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Abstract

We report on existence of pair of new recurrence relations (or difference equations) for the
Meixner-Pollaczek polynomials. Proof of the correctness of these difference equations is also
presented. Next, we found that subtraction of the forward shift operator for the Meixner-
Pollaczek polynomials from one of these recurrence relations leads to the difference equation
for the Meixner-Pollaczek polynomials generated via cosh difference differentiation operator.
Then, we show that, under the limit ϕ→ 0, new recurrence relations for the Meixner-Pollaczek
polynomials recover pair of the known recurrence relations for the generalized Laguerre poly-
nomials. At the end, we introduced differentiation formula, which expresses Meixner-Pollaczek
polynomials with parameters λ > 0 and 0 < ϕ < π via generalized Laguerre polynomials.
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1 Introduction

Orthogonal polynomials play important role in the explicit solution of huge number of problems,
mainly coming from physics and mathematics. Their advantage is that by employing some of
known properties of them (three-term recurrence relations, differential/difference equations, for-
ward/backward shift operators, generating functions etc), one can construct number of exactly-
solvable dynamical systems with various behaviour of the eigenvalues and eigenfunctions. Best ex-
ample that can be provided here is the Hermite polynomials, which are solutions of the second order
differential equation. In quantum mechanics, upon explicit solution of the Schrödinger equation
of the nonrelativistic 1D harmonic oscillator within the condition that non-commuting momentum
and position operators satisfy the relation [x̂, p̂] = i, these polynomials appear in the wavefunctions
of the stationary oscillator states, which have the discrete eigenvalues En = n+1/2, n = 1, 2, ... [1].
Then, another two important properties of these orthogonal polynomials - their forward and back-
ward shift operators and three-term recurrence relations play the role of starting point for con-
struction of the dynamical symmetry algebra of the non-relativistic quantum harmonic oscillator,
which is the Heisenberg-Weil algebra [2]. Hermite polynomials appear in the Askey table of the
orthogonal polynomials in the lower level, which means that they can be considered as simplest
realization within the orthogonal polynomials [3]. They are expressed through 2F0 hypergeometric
functions and have no free parameter. As a next step, one can drop the so-called canonical com-
mutation relation, i.e. [x̂, p̂] 6= 0. However, instead of it, one can require here satisfaction of the
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Heisenberg-Lie equations. Under such a condition, the Schrödinger equation of the nonrelativistic
1D harmonic oscillator with non-commuting momentum and position operators again can be solved
explicitly. Its wavefunctions of the stationary states are expressed through the generalized Laguerre
polynomials and dynamical symmetry is osp (1|2) Lie superalgebra [4]. From mathematical view-
point, two well-known recurrence relations for the generalized Laguerre polynomials are starting
bricks for construction of this model [5]. Here, one need to note that various generalizations of both
Hermite and Laguerre polynomials already exists and some examples are Hermite based Appell ma-
trix polynomials [6] and special polynomials as mixing of Laguerre-Gould Hopper polynomials with
Sheffer sequences [7]. Also, ’algebraic zero’ conditions with respect to weight and contour of such
ortogonal polynlomials are already studied in detail [8]. Besides such generalizations, one observes
that the Meixner-Pollaczek polynomials appearing in the next level of the Askey table of the or-
thogonal polynomials can be best candidates to generalize both Hermite and Laguerre polynomials
and quantum harmonic oscillator models with stationary states wavefunctions expressed through
them. They have two parameters, one is λ > 0 and another one is an angle 0 < ϕ < π. Already,
their special case ϕ = π/2 has been used to construct two interesting models of the quantum har-
monic oscillator. Dynamical symmetry of both models is su(1, 1) Lie algebra [9, 10]. There exists
general limit between Meixner-Pollaczek polynomials of parameter λ > 0 under the case λ→∞ [3]
as well as one can apply same limit for both quantum harmonic oscillator models with a special
case ϕ = π/2 and show that constructed models and their su(1, 1) dynamical symmetry algebra
correctly reduce to the Hermite oscillator model with Heisenberg-Weil dynamical symmetry alge-
bra. It is necessary to note that, Meixner-Pollaczek polynomials are related with Krawtchouk and
Meixner polynomials via simple transformation [11], which are already used to construct different
kind of the quantum harmonic oscillator models in the discrete configurational space [12, 13, 14].
The open question here is possibility of the generalization of pair of recurrence relations for the
generalized Laguerre polynomials for the case of Meixner-Pollaczek polynomials.

Aim of this paper is to show that the Meixner-Pollaczek polynomials with parameter λ > 0 and
angle 0 < ϕ < π satisfy pair of new recurrence relations/difference equations differing from those
appearing in [3]. Our paper is structured as follows. In Section 2, we give basic information about
the Meixner-Pollaczek polynomials, including their definition in terms of the 2F1 hypergeometric
functions, orthogonality relation and forward and backward shift operators. Then, we introduce
pair of new recurrence relations/difference equations for the Meixner-Pollaczek polynomials, prove
their correctness by using direct computations as well as show that subtraction of the forward shift
operator for the Meixner-Pollaczek polynomials from one of these recurrence relations leads to the
difference equation for the Meixner-Pollaczek polynomials generated via cosh difference differentia-
tion operator and these recurrence relations reduce to the pair of known recurrence relations for the
generalized Laguerre polynomials, in Section 3. Also, in this section, we introduce differentiation
formula, which expresses Meixner-Pollaczek polynomials with parameters λ > 0 and 0 < ϕ < π
via generalized Laguerre polynomials. Conclusions and further discussions of possible application
of the derived equations are discussed in Section 4.

2 Definition and known properties of the Meixner-Pollaczek
polynomials

Known properties of the Meixner-Pollaczek polynomials are used extensively for solution of wide
range applied mathematics and theoretical physics problems since their introduction in [15]. Main
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properties of these polynomials, such as, their definition through the hypergeometric functions,
three-term recurrence relations, difference equation, explicit solution of which leads to these poly-
nomials, forward and backward shift operators and generating functions of them as well as various
limit relations and special cases between them and other orthogonal polynomials belonging to
the Askey scheme of the orthogonal polynomials are listed in [3]. However, information provided
there does not mean that these properties are unique and another generalizations or various finite-
difference equations, solutions of which can lead to the Meixner-Pollaczek polynomials does not
exist. As a support of this statement, one can provide the following brief information about re-
cently published works achieving attractive results through involvement of the Meixner-Pollaczek
polynomials: multivariable biorthogonal generalizations of the Meixner-Polaczek polynomials are
presented in [16], an integral representation of the Meixner-Pollaczek polynomials in terms of a
multidimensional generalization of the Barnes type integral are presented in [17], the asymptotics
of zeros of the Meixner-Pollaczek polynomials are studied in [18, 19], new asymptotic expansions
of the Hahn-type 3F2 polynomials in terms of the Meixner-Pollaczek polynomials are derived and
new limit relation between the continuous dual Hahn and Meixner-Pollaczek polynomials is derived
in [20], new generalization of the Meixner-Pollaczek polynomials with an additional ψ parameter is
introduced in [21], expansions of Dirichlet beta function and Riemann zeta function in the series of
Meixner-Pollaczek polynomials are derived in [22, 23] and by using Meixner-Pollaczek polynomials
with specific parameters, a class of new generalized coherent states is constructed in [24]. Also,
it is necessary to highlight very recent paper [25], where, it is proven that the Meixner-Pollaczek
polynomials are solutions of a second-order divided-difference equation of hypergeometric-type and
then, the inversion, connection, multiplication and linearization problems have been solved for these
polynomials.

Meixner-Pollaczek polynomials are defined through the 2F1 hypergeometric functions by the
following expression [3]:

P (λ)
n (x;ϕ) =

(2λ)n
n!

einϕ 2F1

(
−n, λ+ ix

2λ
; 1− e−2iϕ

)
. (2.1)

They satisfy the following orthogonality relation in the continuous configurational space:

1

2π

∞∫
−∞

e(2ϕ−π)x |Γ (λ+ ix)|2 P (λ)
m (x;ϕ)P (λ)

n (x;ϕ) dx =
Γ (n+ 2λ)

(2 sinϕ)
2λ
n!
δmn, (2.2)

λ > 0, 0 < ϕ < π.

These polynomials are explicit solutions of the following difference equation:

2i [x cosϕ− (n+ λ) sinϕ]P (λ)
n (x;ϕ)

= e−iϕ (λ+ ix)P (λ)
n (x− i;ϕ)− eiϕ (λ− ix)P (λ)

n (x+ i;ϕ) .
(2.3)

At same time, the Meixner-Pollaczek polynomials satisfy the following three-term recurrence
relations
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2 [x sinϕ+ (n+ λ) cosϕ]P (λ)
n (x;ϕ)

= (n+ 1)P
(λ)
n+1 (x;ϕ) + (n+ 2λ− 1)P

(λ)
n−1 (x;ϕ) ,

(2.4)

and the following forward and backward shift operators (or recurrence relations):

(
eiϕ − e−iϕ

)
P

(λ+
1
2 )

n−1 (x;ϕ) = P (λ)
n

(
x+ i

2 ;ϕ
)
− P (λ)

n

(
x− i

2 ;ϕ
)
, (2.5)

(n+ 1)P
(λ− 1

2 )

n+1 (x;ϕ)

= eiϕ
(
λ− 1

2 − ix
)
P (λ)
n

(
x+ i

2 ;ϕ
)

+ e−iϕ
(
λ− 1

2 + ix
)
P (λ)
n

(
x− i

2 ;ϕ
)
.

(2.6)

Taking into account definition of the formal derivatives δf (x) = f
(
x+ i

2

)
− f

(
x− i

2

)
and

δx =
(
x+ i

2

)
−
(
x− i

2

)
= i, one can reformulate (2.5) and (2.6) as follows:

δP
(λ)
n (x;ϕ)

δx
= 2 sinϕP

(λ+
1
2 )

n−1 (x;ϕ) , (2.7)

δ
[
ω (x;λ, ϕ)P

(λ)
n (x;ϕ)

]
δx

= −(n+ 1)ω
(
x;λ− 1

2 , ϕ
)
P

(λ− 1
2 )

n+1 (x;ϕ) , (2.8)

where

ω (x;λ, ϕ) = Γ (λ+ ix) Γ (λ− ix) e(2π−ϕ)x.

One of the important properties of (2.5)-(2.8) is that under the following limit from Meixner-
Pollaczek to the generalized Laguerre polynomials

lim
ϕ→0

P

(
1
2α+

1
2

)
n

(
− x

2ϕ
;ϕ

)
= L(α)

n (x) , (2.9)

they recover both forward and backward operators for the generalized Laguerre polynomials:

d

dx
L(α)
n (x) = −L(α+1)

n−1 (x) , (2.10)

d

dx

[
e−xxαL(α)

n (x)
]

= (n+ 1) e−xxα−1L
(α−1)
n+1 (x) , (2.11)

where, the generalized Laguerre polynomials are defined through the 1F1 hypergeometric functions
by the following way:

L(α)
n (x) =

(α+ 1)n
n!

1F1

(
−n
α+ 1

;x

)
.
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3 Pair of new recurrence relations for the Meixner-Pollaczek
polynomials

Below, we are going to define pair of new recurrence relations/difference equations for the Meixner-
Pollaczek polynomials, which differ from (2.4)-(2.6).

Proposition 3.1. There exists a pair of recurrence relations for the Meixner-Pollaczek polynomials
of the following kind:

2 (x− iλ) sinϕ · P
(λ+

1
2 )

n

(
x− i

2 ;ϕ
)

= (n+ 1)P
(λ)
n+1 (x;ϕ)− eiϕ (n+ 2λ)P (λ)

n (x;ϕ) ,
(3.1)

P (λ)
n (x;ϕ) = P

(λ+
1
2 )

n

(
x− i

2 ;ϕ
)
− e−iϕP

(λ+
1
2 )

n−1

(
x− i

2 ;ϕ
)
. (3.2)

Proof. We are going to prove the correctness of both recurrence relations (3.1) and (3.2) by per-
forming direct straightforward computations and using known properties of the shifted factorials
and 2F1 hypergeometric functions.

First, we remind that, if one of the numerator parameters equals −n, where n is nonnegative
integer, then the hypergeometric function 2F1 is defined as finite sum of the following form:

2F1

(
−n, a
b

;x

)
=

n∑
k=0

(−n)k (a)k
(b)k

xk

k!
, (3.3)

where, (a)k is the Pochhammer symbol (or shifted factorial) defined as (a)0 = 1 and (a)k =
a(a+ 1)(a+ 2) · · · (a+ k− 1), k = 1, 2, 3, . . .. Then, by using (3.3), one can rewrite (3.1) as follows:

2 (x− iλ) (2λ+ 1)n−1 e
−iϕ sinϕ

n−1∑
k=0

(−n+ 1)k (λ+ ix+ 1)k
(2λ+ 1)k k!

(
1− e−2iϕ

)k
= (2λ)n

n∑
k=0

(−n)k (λ+ ix)k
(2λ)k k!

(
1− e−2iϕ

)k
−(n+ 2λ− 1) (2λ)n−1

n−1∑
k=0

(−n+ 1)k (λ+ ix)k
(2λ)k k!

(
1− e−2iϕ

)k
.

(3.4)

Taking into account that

n−1∑
k=0

(−n+ 1)k Ak =

n∑
k=0

(−n+ 1)k Ak, (3.5)

then, (3.4) can be reformulated as follows:
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2 (x− iλ) (2λ+ 1)n−1 e
−iϕ sinϕ

n∑
k=0

(−n+ 1)k (λ+ ix+ 1)k
(2λ+ 1)k k!

(
1− e−2iϕ

)k
= (2λ)n

n∑
k=0

(−n)k (λ+ ix)k
(2λ)k k!

(
1− e−2iϕ

)k
−(n+ 2λ− 1) (2λ)n−1

n∑
k=0

(−n+ 1)k (λ+ ix)k
(2λ)k k!

(
1− e−2iϕ

)k
.

(3.6)

Using the following transformation formulae for the Pochhammer symbols

(2λ+ 1)n−1 =
(2λ)n

2λ
,

(2λ)n−1 =
(2λ)n

2λ+ n− 1
,

(2λ+ 1)k =
2λ+ k

2λ
(2λ)k ,

(−n+ 1)k =
n− k
n

(−n)k ,

(λ+ ix+ 1)k =
λ+ ix+ k

λ+ ix
(λ+ ix)k ,

and substituting them in (3.6), after some simplifications one finds that

n∑
k=0

(−n)k (λ+ ix)k
(2λ)k k!

(
1− e−2iϕ

)k [
k +

(n− k) (λ+ ix)
(
1− e−2iϕ

)
2λ+ k

]
= 0. (3.7)

Due to existence of k in one and (n − k) in second summation term, one can terminate both
summations as follows:

n∑
k=1

(−n)k (λ+ ix)k
(2λ)k (k − 1)!

(
1− e−2iϕ

)k
=

n−1∑
k=0

(−n)k+1 (λ+ ix)k+1

(2λ)k+1 k!

(
1− e−2iϕ

)k+1
, (3.8)

correctness of which can be easily observed. Therefore, correctness of (3.8) also proves correctness
of recurrence relation (3.1) for the Meixner-Pollaczek polynomials.

We prove (3.2) by using similar approach. Taking into account (3.3), one can rewrite (3.2) as
follows:

2λ

n∑
k=0

(−n)k (λ+ ix)k
(2λ)k k!

(
1− e−2iϕ

)k
= (2λ+ n)

n∑
k=0

(−n)k (λ+ ix+ 1)k
(2λ+ 1)k k!

(
1− e−2iϕ

)k
−ne−2iϕ

n−1∑
k=0

(−n+ 1)k (λ+ ix+ 1)k
(2λ+ 1)k k!

(
1− e−2iϕ

)k
.

(3.9)
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Now, one applies (3.5) and extend second summation of right hand-side from (n − 1) to n as
follows:

2λ

n∑
k=0

(−n)k (λ+ ix)k
(2λ)k k!

(
1− e−2iϕ

)k
= (2λ+ n)

n∑
k=0

(−n)k (λ+ ix+ 1)k
(2λ+ 1)k k!

(
1− e−2iϕ

)k
−ne−2iϕ

n∑
k=0

(−n+ 1)k (λ+ ix+ 1)k
(2λ+ 1)k k!

(
1− e−2iϕ

)k
.

(3.10)

Further straightforward computations lead to the following summation:

n∑
k=0

(−n)k (λ+ ix)k
(2λ)k k!

(
1− e−2iϕ

)k [ k

λ+ ix
+

(n− k)(λ+ ix+ k)
(
1− e−2iϕ

)
(λ+ ix)(2λ+ k)

]
= 0. (3.11)

Again, due to existence of k in first and (n − k) in second summation term, (3.11) can be
reformulated as follows:

n∑
k=1

(−n)k (λ+ ix+ 1)k−1

(2λ)k (k − 1)!

(
1− e−2iϕ

)k
=

n−1∑
k=0

(k − n)
(−n)k (λ+ ix+ 1)k

(2λ)k+1 k!

(
1− e−2iϕ

)k+1
. (3.12)

Taking into account that

(k − n) (−n)k = (−n)k+1 ,

as well as changing summation in right hand-side from 0 to n−1 as from 1 to n, one easily observes
correctness of (3.12), which also proves (3.2). q.e.d.

Now, taking into account existence of (3.1)-(3.2) pairs to known forward and backward operators
(2.5) and (2.6) of the Meixner-Pollaczek polynomials, one can discover new ’hidden’ properties of
the Meixner-Pollaczek polynomials. One example is introduced in the proposition below.

Proposition 3.2. Subtraction of (2.5) from (3.2) leads to the following difference equation for the
Meixner-Pollaczek polynomials:

cosh
(
i
2∂x
)
P (λ)
n (x;ϕ) = P

(
λ+

1
2

)
n (x;ϕ)− cosϕP

(
λ+

1
2

)
n−1 (x;ϕ) . (3.13)

Proof. Correctness of (3.13) can be checked easily by trivial substraction of (2.5) from (3.2). One
needs to highlight that, existence of (3.13) is already known and it is introduced in [26]. There, its
correctness is proven by using known generating function for the Meixner-Pollaczek polynomials [3].

q.e.d.

Main property of recurrence relations (3.1)-(3.2) is that, unlike forward and backward operators
(2.5) and (2.6), limit from Meixner-Pollaczek polynomials to the generalized Laguerre polynomials
does not reduce them to forward and backward operators for the generalized Laguerre polynomials
(2.10)-(2.11), but, to the recurrence relations for the generalized Laguerre polynomials.
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Proposition 3.3. Under the limit (2.9), recurrence relations (3.1) and (3.2) reduce to the following
recurrence relations for the generalized Laguerre polynomials:

xL(α+1)
n (x) = (n+ α+ 1)L(α)

n (x)− (n+ 1)L
(α)
n+1 (x) , (3.14)

L(α)
n (x) = L(α+1)

n (x)− L(α+1)
n−1 (x) . (3.15)

Proof. As we noted above, proof of both recurrence relations is based on limit relation (2.9) between
Meixner-Pollaczek and generalized Laguerre polynomials. Limit from (3.2) to (3.15) is trivial and
for the limit from (3.1) to (3.14), one need to take into account that

lim
ϕ→0

(iα+ i− x/ϕ) sinϕ = (iα+ i− x/ϕ)

∞∑
k=0

(−1)kϕ2k+1

(2k + 1)!
= −x.

q.e.d.

However, this is not only known way to connect these two orthogonal polynomials. In [27], new
differentiation formula in terms of Meixner-Pollaczek polynomials is introduced to express general-
ized Laguerre polynomials in terms of Meixner-Pollaczek polynomials. Below, we introduce similar
differentiation formula, which expresses Meixner-Pollaczek polynomials in terms of generalized La-
guerre polynomials.

Proposition 3.4. For λ > 0 and 0 < ϕ < π, Meixner-Pollaczek polynomials can be expressed via
generalized Laguerre polynomials by the following differentiation formula:

(2 sinϕ)
ix
ex(ϕ−

π
2 )Γ (λ+ ix)P (λ)

n (x;ϕ) = L(2λ−1)
n

(
ei∂x

)
(2 sinϕ)

ix
ex(ϕ−

π
2 )Γ (λ+ ix) . (3.16)

Proof. We drop proof of this differentiation formula, but, one need note that its correctness can
be proven easily by using Mellin transform between Meixner-Pollaczek and generalized Laguerre
polynomials similar to the proof in [27].

q.e.d.

Pair of recurrence relations (3.14)-(3.15) play very important role in the non-canonical approach
to the quantum mechanics, which will be discussed briefly in final section.

4 Discussions and conclusion

Both Meixner-Pollaczek and generalized Laguerre polynomials play important role on explicit solu-
tion of number of problems of applied mathematics and quantum physics. The Meixner-Pollaczek
polynomials, being expressed through 2F1 hypergeometric functions and having two quasi-free pa-
rameters, can be considered as some generalization of the generalized Laguerre polynomials ex-
pressed by 1F1 hypergeometric function and having one quasi-free parameter. One of the main
relations between these two polynomials is the limit relation (2.9), that reduces Mexiner-Pollaczek
polynomials to the generalized Laguerre polynomials, when, ϕ → 0. Another connection is an
application of the Mellin transform to them, under which, both polynomials are mapped onto each
other [27]. In addition to the forward and backward operators for the generalized Laguerre poly-
nomials (2.10)-(2.11), these polynomials are also explicit solutions of the pair of known recurrence
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relations (3.14)-(3.15). In his seminal paper [28], Wigner solved operator equations for the non-

relativistic quantum harmonic oscillator
[
Ĥ, p̂

]
= ix̂ and

[
Ĥ, x̂

]
= −ip̂ under general commutation

relation [x̂, p̂] 6= 0. Then, by using (2.10)-(2.11), it was found that dynamical symmetry algebra of
such an oscillator model is osp (1|2) Lie superalgebra. Both Wigner quantum oscillator model and
its dynamical symmetry algebra osp (1|2) recover known Hermite quantum oscillator model and
Heisenberg-Weil algebra, when, quasi-free parameter a of the generalized Laguerre polynomials
becomes equal to 1/2. One can show that, when, a = 1/2, then both recurrence relations for the
generalized Laguerre polynomials (3.14)-(3.15) reduce the known normalized recurrence relation for
the Hermite polynomials [3]. In this paper, we aimed to look for pair of the recurrence relations
for the Meixner-Polaczek polynomials with behavior similar to (3.14)-(3.15). We proposed that
these recurrence relations have the form (3.1)-(3.2). Next, we found that subtraction of (2.5) from
(3.2) leads to the difference equation for the Meixner-Pollaczek polynomials (3.13). Then, it is
shown that, under the limit relation (2.9), both recurrence relations recover (3.14)-(3.15). How-
ever, we highlighted that this is not only the approach to connect Meixner-Pollaczek and Laguerre
polynomials. Therefore, we expressed Meixner-Pollaczek polynomials with parameters λ > 0 and
0 < ϕ < π via generalized Laguerre polynomials by differentiation formula (3.16). Further, these
recurrence relations can be used to find some generalization of osp (1|2) Lie superalgebra and its
realization as quantum oscillator model in terms of the Meixner-Pollaczek polynomials.
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