G.Rakviashvili

Ilia State University, Tbilisi, Georgia. E-mail: giorgi.rakviashvili@iliauni.edu.ge

Abstract

Let $R[\pi, \sigma, \rho]$ be a crossed group ring. An induction theorem is proved for the functor $G_0^R(R[\pi, \sigma, \rho])$ and the Swan-Gersten higher algebraic K-functors $K_i(R[\pi, \sigma, \rho])$. Using this result, a theorem on reduction is proved for the discrete normalization ring R with the field of quotients K: If P and Q are finitely generated $R[\pi, \sigma, \rho]$ -projective modules and $K \bigotimes_R P \simeq K \bigotimes_R Q$ as $K[\pi, \sigma, \rho]$ -modules, then $P \simeq Q$. Under some restrictions on $n = (\pi : 1)$ it is shown that finitely generated $R[\pi, \sigma, \rho]$. More stronger results are proved when $\sigma = id$.

2010 Mathematics Subject Classification. **13C10**. 19D25, 19M05 Keywords. Crossed group ring, induction theorem, higher algebraic K-functors.

1 Introduction

In 1960, R. G. Swan proved [1] that for a Dedekind domain R of characteristic 0 and a finite group π any finitely generated projective $R[\pi]$ -module is the direct sum of left ideals of $R[\pi]$ if no prime divider of $(\pi : 1)$ is invertible in R. In [1] it was also proved that this direct sum may be replaced by the direct sum of a free $R[\pi]$ module and an ideal of $R[\pi]$, which generalizes the properties of projective modules over Dedekind domains. Swan's results were based on two theorems, each having an independent value: on the induction theorem for the functors $G_0^R(R\pi)$ and $K_0(R\pi)$, and on the "reduction" theorem.

In 1968, T.Y. Lam [2] proved an induction theorem for $K_1(R\pi)$ and in 1973 A.I. Nemytov [3] proved that $K_m(R\pi)$, $m \ge 2$, functors are Frobenius modules on $G_0^R(R[\pi])$ and that the induction theorem is valid for Swan-Gersten algebraic K-functors ([4], [5]) $K_m(R\pi)$, $m \ge 2$. Induction theorems for some kinds of algebraic K-functors of group rings were obtained in 1986 by K. Kawakubo [6] and in 2005 by A. Bartels and W. Luck [7].

In the first section of this paper the induction theorem is generalized for Swan-Gersten algebraic K-functors $K_m(R[\pi, \sigma, \rho])$ (Theorem 2.4) for a crossed group ring $R[\pi, \sigma, \rho]$. In the second section, using the induction theorem for $K_0(R[\pi, \sigma, \rho])$ the "reduction" theorem is proved for finitely generated projective $R[\pi, \sigma, \rho]$ -modules if R is a discrete valuation ring (Theorem 2.1). In Section 3 we prove the theorems on the structure of finitely generated projective $R[\pi, \sigma, \rho]$ - and $R[\pi, \rho]$ -modules which generalize Swan's theorem.

Let R be a commutative ring with identity, π a group, $\sigma : \pi \to AutR$ a group morphism, U(R)a set of invertible elements of R and $\rho : \pi \times \pi \to U(R)$ be such a mapping, that

$$\rho(x,y)\rho(xy,z) = \rho(y,z)^x \rho(x,yz)$$

Tbilisi Mathematical Journal 11(2) (2018), pp. 1–15. Tbilisi Centre for Mathematical Sciences. *Received by the editors:* 28 December 2017.

Accepted for publication: 20 January 2018.

Then a crossed group ring $R[\pi, \sigma, \rho]$ (see [8], [9]) is a free *R*-module with the set of free generators π and with multiplication

$$r_1\overline{x_1}r_2\overline{x_2} = r_1r_2^{x_1}\rho(x_1, x_2)\overline{x_1x_2},$$

where \overline{x} is the image of $x \in \pi$ via a mapping $\pi \to R[\pi, \sigma, \rho]$ and $r_1, r_2 \in R$. If $\sigma(\pi) = id$ and $\rho \sim 1$ (i.e. $\rho(x, y) = \alpha(x)\alpha(y)\alpha(xy)^{-1}$ for some $\alpha : \pi \to U(R)$), then $R[\pi, \sigma, \rho] \simeq R[\pi]$.

In this paper all modules are left modules, $\underline{M}(A)$ and $\underline{P}(A)$ denote respectively the categories of finitely generated A-modules and finitely generated projective A-modules (A is a ring); $\underline{M}^{R}(R[\pi, \sigma, \rho])$ is the category of finitely generated R-projective $R[\pi, \sigma, \rho]$ -modules; $G_{0}^{R}(R[\pi, \sigma, \rho])$ is a Grothendieck group of the category $\underline{M}^{R}R[\pi, \sigma, \rho]$.

Further, π will always be the finite group.

The main results of the paper are Theorems 3.1 and 3.2. These theorems were proved by author in the particular case when $\rho \sim 1$ in [10], [11] and [12]; a general case for any ρ was announced in [12] and its proof was the subject of the authors doctoral thesis in 1981. These theorems are similar to the results of Kawakubo [6] which were obtained later in 1986 for some kinds of algebraic K-functors of group rings and particular cases of crossed group rings.

2 Inductive theorems

Let \underline{G} be a category, <u>Rings</u> a category of rings and $G: \underline{G} \to \underline{Rings}$ a contravariant functor. Suppose to each morphism $i: \pi' \to \pi$ in \underline{G} there corresponds a morphism $i_*: G(\pi') \to G(\pi)$ in <u>Rings</u> such that $Id_* = Id$ and $(ij)_* = i_*j_*$ whenever ij makes sense in \underline{G} . Let us denote $i^* = \overline{G}(i): G(\pi) \to G(\pi')$. The functor G is called a **Frobenius functor** [2] if it satisfies the Frobenius reciprocity formula

$$i_*(i^*a \cdot b) = a \cdot i_*b.$$

Let <u>Ab</u> be a category of commutative groups. A contravariant functor $K : \underline{G} \to \underline{Ab}$ is called a **Frobenius module** [2] on the Frobenius functor G if it satisfies the following conditions:

(i) $K(\pi)$ is a module over $G(\pi)$.

(ii) For each morphism of groups $i : \pi' \to \pi$ there exists a morphism $i_{\#} : K(\pi') \to K(\pi)$ (whenever ij makes sense) such that

$$(ij)_{\#} = i_{\#}j_{\#}.\tag{2.1}$$

(iii) $i_*, i^*, i_{\#}$ and $i^{\#}$ are related to each other by the relations

$$\begin{aligned}
 i_{\#}(y \cdot i^{\#}(a) &= i_{*}(y) \cdot a, \\
 i_{\#}(i^{*}(x) \cdot b) &= x \cdot i_{\#}(b),
 \end{aligned}$$
(2.2)

where $i^{\#} = K(i), x \in G(\pi), y \in G(\pi'), a \in K(\pi), b \in G(\pi').$

Let $\underline{G}(\pi)$ denote a category whose objects are all subgroups $\pi' \subseteq \pi$ and morphisms are monomorphisms $i: \pi' \to \pi''$. Then the functors $G_0^S(S[-])$ and $K_m(R[-,\sigma,\rho])$ (σ and ρ are defined respectively on π and $\pi \times \pi$ and are fixed for the category $\underline{G}(\pi)$) are contavariant functors from the category $\underline{G}(\pi)$ to the categories *Rings* and <u>Ab</u> respectively.

It is known [1] that $G_0^S(S[\pi])$ is a Frobenius functor.

Let us denote $R^{\pi} = \{r \in R | (\forall x \in \pi) r^x = r\}.$

Theorem 2.1. Let R^{π} be an algebra over the commutative ring S with identity. Then the functors $G_0^R(R[-,\sigma,\rho])$ and $K_m(R[-,\sigma,\rho])$, m = 0, 1, ..., are Frobenius modules on the Frobenius functor $G_0^S(S[\pi])$.

Let us remark that in [10] instead of the functor $G_0^R(R[-,\sigma,\rho])$ it is considered a functor $G_0^{R^{\pi}}(R[-,\sigma,\rho])$ - the Grothendieck group of R^{π} -finitely generated and R^{π} -projective $R[\pi,\sigma,\rho]$ -modules.

To prove Theorem 2.1 we need some propositions.

If R^{π} is an algebra over S, then R is an S-algebra by the action $sr = (s \cdot 1)r$, $1 \in R$. Let us construct the morphisms of rings

$$\alpha_1 : R[\pi, \sigma, \rho] \to S[\pi] \otimes_S R[\pi, \sigma, \rho],$$
$$\alpha_2 : R[\pi, \sigma, \rho] \to R[\pi, \sigma, \rho] \otimes_S S[\pi]$$

in this way: $\alpha_1(r\bar{x}) = \bar{x} \otimes r\bar{x}, \ \alpha_2(r\bar{x}) = r\bar{x} \otimes \bar{x}$. Then for any $S[\pi]$ -module M and $R[\pi, \sigma, \rho]$ -module P the modules $M \otimes_S P$ and $P \otimes_S M$ become $R[\pi, \sigma, \rho]$ -modules via the action

$$r\bar{x}(m\otimes p) = \alpha_1(r\bar{x})(m\otimes p) = \bar{x}m\otimes r\bar{x}p,$$

$$r\bar{x}(p\otimes m) = \alpha_2(r\bar{x})(m\otimes p) = r\bar{x}p\otimes \bar{x}m.$$

It is clear that the $R[\pi, \sigma, \rho]$ -modules $M \otimes_S P$ and $P \otimes_S M$ are isomorphic.

Proposition 2.2. If a $S[\pi]$ -module M is S-projective and a $R[\pi, \sigma, \rho]$ -module P is $R[\pi, \sigma, \rho]$ -projective, then $M \otimes_S P$ is $R[\pi, \sigma, \rho]$ -projective.

Proof. If M is a free S-module, then $M \otimes_S R[\pi, \sigma, \rho] \simeq \bigoplus_{x \in \pi} M \otimes R\bar{x}$ as R-modules. But if $\{e_{\alpha}\}$ is a S-basis of M, then $\{\bar{x}e_{\alpha}\}$ is also a free S-basis because x induces an automorphism on M. Therefore $\{e_{\alpha} \otimes 1\}$ is a free $R[\pi, \sigma, \rho]$ -basis of $M \otimes_S R[\pi, \sigma, \rho]$.

Suppose P' is a $R[\pi, \sigma, \rho]$ -module, such that $P \oplus P'$ is a free $R[\pi, \sigma, \rho]$ -module, and M is such a S-module that $M \oplus M'$ is a free S-module. If we define the action of $S\pi$ on M as $s\bar{x}(m) = sm$, then $(M \oplus M') \otimes_S (P \oplus P')$ will be a free $R[\pi, \sigma, \rho]$ -module and since

$$(M \oplus M') \otimes_S (P \oplus P') \simeq (M \otimes_S P) \oplus (M' \otimes_S P) \oplus (M \otimes_S P') \oplus (M' \otimes_S P'),$$

 $(M \otimes_S P)$ will be $R[\pi, \sigma, \rho]$ -projective.

Proposition 2.3. Let R^{π} be an algebra over S, $\pi' \subseteq \pi$ a subgroup, $M \in S\pi - \underline{Mod}$, $M' \in S\pi' - \underline{Mod}$, $P \in R[\pi, \sigma, \rho] - \underline{Mod}$ and $P' \in R[\pi', \sigma, \rho] - \underline{Mod}$. Then there exist isomorphisms of $R[\pi, \sigma, \rho]$ -modules

$$b)R[\pi,\sigma,\rho] \otimes_{R[\pi',\sigma,\rho]} (M' \otimes_S P) \simeq (R[\pi,\sigma,\rho] \otimes_{R[\pi',\sigma,\rho]} M') \otimes_S P.$$

$$(2.3)$$

$$a)R[\pi,\sigma,\rho] \otimes_{R[\pi',\sigma,\rho]} (P' \otimes_S M) \simeq (R[\pi,\sigma,\rho] \otimes_{R[\pi',\sigma,\rho]} P') \otimes_S M,$$

$$(2.4)$$

The modules on the left side in the brackets and on the right sides are endowed with the structure of $R[\pi, \sigma, \rho]$ -modules in the case a) by α_1 and in the case b) by α_2 . The left sides are endowed with the structure of $R[\pi, \sigma, \rho]$ -modules by multiplication by $R[\pi, \sigma, \rho]$.

Proof. In the case a) the isomorphism is constructed by the inverse mappings

$$r\bar{x} \otimes (p^{'} \otimes m) \to (r\bar{x} \otimes p^{'}) \otimes \bar{x}m,$$

 $(r\bar{x} \otimes p^{'}) \otimes m \to r\bar{x} \otimes (p^{'} \otimes \bar{x}^{-1}m).$

In the case b) the isomorphism is constructed by the inverse mappings

$$r\bar{x} \otimes (m^{'} \otimes p) \to (r\bar{x} \otimes m^{'}) \otimes r\bar{x}p,$$
$$(s\bar{x} \otimes m^{'}) \otimes p \to r\bar{x} \otimes (m^{'} \otimes s\bar{x}^{-1}p).$$

Q.E.D.

Proof of Theorem 2.1. Let $\pi' \subseteq \pi$ be a subgroup and let $i: \pi' \to \pi$ be an imbedding. Let us consider the additive functors

$$I^{\#}: \underline{P}(R[\pi, \sigma, \rho]) \to \underline{P}(R[\pi^{'}, \sigma, \rho]), \quad I^{\#}(P) = \operatorname{Res}_{R[\pi, \sigma, \rho]}P;$$
$$I_{\#}: \underline{P}(R[\pi^{'}, \sigma, \rho]) \to \underline{P}(R[\pi, \sigma, \rho]), \quad I_{\#}(P) = \operatorname{Ind}(P^{'}) = R[\pi, \sigma, \rho] \otimes_{R[\pi^{'}, \sigma, \rho]} P^{'}.$$

For any module $M \in \underline{M}^S(S[\pi] \text{ assume})$

$$J_M(P) = M \otimes_S P, \ P \in \underline{P}(R[\pi, \sigma, \rho]),$$
$$J'_M(P) = M \otimes_S N, \ N \in \underline{M}^R(R[\pi, \sigma, \rho]).$$

From Proposition 2.2 it follows that the functors $J_M(-)$ and $J'_M(-)$ take the values in the categories $\underline{P}(R[\pi, \sigma, \rho])$ and $\underline{M}^R(R[\pi, \sigma, \rho])$, respectively. It is known that Swan-Gersten's K-functors $K_m(R[\pi, \sigma, \rho])$ and Quillen's K-functors are isomorphic. Therefore from [13] it follows that the functors $I^{\#}$, $I_{\#}$, J_M and J'_M define the morphisms of abelian groups

$$i_{m}^{\#}: K_{m}(R[\pi, \sigma, \rho]) \to K_{m}(R[\pi^{'}, \sigma, \rho]), m \ge 0;$$

$$i_{\#}^{m}: K_{m}(R[\pi^{'}, \sigma, \rho]) \to K_{m}(R[\pi, \sigma, \rho]), m \ge 0;$$

$$j_{m}: G_{0}^{S}(S\pi) \otimes K_{m}(R[\pi^{'}, \sigma, \rho]) \to K_{m}(R[\pi^{'}, \sigma, \rho]), m \ge 0;$$

$$j_{0}^{'}: G_{0}^{S}(S\pi) \otimes G_{0}^{R}(R[\pi^{'}, \sigma, \rho]) \to G_{0}^{R}(R[\pi^{'}, \sigma, \rho]), m \ge 0.$$
(2.5)

Let us recall that the existence of morphisms i_m and $i_{\#}^m$ for $m \ge 2$ follows also from [2]. Using the of results from [13] and [3] it is easy to show that conditions (2.1) and (2.2) for morphisms (2.5) are consequences of isomorphisms (2.3) and (2.4).

Suppose M is some family of objects from <u>G</u>. Let us denote for $\pi \in \underline{G}$

$$K(\pi)_{M} = \sum_{\pi', i} \{ Im(i_{\#} : K(\pi') \to K(\pi)) | i : \pi' \to \pi, \pi' \subseteq M \}.$$

Let $A \subseteq B$ be abelian groups. A natural number n is called an index of A in B if $nB \subseteq A$. Q.E.D.

Theorem 2.4. Let $c(\pi)$ be a set of all cyclic subgroups of the group π . Then $K_m(R[\pi, \sigma, \rho])_{c(\pi)}$ and $G_0^R(R[\pi, \sigma, \rho])_{c(\pi)}$ have the index n^2 in $K_m(R[\pi, \sigma, \rho])$ and $G_0^R(R[\pi, \sigma, \rho])$, respectively for all $m \ge 0$. If R^{π} is an algebra over the field, then n^2 may be replaced by n.

Proof. It is known that an index of $K(\pi)_M$ in $K(\pi)$ is equal to an index of $G(\pi)_M$ in $G(\pi)$ if K is a Frobenius module over a Frobenius functor G. Therefore by Theorem 1.1 it suffices to prove our statement for the functor $G_0^S(S\pi)$. Suppose in Theorem 1.1 we have S = Z. Then the first part of our statement follows from the fact that an index of $G_0^Z(Z\pi)_{c(\pi)}$ in $G_0^Z(Z\pi)$ is n^2 [1]. If S = k is a field, in [1] it was proved that an index of $G_0(k\pi)_{c(\pi)}$ in $G_0(k\pi)$ is n. Q.E.D.

3 Reduction theorem

Let R be an integral domain with quotient field K and $R[\pi, \sigma, \rho]$ be the crossed group ring. It is clear that we may construct the crossed group ring $K[\pi, \sigma, \rho]$ where $\sigma : \pi \to Aut(K)$ is induced from $\sigma : \pi \to Aut(R)$ and $\rho : \pi \times \pi \to U(R) \subseteq K$.

Theorem 3.1. Let R be a discrete valued ring with quotient field K and $P, Q \in \underline{P}(R[\pi, \sigma, \rho])$. Suppose $K \otimes_R P \simeq K \otimes_R Q$ as $K[\pi, \sigma, \rho]$ -modules. Then $P \simeq Q$ as $R[\pi, \sigma, \rho]$ -modules.

Remark. $K[\pi, \sigma, \rho]$ acts on $K \otimes_R P$ as $\bar{x}(\alpha \otimes p) = \alpha^x \otimes xp$.

This theorem was proved by Swan [1] in the case $\sigma = id, \rho = id$, i.e. for group rings.

Let us first prove several necessary assertions.

Let us remark that if **m** is a maximal ideal in R, then it is possible to construct in a natural way the ring $R/\mathbf{m}[\pi, \sigma, \rho]$ from the ring $R[\pi, \sigma, \rho]$ because from the uniqueness of the maximal ideal it follows that $\sigma(\mathbf{m}) \subseteq \mathbf{m}$ for any $\sigma \in Aut(R)$.

Proposition 3.2. Let R be a discrete valued ring with a field of quotients K and $M_1, M_2 \in \underline{M}(R[\pi, \sigma, \rho])$. Suppose $K \otimes_R M_1 \simeq K \otimes_R M_2$ as $K[\pi, \sigma, \rho]$ -modules. Then $[M_1/\mathbf{m}M_1] = [M_2/\mathbf{m}M_2]$ in $G_0^R(R/\mathbf{m}[\pi, \sigma, \rho])$.

Proof. Let t be a generator of the ideal **m**. Then for any $x \in \pi$ there is $t^x = tu$ for some invertible $u \in R$. Therefore if $M \in \underline{M}(R[\pi, \sigma, \rho])$, then $tM \in \underline{M}(R[\pi, \sigma, \rho])$ and $K \otimes_R M \simeq K \otimes_R tM$ as $K[\pi, \sigma, \rho]$ -modules. Indeed, if $m = tm' \in tM$, then $\bar{x}m = \bar{x}tm' = t^x \bar{x}m' = t(u\bar{x}m') = tm'' \in tM$. Similarly, if $t^n M_1 \subseteq M_2 \subseteq M_1$, then $M'_1 = \{m \in M_1 | t^{n-1}m \in M_2 \text{ is again a finitely generated } R[\pi, \sigma, \rho]$ -module and $K \otimes_R M_1 \simeq K \otimes_R M'_1$ as $K[\pi, \sigma, \rho]$ -modules.

Let $\mathbf{m}M_1 \subseteq M_2 \subseteq M_1$ (note that $\mathbf{m}M_1 = tRM_1 = tM_1$). Denote $T = M_2/M_1, \overline{M}_i = M_i/\mathbf{m}M_i$. It is clear that T is also the $R/\mathbf{m}[\pi, \sigma, \rho]$ -module. Let us construct a sequence

$$0 \to T \xrightarrow{\psi} \overline{M}_2 \to T \xrightarrow{\alpha} \overline{M}_1 \to T \xrightarrow{\varphi} T \to 0,$$

where $\psi(m_1 + M_2) = tm_1 + tM_2$, $\alpha(e_2 + tM_2) = e_2 + tM_1$, $\varphi(e_1 + tM_1) = e_1 + M_2$. This sequence is exact, therefore $[M_1] = [M_2]$ in $G_0(R/\mathbf{m}[\pi, \sigma, \rho])$. In particular $[\overline{M}] = [\overline{tM}]$ in $G_0(R/\mathbf{m}[\pi, \sigma, \rho])$, because $tM \subseteq tM \subseteq M$. Taking this into account, because all modules are finitely generated, we may conclude that $M \subseteq M_1$ and there exists an integer n > 0, such that $t^n M_1 \subseteq M_2$. Indeed, let us identify M_1 and M_2 and the corresponding $R[\pi, \sigma, \rho]$ -modules in $K \otimes_R M_1 \simeq K \otimes_R M_2$. Then there exists k > 0 such that $M_2 \subseteq t^k M_1$. There is: $[t^k \overline{M}_1] = [t^{k-1} \overline{M}_1] = \dots = [t\overline{M}_1] = \overline{M}_1$. Therefore, without loss of generality, we may assume that $M_2 \subseteq M_1$. Analogously we proceed with respect to the second assumption. Hence $t^n M_1 \subseteq M_2 \subseteq M_1$. Let us denote $M'_1 = \{m \in M_1 | t^{n-1}m \in M_2\}$. There is $tM_1 \subseteq M'_1 \subseteq M_1$, $t^{n-1}M'_1 \subseteq M_2 \subseteq M'_1$. The induction on n proves our statement because we have already proved that $[\overline{M'_1}] = [\overline{M_1}]$. Q.E.D.

Corollary 3.3. There exists a homomorphism

 $G_0(K[\pi, \sigma, \rho]) \to G_0(R/\mathbf{m}[\pi, \sigma, \rho]).$

Suppose $E \in \underline{M}(K[\pi, \sigma, \rho])$ and $E \simeq K \otimes_R M$, where $M \in \underline{M}(R[\pi, \sigma, \rho])$. Then from Proposition 3.2 follows that the mapping $[E] \to [M/\mathbf{m}M]$ is well defined.

Proposition 3.4. Suppose that the conditions of Theorem 3.1 are satisfied and the Cartan mapping

$$\chi: K_0(R/\mathbf{m}[\pi, \sigma, \rho]) \to G_0(R/\mathbf{m}[\pi, \sigma, \rho]),$$

which is induced by the embedding $\underline{P}(R/\mathbf{m}[\pi, \sigma, \rho]) \to \underline{M}(R/\mathbf{m}[\pi, \sigma, \rho])$ is a monomorphism. Then the conclusion of Theorem 3.1 is true.

Proof. Let us consider the $R/\mathbf{m}[\pi, \sigma, \rho]$ as $R[\pi, \sigma, \rho]$ -module by the epimorphism $R[\pi, \sigma, \rho] \xrightarrow{\varphi} R/\mathbf{m}[\pi, \sigma, \rho]$. Since $P/\mathbf{m}P \simeq R/\mathbf{m}[\pi, \sigma, \rho] \otimes_{R[\pi, \sigma, \rho]} P$ and P is projective over $R[\pi, \sigma, \rho]$, we have that $P/\mathbf{m}P$ is projective over $R/\mathbf{m}[\pi, \sigma, \rho]$. Similarly, $Q/\mathbf{m}Q \in \underline{P}(R/\mathbf{m}[\pi, \sigma, \rho])$. Cosequently,

$$[P/\mathbf{m}P], [Q/\mathbf{m}Q] \in K_0(R/\mathbf{m}[\pi, \sigma, \rho]).$$

Proposition 2.2 implies $[P/\mathbf{m}P] = [Q/\mathbf{m}Q]$ in $G_0(R/\mathbf{m}[\pi, \sigma, \rho])$. This means that $\chi([\overline{P}]) = \chi([\overline{Q}])$. The mapping χ is monomorphic, and therefore $[\overline{P}] = [\overline{Q}]$ in $K_0(R/\mathbf{m}[\pi, \sigma, \rho])$. Therefore $\overline{P} \oplus F \simeq \overline{Q} \oplus F$ for some free finitely generated $R/\mathbf{m}[\pi, \sigma, \rho]$ -module F. R/\mathbf{m} is a field, therefore $R/\mathbf{m}[\pi, \sigma, \rho]$ is an Artinian ring and the Krull-Schmidt theorem holds for it and consequently $\overline{P} \simeq \overline{Q}$ as $R/\mathbf{m}[\pi, \sigma, \rho]$ -modules. Let $f': \overline{P} \to \overline{Q}$ be any $R/\mathbf{m}[\pi, \sigma, \rho]$ -isomorphism of $R/\mathbf{m}[\pi, \sigma, \rho]$ -modules. We may consider f' as an isomorphism of $R[\pi, \sigma, \rho]$ -modules by the epimorphism φ . Consider the diagram in $\underline{M}(R[\pi, \sigma, \rho])$

$$\begin{array}{rccc} P & \rightarrow & P/\mathbf{m}P & \rightarrow & 0 \\ \downarrow f & \qquad \downarrow f^{'} & \\ Q & \rightarrow & Q/\mathbf{m}Q & \rightarrow & 0. \end{array}$$

Since P is $R[\pi, \sigma, \rho]$ -projective and is mapped on $Q/\mathbf{m}Q$, there exists a $R[\pi, \sigma, \rho]$ -morphism f such that diagramm (6) is commutative. Then we have $f(P) + \mathbf{m}Q = Q$. But $\mathbf{m} = rad(R)$ and by the lemma of Nakayama f(P) = Q, i.e. f is an epimorphism. Since Q is projective and f is epimorphic, therefore $P \simeq Q \oplus Kerf$. Hence Kerf = Q' is projective and finitely generated. From (3) it follows that $Q'/\mathbf{m}Q' \subseteq Kerf'$. From Kerf' = 0 it follows that $Q'/\mathbf{m}Q' = 0$ and again from the lemma of Nakayama it follows that Q' = 0, i.e. f is an isomorphism. The theorem is proved.

Since R/\mathbf{m} is the field, by Proposition 3.4, to prove Theorem 3.1 it suffices to prove

Theorem 3.5. Let k be the field. Then the Cartan homomorphism

$$\chi: K_0(k[\pi, \sigma, \rho]) \to G_0(k[\pi, \sigma, \rho]).$$

is injective.

Proof. Since by Theorem 1.1 $K_0(k[\pi, \sigma, \rho])$ and $G_0([\pi, \sigma, \rho])$ are Frobenius modules over the Frobenius functor $G_0(k^{\pi}[\pi])$, the $Ker\chi$ functor will also be a Frobenius module over $G_0(k^{\pi}[\pi])$. Therefore an index of $(Ker\chi)_{c(\pi)}$ in $Ker\chi$ is equal to an index of $G_0(k^{\pi}[\pi])_{c(\pi)}$ in $G_0(k^{\pi}[\pi])$, namely it is $n = (\pi : 1)$. This means that $nKer\chi \subseteq (Ker\chi)_{c(\pi)}$. The ring $k[\pi, \sigma, \rho]$ is Artinian and therefore $K_0(k[\pi, \sigma, \rho])$ and its subgroup $Ker\chi$ are finitely generated free commutative groups. If we proved that χ is monomorphic for cyclic groups, then we would have that $(Ker\chi)_{c(\pi)} = 0$ and $nKer\chi = 0$. From the freeness of the group $Ker\chi$ it would follow that $Ker\chi = 0$. But if π is cyclic with a generator a, then $k[\pi, \sigma, \rho] \simeq k[x, \sigma]/(x^n - \alpha)$, there $k[x, \sigma]$ is a ring of skew polynomials of x and σ is the automorphism $\sigma(a) \in Aut(k), n = (\pi : 1)$ and $\alpha \in k^{\pi}$. The ring $k[x, \sigma]$ is a principal (non-commutative) ideal domain, σ has a finite index and any ideal in $k[x, \sigma]$ is bounded [8]. Therefore from the next theorem it follows that χ is monomorphic for a cyclic group π o.e.d.

Theorem 3.6. Let A be a (noncommutative) principal ideal domain, in which each ideal is bounded. If $I \subseteq A$ is a two sided ideal, $K_0(A/I)$ and $G_0(A/I)$ are Grothendieck groups of the categories $\underline{P}(A/I)$ and $\underline{M}(A/I)$ respectively, then the Cartan homomorphism

$$\chi: K_0(A/I) \to G_0(A/I)$$

is injective.

Proof. So A is a noncommutative integral domain in which any right and left ideal is principal. We say that two elements a_1 and a_2 are similar if $A/a_1 \simeq A/a_2$ as A-modules. An ideal is bounded if it contains a nonzero two sided ideal, and such a maximal ideal is called a boundary of A.

We recall that since A/I is Artinian, $G_0(A/I)$ is well defined.

We will carry out the proof in several steps.

Step 1. $I = Aa^*$ splits into the product of coprime maximal two sided ideals (the asterisk over the letter indicates that we deal with the generator of the ideal):

$$I = Aa^* = (Ap_1^*)^{e_1} (Ap_2^*)^{e_1} \dots (Ap_r^*)^{e_r}.$$

Step 2. It is clear that

$$K_0(A/I) \simeq \oplus_{i=1}^r K_0(A/(Ap_i^*)^{e_i}),$$

$$G_0(A/I) \simeq \oplus_{i=1}^r G_0(A/(Ap_i^*)^{e_i})$$

and these isomorphisms and χ commute with each other. Therefore it suffices to prove that χ is monomorphic if $I = A/(Ap*)^e$.

Step 3. $J = Ap^*/(Ap^*)^e$ is a radical of the ring $\overline{A} = A/(Ap^*)^e$ and $\overline{A}/J \simeq A/Ap^*$.

Step 4. Since the radical of the ring $\overline{A} = A/(Ap^*)^e$ acts trivially on simple modules, simple $\overline{A} = A/(Ap^*)^e$ -modules will be simple as modules over $\overline{A} = A/(Ap^*)$. But because $\overline{A} = A/(Ap^*)$ is a simple ring, simple modules are direct summands of the ring $\overline{A} = A/(Ap^*)$.

Step 5. Using Zorn's lemma it is easy to prove that Ap^* is contained in some maximal ideal Ap. If $Ap \supseteq Aq^* \supseteq Ap^*$, then $Ap^* = Aq^*$ since Ap^* is maximal, i.e. Ap is the boundary of the ideal Ap. Since Ap is the maximal left ideal, A/Ap is a simple A-module. From Theorem 3.20, [8] it follows that A/Ap^* splits as an A-module into the direct sum of simple A-modules, which are isomorphic to A/Ap:

$$A/AP^* \simeq \bigoplus_i Aq_i/Ap^*, Aq_i/Ap^* \simeq A/Ap_i$$

Therefore the direct summand Aq_i/Ap^* is indecomposable as an A-module and, consequently, as an $A/(AP^*)^e$ -module. Since A/AP^* is a simple ring, it has a single simple module, i.e. all Aq_i/Ap^* are isomorphic as A/AP^* -modules. Let q be one of q_i . We may conclude that $Aq_i/(Ap^*)^e$ has the single simple module Aq/Ap^* which is A-isomorphic to A/Ap.

Step 6. Let us find all indecomposable projective $Aq_i/(Ap^*)^e$ -modules. Since $Aq_i/(Ap^*)^e$ is Artinian, such a modules are exhausted by the direct summands of $Aq_i/(Ap^*)^e$. Further, as follows from the proof of Theorem 3.21, [8], $Aq_i/(Ap^*)^e$ splits as a A-module into the direct sum of indecomposable A-modules, which is isomorphic to the A-module $A/p_1p_2...p_e$:

$$Aq_i/(Ap^*)^e \cong \oplus Ar_i/(Ap^*)^e, \quad Ar_i/(Ap^*)^e \simeq A/p_1p_2...p_e.$$

Therefore if r is one of r_i then $A/(Ap^*)^e$ has a single indecomposable projective module $Ar/(Ap^*)^e$, which is isomorphic to $A/p_1p_2...p_e$.

Step 7. From steps 5 and 6 it follows that $G_0(A/(Ap^*)^e)$ and $K_0(A/(Ap^*)^e)$ are free commutative groups with one generator; the generator for $G_0(A/(Ap^*)^e)$ is $[Aq/Ap^*]$, and the generator for $K_0(A/(Ap^*)^e)$ is $[Ar/Ap^*]$. It is clear that $(Ap^*)^e = A(p^*)^e$. Since $A(p^*)^e \subseteq Ar$, we have $(p^*)^e = r'r$. Therefore, as A-modules

$$Ar/Ap^* = Ar/Ar'r \simeq A/Ar'.$$

So $A/Ar' \simeq A/Ap_1p_2...p_e$, therefore $r' = p'_1p'_2...p'_1$, $p'_i \sim p$. For $Ar/(Ap^*)^e$ there exists a composition row of $A/(Ap^*)^e$ -modules

$$Ar/(Ap^{*})^{e} = Ar/p_{1}^{'}p_{2}^{'}...p_{e}^{'}r \supseteq Ap_{e}^{'}r/p_{1}^{'}p_{2}^{'}...p_{e}^{'}r \supseteq ... \supseteq Ap_{2}^{'}p_{e}^{'}r/p_{1}^{'}p_{2}^{'}...p_{e}^{'}r \supseteq 0$$

whose factors are A-isomorphic to an A-module A/Ap. It is clear that all these factors are $A/(Ap^*)^e$ isomorphic to the simple module Aq/Ap^* . Therefore

$$\chi([Ar/(Ap^{*})^{e}]) = [Ar/(Ap^{*})^{e}] = e[Aq/Ap^{*}]$$

and χ is monomorphic.

4 Projective modules

Let ω be a subgroup of π which contains just an elements of π which acts trivially on R, i.e. $\omega = Ker(\sigma : \pi \to Aut(R))$. If $\sigma(\pi) = id$, then we denote $R[\pi, \sigma, \rho] := R[\pi, \rho]$.

Theorem 4.1. Let R be a Dedekind domain of characteristic zero. Suppose that no one divider of $n = (\pi : 1)$ is invertible in R, and $\sigma : \pi \to Aut(R)$ is a morphism such that (i) R is projective over R^{π} ;

(ii) if $\mathbf{p} \in spec(R)$, $\mathbf{p}|(n)$, then $\sigma(\pi)(\mathbf{p}) \subseteq \mathbf{p}$;

(iii) if p is a prime divider of (n), $p \in \mathbf{p} \in \operatorname{spec}(R)$ and π_p is a Sylov p-subgroup of π , then π_p acts trivially on R/\mathbf{p} ;

(iv) $\rho(\pi \times \pi) \subseteq R^{\pi}$. Then any finitely generated projective $R[\pi, \sigma, \rho]$ -module splits into the direct sum of left ideals of the ring $R[\pi, \sigma, \rho]$.

For the particular case $\sigma(\pi) = id$, we may prove a stronger result.

Q.E.D.

Theorem 4.2. Let R be the Dedekind domain of characteristic zero. Suppose that no one divider of $n = (\pi : 1)$ is invertible in R. Then any finitely generated projective $R[\pi, \rho]$ -module is the direct sum of the free $R[\pi, \rho]$ -module and left ideal $I \subseteq R[\pi, \rho]$. For any nonzero ideal $\mathbf{j} \subseteq R$ we may choose an ideal I in such a way that I and \mathbf{j} would be coprime ideals.

Let us denote $R \cap I = (I : R[\pi, \rho]) = \{r \in R | rR[\pi, \rho] \subseteq I\}$. First, we must prove some useful propositions. Let us denote $(\omega : 1) = h$. It is clear that n = hm and $\sigma(x)^m = id$ for any $x \in \pi$.

Lemma 4.3. Suppose k is a field, $char(k) = p, \pi$ is a cyclic group, (p, h) = 1, and $\rho(\omega \times \omega) \subseteq k^{\pi}$. Then any simple $k[\pi, \sigma, \rho]$ -module splits as a $k^{\pi}[\omega, \rho]$ module into the direct sum isomorphic simple $k^{\pi}[\omega, \rho]$ modules: $M = N \oplus N \oplus N \oplus ... \oplus N$. The relation $M \to N$ induces a bijection between the isomorphism classes of simple $k[\pi, \sigma, \rho]$ and simple $k^{\pi}[\omega, \rho]$ modules.

Proof. It is clear that $k[\pi, \sigma, \rho] \simeq k[x, \sigma]/(x^{mh} - \alpha)$, where $m = (\pi : \omega), \alpha \in k^{\pi} \setminus 0$. It is known that two-side ideals of $k[x, \sigma]$ are generated by elements of the form $x^t \varphi(x^m \gamma)$, where $\varphi(x) \in k^{\pi}(x)$, $\gamma \in k$. Since $\alpha \neq 0$, two-sided maximal ideals which divide the two-sided ideal $k[x, \sigma]/(x^{mh} - \alpha)$ must have the form $\varphi(x^m)k[x, \sigma]$, where $\varphi(x) \in k^{\pi}[x]$ and $\varphi(x)$ is indecomposable in $k^{\pi}[x]$. I.e.

$$(x^{mh} - \alpha) = (\varphi_1(x^m)^{i_1} ... (\varphi_r(x^m)^{i_r}),$$

where if $i \neq j$, then $\varphi_i(x^m) \not\simeq \varphi_j(x^m)$. Since (p,h) = 1, the rings $k[\pi, \sigma, \rho]$ and $k^{\pi}[\omega, \rho]$ are semisimple [8]. Thus $i_1 = \ldots = i_r = 1$. Therefore

$$k[x,\sigma]/(x^{mh}-\alpha) \simeq k[x,\sigma]/(\varphi_1(x^m)) \oplus \dots \oplus k[x,\sigma]/(\varphi_r(x^m)).$$

Since $k[x,\sigma]/(\varphi_i(x^m))$ is a simple ring, it has a single simple module M_i and $M_i \not\simeq M_j$ for different i and j. On the other hand,

$$k^{\pi}[\omega,\rho] \simeq k^{\pi}[x,\sigma]/(x^{mh}-\alpha) \simeq k^{\pi}[x,\sigma]/(\varphi_1(x)) \oplus \ldots \oplus k^{\pi}[x,\sigma]/(\varphi_r(x)) \oplus (\varphi_r(x)) \oplus (\varphi_$$

The fields $N_i = k^{\pi}[x]/(\varphi(x))$ are simple $k^{\pi}[\omega, \rho]$ -modules. From the embedding

$$k^{\pi}[x]/(\varphi(x)) \to k[x,\sigma]/(\varphi_i(x^m), \ [f(x)] \to [f(x^m)]$$

it follows that $k[x,\sigma]/(\varphi(x^m))$ is a free $k^{\pi}[x]/(\varphi_i(x))$ -module with a basis $[\alpha_j x^k]$, j = 1, 2, ..., m, k = 0, 1, ..., m - 1, where $\alpha_1, ..., \alpha_m$ is a k^{π} -basis of the field k. Therefore $k[x,\sigma]/(\varphi_i(x^m))$ splits as a $k^{\pi}[\omega, \rho]$ -module into the direct sum of $k^{\pi}[\omega, \rho]$ -modules which are isomorphic to the $k^{\pi}[\omega, \rho]$ module N_i . Since M_i is the direct summand of $k[x,\sigma]/(\varphi_i(x^m))$, by the Krull-Schmidt theorem M_i splits too as a $k^{\pi}[\omega, \rho]$ -module into the direct sum of $k^{\pi}[\omega, \rho]$ -modules which are isomorphic to a simple $k^{\pi}[\omega, \rho]$ -module N_i . The correspondence $M_i \to N_i$ proves the lemma. Q.E.D.

Proposition 4.4. Let R be an integral domain with quotient field K, such that char(k) = p, (p, h) = 1, $\rho(\omega \times \omega) \subseteq U(R^{\pi})$, R is projective and finitely generated over R^{π} and the following condition holds: (*) For any cyclic subgroup $\omega_0 \subseteq \omega$ and any $Q_1, Q_2 \in \underline{P}(R^{\pi}[\omega, \rho])$ from $rk_{K^{\pi}}Q_1 = rk_{K^{\pi}}Q_2$ it follows that $K^{\pi} \otimes_{R^{\pi}} Q_1 \simeq K^{\pi} \otimes_{R^{\pi}} Q_2$ as $K^{\pi}[\omega_0, \rho]$ -modules. Then for any $P_1, P_2 \in \underline{P}(R[\pi, \sigma, \rho])$ from $rk_K(P_1) = rk_K(P_2)$ it follows that $K \otimes_R P_1 \simeq K \otimes_R P_2$ as $K[\pi, \sigma, \rho]$ -modules.

Proof. $R^{\pi} \subseteq R$ is an integral extension of rings and $K \simeq K^{\pi} \otimes_{R^{\pi}} R$. Therefore $K \otimes_{R} P \simeq$ $K^{\pi} \otimes_{R^{\pi}} R \otimes_{R} P \simeq K^{\pi} \otimes_{R^{\pi}} P$. Consequently, $rk_{K}(P_{1}) = rk_{K}(P_{2}) \simeq rk_{K^{\pi}}(P_{1}) = rk_{K^{\pi}}(P_{2})$. Let $\pi_0 \subseteq \pi$ be a cyclic subgroup. Let us denote $\omega_0 = Ker(\sigma : \pi_0 \to Aut(R))$. Since $R[\omega_0, \rho] \simeq$ $R^{\pi}[\omega_0,\rho] \otimes_{R^{\pi}} R$ as $R[\omega_0,\rho]$ modules, $R[\omega_0,\rho]$ is projective as a $R^{\pi}[\omega_0,\rho]$ -module. Since $R[\pi,\sigma,\rho]$ is free over $R[\omega_0,\rho]$, $R[\pi,\sigma,\rho]$ is also projective over $R[\omega_0,\rho]$. Therefore $P_1, P_2 \in \underline{P}(R[\pi,\sigma,\rho])$, we have $P_1, P_2 \in \underline{P}(R^{\pi}[\omega_0, \rho])$. By the condition $rk_K(P_1) = rk_K(P_2)$. As we have already noted $rk_{K^{\pi}}(P_1) = rk_{K^{\pi}}(P_2)$. Then by the condition (*) we have $K^{\pi} \otimes_{R^{\pi}} P_1 \simeq K^{\pi} \otimes_{R^{\pi}} P_2$ as $K^{\pi}[\omega_0, \rho]$ modules or, what is the same, $K \otimes_R P_1 \simeq K \otimes_R P_2$ as $K^{\pi}[\omega_0, \rho]$ -modules. If we suppose in Lemma 4.3 that $\pi = \pi_0$, $\omega = \omega_0$, it follows that $K \otimes_R P_1$ and $K \otimes_R P_2$ contain N_i as a direct summand the same number of times (recall that $K[\pi, \sigma, \rho], K^{\pi}[\omega, \rho], K[\pi_0, \sigma, \rho]$ and $K^{\pi}[\omega_0, \rho]$ are semisimole rings). By Lemma 4.3 N_i is contained as a direct summand only in M_i , and M_i does not contain other summands. Therefore $K \otimes_R P_1$ and $K \otimes_R P_2$ must contain M_i as a direct summand the same number of times. Therefore $K \otimes_R P_1 \simeq K \otimes_R P_2$ as $K[\pi_0, \sigma, \rho]$ -modules. Suppose χ_i is a character of $K[\pi, \sigma, \rho]$ -modules $K \otimes_R P_i$, $i = 1, 2, a = \sum_{x \in \pi} \alpha_x \bar{x}$ and $\pi_x \subseteq \pi$ is the cyclic subgroup generated by x. Then $K \otimes_R P_1 \simeq K \otimes_R P_2$ as $K[\pi_x, \sigma, \rho]$ -modules and therefore $\chi_1(\alpha_x \bar{x}) = \chi_2(\alpha_x \bar{x})$. Hence $\chi_1(a) = \chi_2(a)$. From the equality of characters it follows that $K \otimes_R P_1 \simeq K \otimes_R P_2$ as $K[\pi, \sigma, \rho]$ modules. Q.E.D.

Lemma 4.5. Under the conditions of Theorem 3.1 the rank $rk_K(P)$ is divided into n.

Proof. Let $n = \prod p^{\mu_p}$. Then $(\pi_p : 1) = p^{\mu_p}$. p is not convertible in R, therefore there exists $\mathbf{p} \in spec(R)$ such that $p \in \mathbf{p}$. The group π_p acts trivially on R_p . Therefore $R/\mathbf{p}[\pi_p, \bar{\sigma}, \bar{\rho}] = R/\mathbf{p}[\pi_p, \bar{\rho}]$. R/\mathbf{p} is a field of characteristic $p \ge 0$ and π_p is the finite p-group, thus $R/\mathbf{p}[\pi_p, \bar{\rho}]$ is a local ring [14]. Consequently, the module $P/\mathbf{p}P$ is not only projective, but also free over $R/\mathbf{p}[\pi_p, \bar{\rho}]$. Therefore $p_p^{\mu}|(P/\mathbf{p}P : R/\mathbf{p})$. Since R is the Dedekind domain, we have $p_p^{\mu}|rk_K(P)$. Since that is true for all p|n, we have $n|rk_K(P)$.

Theorem 4.6. Under the conditions of Theorem 3.1 the module $K \otimes_R P$ is free over $K[\pi, \sigma, \rho]$.

Proof. Let us first prove the theorem for the cyclic group π . More precisely, we must prove that if π is a finite cyclic group, $\sigma(\pi) = id$, R is the Dedekind domain of characteristic 0, prime dividers of n are not invertible in R and $P \in \underline{P}(R[\pi, \rho])$, then the module $K \otimes_R P$ is a free $R[\pi, \rho]$ -module.

Step 1. Let M be any simple $R[\pi, \rho]$ -module. From char(K) = 0 it follows that $K[\pi, \rho]$ is a semisimple K-algebra. Suppose that $K \otimes_R P$ contains M n-times as a direct summand. Then $Hom_{K[\pi,\rho]}(M, K \otimes_R P)$ is isomorphic to the direct sum of r summands, which are isomorphic to $Hom_K(M, K)$. The consideration of bases and comparison of dimensions show that the mapping $\varphi(f \otimes v)(m) := f(m)(v)$, where $v \in K \otimes_R P$, is an isomorphism of K-modules

$$\varphi: M^* \otimes_K (K \otimes_R P) \simeq Hom_K(M, K \otimes_R P).$$

Step 2. It is clear that $M^* \otimes_K (K \otimes_R P)$ is a $K[\pi]$ -module if we suppose $x(f \otimes v) = f\bar{x}^{-1} \otimes \bar{x}v$, where $x \in K[\pi]$ and $\bar{x}, \bar{x}^{-1} \in K[\pi, \rho]$. Similarly, $Hom_K(M, K \otimes_R P)$ is a left $K[\pi]$ -module via the action $(xf)(m) = \bar{x}f(\bar{x}^{-1}m)$ and

$$Hom_{K}(M, K \otimes_{R} P)^{\pi} := \{ f \in Hom_{K}(M, K \otimes_{R} P) | (\forall x \in \pi) x f = x \} =$$
$$= Hom_{K[\pi, \rho]}(M, K \otimes_{R} P).$$

Let us prove that φ from Step 1 is an isomorphism of left $K[\pi]$ -modules:

$$\varphi(x(f \otimes v))(m) = \varphi(f\bar{x}^{-1} \otimes \bar{x}v)(m) = f(\bar{x}^{-1}m)\bar{x}v =$$
$$= \bar{x}f(\bar{x}^{-1}m)v = [x\varphi(f \otimes v)](m).$$

Therefore

$$Hom_{K[\pi,\rho]}(M, K \otimes_R P) \simeq [M^* \otimes_K (K \otimes_R P)]^{\pi}.$$

Step 3. In our conditions there exists a finitely generated $R[\pi, \rho]$ -module Q such that Q is projective, i.e. it is torsion-free over R and $M \simeq K \otimes_R Q$. Indeed, suppose $0 \neq m \in M$. Let $Q = R[\pi, \rho]m \subseteq M$; it is clear that $M \simeq K \otimes_R Q$ because M is a semisimple $R[\pi, \rho]$ -module. If $q \in Q$ and $rq = 0, r \in R$, then $r^{-1}(rq) = q$, i.e. Q is torsion-free over R. Since R is a Noetherian ring and Q is a finitely generated R-module, then $M^* \simeq (K \otimes_R Q)^* \simeq K \otimes_R Q^*$, $Q^* = Hom_R(Q, R)$. Therefore by Lemma 8.2 [1], from step 2 it follows that

$$Hom_{R[\pi,\rho]}(M, K \otimes_R P) \simeq (K \otimes_R Q^* \otimes_R P)^{\pi} \simeq K \otimes_R (Q^* \otimes_R P)^{\pi}$$

where $R[\pi]$ acts on $Q^* \otimes_R P$ as $x(f \otimes p) = f\bar{x}^{-1} \otimes \bar{x}p$.

Step 4. $Q^* \otimes_R P$ is a $R[\pi]$ -projective module. Then by Lemma 8.3, from [1] we have

$$rk(Q^* \otimes_R P)^{\pi} = \frac{1}{n}rk(Q^* \otimes_R P) = \frac{1}{n}rk(Q)rk(P),$$

where $rk(M) = dim_K(K \otimes_R M), M \in R - \underline{Mod}$. Consequently,

$$\frac{1}{n}rk(Q)rk(P) = dim_K(Hom_{K[\pi,\rho]}(M, K \otimes_R P)).$$

i.e. r depends only on rk(P). From Lemma 3.5 it follows that there exists a free $R[\pi, \rho]$ -module F such that rk(F) = rk(P). Therefore M is contained in $K \otimes_R F$ and $K \otimes_R P$ the same number of times, and, consequently, $K \otimes_R P \simeq K \otimes_R F$, i.e. $K \otimes_R P$ is a free $K[\pi, \rho]$ -module.

Let us prove the theorem in the general case. It is well known that R^{π} is a Dedekind domain and R is finitely generated over R^{π} . Thus P is projective and finitely generated over $R^{\pi}[\omega, \rho]$. As we have already proved $K \otimes_R P$ is a free $R^{\pi}[\omega_0, \rho]$ -module for all cyclic subgroups $\omega_0 \subseteq \omega$. By Proposition 3.4 $K \otimes_R P$ is uniquely determined as a $K[\pi, \sigma, \rho]$ -module by rk(P). By Lemma 3.5 there exists a free $R[\pi, \sigma, \rho]$ -module F such that rk(P) = rk(F), therefore $K \otimes_R P \simeq K \otimes_R F$, i.e. $K \otimes_R P$ is a free $K[\pi, \sigma, \rho]$ -module.

Theorem 4.7. Let R be a Dedekind domain, $\mathbf{m} \subseteq R$ be a nonzero ideal, $\mathbf{m} = \prod_i \mathbf{p}_i^{\nu_i}$, $\mathbf{p}_i \in spec(R)$ and $\pi(\mathbf{p}_i) \subseteq \mathbf{p}_i$ for all i. If $P \in \underline{P}(R[\pi, \sigma, \rho])$ and $K \otimes_R P$ is a free $K[\pi, \sigma, \rho]$ -module, then P contains a free module F such that ω and F are coprime ideals.

Proof. If $\omega = R$ then we may suppose that F is equal to any free submodule of P. Let us now suppose that $\omega \neq R$. Let first $\omega = \mathbf{p} \in spec(R)$. By the condition $K \otimes_R P \simeq K \otimes_{R_{\mathbf{p}}} R_{\mathbf{p}} \otimes_R P \simeq K \otimes_{R_{\mathbf{p}}} P_{\mathbf{p}}$ is free over $K[\pi, \sigma, \rho]$, i.e. $K \otimes_{R_{\mathbf{p}}} P_{\mathbf{p}} \simeq K \otimes_{R_{\mathbf{p}}} F_0$ for some free $R_{\mathbf{p}}[\pi, \sigma, \rho]$ -module F_0 . $R_{\mathbf{p}}$ is a discrete valued ring. Consequently, by Theorem 3.1 $P_{\mathbf{p}}$ is a free $R_{\mathbf{p}}[\pi, \sigma]$ -module. Since $R_{\mathbf{p}}/\mathbf{p} \simeq R/\mathbf{p}$,

$$P_{\mathbf{p}}/(\mathbf{p}P_{\mathbf{p}}) \simeq R_{\mathbf{p}}/\mathbf{p} \otimes_{R_{\mathbf{p}}} / P_{\mathbf{p}} \simeq R_{\mathbf{p}}/\mathbf{p} \otimes_{R_{\mathbf{p}}} R_{\mathbf{p}} \otimes_{R} P \simeq R_{\mathbf{p}} \otimes_{R} P \simeq P/(\mathbf{p}P)$$

Therefore $P/(\mathbf{p}P)$ is a free $(R/\mathbf{p})[\pi, \bar{\sigma}, \bar{\rho}]$ -module.

Let us consider the general case. As we already have proved $P/(\mathbf{p}_i P)$ are free $(R/\mathbf{p}_i)[\pi, \bar{\sigma}, \bar{\rho}]$ modules for all *i*. Let $\bar{a}_1^{(i)}, ..., \bar{a}_k^{(i)}$ be a free basis of $P/(\mathbf{p}_i P)$. Since $rk_K(P) = (P/(\mathbf{p}_i P) : R/\mathbf{p}_i)$, $k_1 = k_2 = ... = k$. By the Chinese remainder theorem there exist elements $r_i \in R$ such that $r_i \equiv \delta_{ij} (mod\mathbf{p}_j)$. Let $a_s^{(i)}$ be a coimages of the elements $\bar{a}_s^{(i)}$ with the respect to a morphism $P \to P/(\mathbf{p}_i P)$. Let us denote $a_s = \sum_i \alpha_i a_s^{(i)}$. Then for any *i*, the images of elements in $P/(\mathbf{p}_i P)$ coincide with the basis $\bar{a}_1^{(i)}, ..., \bar{a}_k^{(i)}$.

Let F be a $R[\pi, \sigma, \rho]$ -submodule of P generated by elements $a_1, ..., a_k$. Let us prove that F is a free $R[\pi, \sigma, \rho]$ -module with a basis $a_1, ..., a_k$. Otherwise in F there would exist a nontrivial relation between the elements $a_1, ..., a_k$ and we would have in $K \otimes_R F$ that $rk_K F < nk, n = (\pi : 1)$. On the other hand, $(F/(\mathbf{p}_i F) : R/\mathbf{p}_i) = (P/(\mathbf{p}_i P) : R/\mathbf{p}_i) = nk$ because $F/(\mathbf{p}F) \to P/(\mathbf{p}P)$ is surjective. But $rk(F) = (F/(\mathbf{p}_i F) : R/\mathbf{p}_i)$, a contradiction. Thus F is a free module.

Since $(F/(\mathbf{p}_i F) \simeq (P/(\mathbf{p}_i P) \text{ we have } (F:P) + \mathbf{p}_i = R$. *R* is the Dedekind domain; consequently, $(F:P) + \omega = R$. Q.E.D.

Corollary 4.8. Under the conditions of Theorem 4.7 the module $P/(\omega P)$ is free over $R/\omega[\pi, \bar{\sigma}, \bar{\rho}]$.

Proof. Indeed, because $(F:P) + \omega = R$, $F/(\omega F) \to P/(\omega P)$ is an isomorphism. Q.E.D.

Proposition 4.9. Under the conditions of Theorem 3.1 there exists an embedding of the module P in the free $R[\pi, \sigma, \rho]$ -module F such that (P:F) + (n) = R, $(P:F)_{R^{\pi}} + nR^{\pi} = R^{\pi}$.

Proof. Let us suppose in Corollary 3.8 that $\omega = (n) = nR$. In the proof of Corollary 3.8 it was shown that $F/(nRF) \simeq P/(nRP)$. But $F/(nRF) = F/(nF) = F/(nR^{\pi}F)$ and, similarly, for P. Therefore $F/(nR^{\pi}F) \simeq P/(nR^{\pi}P)$ and $(F:P)_{R^{\pi}} + nR^{\pi} = R^{\pi}$ because R^{π} is a Dedekind domain. Therefore there exists $a \in nR^{\pi}$, $b \in (F:P)_{R^{\pi}}$ such that a + b = 1. $nR^{\pi} \neq R^{\pi}$ and therefore $b \neq 0$. From $b \in R^{\pi}$ it follows that b is contained in the center of the ring $R[\pi, \sigma, \rho]$. Consequently, bPis a $R[\pi, \sigma, \rho]$ -module and as P is R-torsion-free (finitely generated modules are torsion-free over Dedekind domains), $P \simeq bP$ as $R[\pi, \sigma, \rho]$ -modules. $bP \subseteq F$ since $b \in (F:P)_{R^{\pi}}$. It is clear that $b \in (F:P)$. Let us identify P and bP. Then F will be the desired free module and $bP \subseteq F$ will be the desired embedding for which $(P:F)_{R^{\pi}} + nR^{\pi} = R^{\pi}$ and a fortiori (P:F) + (n) = R. Q.E.D.

Proposition 4.10. Let $M \in \underline{M}(R[\pi, \sigma, \rho])$. If $ann_RM + (n) = R$, $n = (\pi : 1)$, $ann_RM = \{r \in R | rM = 0\}$, then M is $R[\pi, \sigma, \rho]$ -projective.

Proof. By condition there exist $a, b \in R$ such that an + b = 1 and bM = 0. Let us define $(n): M \to M, (n): m \to nm$. Let nm = 0. Then anm + bm = 0 = m, i.e. this morphism is injective. If $m \in M$, then by the equality m = anm + bm = anm we have $am \xrightarrow{(n)}{m} m$, i.e. (n) is surjective. Therefore (n) is an isomorphism. On the other hand, $R[\pi, \sigma, \rho] \supseteq R$ is a free Frobenius extension with dual bases $\{\bar{x}\}_{x \in \pi}$ and $\{\bar{x}^{-1}\}_{x \in \pi}$. As we have already proved $\sum_{x \in \pi} \bar{x}\bar{x}^{-1} = n$ is an isomorphism and therefore from the properties of Frobenius extensions it follows that M is $(R[\pi, \sigma, \rho], R)$ -projective.

Proposition 4.11. Let $I \subseteq R[\pi, \sigma, \rho]$ be an ideal such that $(I : R[\pi, \sigma, \rho]) + (n) = R$ and let R be a Dedekind domain. Then I is a $R[\pi, \sigma, \rho]$ -projective module.

Proof. Let us consider a $R[\pi, \sigma, \rho]$ -module $M = R[\pi, \sigma, \rho]/I$. Since R is a Dedekind domain, $dimpr_R(M) \leq 1$. Since $(I : R[\pi, \sigma, \rho]) = ann_R(M)$, $ann_R(M) + (n) = R$ and by Proposition 3.10 the module M is $R([\pi, \sigma, \rho], R)$ -projective. Since $R[\pi, \sigma, \rho]$ is free over R, $dimpr_{R[\pi, \sigma, \rho]}(M) \leq 1$. But then there exists an exact sequence

$$0 \to I \to R[\pi, \sigma, \rho] \to M \to 0,$$

from which implies that I is $R[\pi, \sigma, \rho]$ -projective.

Proof of Theorem 4.1. Let F be the free module from Proposition 3.9 with $R[\pi, \sigma, \rho]$ -basis $a_1, a_2, ..., a_k$. Let us consider the morphisms of $R[\pi, \sigma, \rho]$ -modules

$$\varphi_1: F \to R[\pi, \sigma, \rho], \ \sum_i \mu_i a_i \to \mu_1.$$

An image $\varphi_1(P) = I_1$ of this morphism is an ideal in $R[\pi, \sigma, \rho]$. Since $rF \subseteq P \Rightarrow rR[\pi, \sigma, \rho] \subseteq I_1$, $(P:F) \subseteq (I_1: R[\pi, \sigma, \rho])$. Therefore from (P:F)+(n) = R it follows that $(I_1: R[\pi, \sigma, \rho])+(n) = R$. Then by Proposition 3.11 the ideal I_1 is $R[\pi, \sigma, \rho]$ -projective. $\varphi: P \to I_1$ is surjective, therefore $P \simeq P' \oplus I_1$. Now the theorem is easy to prove by mathematical induction with respect to $rk_K(P)$.

Example for Theorem 4.1. Let $d \neq 0$ be a natural number which does not contain a square of a prime number as a multiplier and such that $d \equiv 2 \vee 3 \pmod{4}$. Then the ring of integers for the field $Q(\sqrt{d})$ will be $Z([\sqrt{d}])$. Let us suppose that a natural number n > 0 satisfies the following condition: If $p \neq 2$ is a prime number and p|n, then $(\frac{D}{p}) = 0 \vee -1$ where D = 4d is a discriminant of the field and $(\frac{D}{p})$ is a quadratic residue symbol. If $(\pi : 1) = n$, then any crossed group ring $Z[\sqrt{d}][\pi, \sigma, \rho]$ satisfies the conditions of Theorem 3.1 for any σ and ρ .

Indeed if 2|n, then $2 = \mathbf{p}^2$ for some $\mathbf{p} \in spec(Z[\sqrt{d}])$, [15]. If $p \neq 2$, p|n, then from $(\frac{D}{p}) = 0 \lor -1$ it follows that either $(p) = \mathbf{p}^2$ for some $\mathbf{p} \in spec(Z[\sqrt{d}])$ or (p) is prime in $Z[\sqrt{d}]$, [15]. It is clear that in all these cases the group $Aut(Z[\sqrt{d}])$, $\sigma(\sqrt{d}) = -\sqrt{d}$ satisfies the condition (ii) of Theorem 3.1 and a fortiori this is true for the group π . Further, $(2) = \mathbf{p}^2 \Rightarrow Z[\sqrt{d}]/\mathbf{p} \simeq F_2$, but F_2 has only one, identity authomorphism and condition (iii) is satisfied too.

Proposition 4.12. Let $\omega \subseteq R$ be a nonzero ideal. Then under the conditions of Theorem 3.2 there exists an embedding of the module P in the free $R[\pi, \rho]$ -module F such that $(P : F) + \omega = R$.

Proof. Proved similarly to Proposition 4.9.

Proposition 4.13. Under the conditions of Theorem 3.2 any module P is isomorphic to the direct sum $\sum I_i$ of ideals of $R[\pi, \rho]$; in addition the ideals I_i can be chosen in such a way that for all i

$$(I_i: R[\pi, \rho]) + \omega = R.$$

Proof. By condition, $(\pi : 1) = n \neq 0$ in R. Let us choose in Proposition 3.12 a free $R[\pi, \rho]$ -module with the basis $a_1, a_2, ..., a_k$ in such a way that $n\omega + (P : F) = R$. Let us consider the morphism of $R[\pi, \rho]$ -modules $\varphi_1 : F \to R[\pi, \rho], \sum_i \mu_i a_i \to \mu_1$. The image $\varphi_1(P) = I_1$ is the left ideal in $R[\pi, \rho]$. Since $rF \subseteq P \Rightarrow rR[\pi, \rho] \subseteq I_1$, $(P : F) \subseteq (I_1 : R[\pi, \rho])$. From $n\omega + (P : F) = R$ it follows

Q.E.D.

that $(I_1 : R[\pi, \rho]) + (P : F) = R$ and thus the ideals (n) and ω are coprime with the respect to $(I_1 : R[\pi, \rho])$. Then from Proposition 4.11 it follows that I_1 is $R[\pi, \rho]$ -projective. Since $\varphi_1 : P \to I_1$ is an epimorphism, $P = P' + I_1$ and the proposition is easy to prove by mathematical induction with the respect to $rk_K(P)$.

Remark 4.14. We may suppose that $K \otimes_R I_i \simeq K[\pi, \rho]$ for all *i*. Indeed, let $\omega \subseteq R$ be an improper ideal. Then $\omega(R[\pi, \rho]I_i) = R[\pi, \rho]I_i$ and by Lemma 7.4, [1] there exists $a \in \omega$ such that $(1-a)R[\pi, \rho]/I_i = 0$. Since ωR is an improper ideal, $1-a \neq 0$ and thus $K \otimes_R I \simeq K \otimes_R R[\pi, \rho] \simeq K[\pi, \rho]$.

Proof of Theorem 4.2. By Proposition 4.13 and Remark 4.14 it is suffices to prove the following: let $I_1, I_2 \subseteq R[\pi, \rho]$ be a projective ideals such that $(I_1 : R[\pi, \rho])$ and $(I_2 : R[\pi, \rho])$ are coprime with the respect to ω and $K \otimes_R I_1 \simeq K \otimes_R I_2 \simeq K[\pi, \rho]$; then $I_1 \oplus I_2 \simeq R[\pi, \rho] \oplus I$, where $I \subseteq R[\pi, \rho]$ is a left ideal and $(I : R[\pi, \rho]) + \omega = R$.

Let $\omega_1 = (I_1 : R[\pi, \rho])$. From Proposition 4.13 it follows that there exists $I'_2 \subseteq R[\pi, \rho]$ such that $I_2 \simeq I'_2$ and $(I'_2 : R[\pi, \rho]) + \omega \omega_1 = R$. Let us replace I_2 by I'_2 . Therefore we may assume that there exist $b_1 \in (I_1 : R[\pi, \rho])$ and $b_2 \in (I_2 : R[\pi, \rho])$ such that $b_1 + b_2 = 1$.

Let F be the free $R[\pi, \rho]$ -module with two free generators e_1, e_2 and $V = I_1e_1 + I_2e_2 \subseteq F$. Then $A \simeq I_1 + I_2$ and $(V:F) + \omega = R$. It is clear that the elements $e_1' = e_1b_1 + e_2b_2$ and $e_2' = e_1 - e_2$ are also free generators of F, because $e_1 = e_1' + b_2e_2'$, $e_2 = e_1' - b_2e_2'$. But $e_1' \in V$ because $b_1 \in I_1$, $b_2 \in I_2$. Consequently, $V = R[\pi, \rho]e_1' + Ie_2'$ where $I = \{a \in R[\pi, \rho] | re_2' \in V\}$. It is also clear that $(I:R[\pi,\rho]) + \omega = R$ because $(I:R[\pi,\rho]) = (V:F)$.

References

- R. G, Swan. Induced Representations and Projective Modules. Ann. of Math., 71, No 3, 1960, 552-578.
- [2] T. Y. Lam. Induction Theorems for Grothendieck Groups and Whitehead Groups of Finite Groups. - Ann. Scient. Ec.Norm. Super., 1, 1968, 91-148.
- [3] A. I. Nemytov. $K_n(R\pi)$ Functors as Frobenius Modules on the Functor $G_0^R(\pi)$. Russian Mathematical Surveys, 28, No 3, 1973, 187-188 (in Russian).
- [4] R. G. Swan. Nonabelian Homological Algebra and K-Theory. Proc. Symp. Pure Math. (AMS), 17, 1970, 88-123.
- [5] S. M. Gersten. On the Functor K_2 . J. of Algebra, 17, No 2, 1971, 212-237.
- [6] K. Kawakubo. Induction theorems for equivariant K-theory and J-theory. J. Math. Soc. Japan. 38, 1986, 173-198.
- [7] A. Bartels, W. Luck. Induction theorems and isomorphism conjectures for K- and L-Theory. Forum Mathematicum. 19, 2007, 1-28.
- [8] N. Jacobson. The Theory of Rings. AMS, 1943.

- [9] M. Auslander, O. Goldman. The Brauer Group of a Commutative Ring. Trans. AMS, 97, No 3, 1960, 367-409.
- [10] G. Rakviashvili. Generalization of the Artin Theorem for Semisimple Algebras and Inductive Theorems for Orders and Crossed Group Rings. Bull. of the Acad. Sciences of the Georgian SSR, 96, No1, 1979, 25-28 (in Russian).
- [11] G. Rakviashvili. On the Structure of Projective Modules over Crossed Group Rings. Bull. of the Acad. Sciences of the Georgian SSR, 101, No 3, 1981, 549-552 (in Russian).
- [12] G. Rakviashvili. Inductive Theorems and Projective Modules over Crossed Group Rings. Acad. of Sciences of Georgian SSR, Proceedings of the A. Razmadze Tbilisi Mathematical Institute. Collection of papers on algebra 3. Cohomologies, K-Theory of Rings and Lie Groups. 1982, 92-107 (in Russian).
- [13] D. Quillen. Higher Algebraic K-Theory, I. Lect. Notes in Math., 341, 1972, 85-147.
- [14] S. Williamson. II-Principal Hereditary Orders, Nagoya Math. J., v. 32, 1968, 41-65.
- [15] E. Hecke. Vorlesungen ueber die Theorie der algebraischen Zahlen, Leipzig, 1923.