighborhood
of infinity will be excluded from our consideration. A solution is said to be
oscillatory if it has a sequence of zeros clustering around oo, and nonoscillatory
otherwise.

We first (in Section 1) study the existence of nonoscillatory solutions. The
set of nonoscillatory solutions of (A) is decomposed into six disjoint classes
according to their asymptotic behavior at oo, and existence criteria are estab-
lished for each of these classes. Some of the criteria are shown to be necessary
as well.
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We next derive criteria for any solution of (A) to be oscillatory. Our
derivations depends heavily on oscillaiton theory of fourth order nonlinear
ordinary differential equations

(B) (1"* sgn »")" +q(0)|y)" sgn y =0

recently developed by Wu [6]. A comparison principle enables us to deduce
oscillation of an equation of the form (A) from that of a similar equation with
a different functional argument. As a result, we are able to demonstrate the
existence of classes of equations of the form (A) for which sharp oscillation
criteria can be established.

We note that oscillation properties of second order functional differential
equations involving nonlinear Sturm-Liouville type differential operators have
been investigated by Kusano and Lalli [1], Kusano and Wang [3] and Wang [5].
The present paper is a step toward generalizing the above results to higher order
functional differential equations whose principal parts are genuinely nonlinear.

2. Nonoscillation theorems

Our purpose here is to make a detailed analysis of the structure of the set
of all possible nonoscillatory solutions of the equation (A), which can also be
expressed as

(A) (")) +q()(2(9(0)" =0

in terms of the asterisk notation

(2.1) e =g sené=1¢7'e,  EeR,y>0.

A) Classification of nonoscillatory solutions. It suffices to restrict our
consideration to eventually positive solutions of (A), since if y(¢) is a solution
of (A) then so is —y(f). Let y(¢f) be one such solution. Then, as is easily
verified, y(¢) satisfies either

L y'(6)>0, y"(t) >0, ("()*) >0 for all large ¢

or
I p'()) >0, y"(t) <0, (("(£)*) >0 for all large t.
(See Wu [6].) It follows that y(z), y'(£), y"(¢) and ((»"(£))**)" are eventually
monotone, so that they tend to finite or infinite limits as  — oo. Let
lim y9()=w;, i=0,1,2, and  Lm((y"(1)™) = ws.
t—0 =0
It is clear that w; is a finite nonnegative number. One can easily show that:
(i) if p(¢) satisfies I, then the set of its asymptotic values {w;} falls into
one of the following three cases:
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Ii: wo=w; =wy= 00, wje(0,0);

121 W) = W] = Wy = 0, 60320;

I3: wy = w = 00, a)ge(O,oo), C!)3=0.

(i) if y(¢) satisfies II, then the set of its asymptotic values {w;} falls into
one of the following three cases:

II]Z o = 00, W G(0,00), w2:w3:0;

Hz: oy = 00, a)1=w2=w320;

II3Z wo € (0, OO), W] =Wy = w3 = 0.

Equivalent expressions for these six classes of positive solutions of (A) are
as follows:

o YO :
1;: }Ln; oy const > 0;
O v
b lim oorre =0 fim 5 = oo
. t
I;:  lim % = const > 0;
t—oo f
. t
II;: lim & = const > 0;
t—oo
. t
II,: lim ) =0, lim y(t) = oo;
t—oo
I15: tlim y(t) = const > 0.
— 00

B) Integral representations for nonoscillatory solutions. We shall establish
the existence of positive solutions for each of the above six classes. For this
purpose a crucial role will be played by integral representations for those six
types of solutions of (A) as derived below.

Let y(¢) be a positive solution of (A) such that y(¢) >0 and y(g(¢)) >0
for t > T > 0. Integrating (A) from ¢ to co gives

0

(2.2) (V")) = w3 + J a(s)(p(g(s)’ds,  t=T.

t

If y(¢) is a solution of type I; (i=1,2,3), then we integrate (2.2) three times
over [T,t] to obtain

(2.3)
(1) = ko + Ky (1 — T)—I—J

t

=i+ [ (on+ [ a0)000000) o )] Vs

T T r

for t > T, where ko = y(T), k1 = y'(T') and k, = y”(T) are nonnegative con-
stants. The equality (2.3) gives an integral representation for a solution y(z) of
type I;. A type-I, solution y(#) of (A) is expressed by (2.3) with w3 =0.
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If y(¢) is a solution of type Is, then, first integrating (2.2) from ¢ to co and
then integrating the resulting equation twice from 7 to ¢, we have

(2.4)
() =ko+ ki (t—T) +J

t

T K

0 1/a
(=)ot = [ =g | o =T
where T is chosen sufficiently large.

An integral representation for a solution y(f) of type II; is derived by
integrating (2.2) with w3 =0 twice from 7 to co and then once from T to

(2.5) |
»(t) = ko + j (w + Jm U% - r>q<a)<y<g<a>>>ﬂda] /“dr> & 1=T.

T K r
An expression for a type-II, solution is given by (2.5) with w; =0. If y(¢) is
a solution of type Il3, then integrations of (2.2) with w; = 0 three times yield

e 0 1/o
(26) »(1) =wo - J (s—1) U (r— S)Q(V)(y(g(r)))ﬂdr] ds, t=T.
t s
C) Nonoscillation criteria (necessary and sufficient conditions). Tt will
be shown that necessary and sufficient conditions can be established for the
existence of positive solutions of the four types I;,I5,II; and II;.

THEOREM 2.1. The equation (A) has a positive solution of type 1y if and
only if

(2.7) J (g(e) P g(nydr < oo.
0
PrOOE. Suppose that (A) has a solution y(¢) of type I;. Then, it satisfies
(2.3) for t > T, when T > 0 is sufficiently large, which implies that

r 4 (g(0)dt < 0.

This together with the asymptotic relation lim y(z)/#**!/* = const > 0, shows
that the condition (2.7) is satisfied. o

Suppose now that (2.7) holds. Let k£ > 0 be any given constant. Choose
T > 0 large enough so that

B oo © 5
sn) [ e < S

28) (<a+ D 1) ) ST

Put T, = min{T, inf; g(t)}, and define
t=
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p 2
(29) G(1,T)= JT(Z —9)(s— T)l/ocds = (er)a(m

G(1,T) =0, t<T.

(t—T)"*  i>T,

Let Y < C[T,,0) and & : Y — C[T,, 0) be defined as follows:
(2.10) Y={yeC[T.,,©):kG(t,T) < y(t) <2kG(t,T),t > T.},

(2.11)  Zy(t) = JI (t—ys) UY (k“ + J’w q(a)(y(g(a)))ﬂda> dr}l/ads, t>T,

T T
Fy(t) =0, T.<t<T.

Clearly, Y is a closed convex subset of the Frechét space C[T,,o0) with the
topology of uniform convergence on compact subintervals of [T, c0).
If yeY, then for t > T

Fy(1) > kJT(z — §)(s— T)Vds = kG(1, T)

< J;(t_s) U; (k“r(m)ﬁf q(a)(g(g))<z+1/a)ﬂda>dy]l/ads

t
< ZkJ (1= 5)(s — T)*ds = 2kG(1, T),

T
and hence #y e Y. Thus, # maps Y into itself. Let {y,} be a sequence of
functions in Y converging to y € Y in the metric topology of C[T,, o). Then,
by using Lebesgue’s dominated convergence theorem, we can prove that the
sequence {Fy,(t)} converges to Zy(t) as n — oo uniformly on every compact
subinterval of [T, c0), that is, #y, — Zy as n — oo in C[T,, ). Hence F is
a continuous mapping.

For any ye Y we have

= [[[[ (e + [ aorsontac)a] o=
which implies that

t
i“l(,_ TV >
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From this inequality, together with the fact that #y € Y, we conclude that the
set Z(Y) is relatively compact in the topology of C[T,, o). Therefore, by the
Schauder-Tychonoff fixed point theorem, there exists a fixed element y e Y of
F, 1.e., y=Fy, which satisfies the integral equation

t s 0 1/a

(2.12)  y(r) = J (t—y) U (k“ +J q(a)(y(g(a)))ﬁda> dr] ds, t>T.
T T r

This is a special case of (2.3) with ko =k =k, =0 and w; = k*. Differ-

entiation of (2.12) shows that y(¢) is a positive solution of (A) for all large r.

Since tlim((y”(t))“)':k“‘ >0, y(¢) is a desired solution of type I;. This

completes the proof.

THEOREM 2.2. The equation (A) has a positive solution of type 15 if and
only if

(2.13) J: ((g(0))?q(t)dt < 0.

PrROOE. A positive solution y(#) of type I3, if exists, has an integral rep-
resentation (2.4) for some 7 > 0, which implies that

0
|| = Thaootato) < oo
Since llim y(1)/1* = const > 0, we see that the condition (2.13) is satisfied.

Suppose now that (2.13) holds. Let k > 0 be an arbitrarily fixed constant
and choose 7 > 0 so large that

(2.14) Jj Hg(0)Pq(1)dt < %T;k

Let 7, = min{T , gﬁ; g(t)} and consider the set Y < C[T,, o) defined by

(215) Y = {ye C[T,, o) :%(z— ) <y(t) <k(t—T),t> T*},

where (t—T), =t—T if t>T, and (+—T), =0 if t<T. Define the
mapping 4 : Y — C[T,,0) by

t (o]

1/a
216 (0= | (=90 - | - a0E) @] @ e

Gy()=0, T,<t<T.
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That 4(Y) < Y is an immediate consequence of (2.14). Since the continuity
of ¥ and the relative compactness of %(Y) can be proved routinely, there exists
an element y e Y such that y = %y, which satisfies

t e 1/a

(z—s>[<2k>“—j r— (g dr| ds, =T

N

@17) () =j

T

This is a special case of (2.4) with ky = k; =0 and w, = 2k. Differentiating
(2.17), we see that y(z) is a positive solution of (A) for all large ¢ with the
property that tlirn y"(t) =2k > 0. Thus, y(¢) is a type-I3 solution of (A).
— 00
This completes the proof.
THEOREM 2.3. The equation (A) has a positive solution of type 11} if and
only if

(2.18) r Uw(s _ t)(g(s))ﬁq(s)ds]l/adt <.

0 t

Proor. To prove the “only if” part of the theorem it suffices to observe
that a positive solution y(z) of type II; satisfies tlim »(2)/t = const > 0 and
— 00

[ 6- z>q<s><y<g<s>>>ﬁds}l/“dz <o

T t

To prove the “if”” part, assume that (2.18) holds, and for any fixed con-
stant k£ > 0 choose T > 0 so that

(2.19) r Um(s _ l)(g(s))ﬁq(s)ds}l/adt S

T L)
Let T, = min{T, tlgg g(l)} and consider the set Y < C[T,,00) and the
mapping # : Y — C[T,, o) defined by

(2.20) Y={yeC[T,,0): kt < y(t) <2kt,t > T.}

and

t oo [ oo 1/a
(2.21)  Hy(t) =kt + JTJ U (6 — 1)qlo)(y(g(a)))da| drds, t>T,
Hy(t) = kt, T.<t<T.

It can be verified as in the preceding theorems that (i) #(Y) = Y, (ii) #
is continuous, and (iii) #(Y) is relatively compact. Therefore, # has a fixed
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point y € Y, which gives rise to a positive type-II; solution of (A), since it
satisfies

(2.22) yU)_-kt+-Jth{

0 1/o
. J (o —r)q(a)(¥(g(c))Pda| drds, t>T.

r

Note that (2.22) is a special case of (2.5), and tlim y'(¢t) = k. The proof is thus
—0
complete.

THEOREM 2.4. The equation (A) has a positive solution of type 115 if and
only if
el © 1/o
(2.23) J IU (s— t)q(s)ds} dt < oo.

0 t

ProoE. Let y(f) be a type-1I5 solution of (A). Then y(¢) satisfies (2.6),
which implies that

JOO t[r(s - f)CI(S)(y(Q(S)))ﬁdS} 1/a(dt < 0.

T t

Since tlim y(t) = const > 0, (2.23) follows from the above inequality.
Suppose now that (2.23) holds. Let k > 0 be any fixed constant and take
T >0 so large that

(2.24) r tUx(s - t)q(s)ds} 1/de < %kl—ﬁ/x.

r L
Let T, = min{T , int} g(t)}, and define the mapping .# by
=

o0

G s)q(r)(y(g(rm”dr]st, (=T,

s

(2.25) Jﬂﬂ:k—]

1

Iy(1)=IyT), T.<i<T.

Then, it can be verified without difficulty that .# has a fixed element y in the set

Y:{yeC[T*,oo):k

5 <y <kt= T*}.

This fixed point gives rise to a required positive solution of (A), since it satisfies
) 0 1/a

e s =k- [ s-0|[ v-Dam0em) @] a T
t s

which is nothing else but (2.6). Note that tlim y(t) = k. This completes the
— 00
proof.
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D) Nonoscillation criteria (sufficient conditions). Let us now turn our at-
tention to positive solutions of types I, and II, of (A). We are content with
sufficient conditions for the existence of positive solutions with “intermediate”
growth. We observe that this kind of problem has not been dealt with even
for ordinary differential equations without functional arguments of the form
(B); see Wu [6].

THEOREM 2.5. The equation (A) has a positive solution of type 1, if

(229) |, oy qn < o
and
(2.29) (E}WODMq@dh:w.
; Proor. Choose T > 0 large enough so that T, = min{T7 tlgg g(t)} >1
an
(2.30) J;(g(t))@“/")”q(t)dz < 2011H ((OH— 1)“(22cx+ 1))oc.
Define

1 o
(2.31) Y= {ye C|T., ) P (- ) <y(t)y <PV > T*},

22 0= sir [ [ aouentasd] w izt

TJr

Jy()=0, T.<i<T.

If y e Y, then, using the inequality (4 + B)"/* < (24)"* + (2B)"/*, 4 > 0,
B >0, (2.30) and (2.9), we have for t > T

1
W(t* T)* < Jy(1)

<
T T

‘ © Ja
(1 - S){l + {ZJ q(a)(g(a))(zﬂ/“)ﬁda}l (s — T)l/“}ds

t

§ a+UQa+Uf

(t—s)ds + (

22 (t—s)(s— T)"*ds
T

T

N — — —

u—nhéo—nﬂwgﬂwa
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which implies that ¢ sends Y into itself. Since it is easy to verify that all the
other conditions of the Schauder-Tychonoff fixed point theorem are fulfilled,
there exists an element y e Y such that y = ¢y, which satisfies the integral
equation

(233) an=J;u—sﬂ§+j;[ﬁﬂaﬂﬂgw»ﬁdmﬁymw, (=T,

Differentiating (2.33) four times, we see that y(z) is a solution of (A) on [T, o0).

It is clear that tlim((y”(l))“*)' =0. That y(r) satisfies lim »"(t) = oo follows
— 00 —o0

from the calculation below:

o=+ [ anoaonraa]

TJs
‘1 1 t poo 2 1/a
= 12 T ST 1/p JT L 9(r)lglr) = T); drds]
r t 1/a
o 2
> §+m T(s —T)q(s)(g(s) = T)ds| t>T.

This completes the proof.

THEOREM 2.6. The equation (A) has a positive solution of type 1l if

(2.34) J: U:C (s — t)(g(s))ﬂq(s)ds}l/“dt < 0
and
(2.35) J: tUjC (s — t)q(s)ds}l/“dl =

Proor. Let k> 0 be any fixed constant and choose 7 > 0 so large that

T, = mm{T, ,lgf]: g(t)} >1 and

0 [ oo 1/a
(2.36) J U (s — l)(g(s))ﬂq(s)ds} dt < 27Pl gt =hle,
T L
Consider the set ¥ = C[T,, ) and the mapping %" : Y — C[T,, c0) defined by
(2.37) Y={yeC[T., o) k< y(t) < 2kt,t > T.},
1/o
(2.38) A1) { (6 —1r)q y(g(a)))/’)da} drds, t>T,

Hy(t) =k,

I/\

t<T
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Then, the Schauder-Tychonoff theorem can be applied to the existence of a
fixed element ye Y of . This y = y(¢) gives a solution of (A) on [T, c0),
since

(2.39) () =k+ J, Jw Uao(a - r)q(a)(y(g(a)))ﬁda}l/adrds, t>T.

TJs r
That tlirn »(¢) = oo is a consequence of the following observation:
— 00

t

SE s>q<r><y<g<r>>>ﬁdr]l/ads

K

y(t) =k + JT

t

>k+ kﬁ/“J (s—T) Uw(r — s)q(r)dr}l/“ds, t>T.

T K

Therefore, y(¢) is a positive solution of type II,. This completes the proof.

3. Oscillation theorems

A) Our aim in this section is to establish criteria (preferably sharp) for all
solutions of the equation (A) to be oscillatory. We are essentially based on
some of the oscillation results of Wu [6], which are collected as Theorem W
below, for the associated ordinary differential equation (B).

THEOREM W. (i) Let oo > 1> f.  All solutions of (B) are oscillatory if and
only if

(3.1) JO (PHVB (1) dt = oo.
(i) Let a <1< p. All solutions of (B) are oscillatory if and only if

(3.2) J: tq(t)dt =

(3.3) J: tq(t)dt < oo and J: s “;ﬁ (r— s)q(r)dr] 1/mds = 0.

B) Comparison theorems. Our idea is to deduce oscillation criteria for
(A) from Theorem W by means of the following two lemmas (comparison
theorems) which relate the oscillation (and nonoscillation) of the equation

(3-4) ([u" ()1 sgn " (£)" + F(t,u(h(1))) = 0

to that of the equations
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(3.5) (Jo" ()] sgn v"(1))" + G(1, v(k(1))) = 0
and

I'(2)
h'(h=1(1(1)))

With regard to (3.4)—(3.6) it is assumed that o > 0 is a constant, that &, k,/
are continuously differentiable functions on [0, c0) such that

(3.6)  (w"()|" sgn w"(1))" + F(h™'(1(n), w(l(1))) = 0.

h'(t) >0, k'(r)>0, I'(r)>0, lim h(t) = lim k() = lim [(t) = o0,
and that F, G are continuous functions on [0,00) x R such that uF(z,u) >0,
uG(t,u) >0 and F(t,u),G(t,u) are nondecreasing in u for any fixed > 0.
Naturally, #~! denotes the inverse function of /.

Lemma 3.1.  Suppose that
(3.7) h(t) = k(2), t=0
(3.8) F(t,x) sgn x > G(t,x) sgn X, (t,x) €0, 0) x R.
If all the solutions of (3.5) are oscillatory, then so are all the solutions of (3.4).

LemMA 3.2.  Suppose that I(t) = h(t) for t > 0. If all the solutions of (3.6)
are oscillatory, then so are all the solutions of (3.4).

These lemmas can be regarded as generalizations of the main comparison
principles developed in the papers [2, 4] to differential equations involving
higher order nonlinear differential operators. To prove these lemmas we need
a result which describes the equivalence of nonoscillation situation between
(3.4) and the differential inequality

(3.9) (I2"(1)|" sgn 2"(1)" + F(t, 2(h(1))) < 0.

LeEMMA 3.3.  If there exists an eventually positive function satisfying (3.9),
then (3.4) has an eventually positive solution.

ProoOF OF LEMMA 3.3. Let z(¢) be an eventually positive solution of (3.9).
It is easy to see that z(¢) satisfies either

L Z(t)>0, z"(t) >0, (z"(1))*) >0, t =T,
or

I: Z'(6) >0, (1) <0, (")) >0, t>T,
provided T > 0 is sufficiently large.

If z(¢) satisfies I, integrating (3.9) from ¢ to oo, we have

0

(3.10) ("(1)™) = w—i—J F(s,z(h(s)))ds,  t>T,

1
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where = lim ((z"(1))*)" = 0. Further integrations of (3.10) three times from
— 00
T to t yield the inequality

(3.11) | | ) .
(1) > =(T) +J (=) U (co—i— J F(o, z(h(a)))da) dr} ds, i>T.

T T
Let T, :min{T, inf h(t)}. Put
>T

(3.12) U={ueC[T,,0):0<u(t) <z(t),t = T,}
and define
1 K o0 1/a
(3.13) Qu(t) =z(T) + J (t—s) “ (w + J F(oyu(h(a)))do) dr} ds, t>T,
T T r
Du(t) = z(1), T.<t<T.
Then, it is easily verified that @ maps continuously U into a relatively compact

set of U, and so there exists a function u# € U such that u = @u, which implies
that

(3.14) [ ) B "
u(t) :z(T)—i—J (t—s) U (w+J F(a,u(k(a)))da)dr} ds, (>T.

T T r
This shows that u(z) is a positive solution of the equation (3.4).
If z(7) satisfies II, then (3.10) holds with @ = 0, and integrating (3.10) from
t to oo, we find

(3.15) —z"(t) > Utoc (s — t)F(s,z(h(s)))ds}l/“, t>T,

from which, integrating twice, first from ¢ to oo and then from 7 to ¢, we
obtain

(3.16) z(t) = z(T) + Jt J% U%(G - r)F(a,Z(h(a)))da}l/“drds, t>T.

TJs r

Let T, = min{T, int; h(t)} and let U and ¥ be defined, respectively, by
>
(3.12) and =
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The Schauder-Tychonoff fixed point theorem also applies to this case, and there
exists a function u € U such that u = Yu, that is,

t (oo [ (o0 1/a

(3.18)  wu(t) =z(T) —I—J J U (6 — r)F(o,u(h(c)))da| drds, t>T.
TJs r

It follows that u(¢) is a positive solution of (3.4). This completes the proof of

Lemma 3.3.

Proor oF LEMMA 3.1. It suffices to prove that if (3.4) has an eventually
positive solution, then so does (3.5).

Let u(f) be an eventually positive solution of (3.4). Note that u(¢) is
monotone increasing for all sufficiently large . In view of (3.7) and (3.8), we
see that there exists 7 > 0 such that u(h(¢)) = u(k(¢)), t = T, and

F(t,u(h(r))) = G(t,u(k(1))), t>T.
This together yields
(Ju" (O] sgn u"(1)" + G(t,u(k(1)) <0,  1>T,

and application of Lemma 3.3 then shows that the equation (3.5) has an
eventually positive solution v(¢). This completes the proof.

Proor oF LEMMA 3.2. The conclusion of the lemma is equivalent to the
statement that if there exists an eventually positive solution of (3.4) then the
same is true of (3.6).

Let u(z) be an eventually positive solution of (3.4). The following two
cases are possible:

L u'(6)>0, u"(t) >0, (u(£)*) >0 for all large t;

I u/(t) >0, u"(¢) <0, (u"(1))*) >0 for all large .

Suppose that I holds. Then we have

(3.19) l | ) .
u(t) > u(T) +J (1—s) U <a)+J Flo, u(h(a)))da)dr} ds, (>T,

T T r

where @ = tlim((u” (1))*)" = 0. Combining (3.19) with the inequality

we get



Fourth order quasilinear functional differential equations 311

620wtz ur)+ [ =9 [ (o[ F0ato).aco)
h’(hl—/l(/;)(p))) dp) dr}l/xds, t>T.

We now observe that an essential part of the proof of Lemma 3.3 is the
generation of a solution of the integral equation (3.14) [or (3.18)] on the basis
of the existence of a function satisfying the corresponding integral inequality
(3.11) [or (3.16)]. Here proceeding in a similar fashion, from the fact that u(z)
satisfies (3.20) we conclude that there exists a positive solution of the equation

621w =um)+ [ ¢=9)|[ (o[ o)

T T r

0 Vel
W 1(0)) d”)"} a1z T

It can be checked by differentiation that w(¢) provides a positive solution of the
differential equation (3.6).
Suppose next that II holds. Then, u(¢) is shown to satisfy the inequality

(322) u(t) > u(T)+ J; Jﬂ W r Fp, u(h(p)))dpda]l/xdrds, (> T.

Repeating the same argument as above with (3.19) replaced by (3.22), we are
led to the conclusion that there exists a positive solution w(#) of the integral
equation

623w =um)+ [ [ P an o)
AT "
W) dpda] drds, t>T,

which clearly gives a positive solution of the differential equation (3.6). This
completes the proof of Lemma 3.2.

C) Oscillation criteria. We first give a sufficient condition for all solu-
tions of (A) in the sub-half-linear case to be oscillatory.

THEOREM 3.1. Let a>1> f. Suppose that there exists a continuously
differentiable function h : [0, 00) — (0, c0) such that h'(t) > 0, [lim‘ h(t) = oo, and

(3.24) min{z,g(1)} = h(¢t)  for all large t.
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If

(3.25) Joo(h(t))(z“/“)ﬁq(t)dt = o0,
0

then all solutions of (A) are oscillatory.

Proor. Let us consider the equations

(3.26) (12"(1)|" sgn 2" (1)" + q(0)|z(h(1))|” sgn 2(h(1)) = 0,
-1
(3.27) (Jw"(6)|* sgn w"(£))" + % lw(2)|? sgn w(r) = 0.
Since

0 -1 0
J [2H1/20) Z/((hhl((tt)))) dt — J (h(T))(Z-H/oc)ﬂq(T)dT - o
by (3.25), Theorem W-(i) implies that all solutions of (3.27) are oscillatory.
Application of Lemma 3.2 then shows that all solutions of (3.26) are oscil-
latory, and the conclusion of the theorem follows from comparison of (A) with
(3.26) by means of Lemma 3.1.

It will be shown below that there is a class of sub-half-linear equations of
the type (A) for which the oscillation situation can be completely characterized.

THEOREM 3.2. Let o> 1> f and suppose that

(3.28) lim sup &;) < 0.

— o0

Then, all solutions of (A) are oscillatory if and only if

(3.29) | (aton® gt = o
0

Proor. That the oscillation of (A) implies (3.29) is an immediate con-
sequence of Theorem 2.1.

Assume now that (3.29) is satisfied. The condition (3.28) means that there
exists a constant ¢ > 1 such that

g(t) < ct for all sufficiently large .

Consider the ordinary differential equation

(3.30) (‘Z”(t)|°‘ sgn Z”(l‘))” i cq(g (CZ))

7T 12(0)|” sgn z(1) = 0.
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Since by (3.29)

* (2+l/a)[}M (7 @ @+1/2)p B
J t g'(g7" (1)) d’_J ( B ) q(t)dt = oo,

all solutions of (3.30) are oscillatory according to Wu’s theorem: Theorem
W-(i). From Lemma 3.1 it follows that the equation

-1
(3.31) (|u” (£)|* sgn u” (£))" +% \u(cl)|ﬁ sgn u(ct) =0

has all of its solutions oscillatory. Comparison of (A) with (3.31) via Lemma
3.2 then leads to the desired conclusion of the theorem. This completes the
proof.

An oscillation criterion for the equation (A) in the super-half-linear case is
given in the following theorem.

THEOREM 3.3. Let oo <1< f and suppose that

(3.32) lim inf ﬂt’) > 0.

—o0
Then, all solutions of (A) are oscillatory if and only if either (3.2) or (3.3) holds.

Proor. We need only to prove the “if” part of the theorem, since the
“only if”” part follows immediately from Theorem 2.4.
In view of (3.32) there exists a positive constant ¢ < 1 such that

(3.33) g(t) = ct for all sufficiently large .

Consider the ordinary differential equation

(3.34) (=0 sen ="(0)" + () O sen =) =0,

t
c

Using the assumptions on ¢(z), we see that either

J iq(ﬁ)dt:cjvtq(t)dt: o0
0 ¢ \C 0

0 © 1/o © ) 1/a
: 1 (s _ oy ! 4 _

t] (s—t)—ql-|ds| dt=c - s——q(s)ds| dt= oo,
0 4 ¢ ¢ 0 C[Jie ¢

which implies that all the solutions of (3.34) are oscillatory. We now apply
one of the comparison principles, Lemma 3.2, to compare (3.34) with the
equation

or
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(3.35) (Ju" ()| sgn u”(1))" + () |u(ct)|” sgn u(ct) = 0,

and conclude that (3.35) has the same oscillatory behavior as (3.34). Since
(3.33) holds, applying another comparison principle, Lemma 3.1, we conclude
that all the solutions of (A) are necessarily oscillatory. This completes the
proof.

From the proof of Theorems 3.2 and 3.3 we see that in case « > 1> f§ or
o <1< f, the oscillation of the functional differential equation

(1y"(0)]* sgn y"(£)" + q(2)| y(ct)|” sgn y(ct) =0

is equivalent to that of the ordinary differential equation (B). This observation
combined with our comparison principles (Lemmas 3.2 and 3.3) will lead to the
following result.

COROLLARY. Let either 00> 1> or o <1 < f and suppose that ¢(t) in
(A) satisfies
9(1) 9(1)

0 < liminf == lim sup — < 0.
t— o0 t 1— 0

Then all solutions of the equation (A) are oscillatory if and only if the same is
true for the equation (B).

ExampLE. We present here an example which illustrates oscillation and
nonoscillation theorems proven in Sections 1 and 2.
Consider the equation

(3.36) (17" ()" sgn y"(0)" + 7| p(")|” sgn p(17) =0,

where o, 5,y are fixed positive constants and 4 is a varying parameter.
It is easy to check that, written for (3.36),

. . 1
2.7) is equivalent to A > 1+ (2 +a>ﬁ’y;

(
(2.13) is equivalent to A > 2+ 2fy;
(2.18) is equivalent to A > 2+ o+ fy;
(2.23) is equivalent to A > 2+ 2a,

so that from Theorems 2.1-2.4 we see that |
(3.36) has a type-I; solution if and only if 2> 1+ <2+oc> By;

(3.36) has a type-I3 solution if and only if 1> 2+ 2fy;
(3.36) has a type-1I; solution if and only if 1> 2+ a+ fy;
(3.36) has a type-lI3 solution if and only if 1 > 2+ 2a.
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It follows that (3.36) has solutions of all types Ij,15,II; and II3 if either

1
o< fy and i>1+(2+&>ﬁy

or
o> fy and A> 2+ 20

It is easy to see that for (3.36) the conditions {(2.28), (2.29)} and {(2.34), (2.35)}
guaranteeing the existence of solutions of “‘intermediate’ types I, and II, may
be realized only when o > fy. The conclusions which follow from Theorems
2.5 and 2.6 are:

(i) (3.36) has a type-I, solution if

(3.37) o> Py and 1+ (2 +i>ﬁy <AZ242py.

(i) (3.36) has a type-II, solution if
(3.38) o> Py and 240+ fy<i<242a

We note that if (3.37) holds, then (3.36) has no solutions of types I3,1I;
and II3, and that if (3.38) holds, then (3.36) has no solution of type IIs.

We now want oscillation criteria for (3.36).

Suppose that o > 1> f. If y <1, then from Theorem 3.2 we conclude
that all solutions of (3.36) are oscillatory if and only if

hﬂ+@+9m.

If y > 1, then, applying Theorem 3.1, we see that all solutions of (3.36) are
oscillatory if

231+@+9ﬁ

Suppose that & < 1 < . Then, Theorem 3.3 applies to (3.36) with y > 1
and leads to the conclusion that all of its solutions are oscillatory if and only if

A <24 20
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