On algebraic K-functors of crossed group rings and its applications

G.Rakviashvili

Ilia State University, Tbilisi, Georgia.
E-mail: giorgi.rakviashvili@iliauni.edu.ge

Abstract

Let $R[\pi, \sigma, \rho]$ be a crossed group ring. An induction theorem is proved for the functor $G_{0}^{R}(R[\pi$, $\sigma, \rho]$) and the Swan-Gersten higher algebraic K-functors $K_{i}(R[\pi, \sigma, \rho])$. Using this result, a theorem on reduction is proved for the discrete normalization ring R with the field of quotients K : If P and Q are finitely generated $R[\pi, \sigma, \rho]$-projective modules and $K \otimes_{R} P \simeq K \otimes_{R} Q$ as $K[\pi, \sigma, \rho]$-modules, then $P \simeq Q$. Under some restrictions on $n=(\pi: 1)$ it is shown that finitely generated $R[\pi, \sigma, \rho]$-projective modules are decomposed into the direct sum of left ideals of the ring $R[\pi, \sigma, \rho]$. More stronger results are proved when $\sigma=i d$.

2010 Mathematics Subject Classification. 13C10. 19D25, 19M05
Keywords. Crossed group ring, induction theorem, higher algebraic K-functors.

1 Introduction

In 1960, R. G. Swan proved 1 that for a Dedekind domain R of characteristic 0 and a finite group π any finitely generated projective $R[\pi]$-module is the direct sum of left ideals of $R[\pi]$ if no prime divider of $(\pi: 1)$ is invertible in R. In [1 it was also proved that this direct sum may be replaced by the direct sum of a free $R[\pi]$ module and an ideal of $R[\pi]$, which generalizes the properties of projective modules over Dedekind domains. Swan's results were based on two theorems, each having an independent value: on the induction theorem for the functors $G_{0}^{R}(R \pi)$ and $K_{0}(R \pi)$, and on the "reduction" theorem.

In 1968, T.Y. Lam [2] proved an induction theorem for $K_{1}(R \pi)$ and in 1973 A.I. Nemytov [3] proved that $K_{m}(R \pi), m \geq 2$, functors are Frobenius modules on $G_{0}^{R}(R[\pi])$ and that the induction theorem is valid for Swan-Gersten algebraic K-functors ([4], [5) $K_{m}(R \pi), m \geq 2$. Induction theorems for some kinds of algebraic K-functors of group rings were obtained in 1986 by K. Kawakubo [6] and in 2005 by A. Bartels and W. Luck [7].

In the first section of this paper the induction theorem is generalized for Swan-Gersten algebraic K-functors $K_{m}(R[\pi, \sigma, \rho])$ (Theorem 2.4 for a crossed group ring $R[\pi, \sigma, \rho]$. In the second section, using the induction theorem for $K_{0}(R[\pi, \sigma, \rho])$ the "reduction" theorem is proved for finitely generated projective $R[\pi, \sigma, \rho]$-modules if R is a discrete valuation ring (Theorem 2.1). In Section 3 we prove the theorems on the structure of finitely generated projective $R[\pi, \sigma, \rho]$ - and $R[\pi, \rho]$-modules which generalize Swan's theorem.

Let R be a commutative ring with identity, π a group, $\sigma: \pi \rightarrow A u t R$ a group morphism, $U(R)$ a set of invertible elements of R and $\rho: \pi \times \pi \rightarrow U(R)$ be such a mapping, that

$$
\rho(x, y) \rho(x y, z)=\rho(y, z)^{x} \rho(x, y z)
$$

Then a crossed group ring $R[\pi, \sigma, \rho]$ (see [8, [9]) is a free R-module with the set of free generators π and with multiplication

$$
r_{1} \overline{x_{1}} r_{2} \overline{x_{2}}=r_{1} r_{2}^{x_{1}} \rho\left(x_{1}, x_{2}\right) \overline{x_{1} x_{2}}
$$

where \bar{x} is the image of $x \in \pi$ via a mapping $\pi \rightarrow R[\pi, \sigma, \rho]$ and $r_{1}, r_{2} \in R$. If $\sigma(\pi)=i d$ and $\rho \sim 1$ (i.e. $\rho(x, y)=\alpha(x) \alpha(y) \alpha(x y)^{-1}$ for some $\alpha: \pi \rightarrow U(R)$), then $R[\pi, \sigma, \rho] \simeq R[\pi]$.

In this paper all modules are left modules, $\underline{M}(A)$ and $\underline{P}(A)$ denote respectively the categories of finitely generated A-modules and finitely generated projective A-modules (A is a ring); $\underline{M}^{R}(R[\pi, \sigma, \rho])$ is the category of finitely generated R-projective $R[\pi, \sigma, \rho]$-modules; $G_{0}^{R}(R[\pi, \sigma, \rho])$ is a Grothendieck group of the category $\underline{M}^{R} R[\pi, \sigma, \rho]$.

Further, π will always be the finite group.
The main results of the paper are Theorems 3.1 and 3.2. These theorems were proved by author in the particular case when $\rho \sim 1$ in [10, [11] and [12; a general case for any ρ was announced in [12] and its proof was the subject of the authors doctoral thesis in 1981. These theorems are similar to the results of Kawakubo [6 which were obtained later in 1986 for some kinds of algebraic K-functors of group rings and particular cases of crossed group rings.

2 Inductive theorems

Let \underline{G} be a category, Rings a category of rings and $G: \underline{G} \rightarrow \underline{\text { Rings a contravariant functor. }}$ Suppose to each morphism $i: \pi^{\prime} \rightarrow \pi$ in \underline{G} there corresponds a morphism $i_{*}: G\left(\pi^{\prime}\right) \rightarrow G(\pi)$ in Rings such that $I d_{*}=I d$ and $(i j)_{*}=i_{*} j_{*}$ whenever $i j$ makes sense in \underline{G}. Let us denote $i^{*}=G(i): G(\pi) \rightarrow G\left(\pi^{\prime}\right)$. The functor G is called a Frobenius functor [2] if it satisfies the Frobenius reciprocity formula

$$
i_{*}\left(i^{*} a \cdot b\right)=a \cdot i_{*} b .
$$

Let $\underline{A b}$ be a category of commutative groups. A contravariant functor $K: \underline{G} \rightarrow \underline{A b}$ is called a Frobenius module [2] on the Frobenius functor G if it satisfies the following conditions:
(i) $K(\pi)$ is a module over $G(\pi)$.
(ii) For each morphism of groups $i: \pi^{\prime} \rightarrow \pi$ there exists a morphism $i_{\#}: K\left(\pi^{\prime}\right) \rightarrow K(\pi)$ (whenever $i j$ makes sense) such that

$$
\begin{equation*}
(i j)_{\#}=i_{\#} j_{\#} . \tag{2.1}
\end{equation*}
$$

(iii) $i_{*}, i^{*}, i_{\#}$ and $i^{\#}$ are related to each other by the relations

$$
\begin{align*}
& i_{\#}\left(y \cdot i^{\#}(a)=i_{*}(y) \cdot a,\right. \\
& i_{\#}\left(i^{*}(x) \cdot b\right)=x \cdot i_{\#}(b), \tag{2.2}
\end{align*}
$$

where $i^{\#}=K(i), x \in G(\pi), y \in G\left(\pi^{\prime}\right), a \in K(\pi), b \in G\left(\pi^{\prime}\right)$.
Let $\underline{G}(\pi)$ denote a category whose objects are all subgroups $\pi^{\prime} \subseteq \pi$ and morphisms are monomorphisms $i: \pi^{\prime} \rightarrow \pi^{\prime \prime}$. Then the functors $G_{0}^{S}(S[-])$ and $K_{m}(R[-, \sigma, \rho])(\sigma$ and ρ are defined respectively on π and $\pi \times \pi$ and are fixed for the category $\underline{G}(\pi)$) are contavariant functors from the category $\underline{G}(\pi)$ to the categories Rings and $\underline{A b}$ respectively.

It is known [1] that $G_{0}^{S}(S[\pi])$ is a Frobenius functor.
Let us denote $R^{\pi}=\left\{r \in R \mid(\forall x \in \pi) r^{x}=r\right\}$.

Theorem 2.1. Let R^{π} be an algebra over the commutative ring S with identity. Then the functors $G_{0}^{R}(R[-, \sigma, \rho])$ and $K_{m}(R[-, \sigma, \rho]), m=0,1, \ldots$, are Frobenius modules on the Frobenius functor $G_{0}^{S}(S[\pi])$.

Let us remark that in [10] instead of the functor $G_{0}^{R}(R[-, \sigma, \rho])$ it is considered a functor $G_{0}^{R^{\pi}}(R[-, \sigma, \rho])$ - the Grothendieck group of R^{π}-finitely generated and R^{π}-projective $R[\pi, \sigma, \rho]$ modules.

To prove Theorem 2.1 we need some propositions.
If R^{π} is an algebra over S, then R is an S-algebra by the action $s r=(s \cdot 1) r, 1 \in R$. Let us construct the morphisms of rings

$$
\begin{aligned}
& \alpha_{1}: R[\pi, \sigma, \rho] \rightarrow S[\pi] \otimes_{S} R[\pi, \sigma, \rho], \\
& \alpha_{2}: R[\pi, \sigma, \rho] \rightarrow R[\pi, \sigma, \rho] \otimes_{S} S[\pi]
\end{aligned}
$$

in this way: $\alpha_{1}(r \bar{x})=\bar{x} \otimes r \bar{x}, \alpha_{2}(r \bar{x})=r \bar{x} \otimes \bar{x}$. Then for any $S[\pi]$-module M and $R[\pi, \sigma, \rho]$-module P the modules $M \otimes_{S} P$ and $P \otimes_{S} M$ become $R[\pi, \sigma, \rho]$-modules via the action

$$
\begin{aligned}
& r \bar{x}(m \otimes p)=\alpha_{1}(r \bar{x})(m \otimes p)=\bar{x} m \otimes r \bar{x} p, \\
& r \bar{x}(p \otimes m)=\alpha_{2}(r \bar{x})(m \otimes p)=r \bar{x} p \otimes \bar{x} m .
\end{aligned}
$$

It is clear that the $R[\pi, \sigma, \rho]$-modules $M \otimes_{S} P$ and $P \otimes_{S} M$ are isomorphic.
Proposition 2.2. If a $S[\pi]$-module M is S-projective and a $R[\pi, \sigma, \rho]$-module P is $R[\pi, \sigma, \rho]$ projective, then $M \otimes_{S} P$ is $R[\pi, \sigma, \rho]$-projective.

Proof. If M is a free S-module, then $M \otimes_{S} R[\pi, \sigma, \rho] \simeq \oplus_{x \in \pi} M \otimes R \bar{x}$ as R-modules. But if $\left\{e_{\alpha}\right\}$ is a S-basis of M, then $\left\{\bar{x} e_{\alpha}\right\}$ is also a free S-basis because x induces an automorphism on M. Therefore $\left\{e_{\alpha} \otimes 1\right\}$ is a free $R[\pi, \sigma, \rho]$-basis of $M \otimes_{S} R[\pi, \sigma, \rho]$.

Suppose P^{\prime} is a $R[\pi, \sigma, \rho]$-module, such that $P \oplus P^{\prime}$ is a free $R[\pi, \sigma, \rho]$-module, and M is such a S-module that $M \oplus M^{\prime}$ is a free S-module. If we define the action of $S \pi$ on M as $s \bar{x}(m)=s m$, then $\left(M \oplus M^{\prime}\right) \otimes_{S}\left(P \oplus P^{\prime}\right)$ will be a free $R[\pi, \sigma, \rho]$-module and since

$$
\left(M \oplus M^{\prime}\right) \otimes_{S}\left(P \oplus P^{\prime}\right) \simeq\left(M \otimes_{S} P\right) \oplus\left(M^{\prime} \otimes_{S} P\right) \oplus\left(M \otimes_{S} P^{\prime}\right) \oplus\left(M^{\prime} \otimes_{S} P^{\prime}\right)
$$

($M \otimes_{S} P$) will be $R[\pi, \sigma, \rho]$-projective.
Q.E.D.

Proposition 2.3. Let R^{π} be an algebra over $S, \pi^{\prime} \subseteq \pi$ a subgroup, $M \in S \pi-$ Mod, $M^{\prime} \in$ $S \pi^{\prime}-\underline{M o d}, P \in R[\pi, \sigma, \rho]-\underline{M o d}$ and $P^{\prime} \in R\left[\pi^{\prime}, \sigma, \rho\right]-\underline{M o d}$. Then there exist isomorphisms of $R[\pi, \sigma, \rho]$-modules

$$
\begin{align*}
& \text { b) } R[\pi, \sigma, \rho] \otimes_{R\left[\pi^{\prime}, \sigma, \rho\right]}\left(M^{\prime} \otimes_{S} P\right) \simeq\left(R[\pi, \sigma, \rho] \otimes_{R\left[\pi^{\prime}, \sigma, \rho\right]} M^{\prime}\right) \otimes_{S} P . \tag{2.3}\\
& \text { a) } R[\pi, \sigma, \rho] \otimes_{R\left[\pi^{\prime}, \sigma, \rho\right]}\left(P^{\prime} \otimes_{S} M\right) \simeq\left(R[\pi, \sigma, \rho] \otimes_{R\left[\pi^{\prime}, \sigma, \rho\right]} P^{\prime}\right) \otimes_{S} M \tag{2.4}
\end{align*}
$$

The modules on the left side in the brackets and on the right sides are endowed with the structure of $R[\pi, \sigma, \rho]$-modules in the case a) by α_{1} and in the case b) by α_{2}. The left sides are endowed with the structure of $R[\pi, \sigma, \rho]$-modules by multiplication by $R[\pi, \sigma, \rho]$.

Proof. In the case a) the isomorphism is constructed by the inverse mappings

$$
\begin{gathered}
r \bar{x} \otimes\left(p^{\prime} \otimes m\right) \rightarrow\left(r \bar{x} \otimes p^{\prime}\right) \otimes \bar{x} m \\
\left(r \bar{x} \otimes p^{\prime}\right) \otimes m \rightarrow r \bar{x} \otimes\left(p^{\prime} \otimes \bar{x}^{-1} m\right)
\end{gathered}
$$

In the case b) the isomorphism is constructed by the inverse mappings

$$
\begin{aligned}
& r \bar{x} \otimes\left(m^{\prime} \otimes p\right) \rightarrow\left(r \bar{x} \otimes m^{\prime}\right) \otimes r \bar{x} p \\
&\left(s \bar{x} \otimes m^{\prime}\right) \otimes p \rightarrow r \bar{x} \otimes\left(m^{\prime} \otimes s \bar{x}^{-1} p\right)
\end{aligned}
$$

Q.E.D.

Proof of Theorem 2.1. Let $\pi^{\prime} \subseteq \pi$ be a subgroup and let $i: \pi^{\prime} \rightarrow \pi$ be an imbedding. Let us consider the additive functors

$$
\begin{gathered}
I^{\#}: \underline{P}(R[\pi, \sigma, \rho]) \rightarrow \underline{P}\left(R\left[\pi^{\prime}, \sigma, \rho\right]\right), I^{\#}(P)=\operatorname{Res}_{R[\pi, \sigma, \rho]} P \\
I_{\#}: \underline{P}\left(R\left[\pi^{\prime}, \sigma, \rho\right]\right) \rightarrow \underline{P}(R[\pi, \sigma, \rho]), \quad I_{\#}(P)=\operatorname{Ind}\left(P^{\prime}\right)=R[\pi, \sigma, \rho] \otimes_{R\left[\pi^{\prime}, \sigma, \rho\right]} P^{\prime}
\end{gathered}
$$

For any module $M \in \underline{M}^{S}(S[\pi]$ assume

$$
\begin{gathered}
J_{M}(P)=M \otimes_{S} P, \quad P \in \underline{P}(R[\pi, \sigma, \rho]) \\
J_{M}^{\prime}(P)=M \otimes_{S} N, \quad N \in \underline{M}^{R}(R[\pi, \sigma, \rho]) .
\end{gathered}
$$

From Proposition 2.2 it follows that the functors $J_{M}(-)$ and $J_{M}^{\prime}(-)$ take the values in the categories $\underline{P}(R[\pi, \sigma, \rho])$ and $\underline{M}^{R}(R[\pi, \sigma, \rho])$, respectively. It is known that Swan-Gersten's K-functors $K_{m}(R[\pi, \sigma, \rho])$ and Quillen's K-functors are isomorphic. Therefore from [13] it follows that the functors $I^{\#}, I_{\#}, J_{M}$ and J_{M}^{\prime} define the morphisms of abelian groups

$$
\begin{gather*}
i_{m}^{\#}: K_{m}(R[\pi, \sigma, \rho]) \rightarrow K_{m}\left(R\left[\pi^{\prime}, \sigma, \rho\right]\right), m \geq 0 ; \\
i_{\#}^{m}: K_{m}\left(R\left[\pi^{\prime}, \sigma, \rho\right]\right) \rightarrow K_{m}(R[\pi, \sigma, \rho]), m \geq 0 ; \tag{2.5}\\
j_{m}: G_{0}^{S}(S \pi) \otimes K_{m}\left(R\left[\pi^{\prime}, \sigma, \rho\right]\right) \rightarrow K_{m}\left(R\left[\pi^{\prime}, \sigma, \rho\right]\right), m \geq 0 ; \\
j_{0}^{\prime}: G_{0}^{S}(S \pi) \otimes G_{0}^{R}\left(R\left[\pi^{\prime}, \sigma, \rho\right]\right) \rightarrow G_{0}^{R}\left(R\left[\pi^{\prime}, \sigma, \rho\right]\right), m \geq 0 .
\end{gather*}
$$

Let us recall that the existence of morphisms i_{m} and $i_{\#}^{m}$ for $m \geq 2$ follows also from [2]. Using the of results from [13] and [3] it is easy to show that conditions (2.1) and (2.2) for morphisms (2.5) are consequences of isomorphisms (2.3) and (2.4).

Suppose M is some family of objects from \underline{G}. Let us denote for $\pi \in \underline{G}$

$$
K(\pi)_{M}=\sum_{\pi^{\prime}, i}\left\{\operatorname{Im}\left(i_{\#}: K\left(\pi^{\prime}\right) \rightarrow K(\pi)\right) \mid i: \pi^{\prime} \rightarrow \pi, \pi^{\prime} \subseteq M\right\} .
$$

Let $A \subseteq B$ be abelian groups. A natural number n is called an index of A in B if $n B \subseteq A$. Q.E.D.

Theorem 2.4. Let $c(\pi)$ be a set of all cyclic subgroups of the group π. Then $K_{m}(R[\pi, \sigma, \rho])_{c(\pi)}$ and $G_{0}^{R}(R[\pi, \sigma, \rho])_{c(\pi)}$ have the index n^{2} in $K_{m}(R[\pi, \sigma, \rho])$ and $G_{0}^{R}(R[\pi, \sigma, \rho])$, respectively for all $m \geq 0$. If R^{π} is an algebra over the field, then n^{2} may be replaced by n.

Proof. It is known that an index of $K(\pi)_{M}$ in $K(\pi)$ is equal to an index of $G(\pi)_{M}$ in $G(\pi)$ if K is a Frobenius module over a Frobenius functor G. Therefore by Theorem 1.1 it suffices to prove our statement for the functor $G_{0}^{S}(S \pi)$. Suppose in Theorem 1.1 we have $S=Z$. Then the first part of our statement follows from the fact that an index of $G_{0}^{Z}(Z \pi)_{c(\pi)}$ in $G_{0}^{Z}(Z \pi)$ is $n^{2}[1$. If $S=k$ is a field, in [1] it was proved that an index of $G_{0}(k \pi)_{c(\pi)}$ in $G_{0}(k \pi)$ is n.
Q.E.D.

3 Reduction theorem

Let R be an integral domain with quotient field K and $R[\pi, \sigma, \rho]$ be the crossed group ring. It is clear that we may construct the crossed group ring $K[\pi, \sigma, \rho]$ where $\sigma: \pi \rightarrow A u t(K)$ is induced from $\sigma: \pi \rightarrow \operatorname{Aut}(R)$ and $\rho: \pi \times \pi \rightarrow U(R) \subseteq K$.

Theorem 3.1. Let R be a discrete valued ring with quotient field K and $P, Q \in \underline{P}(R[\pi, \sigma, \rho])$. Suppose $K \otimes_{R} P \simeq K \otimes_{R} Q$ as $K[\pi, \sigma, \rho]$-modules. Then $P \simeq Q$ as $R[\pi, \sigma, \rho]$-modules.

Remark. $K[\pi, \sigma, \rho]$ acts on $K \otimes_{R} P$ as $\bar{x}(\alpha \otimes p)=\alpha^{x} \otimes x p$.
This theorem was proved by Swan [1] in the case $\sigma=i d, \rho=i d$, i.e. for group rings.
Let us first prove several necessary assertions.
Let us remark that if \mathbf{m} is a maximal ideal in R, then it is possible to construct in a natural way the ring $R / \mathbf{m}[\pi, \sigma, \rho]$ from the ring $R[\pi, \sigma, \rho]$ because from the uniqueness of the maximal ideal it follows that $\sigma(\mathbf{m}) \subseteq \mathbf{m}$ for any $\sigma \in \operatorname{Aut}(R)$.

Proposition 3.2. Let R be a discrete valued ring with a field of quotients K and $M_{1}, M_{2} \in$ $\underline{M}(R[\pi, \sigma, \rho])$. Suppose $K \otimes_{R} M_{1} \simeq K \otimes_{R} M_{2}$ as $K[\pi, \sigma, \rho]$-modules. Then $\left[M_{1} / \mathbf{m} M_{1}\right]=\left[M_{2} / \mathbf{m} M_{2}\right]$ in $G_{0}^{R}(R / \mathbf{m}[\pi, \sigma, \rho])$.

Proof. Let t be a generator of the ideal \mathbf{m}. Then for any $x \in \pi$ there is $t^{x}=t u$ for some invertible $u \in R$. Therefore if $M \in \underline{M}(R[\pi, \sigma, \rho])$, then $t M \in \underline{M}(R[\pi, \sigma, \rho])$ and $K \otimes_{R} M \simeq K \otimes_{R} t M$ as $K[\pi, \sigma, \rho]$-modules. Indeed, if $m=t m^{\prime} \in t M$, then $\bar{x} m=\bar{x} t m^{\prime}=t^{x} \bar{x} m^{\prime}=t\left(u \bar{x} m^{\prime}\right)=t m^{\prime \prime} \in t M$. Similarly, if $t^{n} M_{1} \subseteq M_{2} \subseteq M_{1}$, then $M_{1}^{\prime}=\left\{m \in M_{1} \mid t^{n-1} m \in M_{2}\right.$ is again a finitely generated $R[\pi, \sigma, \rho]$-module and $K \otimes_{R} M_{1} \simeq K \otimes_{R} M_{1}^{\prime}$ as $K[\pi, \sigma, \rho]$-modules.

Let $\mathbf{m} M_{1} \subseteq M_{2} \subseteq M_{1}$ (note that $\mathbf{m} M_{1}=t R M_{1}=t M_{1}$). Denote $T=M_{2} / M_{1}, \bar{M}_{i}=M_{i} / \mathbf{m} M_{i}$. It is clear that T is also the $R / \mathbf{m}[\pi, \sigma, \rho]$-module. Let us construct a sequence

$$
0 \rightarrow T \xrightarrow{\psi} \bar{M}_{2} \rightarrow T \xrightarrow{\alpha} \bar{M}_{1} \rightarrow T \xrightarrow{\varphi} T \rightarrow 0
$$

where $\psi\left(m_{1}+M_{2}\right)=t m_{1}+t M_{2}, \alpha\left(e_{2}+t M_{2}\right)=e_{2}+t M_{1}, \varphi\left(e_{1}+t M_{1}\right)=e_{1}+M_{2}$. This sequence is exact, therefore $\left[M_{1}\right]=\left[M_{2}\right]$ in $G_{0}(R / \mathbf{m}[\pi, \sigma, \rho])$. In particular $[\bar{M}]=[\overline{t M}]$ in $G_{0}(R / \mathbf{m}[\pi, \sigma, \rho])$, because $t M \subseteq t M \subseteq M$. Taking this into account, because all modules are finitely generated, we may conclude that $M \subseteq M_{1}$ and there exists an integer $n>0$, such that $t^{n} M_{1} \subseteq M_{2}$. Indeed, let us identify M_{1} and M_{2} and the corresponding $R[\pi, \sigma, \rho]$-modules in $K \otimes_{R} M_{1} \simeq K \otimes_{R} M_{2}$. Then there exists $k>0$ such that $M_{2} \subseteq t^{k} M_{1}$. There is: $\left[t^{k} \bar{M}_{1}\right]=\left[t^{k-1} \bar{M}_{1}\right]=\ldots=\left[t \bar{M}_{1}\right]=\bar{M}_{1}$. Therefore, without loss of generality, we may assume that $M_{2} \subseteq M_{1}$. Analogously we proceed with respect to
the second assumption. Hence $t^{n} M_{1} \subseteq M_{2} \subseteq M_{1}$. Let us denote $M_{1}^{\prime}=\left\{m \in M_{1} \mid t^{n-1} m \in M_{2}\right\}$. There is $t M_{1} \subseteq M_{1}^{\prime} \subseteq M_{1}, t^{n-1} M_{1}^{\prime} \subseteq M_{2} \subseteq M_{1}^{\prime}$. The induction on n proves our statement because we have already proved that $\left[\overline{M_{1}^{\prime}}\right]=\left[\overline{M_{1}}\right]$.
Q.E.D.

Corollary 3.3. There exists a homomorphism

$$
G_{0}(K[\pi, \sigma, \rho]) \rightarrow G_{0}(R / \mathbf{m}[\pi, \sigma, \rho])
$$

Suppose $E \in \underline{M}(K[\pi, \sigma, \rho])$ and $E \simeq K \otimes_{R} M$, where $M \in \underline{M}(R[\pi, \sigma, \rho])$. Then from Proposition 3.2 follows that the mapping $[E] \rightarrow[M / \mathbf{m} M]$ is well defined.

Proposition 3.4. Suppose that the conditions of Theorem 3.1 are satisfied and the Cartan mapping

$$
\chi: K_{0}(R / \mathbf{m}[\pi, \sigma, \rho]) \rightarrow G_{0}(R / \mathbf{m}[\pi, \sigma, \rho]),
$$

which is induced by the embedding $\underline{P}(R / \mathbf{m}[\pi, \sigma, \rho]) \rightarrow \underline{M}(R / \mathbf{m}[\pi, \sigma, \rho])$ is a monomorphism. Then the conclusion of Theorem 3.1 is true.
Proof. Let us consider the $R / \mathbf{m}[\pi, \sigma, \rho]$ as $R[\pi, \sigma, \rho]$-module by the epimorphism $R[\pi, \sigma, \rho] \xrightarrow{\varphi}$ $R / \mathbf{m}[\pi, \sigma, \rho]$. Since $P / \mathbf{m} P \simeq R / \mathbf{m}[\pi, \sigma, \rho] \otimes_{R[\pi, \sigma, \rho]} P$ and P is projective over $R[\pi, \sigma, \rho]$, we have that $P / \mathbf{m} P$ is projective over $R / \mathbf{m}[\pi, \sigma, \rho]$. Similarly, $Q / \mathbf{m} Q \in \underline{P}(R / \mathbf{m}[\pi, \sigma, \rho])$. Cosequently,

$$
[P / \mathbf{m} P],[Q / \mathbf{m} Q] \in K_{0}(R / \mathbf{m}[\pi, \sigma, \rho])
$$

Proposition 2.2 implies $[P / \mathbf{m} P]=[Q / \mathbf{m} Q])$ in $G_{0}(R / \mathbf{m}[\pi, \sigma, \rho])$. This means that $\chi([\bar{P}])=\chi([\bar{Q}])$. The mapping χ is monomorphic, and therefore $[\bar{P}]=[\bar{Q}]$ in $K_{0}(R / \mathbf{m}[\pi, \sigma, \rho])$. Therefore $\bar{P} \oplus$ $F \simeq \bar{Q} \oplus F$ for some free finitely generated $R / \mathbf{m}[\pi, \sigma, \rho]$-module $F . \quad R / \mathbf{m}$ is a field, therefore $R / \mathbf{m}[\pi, \sigma, \rho]$ is an Artinian ring and the Krull-Schmidt theorem holds for it and consequently $\bar{P} \simeq \bar{Q}$ as $R / \mathbf{m}[\pi, \sigma, \rho]$-modules. Let $f^{\prime}: \bar{P} \rightarrow \bar{Q}$ be any $R / \mathbf{m}[\pi, \sigma, \rho]$-isomorphism of $R / \mathbf{m}[\pi, \sigma, \rho]$ modules. We may consider f^{\prime} as an isomorphism of $R[\pi, \sigma, \rho]$-modules by the epimorphism φ. Consider the diagram in $\underline{M}(R[\pi, \sigma, \rho])$

$$
\begin{aligned}
& P \rightarrow P / \mathbf{m} P \rightarrow 0 \\
& \downarrow f \quad \downarrow f^{\prime} \\
& Q \rightarrow Q / \mathbf{m} Q \rightarrow 0 .
\end{aligned}
$$

Since P is $R[\pi, \sigma, \rho]$-projective and is mapped on $Q / \mathbf{m} Q$, there exists a $R[\pi, \sigma, \rho]$-morphism f such that diagramm (6) is commutative. Then we have $f(P)+\mathbf{m} Q=Q$. But $\mathbf{m}=\operatorname{rad}(R)$ and by the lemma of Nakayama $f(P)=Q$, i.e. f is an epimorphism. Since Q is projective and f is epimorphic, therefore $P \simeq Q \oplus \operatorname{Kerf}$. Hence $\operatorname{Ker} f=Q^{\prime}$ is projective and finitely generated. From (3) it follows that $Q^{\prime} / \mathbf{m} Q^{\prime} \subseteq \operatorname{Ker} f^{\prime}$. From $\operatorname{Ker} f^{\prime}=0$ it follows that $Q^{\prime} / \mathbf{m} Q^{\prime}=0$ and again from the lemma of Nakayama it follows that $Q^{\prime}=0$, i.e. f is an isomorphism. The theorem is proved.

Since R / \mathbf{m} is the field, by Proposition 3.4, to prove Theorem 3.1 it suffices to prove
Theorem 3.5. Let k be the field. Then the Cartan homomorphism

$$
\chi: K_{0}(k[\pi, \sigma, \rho]) \rightarrow G_{0}(k[\pi, \sigma, \rho]) .
$$

is injective.

Proof. Since by Theorem $1.1 K_{0}(k[\pi, \sigma, \rho])$ and $G_{0}([\pi, \sigma, \rho])$ are Frobenius modules over the Frobenius functor $G_{0}\left(k^{\pi}[\pi]\right)$, the Ker χ functor will also be a Frobenius module over $G_{0}\left(k^{\pi}[\pi]\right)$. Therefore an index of $(\operatorname{Ker} \chi)_{c(\pi)}$ in Ker χ is equal to an index of $G_{0}\left(k^{\pi}[\pi]\right)_{c(\pi)}$ in $G_{0}\left(k^{\pi}[\pi]\right)$, namely it is $n=(\pi: 1)$. This means that $n \operatorname{Ker} \chi \subseteq(\operatorname{Ker} \chi)_{c(\pi)}$. The ring $k[\pi, \sigma, \rho]$ is Artinian and therefore $K_{0}(k[\pi, \sigma, \rho])$ and its subgroup $\operatorname{Ker} \chi$ are finitely generated free commutative groups. If we proved that χ is monomorphic for cyclic groups, then we would have that $(\operatorname{Ker} \chi)_{c(\pi)}=0$ and n Ker $\chi=0$. From the freeness of the group Ker χ it would follow that $\operatorname{Ker} \chi=0$. But if π is cyclic with a generator a, then $k[\pi, \sigma, \rho] \simeq k[x, \sigma] /\left(x^{n}-\alpha\right)$, there $k[x, \sigma]$ is a ring of skew polynomials of x and σ is the automorphism $\sigma(a) \in \operatorname{Aut}(k), n=(\pi: 1)$ and $\alpha \in k^{\pi}$. The ring $k[x, \sigma]$ is a principal (noncommutative) ideal domain, σ has a finite index and any ideal in $k[x, \sigma]$ is bounded 8 . Therefore from the next theorem it follows that χ is monomorphic for a cyclic group π
Q.E.D.

Theorem 3.6. Let A be a (noncommutative) principal ideal domain, in which each ideal is bounded. If $I \subseteq A$ is a two sided ideal, $K_{0}(A / I)$ and $G_{0}(A / I)$ are Grothendieck groups of the categories $\underline{P}(A / I)$ and $\underline{M}(A / I)$ respectively, then the Cartan homomorphism

$$
\chi: K_{0}(A / I) \rightarrow G_{0}(A / I)
$$

is injective.
Proof. So A is a noncommutative integral domain in which any right and left ideal is principal. We say that two elements a_{1} and a_{2} are similar if $A / a_{1} \simeq A / a_{2}$ as A-modules. An ideal is bounded if it contains a nonzero two sided ideal, and such a maximal ideal is called a boundary of A.

We recall that since A / I is Artinian, $G_{0}(A / I)$ is well defined.
We will carry out the proof in several steps.
Step 1. $I=A a^{*}$ splits into the product of coprime maximal two sided ideals (the asterisk over the letter indicates that we deal with the generator of the ideal):

$$
I=A a^{*}=\left(A p_{1}^{*}\right)^{e_{1}}\left(A p_{2}^{*}\right)^{e_{1}} \ldots\left(A p_{r}^{*}\right)^{e_{r}} .
$$

Step 2. It is clear that

$$
\begin{aligned}
K_{0}(A / I) & \simeq \oplus_{i=1}^{r} K_{0}\left(A /\left(A p_{i}^{*}\right)^{e_{i}}\right), \\
G_{0}(A / I) & \simeq \oplus_{i=1}^{r} G_{0}\left(A /\left(A p_{i}^{*}\right)^{e_{i}}\right)
\end{aligned}
$$

and these isomorphisms and χ commute with each other. Therefore it suffices to prove that χ is monomorphic if $I=A /(A p *)^{e}$.

Step 3. $J=A p^{*} /\left(A p^{*}\right)^{e}$ is a radical of the ring $\bar{A}=A /\left(A p^{*}\right)^{e}$ and $\bar{A} / J \simeq A / A p^{*}$.
Step 4. Since the radical of the ring $\bar{A}=A /\left(A p^{*}\right)^{e}$ acts trivially on simple modules, simple $\bar{A}=A /\left(A p^{*}\right)^{e}$-modules will be simple as modules over $\bar{A}=A /\left(A p^{*}\right)$. But because $\bar{A}=A /\left(A p^{*}\right)$ is a simple ring, simple modules are direct summands of the ring $\bar{A}=A /\left(A p^{*}\right)$.

Step 5. Using Zorn's lemma it is easy to prove that $A p^{*}$ is contained in some maximal ideal $A p$. If $A p \supseteq A q^{*} \supseteq A p^{*}$, then $A p^{*}=A q^{*}$ since $A p^{*}$ is maximal, i.e. $A p$ is the boundary of the ideal $A p$. Since $A p$ is the maximal left ideal, $A / A p$ is a simple A-module. From Theorem 3.20, 8 it follows that $A / A p^{*}$ splits as an A-module into the direct sum of simple A-modules, which are isomorphic to $A / A p$:

$$
A / A P^{*} \simeq \oplus_{i} A q_{i} / A p^{*}, \quad A q_{i} / A p^{*} \simeq A / A p
$$

Therefore the direct summand $A q_{i} / A p^{*}$ is indecomposable as an A-module and, consequently, as an $A /\left(A P^{*}\right)^{e}$-module. Since $A / A P^{*}$ is a simple ring, it has a single simple module, i.e. all $A q_{i} / A p^{*}$ are isomorphic as $A / A P^{*}$-modules. Let q be one of q_{i}. We may conclude that $A q_{i} /\left(A p^{*}\right)^{e}$ has the single simple module $A q / A p^{*}$ which is A-isomorphic to $A / A p$.

Step 6. Let us find all indecomposable projective $A q_{i} /\left(A p^{*}\right)^{e}$-modules. Since $A q_{i} /\left(A p^{*}\right)^{e}$ is Artinian, such a modules are exhausted by the direct summands of $A q_{i} /\left(A p^{*}\right)^{e}$. Further, as follows from the proof of Theorem 3.21, [8] $A q_{i} /\left(A p^{*}\right)^{e}$ splits as a A-module into the direct sum of indecomposable A-modules, which is isomorphic to the A-module $A / p_{1} p_{2} \ldots p_{e}$:

$$
A q_{i} /\left(A p^{*}\right)^{e} \stackrel{\varphi}{\simeq} \oplus A r_{i} /\left(A p^{*}\right)^{e}, \quad A r_{i} /\left(A p^{*}\right)^{e} \simeq A / p_{1} p_{2} \ldots p_{e}
$$

Therefore if r is one of r_{i} then $A /\left(A p^{*}\right)^{e}$ has a single indecomposable projective module $A r /\left(A p^{*}\right)^{e}$, which is isomorphic to $A / p_{1} p_{2} \ldots p_{e}$.

Step 7. From steps 5 and 6 it follows that $G_{0}\left(A /\left(A p^{*}\right)^{e}\right)$ and $K_{0}\left(A /\left(A p^{*}\right)^{e}\right)$ are free commutative groups with one generator; the generator for $G_{0}\left(A /\left(A p^{*}\right)^{e}\right)$ is $\left[A q / A p^{*}\right]$, and the generator for $K_{0}\left(A /\left(A p^{*}\right)^{e}\right)$ is $\left[A r / A p^{*}\right]$. It is clear that $\left(A p^{*}\right)^{e}=A\left(p^{*}\right)^{e}$. Since $A\left(p^{*}\right)^{e} \subseteq A r$, we have $\left(p^{*}\right)^{e}=$ $r^{\prime} r$. Therefore, as A-modules

$$
A r / A p^{*}=A r / A r^{\prime} r \simeq A / A r^{\prime}
$$

So $A / A r^{\prime} \simeq A / A p_{1} p_{2} \ldots p_{e}$, therefore $r^{\prime}=p_{1}^{\prime} p_{2}^{\prime} \ldots p_{1}^{\prime}, p_{i}^{\prime} \sim p$.
For $A r /\left(A p^{*}\right)^{e}$ there exists a composition row of $A /\left(A p^{*}\right)^{e}$-modules

$$
A r /\left(A p^{*}\right)^{e}=A r / p_{1}^{\prime} p_{2}^{\prime} \ldots p_{e}^{\prime} r \supseteq A p_{e}^{\prime} r / p_{1}^{\prime} p_{2}^{\prime} \ldots p_{e}^{\prime} r \supseteq \ldots \supseteq A p_{2}^{\prime} p_{e}^{\prime} r / p_{1}^{\prime} p_{2}^{\prime} \ldots p_{e}^{\prime} r \supseteq 0
$$

whose factors are A-isomorphic to an A-module $A / A p$. It is clear that all these factors are $A /\left(A p^{*}\right)^{e}{ }_{-}$ isomorphic to the simple module $A q / A p^{*}$. Therefore

$$
\chi\left(\left[A r /\left(A p^{*}\right)^{e}\right]\right)=\left[A r /\left(A p^{*}\right)^{e}\right]=e\left[A q / A p^{*}\right]
$$

and χ is monomorphic.
Q.E.D.

4 Projective modules

Let ω be a subgroup of π which contains just an elements of π which acts trivially on R, i.e. $\omega=\operatorname{Ker}(\sigma: \pi \rightarrow \operatorname{Aut}(R))$. If $\sigma(\pi)=i d$, then we denote $R[\pi, \sigma, \rho]:=R[\pi, \rho]$.

Theorem 4.1. Let R be a Dedekind domain of characteristic zero. Suppose that no one divider of $n=(\pi: 1)$ is invertible in R, and $\sigma: \pi \rightarrow \operatorname{Aut}(R)$ is a morphism such that (i) R is projective over R^{π};
(ii) if $\boldsymbol{p} \in \operatorname{spec}(R), \boldsymbol{p} \mid(n)$, then $\sigma(\pi)(\boldsymbol{p}) \subseteq \boldsymbol{p}$;
(iii) if p is a prime divider of $(n), p \in \boldsymbol{p} \in \operatorname{spec}(R)$ and π_{p} is a Sylov p-subgroup of π, then π_{p} acts trivially on R / \boldsymbol{p};
(iv) $\rho(\pi \times \pi) \subseteq R^{\pi}$. Then any finitely generated projective $R[\pi, \sigma, \rho]$-module splits into the direct sum of left ideals of the ring $R[\pi, \sigma, \rho]$.

For the particular case $\sigma(\pi)=i d$, we may prove a stronger result.

Theorem 4.2. Let R be the Dedekind domain of characteristic zero. Suppose that no one divider of $n=(\pi: 1)$ is invertible in R. Then any finitely generated projective $R[\pi, \rho]$-module is the direct sum of the free $R[\pi, \rho]$-module and left ideal $I \subseteq R[\pi, \rho]$. For any nonzero ideal $\mathbf{j} \subseteq R$ we may choose an ideal I in such a way that I and \mathbf{j} would be coprime ideals.

Let us denote $R \cap I=(I: R[\pi, \rho])=\{r \in R \mid r R[\pi, \rho] \subseteq I\}$.
First, we must prove some useful propositions.
Let us denote $(\omega: 1)=h$. It is clear that $n=h m$ and $\sigma(x)^{m}=i d$ for any $x \in \pi$.
Lemma 4.3. Suppose k is a field, $\operatorname{char}(k)=p, \pi$ is a cyclic group, $(p, h)=1$, and $\rho(\omega \times \omega) \subseteq k^{\pi}$. Then any simple $k[\pi, \sigma, \rho]$-module splits as a $k^{\pi}[\omega, \rho]$ module into the direct sum isomorphic simple $k^{\pi}[\omega, \rho]$ modules: $M=N \oplus N \oplus N \oplus \ldots \oplus N$. The relation $M \rightarrow N$ induces a bijection between the isomorphism classes of simple $k[\pi, \sigma, \rho]$ and simple $k^{\pi}[\omega, \rho]$ modules.

Proof. It is clear that $k[\pi, \sigma, \rho] \simeq k[x, \sigma] /\left(x^{m h}-\alpha\right)$, where $m=(\pi: \omega), \alpha \in k^{\pi} \backslash 0$. It is known that two-side ideals of $k[x, \sigma]$ are generated by elements of the form $x^{t} \varphi\left(x^{m} \gamma\right)$, where $\varphi(x) \in k^{\pi}(x)$, $\gamma \in k$. Since $\alpha \neq 0$, two-sided maximal ideals which divide the two-sided ideal $k[x, \sigma] /\left(x^{m h}-\alpha\right)$ must have the form $\varphi\left(x^{m}\right) k[x, \sigma]$, where $\varphi(x) \in k^{\pi}[x]$ and $\varphi(x)$ is indecomposable in $k^{\pi}[x]$. I.e.

$$
\left(x^{m h}-\alpha\right)=\left(\varphi_{1}\left(x^{m}\right)^{i_{1}} \ldots\left(\varphi_{r}\left(x^{m}\right)^{i_{r}}\right),\right.
$$

where if $i \neq j$, then $\varphi_{i}\left(x^{m}\right) \nsucceq \varphi_{j}\left(x^{m}\right)$. Since $(p, h)=1$, the rings $k[\pi, \sigma, \rho]$ and $k^{\pi}[\omega, \rho]$ are semisimple [8]. Thus $i_{1}=\ldots=i_{r}=1$. Therefore

$$
k[x, \sigma] /\left(x^{m h}-\alpha\right) \simeq k[x, \sigma] /\left(\varphi_{1}\left(x^{m}\right)\right) \oplus \ldots \oplus k[x, \sigma] /\left(\varphi_{r}\left(x^{m}\right)\right) .
$$

Since $k[x, \sigma] /\left(\varphi_{i}\left(x^{m}\right)\right)$ is a simple ring, it has a single simple module M_{i} and $M_{i} \not 千 M_{j}$ for different i and j. On the other hand,

$$
k^{\pi}[\omega, \rho] \simeq k^{\pi}[x, \sigma] /\left(x^{m h}-\alpha\right) \simeq k^{\pi}[x, \sigma] /\left(\varphi_{1}(x)\right) \oplus \ldots \oplus k^{\pi}[x, \sigma] /\left(\varphi_{r}(x)\right)
$$

The fields $N_{i}=k^{\pi}[x] /(\varphi(x))$ are simple $k^{\pi}[\omega, \rho]$-modules. From the embedding

$$
k^{\pi}[x] /(\varphi(x)) \rightarrow k[x, \sigma] /\left(\varphi_{i}\left(x^{m}\right), \quad[f(x)] \rightarrow\left[f\left(x^{m}\right)\right]\right.
$$

it follows that $k[x, \sigma] /\left(\varphi\left(x^{m}\right)\right.$ is a free $k^{\pi}[x] /\left(\varphi_{i}(x)\right)$-module with a basis $\left[\alpha_{j} x^{k}\right], j=1,2, \ldots, m$, $k=0,1, \ldots, m-1$, where $\alpha_{1}, \ldots, \alpha_{m}$ is a k^{π}-basis of the field k. Therefore $k[x, \sigma] /\left(\varphi_{i}\left(x^{m}\right)\right)$ splits as a $k^{\pi}[\omega, \rho]$-module into the direct sum of $k^{\pi}[\omega, \rho]$-modules which are isomorphic to the $k^{\pi}[\omega, \rho]$ module N_{i}. Since M_{i} is the direct summand of $k[x, \sigma] /\left(\varphi_{i}\left(x^{m}\right)\right)$, by the Krull-Schmidt theorem M_{i} splits too as a $k^{\pi}[\omega, \rho]$-module into the direct sum of $k^{\pi}[\omega, \rho]$-modules which are isomorphic to a simple $k^{\pi}[\omega, \rho]$-module N_{i}. The correspondence $M_{i} \rightarrow N_{i}$ proves the lemma. Q.e.d.

Proposition 4.4. Let R be an integral domain with quotient field K , such that $\operatorname{char}(k)=p$, $(p, h)=1, \rho(\omega \times \omega) \subseteq U\left(R^{\pi}\right), R$ is projective and finitely generated over R^{π} and the following condition holds: (*) For any cyclic subgroup $\omega_{0} \subseteq \omega$ and any $Q_{1}, Q_{2} \in \underline{P}\left(R^{\pi}[\omega, \rho]\right)$ from $r k_{K^{\pi}} Q_{1}=$ $r k_{K^{\pi}} Q_{2}$ it follows that $K^{\pi} \otimes_{R^{\pi}} Q_{1} \simeq K^{\pi} \otimes_{R^{\pi}} Q_{2}$ as $K^{\pi}\left[\omega_{0}, \rho\right]$-modules. Then for any $P_{1}, P_{2} \in$ $\underline{P}(R[\pi, \sigma, \rho])$ from $r k_{K}\left(P_{1}\right)=r k_{K}\left(P_{2}\right)$ it follows that $K \otimes_{R} P_{1} \simeq K \otimes_{R} P_{2}$ as $K[\pi, \sigma, \rho]$-modules.

Proof. $R^{\pi} \subseteq R$ is an integral extension of rings and $K \simeq K^{\pi} \otimes_{R^{\pi}} R$. Therefore $K \otimes_{R} P \simeq$ $K^{\pi} \otimes_{R^{\pi}} R \otimes_{R} P \simeq K^{\pi} \otimes_{R^{\pi}} P$. Consequently, $r k_{K}\left(P_{1}\right)=r k_{K}\left(P_{2}\right) \simeq r k_{K^{\pi}}\left(P_{1}\right)=r k_{K^{\pi}}\left(P_{2}\right)$. Let $\pi_{0} \subseteq \pi$ be a cyclic subgroup. Let us denote $\omega_{0}=\operatorname{Ker}\left(\sigma: \pi_{0} \rightarrow \operatorname{Aut}(R)\right)$. Since $R\left[\omega_{0}, \rho\right] \simeq$ $R^{\pi}\left[\omega_{0}, \rho\right] \otimes_{R^{\pi}} R$ as $R\left[\omega_{0}, \rho\right]$ modules, $R\left[\omega_{0}, \rho\right]$ is projective as a $R^{\pi}\left[\omega_{0}, \rho\right]$-module. Since $R[\pi, \sigma, \rho]$ is free over $R\left[\omega_{0}, \rho\right], R[\pi, \sigma, \rho]$ is also projective over $R\left[\omega_{0}, \rho\right]$. Therefore $P_{1}, P_{2} \in \underline{P}(R[\pi, \sigma, \rho])$, we have $P_{1}, P_{2} \in \underline{P}\left(R^{\pi}\left[\omega_{0}, \rho\right]\right)$. By the condition $r k_{K}\left(P_{1}\right)=r k_{K}\left(P_{2}\right)$. As we have already noted $r k_{K^{\pi}}\left(P_{1}\right)=r k_{K^{\pi}}\left(P_{2}\right)$. Then by the condition $\left(^{*}\right)$ we have $K^{\pi} \otimes_{R^{\pi}} P_{1} \simeq K^{\pi} \otimes_{R^{\pi}} P_{2}$ as $K^{\pi}\left[\omega_{0}, \rho\right]$ modules or, what is the same, $K \otimes_{R} P_{1} \simeq K \otimes_{R} P_{2}$ as $\left.K^{\pi}\left[\omega_{0}, \rho\right]\right)$-modules. If we suppose in Lemma 4.3 that $\pi=\pi_{0}, \omega=\omega_{0}$, it follows that $K \otimes_{R} P_{1}$ and $K \otimes_{R} P_{2}$ contain N_{i} as a direct summand the same number of times (recall that $K[\pi, \sigma, \rho], K^{\pi}[\omega, \rho], K\left[\pi_{0}, \sigma, \rho\right]$ and $K^{\pi}\left[\omega_{0}, \rho\right]$ are semisimole rings). By Lemma $4.3 N_{i}$ is contained as a direct summand only in M_{i}, and M_{i} does not contain other summands. Therefore $K \otimes_{R} P_{1}$ and $K \otimes_{R} P_{2}$ must contain M_{i} as a direct summand the same number of times. Therefore $K \otimes_{R} P_{1} \simeq K \otimes_{R} P_{2}$ as $K\left[\pi_{0}, \sigma, \rho\right]$-modules. Suppose χ_{i} is a character of $K[\pi, \sigma, \rho]$-modules $K \otimes_{R} P_{i}, i=1,2, a=\sum_{x \in \pi} \alpha_{x} \bar{x}$ and $\pi_{x} \subseteq \pi$ is the cyclic subgroup generated by x. Then $K \otimes_{R} P_{1} \simeq K \otimes_{R} P_{2}$ as $\left.K\left[\pi_{x}, \sigma, \rho\right]\right)$-modules and therefore $\chi_{1}\left(\alpha_{x} \bar{x}\right)=\chi_{2}\left(\alpha_{x} \bar{x}\right)$. Hence $\chi_{1}(a)=\chi_{2}(a)$. From the equality of characters it follows that $K \otimes_{R} P_{1} \simeq K \otimes_{R} P_{2}$ as $K[\pi, \sigma, \rho]-$ modules.
Q.E.D.

Lemma 4.5. Under the conditions of Theorem 3.1 the $\operatorname{rank} r k_{K}(P)$ is divided into n.
Proof. Let $n=\prod p^{\mu_{p}}$. Then $\left(\pi_{p}: 1\right)=p^{\mu_{p}} . p$ is not convertible in R, therefore there exists $\mathbf{p} \in$ $\operatorname{spec}(R)$ such that $p \in \mathbf{p}$. The group π_{p} acts trivially on R_{p}. Therefore $R / \mathbf{p}\left[\pi_{p}, \bar{\sigma}, \bar{\rho}\right]=R / \mathbf{p}\left[\pi_{p}, \bar{\rho}\right]$. R / \mathbf{p} is a field of characteristic $p \geq 0$ and π_{p} is the finite p-group, thus $R / \mathbf{p}\left[\pi_{p}, \bar{\rho}\right]$ is a local ring [14]. Consequently, the module $P / \mathbf{p} P$ is not only projective, but also free over $R / \mathbf{p}\left[\pi_{p}, \bar{\rho}\right]$. Therefore $p_{p}^{\mu} \mid(P / \mathbf{p} P: R / \mathbf{p})$. Since R is the Dedekind domain, we have $p_{p}^{\mu} \mid r k_{K}(P)$. Since that is true for all $p \mid n$, we have $n \mid r k_{K}(P)$.
Q.E.D.

Theorem 4.6. Under the conditions of Theorem 3.1 the module $K \otimes_{R} P$ is free over $K[\pi, \sigma, \rho]$.
Proof. Let us first prove the theorem for the cyclic group π. More precisely, we must prove that if π is a finite cyclic group, $\sigma(\pi)=i d, R$ is the Dedekind domain of characteristic 0 , prime dividers of n are not invertible in R and $P \in \underline{P}(R[\pi, \rho])$, then the module $K \otimes_{R} P$ is a free $R[\pi, \rho]$-module.

Step 1. Let M be any simple $R[\pi, \rho]$-module. From $\operatorname{char}(K)=0$ it follows that $K[\pi, \rho]$ is a semisimple K-algebra. Suppose that $K \otimes_{R} P$ contains $M n$-times as a direct summand. Then $\operatorname{Hom}_{K[\pi, \rho]}\left(M, K \otimes_{R} P\right)$ is isomorphic to the direct sum of r summands, which are isomorphic to $\operatorname{Hom}_{K}(M, K)$. The consideration of bases and comparison of dimensions show that the mapping $\varphi(f \otimes v)(m):=f(m)(v)$, where $v \in K \otimes_{R} P$, is an isomorphism of K-modules

$$
\varphi: M^{*} \otimes_{K}\left(K \otimes_{R} P\right) \simeq \operatorname{Hom}_{K}\left(M, K \otimes_{R} P\right)
$$

Step 2. It is clear that $M^{*} \otimes_{K}\left(K \otimes_{R} P\right)$ is a $K[\pi]$-module if we suppose $x(f \otimes v)=f \bar{x}^{-1} \otimes \bar{x} v$, where $x \in K[\pi]$ and $\bar{x}, \bar{x}^{-1} \in K[\pi, \rho]$. Similarly, $\operatorname{Hom}_{K}\left(M, K \otimes_{R} P\right)$ is a left $K[\pi]$-module via the action $(x f)(m)=\bar{x} f\left(\bar{x}^{-1} m\right)$ and

$$
\begin{aligned}
\operatorname{Hom}_{K}\left(M, K \otimes_{R} P\right)^{\pi} & :=\left\{f \in \operatorname{Hom}_{K}\left(M, K \otimes_{R} P\right) \mid(\forall x \in \pi) x f=x\right\}= \\
& =\operatorname{Hom}_{K[\pi, \rho]}\left(M, K \otimes_{R} P\right)
\end{aligned}
$$

Let us prove that φ from Step 1 is an isomorphism of left $K[\pi]$-modules:

$$
\begin{gathered}
\varphi(x(f \otimes v))(m)=\varphi\left(f \bar{x}^{-1} \otimes \bar{x} v\right)(m)=f\left(\bar{x}^{-1} m\right) \bar{x} v= \\
=\bar{x} f\left(\bar{x}^{-1} m\right) v=[x \varphi(f \otimes v)](m)
\end{gathered}
$$

Therefore

$$
\operatorname{Hom}_{K[\pi, \rho]}\left(M, K \otimes_{R} P\right) \simeq\left[M^{*} \otimes_{K}\left(K \otimes_{R} P\right)\right]^{\pi}
$$

Step 3. In our conditions there exists a finitely generated $R[\pi, \rho]$-module Q such that Q is projective, i.e. it is torsion-free over R and $M \simeq K \otimes_{R} Q$. Indeed, suppose $0 \neq m \in M$. Let $Q=R[\pi, \rho] m \subseteq M$; it is clear that $M \simeq K \otimes_{R} Q$ because M is a semisimple $R[\pi, \rho]$-module. If $q \in Q$ and $r q=0, r \in R$, then $r^{-1}(r q)=q$, i.e. Q is torsion-free over R. Since R is a Noetherian ring and Q is a finitely generated R-module, then $M^{*} \simeq\left(K \otimes_{R} Q\right)^{*} \simeq K \otimes_{R} Q^{*}, Q^{*}=\operatorname{Hom}_{R}(Q, R)$. Therefore by Lemma 8.2 [1], from step 2 it follows that

$$
\operatorname{Hom}_{R[\pi, \rho]}\left(M, K \otimes_{R} P\right) \simeq\left(K \otimes_{R} Q^{*} \otimes_{R} P\right)^{\pi} \simeq K \otimes_{R}\left(Q^{*} \otimes_{R} P\right)^{\pi}
$$

where $R[\pi]$ acts on $Q^{*} \otimes_{R} P$ as $x(f \otimes p)=f \bar{x}^{-1} \otimes \bar{x} p$.
Step 4. $Q^{*} \otimes_{R} P$ is a $R[\pi]$-projective module. Then by Lemma 8.3, from [1] we have

$$
r k\left(Q^{*} \otimes_{R} P\right)^{\pi}=\frac{1}{n} r k\left(Q^{*} \otimes_{R} P\right)=\frac{1}{n} r k(Q) r k(P),
$$

where $r k(M)=\operatorname{dim}_{K}\left(K \otimes_{R} M\right), M \in R-\underline{M o d}$. Consequently,

$$
\frac{1}{n} r k(Q) r k(P)=\operatorname{dim}_{K}\left(\operatorname{Hom}_{K[\pi, \rho]}\left(M, K \otimes_{R} P\right)\right),
$$

i.e. r depends only on $r k(P)$. From Lemma 3.5 it follows that there exists a free $R[\pi, \rho]$-module F such that $r k(F)=r k(P)$. Therefore M is contained in $K \otimes_{R} F$ and $K \otimes_{R} P$ the same number of times, and, consequently, $K \otimes_{R} P \simeq K \otimes_{R} F$, i.e. $K \otimes_{R} P$ is a free $K[\pi, \rho]$-module.

Let us prove the theorem in the general case. It is well known that R^{π} is a Dedekind domain and R is finitely generated over R^{π}. Thus P is projective and finitely generated over $R^{\pi}[\omega, \rho]$. As we have already proved $K \otimes_{R} P$ is a free $R^{\pi}\left[\omega_{0}, \rho\right]$-module for all cyclic subgroups $\omega_{0} \subseteq \omega$. By Proposition 3.4 $K \otimes_{R} P$ is uniquely determined as a $K[\pi, \sigma, \rho]$-module by $r k(P)$. By Lemma 3.5 there exists a free $R[\pi, \sigma, \rho]$-module F such that $r k(P)=r k(F)$, therefore $K \otimes_{R} P \simeq K \otimes_{R} F$, i.e. $K \otimes_{R} P$ is a free $K[\pi, \sigma, \rho]$-module.

Theorem 4.7. Let R be a Dedekind domain, $\mathbf{m} \subseteq R$ be a nonzero ideal, $\mathbf{m}=\prod_{i} \mathbf{p}_{i}^{\nu_{i}}, \mathbf{p}_{i} \in \operatorname{spec}(R)$ and $\pi\left(\mathbf{p}_{i}\right) \subseteq \mathbf{p}_{i}$ for all i. If $P \in \underline{P}(R[\pi, \sigma, \rho])$ and $K \otimes_{R} P$ is a free $K[\pi, \sigma, \rho]$-module, then P contains a free module F such that ω and F are coprime ideals.

Proof. If $\omega=R$ then we may suppose that F is equal to any free submodule of P. Let us now suppose that $\omega \neq R$. Let first $\omega=\mathbf{p} \in \operatorname{spec}(R)$. By the condition $K \otimes_{R} P \simeq K \otimes_{R_{\mathbf{p}}} R_{\mathbf{p}} \otimes_{R} P \simeq$ $K \otimes_{R_{\mathrm{p}}} P_{\mathbf{p}}$ is free over $K[\pi, \sigma, \rho]$, i.e. $K \otimes_{R_{\mathrm{p}}} P_{\mathbf{p}} \simeq K \otimes_{R_{\mathrm{p}}} F_{0}$ for some free $R_{\mathbf{p}}[\pi, \sigma, \rho]$-module F_{0}. $R_{\mathbf{p}}$ is a discrete valued ring. Consequently, by Theorem 3.1 $P_{\mathbf{p}}$ is a free $R_{\mathbf{p}}[\pi, \sigma]$-module. Since $R_{\mathbf{p}} / \mathbf{p} \simeq R / \mathbf{p}$,

$$
P_{\mathbf{p}} /\left(\mathbf{p} P_{\mathbf{p}}\right) \simeq R_{\mathbf{p}} / \mathbf{p} \otimes_{R_{\mathbf{p}}} / P_{\mathbf{p}} \simeq R_{\mathbf{p}} / \mathbf{p} \otimes_{R_{\mathbf{p}}} R_{\mathbf{p}} \otimes_{R} P \simeq R_{\mathbf{p}} \otimes_{R} P \simeq P /(\mathbf{p} P)
$$

Therefore $\mathrm{P} /(\mathbf{p P})$ is a free $(R / \mathbf{p})[\pi, \bar{\sigma}, \bar{\rho}]$-module.
Let us consider the general case. As we already have proved $P /\left(\mathbf{p}_{i} P\right)$ are free $\left(R / \mathbf{p}_{i}\right)[\pi, \bar{\sigma}, \bar{\rho}]$ modules for all i. Let $\bar{a}_{1}^{(i)}, \ldots, \bar{a}_{k}^{(i)}$ be a free basis of $P /\left(\mathbf{p}_{i} P\right)$. Since $r k_{K}(P)=\left(P /\left(\mathbf{p}_{i} P\right): R / \mathbf{p}_{i}\right)$, $k_{1}=k_{2}=\ldots=k$. By the Chinese remainder theorem there exist elements $r_{i} \in R$ such that $r_{i} \equiv \delta_{i j}\left(\bmod \mathbf{p}_{j}\right)$. Let $a_{s}^{(i)}$ be a coimages of the elements $\bar{a}_{s}^{(i)}$ with the respect to a morphism $P \rightarrow P /\left(\mathbf{p}_{i} P\right)$. Let us denote $a_{s}=\sum_{i} \alpha_{i} a_{s}^{(i)}$. Then for any i, the images of elements in $P /\left(\mathbf{p}_{i} P\right)$ coincide with the basis $\bar{a}_{1}^{(i)}, \ldots, \bar{a}_{k}^{(i)}$.

Let F be a $R[\pi, \sigma, \rho]$-submodule of P generated by elements a_{1}, \ldots, a_{k}. Let us prove that F is a free $R[\pi, \sigma, \rho]$-module with a basis a_{1}, \ldots, a_{k}. Otherwise in F there would exist a nontrivial relation between the elements a_{1}, \ldots, a_{k} and we would have in $K \otimes_{R} F$ that $r k_{K} F<n k, n=(\pi: 1)$. On the other hand, $\left(F /\left(\mathbf{p}_{i} F\right): R / \mathbf{p}_{i}\right)=\left(P /\left(\mathbf{p}_{i} P\right): R / \mathbf{p}_{i}\right)=n k$ because $F /(\mathbf{p} F) \rightarrow P /(\mathbf{p} P)$ is surjective. But $\operatorname{rk}(F)=\left(F /\left(\mathbf{p}_{i} F\right): R / \mathbf{p}_{i}\right)$, a contradiction. Thus F is a free module.

Since $\left(F /\left(\mathbf{p}_{i} F\right) \simeq\left(P /\left(\mathbf{p}_{i} P\right)\right.\right.$ we have $(F: P)+\mathbf{p}_{i}=R . R$ is the Dedekind domain; consequently, $(F: P)+\omega=R$.
Q.E.D.

Corollary 4.8. Under the conditions of Theorem 4.7 the module $P /(\omega P)$ is free over $R / \omega[\pi, \bar{\sigma}, \bar{\rho}]$.
Proof. Indeed, because $(F: P)+\omega=R, F /(\omega F) \rightarrow P /(\omega P)$ is an isomorphism. Q.E.D.
Proposition 4.9. Under the conditions of Theorem 3.1 there exists an embedding of the module P in the free $R[\pi, \sigma, \rho]$-module F such that $(P: F)+(n)=R,(P: F)_{R^{\pi}}+n R^{\pi}=R^{\pi}$.

Proof. Let us suppose in Corollary 3.8 that $\omega=(n)=n R$. In the proof of Corollary 3.8 it was shown that $F /(n R F) \simeq P /(n R P)$. But $F /(n R F)=F /(n F)=F /\left(n R^{\pi} F\right)$ and, similarly, for P. Therefore $F /\left(n R^{\pi} F\right) \simeq P /\left(n R^{\pi} P\right)$ and $(F: P)_{R^{\pi}}+n R^{\pi}=R^{\pi}$ because R^{π} is a Dedekind domain. Therefore there exists $a \in n R^{\pi}, b \in(F: P)_{R^{\pi}}$ such that $a+b=1 . n R^{\pi} \neq R^{\pi}$ and therefore $b \neq 0$. From $b \in R^{\pi}$ it follows that b is contained in the center of the ring $R[\pi, \sigma, \rho]$. Consequently, $b P$ is a $R[\pi, \sigma, \rho]$-module and as P is R-torsion-free (finitely generated modules are torsion-free over Dedekind domains), $P \simeq b P$ as $R[\pi, \sigma, \rho]$-modules. $b P \subseteq F$ since $b \in(F: P)_{R^{\pi}}$. It is clear that $b \in(F: P)$. Let us identify P and $b P$. Then F will be the desired free module and $b P \subseteq F$ will be the desired embedding for which $(P: F)_{R^{\pi}}+n R^{\pi}=R^{\pi}$ and a fortiori $(P: F)+(n)=R$. Q.E.D.

Proposition 4.10. Let $M \in \underline{M}(R[\pi, \sigma, \rho])$. If $a n n_{R} M+(n)=R, n=(\pi: 1)$, ann $n_{R} M=\{r \in$ $R \mid r M=0\}$, then M is $R[\pi, \sigma, \rho]$-projective.

Proof. By condition there exist $a, b \in R$ such that $a n+b=1$ and $b M=0$. Let us define $(n): M \rightarrow M,(n): m \rightarrow n m$. Let $n m=0$. Then $a n m+b m=0=m$, i.e. this morphism is injective. If $m \in M$, then by the equality $m=a n m+b m=a n m$ we have $a m \xrightarrow{(n)} m$, i.e. (n) is surjective. Therefore (n) is an isomorphism. On the other hand, $R[\pi, \sigma, \rho] \supseteq R$ is a free Frobenius extension with dual bases $\{\bar{x})_{x \in \pi}$ and $\left\{\bar{x}^{-1}\right)_{x \in \pi}$. As we have already proved $\sum_{x \in \pi} \bar{x} \bar{x}^{-1}=n$ is an isomorphism and therefore from the properties of Frobenius extensions it follows that M is ($R[\pi, \sigma, \rho], R$)-projective.
Q.E.D.

Proposition 4.11. Let $I \subseteq R[\pi, \sigma, \rho]$ be an ideal such that $(I: R[\pi, \sigma, \rho])+(n)=R$ and let R be a Dedekind domain. Then I is a $R[\pi, \sigma, \rho]$-projective module.

Proof. Let us consider a $R[\pi, \sigma, \rho]$-module $M=R[\pi, \sigma, \rho] / I$. Since R is a Dedekind domain, $\operatorname{dimpr}_{R}(M) \leq 1$. Since $(I: R[\pi, \sigma, \rho])=\operatorname{ann}_{R}(M), \operatorname{ann}_{R}(M)+(n)=R$ and by Proposition 3.10 the module M is $R([\pi, \sigma, \rho], R)$-projective. Since $R[\pi, \sigma, \rho]$ is free over $R, \operatorname{dimpr}_{R[\pi, \sigma, \rho]}(M) \leq 1$. But then there exists an exact sequence

$$
0 \rightarrow I \rightarrow R[\pi, \sigma, \rho] \rightarrow M \rightarrow 0
$$

from which implies that I is $R[\pi, \sigma, \rho]$-projective.
Q.E.D.

Proof of Theorem 4.1. Let F be the free module from Proposition 3.9 with $R[\pi, \sigma, \rho]$-basis $a_{1}, a_{2}, \ldots, a_{k}$. Let us consider the morphisms of $R[\pi, \sigma, \rho]$-modules

$$
\varphi_{1}: F \rightarrow R[\pi, \sigma, \rho], \quad \sum_{i} \mu_{i} a_{i} \rightarrow \mu_{1}
$$

An image $\varphi_{1}(P)=I_{1}$ of this morphism is an ideal in $R[\pi, \sigma, \rho]$. Since $r F \subseteq P \Rightarrow r R[\pi, \sigma, \rho] \subseteq I_{1}$, $(P: F) \subseteq\left(I_{1}: R[\pi, \sigma, \rho]\right)$. Therefore from $(P: F)+(n)=R$ it follows that $\left(I_{1}: R[\pi, \sigma, \rho]\right)+(n)=R$. Then by Proposition 3.11 the ideal I_{1} is $R[\pi, \sigma, \rho]$-projective. $\varphi: P \rightarrow I_{1}$ is surjective, therefore $P \simeq P^{\prime} \oplus I_{1}$. Now the theorem is easy to prove by mathematical induction with respect to $r k_{K}(P)$.
Q.E.D.

Example for Theorem 4.1. Let $d \neq 0$ be a natural number which does not contain a square of a prime number as a multiplier and such that $d \equiv 2 \vee 3(\bmod 4)$. Then the ring of integers for the field $Q(\sqrt{d})$ will be $Z([\sqrt{d}])$. Let us suppose that a natural number $n>0$ satisfies the following condition: If $p \neq 2$ is a prime number and $p \mid n$, then $\left(\frac{D}{p}\right)=0 \vee-1$ where $D=4 d$ is a discriminant of the field and $\left(\frac{D}{p}\right)$ is a quadratic residue symbol. If $(\pi: 1)=n$, then any crossed group ring $Z[\sqrt{d}][\pi, \sigma, \rho]$ satisfies the conditions of Theorem 3.1 for any σ and ρ.

Indeed if $2 \mid n$, then $2=\mathbf{p}^{2}$ for some $\mathbf{p} \in \operatorname{spec}(Z[\sqrt{d}])$, 15 . If $p \neq 2, p \mid n$, then from $\left(\frac{D}{p}\right)=0 \vee-1$ it follows that either $(p)=\mathbf{p}^{2}$ for some $\mathbf{p} \in \operatorname{spec}(Z[\sqrt{d}])$ or (p) is prime in $Z[\sqrt{d}]$, [15]. It is clear that in all these cases the group $\operatorname{Aut}(Z[\sqrt{d}]), \sigma(\sqrt{d})=-\sqrt{d}$ satisfies the condition (ii) of Theorem 3.1 and a fortiori this is true for the group π. Further, $(2)=\mathbf{p}^{2} \Rightarrow Z[\sqrt{d}] / \mathbf{p} \simeq F_{2}$, but F_{2} has only one, identity authomorphism and condition (iii) is satisfied too.
Q.E.D.

Proposition 4.12. Let $\omega \subseteq R$ be a nonzero ideal. Then under the conditions of Theorem 3.2 there exists an embedding of the module P in the free $R[\pi, \rho]$-module F such that $(P: F)+\omega=R$.

Proof. Proved similarly to Proposition 4.9 .
Q.E.D.

Proposition 4.13. Under the conditions of Theorem 3.2 any module P is isomorphic to the direct sum $\sum I_{i}$ of ideals of $R[\pi, \rho]$; in addition the ideals I_{i} can be chosen in such a way that for all i

$$
\left(I_{i}: R[\pi, \rho]\right)+\omega=R .
$$

Proof. By condition, $(\pi: 1)=n \neq 0$ in R. Let us choose in Proposition 3.12 a free $R[\pi, \rho]$-module with the basis $a_{1}, a_{2}, \ldots, a_{k}$ in such a way that $n \omega+(P: F)=R$. Let us consider the morphism of $R[\pi, \rho]$-modules $\varphi_{1}: F \rightarrow R[\pi, \rho], \sum_{i} \mu_{i} a_{i} \rightarrow \mu_{1}$. The image $\varphi_{1}(P)=I_{1}$ is the left ideal in $R[\pi, \rho]$. Since $r F \subseteq P \Rightarrow r R[\pi, \rho] \subseteq I_{1},(P: F) \subseteq\left(I_{1}: R[\pi, \rho]\right)$. From $n \omega+(P: F)=R$ it follows
that $\left(I_{1}: R[\pi, \rho]\right)+(P: F)=R$ and thus the ideals (n) and ω are coprime with the respect to $\left(I_{1}: R[\pi, \rho]\right)$. Then from Proposition 4.11 it follows that I_{1} is $R[\pi, \rho]$-projective. Since $\varphi_{1}: P \rightarrow I_{1}$ is an epimorphism, $P=P^{\prime}+I_{1}$ and the proposition is easy to prove by mathematical induction with the respect to $r k_{K}(P)$.
Q.E.D.

Remark 4.14. We may suppose that $K \otimes_{R} I_{i} \simeq K[\pi, \rho]$ for all i. Indeed, let $\omega \subseteq R$ be an improper ideal. Then $\omega\left(R[\pi, \rho] I_{i}\right)=R[\pi, \rho] I_{i}$ and by Lemma 7.4, [1] there exists $a \in \omega$ such that $(1-a) R[\pi, \rho] / I_{i}=0$. Since ωR is an improper ideal, $1-a \neq 0$ and thus $K \otimes_{R} I \simeq K \otimes_{R} R[\pi, \rho] \simeq$ $K[\pi, \rho]$.

Proof of Theorem 4.2, By Proposition 4.13 and Remark 4.14 it is suffices to prove the following: let $I_{1}, I_{2} \subseteq R[\pi, \rho]$ be a projective ideals such that $\left(I_{1}: R[\pi, \rho]\right)$ and $\left(I_{2}: R[\pi, \rho]\right)$ are coprime with the respect to ω and $K \otimes_{R} I_{1} \simeq K \otimes_{R} I_{2} \simeq K[\pi, \rho]$; then $I_{1} \oplus I_{2} \simeq R[\pi, \rho] \oplus I$, where $I \subseteq R[\pi, \rho]$ is a left ideal and $(I: R[\pi, \rho])+\omega=R$.

Let $\omega_{1}=\left(I_{1}: R[\pi, \rho]\right)$. From Proposition 4.13 it follows that there exists $I_{2}^{\prime} \subseteq R[\pi, \rho]$ such that $I_{2} \simeq I_{2}^{\prime}$ and $\left(I_{2}^{\prime}: R[\pi, \rho]\right)+\omega \omega_{1}=R$. Let us replace I_{2} by I_{2}^{\prime}. Therefore we may assume that there exist $b_{1} \in\left(I_{1}: R[\pi, \rho]\right)$ and $b_{2} \in\left(I_{2}: R[\pi, \rho]\right)$ such that $b_{1}+b_{2}=1$.

Let F be the free $R[\pi, \rho]$-module with two free generators e_{1}, e_{2} and $V=I_{1} e_{1}+I_{2} e_{2} \subseteq F$. Then $A \simeq I_{1}+I_{2}$ and $(V: F)+\omega=R$. It is clear that the elements $e_{1}^{\prime}=e_{1} b_{1}+e_{2} b_{2}$ and $e_{2}^{\prime}=e_{1}-e_{2}$ are also free generators of F, because $e_{1}=e_{1}^{\prime}+b_{2} e_{2}^{\prime}, e_{2}=e_{1}^{\prime}-b_{2} e_{2}^{\prime}$. But $e_{1}^{\prime} \in V$ because $b_{1} \in I_{1}$, $b_{2} \in I_{2}$. Consequently, $V=R[\pi, \rho] e_{1}^{\prime}+I e_{2}^{\prime}$ where $I=\left\{a \in R[\pi, \rho] \mid r e_{2}^{\prime} \in V\right\}$. It is also clear that $(I: R[\pi, \rho])+\omega=R$ because $(I: R[\pi, \rho])=(V: F)$.

References

[1] R. G, Swan. Induced Representations and Projective Modules. Ann. of Math., 71, No 3, 1960, 552-578.
[2] T. Y. Lam. Induction Theorems for Grothendieck Groups and Whitehead Groups of Finite Groups. - Ann. Scient. Ec.Norm. Super., 1, 1968, 91-148.
[3] A. I. Nemytov. $K_{n}(R \pi)$ Functors as Frobenius Modules on the Functor $G_{0}^{R}(\pi)$. - Russian Mathematical Surveys, 28, No 3, 1973, 187-188 (in Russian).
[4] R. G. Swan. Nonabelian Homological Algebra and K-Theory. - Proc. Symp. Pure Math. (AMS), 17, 1970, 88-123.
[5] S. M. Gersten. On the Functor K_{2}. - J. of Algebra, 17, No 2, 1971, 212-237.
[6] K. Kawakubo. Induction theorems for equivariant K-theory and J-theory. J. Math. Soc. Japan. 38, 1986, 173-198.
[7] A. Bartels, W. Luck. Induction theorems and isomorphism conjectures for K- and L-Theory. Forum Mathematicum. 19, 2007, 1-28.
[8] N. Jacobson. The Theory of Rings. AMS, 1943.
[9] M. Auslander, O. Goldman. The Brauer Group of a Commutative Ring. Trans. AMS, 97, No 3, 1960, 367-409.
[10] G. Rakviashvili. Generalization of the Artin Theorem for Semisimple Algebras and Inductive Theorems for Orders and Crossed Group Rings. Bull. of the Acad. Sciences of the Georgian SSR, 96, No1, 1979, 25-28 (in Russian).
[11] G. Rakviashvili. On the Structure of Projective Modules over Crossed Group Rings. Bull. of the Acad. Sciences of the Georgian SSR, 101, No 3, 1981, 549-552 (in Russian).
[12] G. Rakviashvili. Inductive Theorems and Projective Modules over Crossed Group Rings. Acad. of Sciences of Georgian SSR, Proceedings of the A. Razmadze Tbilisi Mathematical Institute. Collection of papers on algebra 3. Cohomologies, K-Theory of Rings and Lie Groups. 1982, 92-107 (in Russian).
[13] D. Quillen. Higher Algebraic K-Theory, I. Lect. Notes in Math., 341, 1972, 85-147.
[14] S. Williamson. ח-Principal Hereditary Orders, Nagoya Math. J., v. 32, 1968, 41-65.
[15] E. Hecke. Vorlesungen ueber die Theorie der algebraischen Zahlen, Leipzig, 1923.

