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ABSTRACT. A criterion for the existence of a plane model with two non-smooth
Galois points for algebraic curves is presented, which is a generalization of Fukasawa’s
criterion for two smooth Galois points. Multiplicities and order sequences at Galois
points are also described in detail.

1. Introduction

Let & be an algebraically closed field of characteristic p >0, and Ilet
C C IP? be an irreducible (possibly singular) plane curve of degree d > 4 over
k. For points P, Q € IP? with P # Q, the line passing through P, Q is denoted
by PO. We consider the projection 7p: C —— IP!; O +— PQ with the center
PecP?. If the field extension k(C)/mpk(IP') of function fields induced by 7p
is Galois, then P is called a Galois point for C. This notion was introduced
in 1996 by Yoshihara (see [3, 13, 16]). For a Galois point P, the associated
Galois group Gp = Gal(k(C)/npk(IP')) is called a Galois group at P. Fur-
thermore, a Galois point P is called a smooth Galois point (resp. a non-smooth
Galois point, an inner Galois point, an outer Galois point) if P is a smooth
point of C (resp. a singular point of C, a point contained in C, a point not
contained in C), after [11, 12, 15]. Note that the definition of an inner Galois
point in [5] is equivalent to the definition of a smooth Galois point in this
article.

In 2016, Fukasawa [5] presented a criterion for the existence of a birational
embedding of a smooth projective curve into a projective plane with two
smooth Galois points and obtained new examples of plane curves with two
smooth Galois points by using this criterion. On the other hand, there have
been some known examples of plane curves with two or more non-smooth
Galois points. For example, the Ballico-Hefez curve ([4, Theorem 1]), some
self-dual curves ([9, Theorem 17]), the (plane model of) Giulietti-Korchmaros
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curve ([8, Theorem 2]), the (¢, ¢*)-Frobenius nonclassical curve ([1, Theorem
1]), and the Artin-Schreier-Mumford curve (proof of [6, Theorem 1]) are such
curves. However, these examples are not intended to actively focus on non-
smooth Galois points. Only few research studies have focused on non-smooth
Galois points. Takahashi [15] studied plane quintic curves with a double point
P and determined defining equations when P is a Galois point. As far as the
author knows, this is the only study that focused on a non-smooth Galois point
so far. In order to study non-smooth Galois points systematically, it is good
to have a criterion for non-smooth Galois points.

In this article, we extend Fukasawa’s criterion [5, Theorem 1] to all cases
with two (possibly non-smooth) Galois points. Let X be a (reduced, irre-
ducible) smooth projective curve over k, and let k(X) be its function field.
The full automorphism group of X is denoted by Aut(X). For a finite sub-
group G C Aut(X) and a point P € X, the stabilizer of P in G (resp. the orbit
of P under G) is denoted by G(P) (resp. G- P). Furthermore, the quotient
curve of X by G, that is, the smooth projective curve corresponding to the fixed
field of k(X) by G, is denoted by X/G. The following are our main theorems.

THEOREM 1. Let Gy and G, be finite subgroups of Aut(X) and let Py and
P, be different points of X. Then there exists a birational embedding ¢ : X —
P? such that ¢(Py) and ¢(P,) are different inner Galois points, that Gyp) = Gi
Sfor i =1,2, and that L = ¢(P))p(P,) is not a tangent line at ¢(P,), if and only
if the following conditions are satisfied:
(a) X/G =P, X/G, =P,
(b) GiNGy={l}, and
(c) one of the following holds:
(C-i) P ¢G-Py,, P¢d Gy P, G -P,NGy Py # O, and |G1(P2)|
= |G2(P1)|-
(C-ii) G -P,NGy - Pr= (.
(C-lll) Pi¢G-P,, G-P,NGy Py #Z and |G1(P2)| > |G2(P1)‘
Furthermore, for any ¢ as in the above, the following hold:
(1) L is not a tangent line at p(Py) with LN o(X) 2 {p(P1),p(P2)} if and
only if condition (c-i) is satisfied.
(ii) L is not a tangent line at ¢p(Py) with LN o(X) = {p(P1),p(P2)} if and
only if condition (c-ii) is satisfied.
(i) L is a tangent line at p(P,) if and only if condition (c-iii) is satisfied.

For the birational embedding ¢ in Theorem 1, we have the following.

THEOREM 2. Let ¢ be as in Theorem 1, and let A be the linear system
on X corresponding to the morphism ¢. Let (0,0p,[p) denote the (A, P)-order
sequence at a point P€ X. Then the following hold.
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The multiplicity myp,y of ¢(X) at ¢(Py) is equal to
|G2(P1)| . |G2 . Pl\(Gl PN Gy - P1)|

The divisor ZPEWI(W,I)) apP is equal to

|G2(P1)|0.

QE GZ'Pl\(Gl 'PzﬁGTP])

The multiplicity myp,) of ¢(X) at ¢(Py) is equal to

|Gy PI\(Gy - P2 N Gy - Pr)|+ (|Gi(P2)] = |G2(P1)]) - |Gy - P20 Gy - Py

The divisor Y p,1(,p,) 2pP is equal to

> GIP)IR+ D (IGi(P2) = [Go(P)])S.
RGG]'PQ\(G]‘PzﬂGz-P]) SeG-P,NG,-Py
In the case (i) of Theorem 1, the equality fp = |G1(P,)| holds at each
point Pe G- PN G, - Py.
The divisor ¢*L is equal to

Z |G2(P1)[Q + Z |G1(P2)|R.

QEGz-P]\(Gl'PQﬁG[P[) ReG-P,

To explain the usefulness of Theorems 1 and 2, we apply our criterion to
rational curves.

THEOREM 3. There exist the following birational embeddings ¢ : P! — P2,

(1)

p =3, deg(p(IP')) = 14 and there exist two non-smooth Galois points
o(Py) and ¢p(Py) € p(P') such that My(p) =4, Myp,) = 8, Gyp,) = Ds,
Gyp,) = AGL(1,TF3), and L = ¢(P1)g(P2) is not a tangent line at ¢(Py)
and ¢(P;). The second order is equal to 2 at each point contained in
supp(¢*L).

p #2,5, deg(p(IP')) = 16 and there exist two non-smooth Galois points
o(P1) and ¢(P>) € p(P") such that myp,) = 4, myp,) = 11, Gyp,) = Ay,
Gyp,) = Z/5Z, L = ¢(P1)p(P2) is not a tangent line at ¢(Py), and L
is a tangent line at ¢p(P3). The second order is equal to 2 (resp. 1) at
each point Q € Gyp,) - P2\{P2} (resp. Q€ Gyp,) - P1), and the third
order is equal to 2 at P,.

p #2,5, deg(p(IP')) = 28 and there exist two non-smooth Galois points
o(Py) and p(P>) € p(P') such that Myp)y =4, Myp,) =23, Gyp) = Sy,
Gyp,) = Z/5SZ, L = ¢(P1)p(P2) is not a tangent line at ¢(Py), and L
is a tangent line at 9(P,). The second order is equal to 4 (resp. 3, 1)
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at each point Q € Gyp,y- P\{P2} (resp. at Py, at each point Qe
Gy(p,) - PI\{P2}), and the third order is equal to 4 at P,.

2. Preliminaries

We recall some notation and facts. Let ¢: X — IP? be a morphism,
which is birational onto its image. Such a morphism ¢ is called a birational
embedding of X to P2, Assume that ¢(X) is not a line. First, we recall
the notion of order sequences (see [10, Chapter 7]). For a line L C IP?, the
intersection divisor of ¢(X) and L on X is denoted by ¢*L. Note that

A={p*L|L is a line contained in IP?}

is the linear system on X corresponding to the morphism ¢. The support of
the divisor ¢*L is denoted by supp(¢*L). For a point P € X, the order of ¢p*L
at P is denoted by ordp(p*L). We put

op = min{ordp(p*L) |p*L € A, P € supp(p*L)}.

Then there exists a unique line L such that i, = ordp(p*L) > ap. We call the
line L the osculating line at P, and we call the sequence (0, ap,fp) the (A, P)-
order sequence at P. A line L passing through ¢(P) is called a tangent line
at p(P) if L is the osculating line at a point contained in ¢! (p(P)). Note that
a line L is a tangent line at ¢(P) if and only if mypy < Lyp) (p(X ), L), where
Ip)(p(X),L) is the intersection multiplicity of ¢(X) and L at ¢(P).

Next, we consider the projection 7,p), and we put #,p) = my,pop: X —
P!. We recall some properties of a ramification index of Typ). We put
9 (p(P)) ={P1,...,Py,}. Let (0,0p,pp) be the (A,P;)-order sequence for
i=1,...,n. The ramification index of 7,p) at a point Q € X is denoted by
eo(typ)). Then the following fact is well-known.

Fact 4. Let Qe X\{P1,...,P,}.

(1) The equality eg(7t,p)) = ordg(p*p(P)p(Q)) holds.
(2) The equality ep,(typ)) = Bp, — ap, holds for i=1,... n.

Finally, we recall some properties of a Galois covering for the proof of
our main theorems (see [14, III. 7.1, 7.2 and 8.2]).

Fact 5. Let 0: X — Y be a surjective morphism of smooth projective
curves, and assume that the field extension k(X)/0"k(Y) is a Galois extension
with the Galois group G. Then the following hold.

(1) If P,Qe X and O(P) = 0(Q), then there exists an element o € G such

that o(P) = Q.
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(2) If P,QeX and O(P) = 0(Q), then ep(0) = eo(0).
(3) For each point Pe X, the order |G(P)| is equal to ep(0).

3. Proofs of Theorems 1 and 2

The same notation is used as in the previous section. The following
lemma shows that Theorem 1 describes all cases with two inner Galois points.

LEMMA 6. Let Py,P, e X, and assume that ¢(Py) and ¢(P;) are dif-
ferent inner Galois points. We put L = ¢(P1)p(Py). Then either myp ) =
I(p(Pl)(¢(X)aL) or My(p,) :Iga(Pz)(¢(X)aL) holds.

Proor. We put
9 ' (p(P1)) = {P11 = P1,P1s,..., P1p },
¢ ' (p(P2)) = {P21 = Py, Pa, ..., Pop, }.

Let (0,ap,, Bp,) be the (4, Py)-order sequence for i, j. Assume by contradic-
tion that

m(/)(Pl) < Igﬂ(Pl) ((p(X)a L) and m(p(Pz) < I;/J(Pz) ((D(X), L)

hold. By Fact 5, the ramification index of #,p,) (resp. 7,p,)) at each point

contained in ¢~ '(p(P2)) (resp. ¢~ '(p(P1))) coincides with |G,p,)(P2)| (resp.
(Gyiry(P1))). By Fact 4 (1) and Fact 5, |Gypy)(Pa)] (resp. |Gy (Py)]) coin-
cides with ordp, (p*L) for each j (resp. OI'dP“(¢*L) for each 7). Since L is a
tangent line at ¢(P;) (resp. ¢(P,)), there exists iy (resp. jo) such that

ﬁPl,O = OrdFle ((p*L) (I'CSp. ﬁszo = Orsz,’O ((p*L))
By Fact 4 (2) and Fact 5,
|Gyipy)(P2)| = Bp,, —apy,  (1e3D. |Gypy)(P1)| = Pp, — opy)
holds. Therefore, we have a contradiction as follows:
|Go(py) (P1)| < |Gip(py) (P1)] + oty = Bp, = ordpy, (¢7L) = |Gyp,)(P2)]
< |G4/J(P|)(P2)| + aPliO = ﬁPl,»O = OrdPliO ((P*L) = |G(/I(P2)(Pl)|

ProoF (Proof of Theorem 1). We consider the ‘if” part. Assume that
conditions (a), (b), and (c) in Theorem 1 are satisfied. Let f,g € k(X) be the
generators of k(X)“ and k(X)“ such that

Ny = aP2),  (9), =D w(Pr),

geG 1€Gy
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which exist by condition (a), where (f), (resp. (g),) is the pole divisor of f
(resp. g). We consider the morphism ¢ = (f : ¢ : 1) : X — IP?. First, we show
that the equality ¢(P;) = (0:1:0) holds. We put n, = ordp ((g9),,). Note
that n, is equal to |G2(P;)|. Let tp, be a local parameter at P;. Since
Py ¢ Gy - P, =supp((f),,) by condition (c),

ordp, (15! f) = ng + ordp, (f) = ny >0

hold. Therefore, we have the equality ¢(P;) = (0:1:0). We also show that
the equality ¢(P>) = (1:0:0) holds. We put ny =ordp,((f),). Note that
ny is equal to |Gy (P2)|. Let tp, be a local parameter at P,. If P, ¢ G, P, =
supp((9).,), we have

ordp, (t5.g) = ny + ordp,(g) = ny > 0.
If P, € G, - Py, then condition (c-iii) is satisfied, and we have
ordp, (1p,9) = ny + ordp, (9) = |Gi(P2)| — |G2(P1)| > 0.

Therefore, the equality ¢(P;) = (1:0:0) holds. By a method similar to the
proof of [5, Proposition 1], by condition (b), we can show that the morphism
@ is birational onto its image. The morphism (f : 1) (resp. (g : 1)) coincides
with the projection from the point

p(P1)=(0:1:0) (resp. p(P2) =(1:0:0)).

Therefore ¢(P;) and ¢(P>) are different inner Galois points, and G,p,) = G;
for i=1,2. We show that L = ¢(P;)p(P;) is not a tangent line at ¢(P;).
Assume by contradiction that L is a tangent line at ¢(P;). Then there exists
a point Q€ ¢~ '(p(P1)) such that Qe Gy - P,. Let A be the linear system on
X corresponding to the morphism ¢, and let (0, , ﬁQ) be the (A, Q)-order
sequence at Q. Since L is the osculating line at Q, we have

|G2(P1)] = ordo(p™L) = g

by Fact 4 (1) and Fact 5. On the other hand, by Fact 4 (2) and Fact 5, the
equality

|G1(P2)| = g — o0

holds. Therefore, we have G;-P,NGy- Py # & and |Gi(P2)| < |G2(P1)].
This is a contradiction to condition (c). Therefore, L is not a tangent line
at o(P1).

We consider the ‘only if” part. Assume that there exists a birational
embedding ¢ : X — IP? such that ¢(P;) and ¢(P,) are different inner Galois
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points, G,py = G; for i=1,2, and L= ¢(P1)p(P>2) is not a tangent line
at ¢(P;). Since

k(X) % = (Ry(p)) " (k(P")) = k(P')

for i = 1,2, condition (a) is satisfied. By a method similar to the proof of [5,
Theorem 1], condition (b) is satisfied. Since L is not a tangent line at ¢(P;),
we have P; ¢ G) - P,. We show condition (c¢) by dividing into the following
three cases (I), (II), and (III).

(I) Assume that L is not a tangent line at ¢(P,) and

LNo(X) 2 {o(P1),p(P2)}.

We show that condition (c-i) is satisfied. Since L is not a tangent line at ¢(P,)
and (LN o(X)\{p(P1),p(P2)} # &, we have P> ¢ G2 - Py and Gi - PN Gy - Py
# . We take a point

Qe g (LN e(X)\{p(P1), p(P2)}).
By Fact 4 (1) and Fact 5, we have the equalities
|G1(P2)| = ordo(p™L) = [G2(P1)].

Therefore, condition (c-i) is satisfied.
(II) Assume that L is not a tangent line at ¢(P,) and

LX) ={e(P1),0(P2)}.
Then G- P> = ¢ '(p(Py)) and G»- Py = ¢~ '(p(P;)) hold, and we have
G -P,NGy,-Pi=(.

Therefore, condition (c-ii) is satisfied.

(III) Assume that L is a tangent line at ¢(P,). We show that condi-
tion (c-iii) is satisfied. Since L is a tangent line at ¢(P;), there exists a point
Qe g '(p(Py)) such that Qe G- P. Since Gi- P, D ¢~ '(p(P2)), we have
G -P,NGy Py # . Let A be the linear system on X corresponding to the
morphism ¢, and let (0,09, f,) be the (4, Q)-order sequence at Q. Since L is
the osculating line at Q, we have

|G1(P2)| = ordg(9"L) = fg

by Fact 4 (1) and Fact 5. On the other hand, by Fact 4 (2) and Fact 5, the
equality

|G2(P1)] = Bo — 20
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holds, and we have |G|(P,)| > |G2(P;)|. Therefore, condition (c-iii) is sat-
isfied.

Finally, we show (i), (ii), and (iii) in Theorem 1. Let ¢ be as in Theorem
1. Then condition (c-i), (c-ii), or (c-iii) is satisfied. Since these conditions
are mutually exclusive, it is enough to show ‘only if” part of (i), (ii), and (iii)
in Theorem 1. This task has been already done above.

PrOOF (Proof of Theorem 2). Let ¢ be as in Theorem 1, and let 4 be the
linear system on X corresponding to the morphism ¢. We put

¢71(¢(P1)) = {Pll = P17P127"~7P1ﬂ1}7
¢ ' (¢(P2)) = {Py = Py, Py, ..., Py}

Let (0,0p;,Bp,) be the (4, Py)-order sequence for i, j.
First, we show Theorem 2 (1) and (2). Since the linear system corre-
sponding to the morphism 7,p,) is

ni ni
{E =Y op,Pii|E€AE> ZOCP]IPU}
i=1 i=1

and 7,p,) is a Galois covering, the following equalities of divisors hold:

0L ap P = () (L) = 3 o).
i=1

O'EG]

where [L] represents the divisor of the point [L] € IP! corresponding to the line
L. By Fact 4 (1) and Fact 5, the equality |G2(P;)| = ordp,(p*L) holds for
all 7. Since L is not a tangent line at ¢(P;), the equality op, = |G2(P1)| holds
for all i. It is not difficult to check that

(0" (p(P1))) U (G1 - P2) = supp(p*L) = (G2 - P1) U (G - P3)

hold. Since the intersection of the two sets ¢~ !(p(P;)) and G- P, is the
empty set, we have

9~ (p(P1) = (9~ ((P1))) U (G1 - P2))\(G1 - P»)
= Gz-P]\(Gl ~P2ﬂG2'P1).
Therefore, the equality

Y onPi= > G2(P1)|Q
i=1

Q€ Gy-P1\(G1-P,NGy-Py)
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of divisors holds, and we have Theorem 2 (2). Since

My(py) § :OCPm

we have Theorem 2 (1).
Next, we show Theorem 2 (6). By the above, the equality

p'L= > G2(P)|Q+ Y a(P)

QGGZ'P]\<GI'P20C;2-P]> ge G
holds. Since

Y oaP)= ) [Gi(P)|R

ge G ReG,-P,

we have Theorem 2 (6).
Finally, we show Theorem 2 (3), (4), and (5). Since

dap)= > |G(P)IS+ > |G2(P1)|0,
1€Gy SeG-P,NG,-Py Qe G2~P1\(G1~PzﬂGz~P1)

the following equalities of divisors hold:

|G1(P2)|R
ReGy-P\(G1-P2NGy-Py)

+ > (G(P) = 1GAPONS + Y w(Pr)

SeG-P,NG,-Py 1e@G)
|G1(P2)|R + Z |G1(P2)|S
ReG-P,\( G] P>NGy-Py) SeG-P,NG,-Py
+ |G2(P1)|Q

Qe Gy P]\(G] PaﬂGz‘P[)

- 3 G2(P)|@+ > [Gi(Py)IR

QEGz-P|\<G|-P2ﬂG2-P|) ReGy-Py
*
=L,

where the last equality comes from Theorem 2 (6). Therefore, the equality

p'L—) t(P)= > G1(Py)|R

1€Gy REG[-Pz\(Gl'PzﬁG[Pl)

+ Y (1G(P)| - Go(P)))S

SeG-P,NG,-Py
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of divisors holds. On the other hand, since the linear system corresponding to
the morphism 7,p,) is

3
EedE>)_ ocpzl.sz}
=1

n
E — O(PZ/PZ./
Jj= J

1

and 7,p,) is a Galois covering, the following equalities of divisors hold:

L - io‘l’zfpb‘ = (Rp(ey) "([L]) = > (Py).

Jj=1 1eGy

Therefore, the equalities

ZZ opy Py = ¢"L — Z o(Py)
j=1

TEGZ

= > |G1(P>)|R
Re Gi-P2\(Gy-PaNGy-Py)

+ > (1G] - 1Go(Py)))S

SeG-P,NG,-Py

of divisors hold, and we have Theorem 2 (4). Since

n
My(py) = § :O‘Pzw
J=1

we have Theorem 2 (3). Assume that the condition (c-iii) in Theorem 1 is
satisfied. Then

0 < |Gi(P2)] — |Ga2(Py)| < [Gi(P2)]

hold. By Theorem 2 (6), the equality |G;(P;)| = ordp(p*L) holds at each
point P e G, - P,. By Theorem 2 (4), the second (4, P)-order coincides with
|G1(P;y)| — |G2(Py)| at each point Pe Gy - P, NG, P;. Therefore, the third
(4, P)-order coincides with |G;(P,)| at each point Pe Gy - P, NG, - Py, and
Theorem 2 (5) holds.

RemMARK 7. In [7], Fukasawa presented a criterion for the existence of
a birational embedding with a pair of Galois points consisting of a smooth
Galois point and an outer Galois point. By a method similar to the proof of
Theorems 1 and 2, we can extend the criterion to non-smooth and outer Galois
points. The necessary and sufficient conditions for the existence of a birational
embedding with inner and outer Galois points are that X /G; ~ P! for i = 1,2,
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Gy NG, = {1}, and there exist 7 € G, and P € X such that

|G (P)] > 0+ (Ga(P)| — |Gi(n(P))) Y. R=P.
0€(G2-P)—(Gin(P)) RG Gy-n(P)
4. Proof of Theorem 3

We apply Theorems 1 and 2 to rational curves. In this case, condition (a)
in Theorem 1 is always satisfied, by Liiroth’s theorem. We identify Aut(IP')
with the projective linear group PGL(2,k). We put Q,, = (1:0) and Q, =
(a:1)eP! for any ack.

ProOF (Proof of Theorem 3). Let p #2,5, let iek be a root of the
polynomial T2 + 1 € k[T], and let ¢ be a primitive fifth root of unity.
(1) Let p=3, and let P, = Qy and P, = Q:. We consider two sets:

(S e D
o-{ Sh=([2 oo

where Ds is the dihedral group of degree 5 (see [2, Theorem C]). It is not
difficult to check that

om(1 (b 2] macnm

where AGL(1,TF;) is the general affine group of degree 1 over IF;. By direct
computations, we have the equalities

GiNGy = {1},
P2 - {Ql;QC?ngan“:‘ng“}a

Gy- P ={01,00,01},
G -P,NG,-Pr={01},

aea={[y W7 §1p o
e ={[ 15 )
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Therefore, conditions (b) and (c-i) in Theorem 1 are satisfied, and there exists a
birational embedding ¢ : P! — IP? such that ¢(P;) and ¢(P,) are different inner
Galois points, Gjp) = Ds, G,p,) = AGL(1,IF3), and L = ¢(P1)p(P2) is not
a tangent line at ¢(P1), ¢(P2). By Theorem 2 (1), (3) and (6), m,p,) =4,
myp,) = 8 and deg(p(IP')) = 14. By Theorem 2 (6), the second order is equal
to 2 at each point contained in supp(¢*L).

(2) Let Py = Q¢ and P, = Q;. We consider

a=(lo SH oML L) e e=([5 )

Obviously, G, @ Z/5Z, and the following fact is known.

a=(o Aoyl A=

where A4 is the alternating group of degree 4 (see [2, Theorem C]). Since 5
and 12 are coprime, condition (b) in Theorem 1 is satisfied. By direct compu-
tations, we have the following equalities:

Gl . PZ = {Q*ia Q*b Q07Q17 Qi7 Q?@}a
GZ 'Pl = {Q17Q§7Q527Q§37Q54}7
G- P,NGy- Py ={Q1 = P2},

aon={[, 3 )
o={[, )

Therefore, condition (c-iii) in Theorem 1 is satisfied, and there exists a bira-
tional embedding ¢ : IP! — IP? such that ¢(P;) and ¢(P,) are different inner
Galois points, Gyp,) = A4, Gyp,) = Z/5Z, L = ¢(P1)p(P2) is not a tangent line
at ¢(P;), and L is a tangent line at ¢(P,). By Theorem 2 (1), (3) and (6),
Myp,) =4, myp,) = 11 and deg(p(P')) = 16. By Theorem 2 (2), (4), and (5),
the second order is equal to 2 (resp. 1) at each point Q € Gy - P,\{P»} (resp.
Qe G, - Py), and the third order is equal to 2 at P,.
(3) Let Py =0Q: and P, = Q;. We consider two groups:

(R PR A PR )
o{f; )
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Obviously, G, @ Z/5Z, and the following fact is known:

Lo A0 o) =l B]pecrmse

where Sy is the symmetric group of degree 4 (see [2, Theorem C]). Since 5 and
24 are coprime, condition (b) in Theorem 1 is satisfied. By direct computa-
tions, we have the following equalities:

G- Py={0_,01,00,01,0i, 0 },
GZ P = {QlaQéaQéQOé%Q{‘}a
Gl'PzﬁG2~P1:{Q1:P2},

aon={[y S0 L D)
o={[, )

Therefore, condition (c-iii) in Theorem 1 is satisfied, and there exists a bira-
tional embedding ¢ : P! — 1P? such that ¢(P;) and ¢(P,) are different inner
Galois points, Gyp) = Sy, Gyp,) = Z/5Z, L = ¢(P1)p(P2) is not a tangent line
at ¢(P;), and L is a tangent line at ¢(P,). By Theorem 2 (1), (3) and (6),
my(p,) =4, My(p,) =23 and deg(p(IP')) = 28. By Theorem 2 (2), (4), and (5)
the second order is equal to 4 (resp. 3, 1) at each point Q € G - P,\{P»} (resp.
at P,, at each point Q€ G, Pi\{P,}), and the third order is equal to 4
at P».
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