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Abstract

In this paper we introduce and investigate two new subclasses of the function class Σ of bi-
univalent functions in the open unit disk, which are associated with the Hohlov operator, and
satisfying subordinate conditions. Furthermore, we find estimates on the Taylor-MacLaurin co-
efficients |a2| and |a3| for functions in these new subclasses by using Chebyshev polynomials.
Several new consequences of these results are also pointed out.
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1 Introduction
Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk U := {z ∈ C : |z| < 1}. By S we will denote the sub-
class of all functions in A which are univalent in U. Some of the important and well-investigated
subclasses of the class S include, for example, the class S∗(α) of starlike functions of order α in U,
and the class K(α) of convex functions of order α in U, with 0 ≤ α < 1. It is well known that every
function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ U)

and

f(f−1(w)) = w

(
|w| < r0(f), r0(f) ≥ 1

4

)
,

where
g(w) = f−1(w) = w − a2w

2 +
(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + . . . . (1.2)

A function f ∈ A is said to be bi-univalent in U if f(z) and f−1(w) are univalent in U, and let
Σ denote the class of bi-univalent functions in U. The functions z

1−z , − log(1 − z), 1
2 log

(
1+z
1−z

)
are

in the class Σ (see details in [6]). However, the familiar Koebe function is not bi-univalent. Lewin
[17] investigated the class of bi-univalent functions Σ and obtained a bound |a2| 5 1.51. But the
coefficient problem for each of the following Taylor-MacLaurin coefficients |an| (n ≥ 4) was an open
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problem (see [4, 5, 6, 17, 20, 33]) until the publication of the article [16] in 2013. The study of bi-
univalent functions gained momentum mainly due to the work of Srivastava et al. [25]. Due to the
pioneering work of Srivastava et al. [25], many researchers (see [1, 2, 3, 12, 13, 19, 25, 26, 28, 31, 32])
investigated several interesting subclasses of the class Σ and found non-sharp estimates on the first
two Taylor-MacLaurin coefficients |a2| and |a3|. Further recently Srivastava et al. [29] defined m-
fold symmetric bi-univalent function analogues to the concept of m-fold symmetric univalent functions
and they gave some important results,such as each function f ∈ Σ generates an m-fold symmetric bi-
univalent function for eachm ∈ N, in their study and found estimates for the first two coefficients of
such functions and extend the study to investigate Fekete-Szegö functional problems for functions
in these new subclasses(see[27, 30]).

The convolution or Hadamard product of two functions f, h ∈ A is denoted by f ∗h, and is defined
by

(f ∗ h)(z) := z +

∞∑
n=2

anbnz
n,

where f is given by (1.1) and h(z) = z +
∞∑
n=2

bnz
n. Next, in our present investigation, we need

to recall the convolution operator Ia,b,c due to Hohlov [14, 15], which is a special case of the Dziok-
Srivastava operator [10, 9] which itself a special case of the widely-investigated Srivastava-Wright
operator [24] (also see[18]).

For the complex parameters a, b and c (c 6= 0,−1,−2,−3, . . . ), the Gaussian hypergeometric
function 2F1(a, b, c; z) is defined as

2F1(a, b, c; z) :=

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
= 1 +

∞∑
n=2

(a)n−1(b)n−1

(c)n−1

zn−1

(n− 1)!
(z ∈ U), (1.3)

where (α)n is the Pochhammer symbol (or the shifted factorial) given by

(α)n :=
Γ(α+ n)

Γ(α)
=

{
1, if n = 0,
α(α+ 1)(α+ 2) · · · (α+ n− 1), if n = 1, 2, 3, . . . .

For the real positive values a, b and c, using the Gaussian hypergeometric function (1.3),
Hohlov [14, 15] introduced the familiar convolution operator Ia,b,c : A → A by

Ia,b,cf(z) = [z 2F1(a, b, c; z)] ∗ f(z) = z +

∞∑
n=2

ϕnanz
n (z ∈ U), (1.4)

where

ϕn =
(a)n−1(b)n−1

(c)n−1(n− 1)!
, (1.5)

and the function f is of the form (1.1).
Hohlov [14, 15] discussed some interesting geometrical properties exhibited by the operator

Ia,b,c, and the three-parameter family of operators Ia,b,c contains, as its special cases, most of the
known linear integral or differential operators. In particular, if b = 1 in (1.4), then Ia,b,c reduces
to the Carlson-Shaffer operator. Similarly, it is easily seen that the Hohlov operator Ia,b,c is also a
generalization of the Ruscheweyh derivative operator as well as the Bernardi-Libera-Livingston operator.
It is of interest to note that for a = c and b = 1, then Ia,1,af = f , for all f ∈ A.



Certain Subclasses of Bi-univalent Functions... 155

2 Definitions and Preliminaries
Chebyshev polynomials(see [11]), which is used by us in this paper, play a considerable act in
numerical analysis. We know that the Chebyshev polynomials are four kinds. The most of books
and research articles related to specific orthogonal polynomials of Chebyshev family, contain es-
sentially results of Chebyshev polynomials of first and second kinds Tn(x) and Un(x) and their
numerous uses in different applications(see Doha [7] and Mason [21]). The well-known kinds of
the Chebyshev polynomials are the first and second kinds. In the case of real variable x on (−1, 1),
the first and second kinds are defined by

Tn(x) = cosnθ,

Un(x) =
sin(n+ 1)θ

sinθ

where the subscript n denotes the polynomial degree and where x = cosθ.We note that if t = cosα,
α ∈

(−π
3 , π3

)
, then

Φ(z, t) =
1

1− 2tz + z2
= 1 +

∞∑
n=1

sin(n+ 1)α

sinα
zn = 1 + 2cosαz + (3cos2α− sin2α)z2 + · · ·

(z ∈ U).

Thus, we write

Φ(z, t) = 1 + U1(t)z + U2(t)z2 + ... (z ∈ U, t ∈ (−1, 1))

where Un−1 = sin(narccost)√
1−t2 for n ∈ N, are the second kind of the Chebyshev polynomials . Also, it

is known that
Un(t) = 2tUn−1(t)− Un−2(t),

and
U1(t) = 2t; U2(t) = 4t2 − 1, U3(t) = 8t3 − 4t, · · · . (1.6)

The Chebyshev polynomials Tn(t), t ∈ [−1, 1], of the first kind have the generating function of the
form

∞∑
n=0

Tn(t)zn =
1− tz

1− 2tz + z2
(z ∈ U).

All the same, the Chebyshev polynomials of the first kind Tn(t) and the second kind Un(t) are
well connected by the following relationship

dTn(t)

dt
= nUn−1(t),

Tn(t) = Un(t)− tUn−1(t),

2Tn(t) = Un(t)− Un−2(t).

Motivated by the earlier work of Deniz [8], Peng et al. [23] (see also [22, 28]), and Altınkaya
and Yalçın [3], in the present paper we introduce new subclasses of the function class Σ, involving
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Hohlov operator Ia,b,c, and we find estimates on the coefficients |a2| and |a3| for the functions
that belong to these new subclasses of functions of the class Σ by using Chebyshev polynomials.
Several related classes are also considered, and connection to earlier known results are made.

Definition 2.1. For 0 ≤ λ ≤ 1; t ∈ (−1, 1) a function f ∈ Σ is said to be in the class Ga,b,cΣ (λ,Φ) if
the following two conditions are satisfied:

z (Ia,b,cf(z))
′

(1− λ)z + λIa,b,cf(z)
≺ Φ(z, t) (1.7)

and
w (Ia,b,cg(w))

′

(1− λ)w + λIa,b,cg(w)
≺ Φ(w, t) (1.8)

where the function g is given by (1.2), and z, w ∈ U.

Definition 2.2. For 0 ≤ λ ≤ 1; t ∈ (−1, 1) a function f ∈ Σ is said to be in the classMa,b,c
Σ (λ,Φ) if

it satisfies the following two conditions:

z (Ia,b,cf(z))
′
+ z2 (Ia,b,cf(z))

′′

(1− λ)z + λz (Ia,b,cf(z))
′ ≺ Φ(z, t) (1.9)

and
w (Ia,b,cg(w))

′
+ w2 (Ia,b,cg(w))

′′

(1− λ)w + λw (Ia,b,cg(w))
′ ≺ Φ(w, t), (1.10)

where the function g is given by (1.2), and z, w ∈ U.

On specializing the parameters λ and t ∈ (−1, 1) one can state the various new subclasses of Σ
as illustrated in the following remarks. Thus, taking λ = 1 in the above two definitions, we obtain:

Remark 2.3. (i) A function f ∈ Σ is said to be in the class Sa,b,cΣ (Φ) if the following conditions are
satisfied:

z (Ia,b,cf(z))
′

Ia,b,cf(z)
≺ Φ(z, t) and

w (Ia,b,cg(w))
′

Ia,b,cg(w)
≺ Φ(w, t)

where g = f−1 and z, w ∈ U.
(ii) A function f ∈ Σ is said to be in the class Ka,b,cΣ (Φ) if it satisfies the following conditions:

1 +
z (Ia,b,cf(z))

′′

(Ia,b,cf(z))
′ ≺ Φ(z, t) and 1 +

w (Ia,b,cg(w))
′′

(Ia,b,cg(w))
′ ≺ Φ(w, t)

where g = f−1 and z, w ∈ U.

Taking λ = 0 in the previous two definitions, we obtain the next special cases:

Remark 2.4. (i) A function f ∈ Σ is said to be in the classHa,b,cΣ (Φ) if the following conditions are
satisfied:

(Ia,b,cf(z))
′ ≺ Φ(z, t) and (Ia,b,cg(w))

′ ≺ Φ(w, t)
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where g = f−1 and z, w ∈ U.
(ii) A function f ∈ Σ is said to be in the class Qa,b,cΣ (Φ) if it satisfies the following conditions:

(Ia,b,cf(z))
′
+ z (Ia,b,cf(z))

′′ ≺ Φ(z, t) and

(Ia,b,cg(w))
′
+ w (Ia,b,cg(w))

′′ ≺ Φ(w, t)

where g = f−1 and z, w ∈ U.

In particular, for a = c and b = 1, we note that Ia,1,af = f for all f ∈ A, and thus, for λ = 1

and λ = 0 the classes Sa,b,cΣ (Φ) and Ka,b,cΣ (Φ) reduces to the following subclasses of Σ in Remark
2.5 and Remark 2.6 respectively:

Remark 2.5. (i) A function f ∈ Σ is said to be in the class S∗Σ(Φ) if the following conditions are
satisfied:

zf ′(z)

f(z)
≺ Φ(z, t) and

wg′(w)

g(w)
≺ Φ(w, t),

where g = f−1 and z, w ∈ U.
(ii) A function f ∈ Σ is said to be in the class KΣ(Φ) if the following conditions are satisfied:

1 +
zf ′′(z)

f ′(z)
≺ Φ(z, t) and 1 +

wg′′(w)

g′(w)
≺ Φ(w, t),

where g = f−1 and z, w ∈ U.

Remark 2.6. (i) A function f ∈ Σ is said to be in the class HΣ(Φ) if the following conditions are
satisfied:

f ′(z) ≺ Φ(z, t) and g′(w) ≺ Φ(z, t),

where g = f−1 and z, w ∈ U.
(ii) A function f ∈ Σ is said to be in the class QΣ(Φ) if the following conditions are satisfied:

f ′(z) + zf ′′(z) ≺ Φ(z, t) and g′(w) + wg′′(w)− 1 ≺ Φ(w, t),

where g = f−1 and z, w ∈ U.

In order to derive our main results, we shall need the following :
In the following section we find estimates of the coefficients |a2| and |a3| for functions of the

above-defined subclasses Ga,b,cΣ (λ,Φ) andMa,b,c
Σ (λ,Φ) of the function class Σ.

3 Coefficient Bounds for the Function Class Ga,b,cΣ (λ,Φ)

We begin by finding the estimates on the coefficients |a2| and |a3| for functions belonging to the
class Ga,b,cΣ (λ,Φ).

Supposing that the functions

u(z) = c1z + c2z
2 + · · · (z ∈ U), (1.11)

v(w) = d1w + d2w
2 + · · · (w ∈ U), (1.12)
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are analytic in U with u(0) = 0 = v(0) and |u(z)| < 1, |v(w)| < 1, for all z, w ∈ U. It is well-known
that

|u(z)| = |c1z + c2z
2 + · · · | < 1 and |v(w)| = |d1w + d2w

2 + · · · | < 1, z, w ∈ U, (1.13)

then for all k ≥ 1,

|ck| ≤ 1, (1.14)
|dk| ≤ 1 . (1.15)

Theorem 3.1. If the function f given by (1.1) belongs to the class Ga,b,cΣ (λ,Φ) and t ∈ (0, 1), then

|a2| ≤ min


2t
√

2t√∣∣∣(2− λ)
2
ϕ2

2 + [(3− λ)ϕ3 − 2(2− λ)ϕ2
2]4t2

∣∣∣ ;
2t

(2− λ)ϕ2

 (1.16)

and

|a3| ≤ min

 2t

(3− λ)ϕ3
+

8t3∣∣∣(2− λ)
2
ϕ2

2 + [(3− λ)ϕ3 − 2(2− λ)ϕ2
2]4t2

∣∣∣ ;
1

(3− λ)ϕ3

(
2t+

∣∣1− 8t2

(2− λ)

∣∣) .;
1

(3− λ)ϕ3

(
2t+

∣∣1 +
(λ− 2)ϕ2

2 + (3− λ)ϕ3

(2− λ)2ϕ2
2

8t2
∣∣)} , (1.17)

where ϕ2 and ϕ3 are given by (1.5).

Proof. Since f ∈ Ga,b,cΣ (λ,Φ), from the definition relations (1.7) and (1.8) it follows that

z (Ia,b,cf(z))
′

(1− λ)z + λIa,b,cf(z)
=: 1 + U1(t)u(z) + U2(t)u2(z) + · · · , (1.18)

and

w (Ia,b,cg(w))
′

(1− λ)w + λIa,b,cg(w)
=: 1 + U1(t)v(w) + U2(t)v2(w) + · · · . (1.19)

1 + (2− λ)ϕ2a2z +
[
(λ2 − 2λ)ϕ2

2a
2
2 + (3− λ)ϕ3a3

]
z2 + . . .

=: 1 + U1(t)c1z + [U1(t)c2 + U2(t)c21]z2 + · · · , (1.20)

1− (2− λ)ϕ2a2w +
[
(λ2 − 2λ)ϕ2

2a
2
2 + (3− λ)ϕ3

(
2a2

2 − a3

)]
w2 + . . .

=: 1 + U1(t)d1w + [U1(t)d2 + U2(t)d2
1]w2 + · · · . (1.21)
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Now, equating the coefficients in (1.20) and (1.21), we get

(2− λ)ϕ2a2 = U1(t)c1, (1.22)
(λ2 − 2λ)ϕ2

2a
2
2 + (3− λ)ϕ3a3 = U1(t)c2 + U2(t)c21, (1.23)

and

−(2− λ)ϕ2a2 = U1(t)d1, (1.24)
(λ2 − 2λ)ϕ2

2a
2
2 + (3− λ)ϕ3

(
2a2

2 − a3

)
= U1(t)d2 + U2(t)d2

1. (1.25)

From (1.22) and (1.24), we find that

a2 =
U1(t)c1

(2− λ)ϕ2
=
−U1(t)d1

(2− λ)ϕ2
, (1.26)

which implies
c1 = −d1

further

a2
2 =

U2
1 (t)[c21 + d2

1]

2(2− λ)2ϕ2
2

. (1.27)

By using (1.6), (1.14) and (1.15), we get

|a2| ≤
2t

(2− λ)ϕ2
, (1.28)

Adding (1.23) and (1.25), by using (1.27) we obtain[
2
(
λ2 − 2λ

)
ϕ2

2 + 2(3− λ)ϕ3

]
a2

2 = U1(t)(c2 + d2) + U2(t)(c21 + d2
1).[

2
(
λ2 − 2λ

)
ϕ2

2 + 2(3− λ)ϕ3 −
2(2− λ)2ϕ2

2U2(t)

U2
1 (t)

]
a2

2 = U1(t)(c2 + d2).

Now, by using (1.6),(1.14) and (1.15), we get

|a2|2 ≤
8t3∣∣∣(2− λ)

2
ϕ2

2 + [(3− λ)ϕ3 − 2(2− λ)ϕ2
2]4t2

∣∣∣ , (1.29)

hence

|a2| ≤
2t
√

2t√∣∣∣(2− λ)
2
ϕ2

2 + [(3− λ)ϕ3 − 2(2− λ)ϕ2
2]4t2

∣∣∣ ,
which gives the bound on |a2| as asserted in (1.16).

Next, in order to find the upper-bound for |a3|, by subtracting (1.25) from (1.23), we get

2(3− λ)ϕ3a3 = U1(t)(c2 − d2) + 2(3− λ)ϕ3a
2
2. (1.30)
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It follows from (1.14),(1.15), (1.29) and (1.30), that

|a3| ≤
2t

(3− λ)ϕ3
+

8t3∣∣∣(2− λ)
2
ϕ2

2 + [(3− λ)ϕ3 − 2(2− λ)ϕ2
2]4t2

∣∣∣ .
From (1.22) and (1.23) we have

a3 =
1

(3− λ)ϕ3

(
U1(t)c2 + U2(t)c21 −

(λ2 − 2λ)U2
1 (t)

(2− λ)2
c21

)
,

hence

|a3| ≤
1

(3− λ)ϕ3

(
2t+

∣∣1− 8t2

(2− λ)

∣∣) .
Further, from (1.22) and (1.25) we deduce that

|a3| ≤
1

(3− λ)ϕ3

(
2t+

∣∣1 +
(λ− 2)ϕ2

2 + (3− λ)ϕ3

(2− λ)2ϕ2
2

8t2
∣∣) ,

and thus we obtain the conclusion (1.17) of our theorem.
For the special cases λ = 1 and λ = 0, the Theorem 3.1 reduces to the following corollaries,

respectively:

Corollary 3.2. If the function f given by (1.1) belongs to the class Sa,b,cΣ (Φ), then

|a2| ≤ min

{
2t
√

2t√
|ϕ2

2 + [ϕ3 − ϕ2
2]8t2|

;
2t

ϕ2

}

and

|a3| ≤ min

{
t

ϕ3
+

8t3

|ϕ2
2 + (ϕ3 − ϕ2

2)8t2|
;

1

2ϕ3

(
2t+

∣∣1− 8t2
∣∣) ;

1

2ϕ3

(
2t+

∣∣1 +
2ϕ3 − ϕ2

2

ϕ2
2

8t2
∣∣)}

where t ∈ (0, 1), ϕ2 and ϕ3 are given by (1.5).

Corollary 3.3. If the function f given by (1.1) belongs to the classHa,b,cΣ (Φ), then

|a2| ≤ min

{
t
√

2t√
|ϕ2

2 + [3ϕ3 − 4ϕ2
2]t2|

;
t

ϕ2

}

and

|a3| ≤ min

{
2t

3ϕ3
+

2t3

|ϕ2
2 + (3ϕ3 − 4ϕ2

2)t2|
;

1

3ϕ3

(
2t+

∣∣1− 4t2
∣∣) ;

1

3ϕ3

(
2t+

∣∣1 +
3ϕ3 − 2ϕ2

2

ϕ2
2

2t2
∣∣)} ,

where t ∈ (0, 1), ϕ2 and ϕ3 are given by (1.5).
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4 Coefficient Bounds for the Function ClassMa,b,c
Σ (λ,Φ)

Theorem 4.1. If the function f given by (1.1) belongs to the classMa,b,c
Σ (λ,Φ), then

|a2| ≤ min

{
t
√

2t√
(2− λ)2ϕ2

2 + [3(3− λ)ϕ3 − 8(2− λ)ϕ2
2]t2

;
t

(2− λ)ϕ2

}
(1.31)

and

|a3| ≤ min

{
1

3(3− λ)ϕ3

(
2t+

∣∣1− 8t2

(2− λ)

∣∣) ;

2t

3(3− λ)ϕ3
+

2t3

|(2− λ)2ϕ2
2 + [3(3− λ)ϕ3 − 8(2− λ)ϕ2

2]t2|
;

1

3(3− λ)ϕ3

(
1 +

3(3− λ)ϕ3 − 2(2− λ)ϕ2
2

2(2− λ)2ϕ2
2

2t2
)

+
2t

3(3− λ)ϕ3

}
, (1.32)

where t ∈ (0, 1),ϕ2 and ϕ3 are given by (1.5).

Proof. For f ∈Ma,b,c
Σ (λ,Φ), from the definition relations (1.9) and (1.10) it follows that

z (Ia,b,cf(z))
′
+ z2 (Ia,b,cf(z))

′′

(1− λ)z + λz (Ia,b,cf(z))
′ = 1 + U1(t)u(z) + U2(t)u2(z) + · · · ,

1 + 2(2− λ)ϕ2a2z +
[
4(λ2 − 2λ)ϕ2

2a
2
2 + 3(3− λ)ϕ3a3

]
z2 + . . .

= 1 + U1(t)c1z + [U1(t)c2 + U2(t)c21]z2 + · · · , (1.33)

and

w (Ia,b,cg(w))
′
+ w2 (Ia,b,cg(w))

′′

(1− λ)w + λz (Ia,b,cg(w))
′ = 1 + U1(t)v(w) + U2(t)v2(w) + · · · ,

1− 2(2− λ)ϕ2a2w +
[
4(λ2 − 2λ)ϕ2

2a
2
2 + 3(3− λ)ϕ3(2a2

2 − a3)
]
w2 + . . .

=: 1 + U1(t)d1w + [U1(t)d2 + U2(t)d2
1]w2 + · · · . (1.34)

Now, equating the coefficients in (1.33) and (1.34), we get

2(2− λ)ϕ2a2 = U1(t)c1, (1.35)
4(λ2 − 2λ)ϕ2

2a
2
2 + 3(3− λ)ϕ3a3 = U1(t)c2 + U2(t)c21, (1.36)

and

−2(2− λ)ϕ2a2 = U1(t)d1, (1.37)
4(λ2 − 2λ)ϕ2

2a
2
2 + 3(3− λ)(2a2

2 − a3)ϕ3 = U1(t)d2 + U2(t)d2
1. (1.38)

From (1.35)and (1.37) we get

a2 =
U1(t)c1

2(2− λ)ϕ2
= − U1(t)d1

2(2− λ)ϕ2
, (1.39)
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which implies
c1 = −d1

further

a2
2 =

U2
1 (t)[c21 + d2

1]

8(2− λ)2ϕ2
2

. (1.40)

According to (1.6),(1.14) and (1.15), we easily deduce

|a2| ≤
t

(2− λ)ϕ2
.

By adding (1.36) and (1.38),

8(λ2 − 2λ)ϕ2
2a

2
2 + 6(3− λ)ϕ3a

2
2 = (c2 + d2)U1(t) + (c21 + d2

1)U2(t)

and using (1.40) we get

[8(λ2 − 2λ)ϕ2
2 + 6(3− λ)ϕ3]a2

2 = (c2 + d2)U1(t) +
8(2− λ)2ϕ2

2a
2
2 U2(t)

U2
1 (t)

According to (1.6),(1.14) and (1.15), we easily deduce

|a2|2 ≤
2t3

|(2− λ)2ϕ2
2 + [3(3− λ)ϕ3 − 8(2− λ)ϕ2

2]t2|
. (1.41)

which yields

|a2| ≤
t
√

2t√
|(2− λ)2ϕ2

2 + [3(3− λ)ϕ3 − 8(2− λ)ϕ2
2]|t2

.

Next, in order to find the upper-bound for |a3|, from (1.36), by using (1.39) we have

|a3| ≤
1

3(3− λ)ϕ3

(
2t+

∣∣1− 8t2

2− λ
∣∣) .

Subtracting (1.38) and (1.36) we obtain

6(3− λ)ϕ3a3 − 6(3− λ)a2
2ϕ3 = U1(t)(c2 − d2),

and using (1.41) we deduce

|a3| ≤
2t

3(3− λ)ϕ3
+

2t3

|(2− λ)2ϕ2
2 + [3(3− λ)ϕ3 − 8(2− λ)ϕ2

2]t2|
.

Finally, from (1.38) and using (1.39) we get

|a3| ≤
1

3(3− λ)ϕ3

(
1 +

3(3− λ)ϕ3 − 2(2− λ)ϕ2
2

(2− λ)2ϕ2
2

2t2
)

+
2t

3(3− λ)ϕ3
.

Taking λ = 1 and λ = 0 in Theorem 3.1, we obtain the following corollaries, respectively:
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Corollary 4.2. If the function f given by (1.1) belongs to the class Ka,b,cΣ (Φ), then

|a2| ≤ min

{
t
√

2t√
ϕ2

2 + [6ϕ3 − 8ϕ2
2]t2

;
t

ϕ2

}

and

|a3| ≤ min

{
t

3ϕ3
+

1

6ϕ3

∣∣1− 8t2
∣∣; t

3ϕ3
+

2t3

ϕ2
2 + [6ϕ3 − 8ϕ2

2]t2
;

1

6ϕ3

(
1 +

6ϕ3 − 2ϕ2
2

ϕ2
2

2t2
)

+
t

3ϕ3

}
,

where t ∈ (0, 1), ϕ2 and ϕ3 are given by (1.5).

Corollary 4.3. If the function f given by (1.1) belongs to the class QΣ(Φ), then

|a2| ≤ min

{
t
√

2t√
4ϕ2

2 + [9ϕ3 − 16ϕ2
2]t2

;
t

2ϕ2

}

and

|a3| ≤ min

{
1

9ϕ3

(
2t+

∣∣1− 4t2
∣∣) ;

2t

9ϕ3
+

2t3

4ϕ2
2 + [9ϕ3 − 16ϕ2

2]t2
;

1

9ϕ3

(
1 +

9ϕ3 − 4ϕ2
2

2ϕ2
2

t2
)

+
2t

9ϕ3

}
,

where t ∈ (0, 1), ϕ2 and ϕ3 are given by (1.5).

5 Corollaries and its Consequence
Remark 5.1. For a = c; b = 1, we have ϕn = 1 for all n ≥ 1 and t ∈ (0, 1) in Corollary 3.2 and
Corollary 3.3 we obtain more accurate results for the classes in Remarks 2.5 and 2.6.

Corollary 5.2. If the function f given by (1.1) belongs to the class S∗Σ(Φ) and t ∈ (0, 1), then

|a2| ≤ 2t
√

2t

and

|a3| ≤ min

{
t+ 8t3; t+

1

2

∣∣1− 8t2
∣∣; t+

1

2

∣∣1 + 8t2
∣∣}

where ϕ2 and ϕ3 are given by (1.5).

Corollary 5.3. If the function f given by (1.1) belongs to the classHΣ(Φ),and for t ∈ (0, 1) then

|a2| ≤
t
√

2t√
|1− t2|

and

|a3| ≤ min

{
2t

3
+

2t3

|1− t2|
;

1

3

(
2t+

∣∣1− 4t2
∣∣) ;

1

3

(
2t+

∣∣1 + 2t2
∣∣)} ,

where ϕ2 and ϕ3 are given by (1.5).
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Corollary 5.4. If the function f given by (1.1) belongs to the class KΣ(Φ) and for t 6= 1√
2

, then

|a2| ≤
t
√

2t√∣∣1− 2t2
∣∣

and

|a3| ≤ min

{
t

3
+

1

6

∣∣1− 8t2
∣∣; t

3
+

2t3∣∣1− 2t2
∣∣ ; t

3
+

1

6

(
1 + 8t2

)}
,

where ϕ2 and ϕ3 are given by (1.5).

Corollary 5.5. If the function f given by (1.1) belongs to the class QΣ(Φ) and for t 6= 2√
7

, then

|a2| ≤
t
√

2t√∣∣4− 7t2
∣∣

and

|a3| ≤ min

{
1

9

(
2t+

∣∣1− 4t2
∣∣) ;

2t

9
+

2t3∣∣4− 7t2
∣∣ ; 2t

9
+

1

9

(
1 +

5

2
t2
)}

,

where ϕ2 and ϕ3 are given by (1.5).
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