
On algebraic K-functors of crossed group rings and its
applications

G.Rakviashvili

Ilia State University, Tbilisi, Georgia.

E-mail: giorgi.rakviashvili@iliauni.edu.ge

Abstract

Let R[π, σ, ρ] be a crossed group ring. An induction theorem is proved for the functor GR
0 (R[π,

σ, ρ]) and the Swan-Gersten higher algebraic K-functors Ki(R[π, σ, ρ]). Using this result, a
theorem on reduction is proved for the discrete normalization ring R with the field of quotients
K: If P and Q are finitely generated R[π, σ, ρ]-projective modules and K

⊗
R P ' K

⊗
RQ as

K[π, σ, ρ]-modules, then P ' Q. Under some restrictions on n = (π : 1) it is shown that finitely
generated R[π, σ, ρ]-projective modules are decomposed into the direct sum of left ideals of the
ring R[π, σ, ρ]. More stronger results are proved when σ = id.
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1 Introduction

In 1960, R. G. Swan proved [1] that for a Dedekind domain R of characteristic 0 and a finite group
π any finitely generated projective R[π]-module is the direct sum of left ideals of R[π] if no prime
divider of (π : 1) is invertible in R. In [1] it was also proved that this direct sum may be replaced
by the direct sum of a free R[π] module and an ideal of R[π], which generalizes the properties
of projective modules over Dedekind domains. Swan’s results were based on two theorems, each
having an independent value: on the induction theorem for the functors GR0 (Rπ) and K0(Rπ), and
on the ”reduction” theorem.

In 1968, T.Y. Lam [2] proved an induction theorem for K1(Rπ) and in 1973 A.I. Nemytov [3]
proved that Km(Rπ), m ≥ 2, functors are Frobenius modules on GR0 (R[π]) and that the induction
theorem is valid for Swan-Gersten algebraic K-functors ([4], [5]) Km(Rπ), m ≥ 2. Induction theo-
rems for some kinds of algebraic K-functors of group rings were obtained in 1986 by K. Kawakubo
[6] and in 2005 by A. Bartels and W. Luck [7].

In the first section of this paper the induction theorem is generalized for Swan-Gersten algebraic
K-functors Km(R[π, σ, ρ]) (Theorem 2.4) for a crossed group ring R[π, σ, ρ]. In the second section,
using the induction theorem for K0(R[π, σ, ρ]) the ”reduction” theorem is proved for finitely gener-
ated projective R[π, σ, ρ]-modules if R is a discrete valuation ring (Theorem 2.1). In Section 3 we
prove the theorems on the structure of finitely generated projective R[π, σ, ρ]- and R[π, ρ]-modules
which generalize Swan’s theorem.

Let R be a commutative ring with identity, π a group, σ : π → AutR a group morphism, U(R)
a set of invertible elements of R and ρ : π × π → U(R) be such a mapping, that

ρ(x, y)ρ(xy, z) = ρ(y, z)xρ(x, yz).
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Then a crossed group ring R[π, σ, ρ] (see [8], [9]) is a free R-module with the set of free generators
π and with multiplication

r1x1r2x2 = r1r
x1
2 ρ(x1, x2)x1x2,

where x is the image of x ∈ π via a mapping π → R[π, σ, ρ] and r1, r2 ∈ R. If σ(π) = id and ρ ∼ 1
(i.e. ρ(x, y) = α(x)α(y)α(xy)−1 for some α : π → U(R)), then R[π, σ, ρ] ' R[π].

In this paper all modules are left modules, M(A) and P (A) denote respectively the cate-
gories of finitely generated A-modules and finitely generated projective A-modules (A is a ring);
MR(R[π, σ, ρ]) is the category of finitely generated R-projective R[π, σ, ρ]-modules; GR0 (R[π, σ, ρ])
is a Grothendieck group of the category MRR[π, σ, ρ].

Further, π will always be the finite group.
The main results of the paper are Theorems 3.1 and 3.2. These theorems were proved by author

in the particular case when ρ ∼ 1 in [10], [11] and [12]; a general case for any ρ was announced
in [12] and its proof was the subject of the authors doctoral thesis in 1981. These theorems are
similar to the results of Kawakubo [6] which were obtained later in 1986 for some kinds of algebraic
K-functors of group rings and particular cases of crossed group rings.

2 Inductive theorems

Let G be a category, Rings a category of rings and G : G → Rings a contravariant functor.

Suppose to each morphism i : π
′ → π in G there corresponds a morphism i∗ : G(π

′
) → G(π)

in Rings such that Id∗ = Id and (ij)∗ = i∗j∗ whenever ij makes sense in G . Let us denote

i∗ = G(i) : G(π) → G(π
′
). The functor G is called a Frobenius functor [2] if it satisfies the

Frobenius reciprocity formula
i∗(i
∗a · b) = a · i∗b.

Let Ab be a category of commutative groups. A contravariant functor K : G → Ab is called a
Frobenius module [2] on the Frobenius functor G if it satisfies the following conditions:

(i) K(π) is a module over G(π).
(ii) For each morphism of groups i : π

′ → π there exists a morphism i# : K(π
′
) → K(π)

(whenever ij makes sense) such that
(ij)# = i#j#. (2.1)

(iii) i∗, i
∗, i# and i# are related to each other by the relations

i#(y · i#(a) = i∗(y) · a,
i#(i∗(x) · b) = x · i#(b),

(2.2)

where i# = K(i), x ∈ G(π), y ∈ G(π
′
), a ∈ K(π), b ∈ G(π

′
).

Let G(π) denote a category whose objects are all subgroups π
′ ⊆ π and morphisms are monomor-

phisms i : π
′ → π

′′
. Then the functors GS0 (S[−]) and Km(R[−, σ, ρ]) (σ and ρ are defined respec-

tively on π and π × π and are fixed for the category G(π)) are contavariant functors from the
category G(π) to the categories Rings and Ab respectively.

It is known [1] that GS0 (S[π]) is a Frobenius functor.
Let us denote Rπ = {r ∈ R|(∀x ∈ π)rx = r}.
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Theorem 2.1. Let Rπ be an algebra over the commutative ring S with identity. Then the functors
GR0 (R[−, σ, ρ]) and Km(R[−, σ, ρ]), m = 0, 1, ..., are Frobenius modules on the Frobenius functor
GS0 (S[π]).

Let us remark that in [10] instead of the functor GR0 (R[−, σ, ρ]) it is considered a functor
GR

π

0 (R[−, σ, ρ]) - the Grothendieck group of Rπ-finitely generated and Rπ-projective R[π, σ, ρ]-
modules.

To prove Theorem 2.1 we need some propositions.
If Rπ is an algebra over S, then R is an S-algebra by the action sr = (s · 1)r, 1 ∈ R. Let us

construct the morphisms of rings

α1 : R[π, σ, ρ]→ S[π]⊗S R[π, σ, ρ],

α2 : R[π, σ, ρ]→ R[π, σ, ρ]⊗S S[π]

in this way: α1(rx̄) = x̄⊗ rx̄, α2(rx̄) = rx̄⊗ x̄. Then for any S[π]-module M and R[π, σ, ρ]-module
P the modules M ⊗S P and P ⊗S M become R[π, σ, ρ]-modules via the action

rx̄(m⊗ p) = α1(rx̄)(m⊗ p) = x̄m⊗ rx̄p,

rx̄(p⊗m) = α2(rx̄)(m⊗ p) = rx̄p⊗ x̄m.

It is clear that the R[π, σ, ρ]-modules M ⊗S P and P ⊗S M are isomorphic.

Proposition 2.2. If a S[π]-module M is S-projective and a R[π, σ, ρ]-module P is R[π, σ, ρ]-
projective, then M ⊗S P is R[π, σ, ρ]-projective.

Proof. If M is a free S-module, then M ⊗S R[π, σ, ρ] ' ⊕x∈πM ⊗ Rx̄ as R-modules. But if {eα}
is a S-basis of M , then {x̄eα} is also a free S-basis because x induces an automorphism on M .
Therefore {eα ⊗ 1} is a free R[π, σ, ρ]-basis of M ⊗S R[π, σ, ρ].

Suppose P
′

is a R[π, σ, ρ]-module,such that P ⊕ P ′
is a free R[π, σ, ρ] -module, and M is such

a S-module that M ⊕M ′
is a free S-module. If we define the action of Sπ on M as sx̄(m) = sm,

then (M ⊕M ′
)⊗S (P ⊕ P ′

) will be a free R[π, σ, ρ]-module and since

(M ⊕M
′
)⊗S (P ⊕ P

′
) ' (M ⊗S P )⊕ (M

′
⊗S P )⊕ (M ⊗S P

′
)⊕ (M

′
⊗S P

′
),

(M ⊗S P ) will be R[π, σ, ρ]-projective. q.e.d.

Proposition 2.3. Let Rπ be an algebra over S, π
′ ⊆ π a subgroup, M ∈ Sπ − Mod, M

′ ∈
Sπ

′ −Mod, P ∈ R[π, σ, ρ] −Mod and P
′ ∈ R[π

′
, σ, ρ] −Mod. Then there exist isomorphisms of

R[π, σ, ρ]-modules

b)R[π, σ, ρ]⊗R[π′ ,σ,ρ] (M
′
⊗S P ) ' (R[π, σ, ρ]⊗R[π′ ,σ,ρ] M

′
)⊗S P. (2.3)

a)R[π, σ, ρ]⊗R[π′ ,σ,ρ] (P
′
⊗S M) ' (R[π, σ, ρ]⊗R[π′ ,σ,ρ] P

′
)⊗S M, (2.4)

The modules on the left side in the brackets and on the right sides are endowed with the structure
of R[π, σ, ρ]-modules in the case a) by α1 and in the case b) by α2. The left sides are endowed with
the structure of R[π, σ, ρ]-modules by multiplication by R[π, σ, ρ].
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Proof. In the case a) the isomorphism is constructed by the inverse mappings

rx̄⊗ (p
′
⊗m)→ (rx̄⊗ p

′
)⊗ x̄m,

(rx̄⊗ p
′
)⊗m→ rx̄⊗ (p

′
⊗ x̄−1m).

In the case b) the isomorphism is constructed by the inverse mappings

rx̄⊗ (m
′
⊗ p)→ (rx̄⊗m

′
)⊗ rx̄p,

(sx̄⊗m
′
)⊗ p→ rx̄⊗ (m

′
⊗ sx̄−1p).

q.e.d.

Proof of Theorem 2.1. Let π
′ ⊆ π be a subgroup and let i : π

′ → π be an imbedding. Let us
consider the additive functors

I# : P (R[π, σ, ρ])→ P (R[π
′
, σ, ρ]), I#(P ) = ResR[π,σ,ρ]P ;

I# : P (R[π
′
, σ, ρ])→ P (R[π, σ, ρ]), I#(P ) = Ind(P

′
) = R[π, σ, ρ]⊗R[π′ ,σ,ρ] P

′
.

For any module M ∈MS(S[π] assume

JM (P ) = M ⊗S P, P ∈ P (R[π, σ, ρ]),

J
′

M (P ) = M ⊗S N, N ∈MR(R[π, σ, ρ]).

From Proposition 2.2 it follows that the functors JM (−) and J
′

M (−) take the values in the cat-
egories P (R[π, σ, ρ]) and MR(R[π, σ, ρ]), respectively. It is known that Swan-Gersten’s K-functors
Km(R[π, σ, ρ]) and Quillen’s K-functors are isomorphic. Therefore from [13] it follows that the
functors I#, I#, JM and J

′

M define the morphisms of abelian groups

i#m : Km(R[π, σ, ρ])→ Km(R[π
′
, σ, ρ]),m ≥ 0;

im# : Km(R[π
′
, σ, ρ])→ Km(R[π, σ, ρ]),m ≥ 0; (2.5)

jm : GS0 (Sπ)⊗Km(R[π
′
, σ, ρ])→ Km(R[π

′
, σ, ρ]),m ≥ 0;

j
′

0 : GS0 (Sπ)⊗GR0 (R[π
′
, σ, ρ])→ GR0 (R[π

′
, σ, ρ]),m ≥ 0.

Let us recall that the existence of morphisms im and im# for m ≥ 2 follows also from [2]. Using
the of results from [13] and [3] it is easy to show that conditions (2.1) and (2.2) for morphisms (2.5)
are consequences of isomorphisms (2.3) and (2.4).

Suppose M is some family of objects from G. Let us denote for π ∈ G

K(π)M =
∑
π′ ,i

{Im(i# : K(π
′
)→ K(π))|i : π

′
→ π, π

′
⊆M}.

Let A ⊆ B be abelian groups. A natural number n is called an index of A in B if nB ⊆ A. q.e.d.
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Theorem 2.4. Let c(π) be a set of all cyclic subgroups of the group π. Then Km(R[π, σ, ρ])c(π)
and GR0 (R[π, σ, ρ])c(π) have the index n2 in Km(R[π, σ, ρ]) and GR0 (R[π, σ, ρ]), respectively for all
m ≥ 0. If Rπ is an algebra over the field, then n2 may be replaced by n.

Proof. It is known that an index of K(π)M in K(π) is equal to an index of G(π)M in G(π) if K is
a Frobenius module over a Frobenius functor G. Therefore by Theorem 1.1 it suffices to prove our
statement for the functor GS0 (Sπ). Suppose in Theorem 1.1 we have S = Z. Then the first part of
our statement follows from the fact that an index of GZ0 (Zπ)c(π) in GZ0 (Zπ) is n2 [1]. If S = k is a
field, in [1] it was proved that an index of G0(kπ)c(π) in G0(kπ) is n. q.e.d.

3 Reduction theorem

Let R be an integral domain with quotient field K and R[π, σ, ρ] be the crossed group ring. It is
clear that we may construct the crossed group ring K[π, σ, ρ] where σ : π → Aut(K) is induced
from σ : π → Aut(R) and ρ : π × π → U(R) ⊆ K.

Theorem 3.1. Let R be a discrete valued ring with quotient field K and P,Q ∈ P (R[π, σ, ρ]).
Suppose K ⊗R P ' K ⊗R Q as K[π, σ, ρ]-modules. Then P ' Q as R[π, σ, ρ]-modules.

Remark. K[π, σ, ρ] acts on K ⊗R P as x̄(α⊗ p) = αx ⊗ xp.
This theorem was proved by Swan [1] in the case σ = id, ρ = id, i.e. for group rings.
Let us first prove several necessary assertions.
Let us remark that if m is a maximal ideal in R, then it is possible to construct in a natural

way the ring R/m[π, σ, ρ] from the ring R[π, σ, ρ] because from the uniqueness of the maximal ideal
it follows that σ(m) ⊆m for any σ ∈ Aut(R).

Proposition 3.2. Let R be a discrete valued ring with a field of quotients K and M1,M2 ∈
M(R[π, σ, ρ]). Suppose K⊗RM1 ' K⊗RM2 as K[π, σ, ρ]-modules. Then [M1/mM1] = [M2/mM2]
in GR0 (R/m[π, σ, ρ]).

Proof. Let t be a generator of the ideal m. Then for any x ∈ π there is tx = tu for some invertible
u ∈ R. Therefore if M ∈ M(R[π, σ, ρ]), then tM ∈ M(R[π, σ, ρ]) and K ⊗R M ' K ⊗R tM as
K[π, σ, ρ]-modules. Indeed, if m = tm

′ ∈ tM , then x̄m = x̄tm
′

= txx̄m
′

= t(ux̄m
′
) = tm

′′ ∈ tM .
Similarly, if tnM1 ⊆ M2 ⊆ M1, then M

′

1 = {m ∈ M1|tn−1m ∈ M2 is again a finitely generated
R[π, σ, ρ]-module and K ⊗RM1 ' K ⊗RM

′

1 as K[π, σ, ρ]-modules.
Let mM1 ⊆M2 ⊆M1 (note that mM1 = tRM1 = tM1). Denote T = M2/M1, M̄i = Mi/mMi.

It is clear that T is also the R/m[π, σ, ρ]-module. Let us construct a sequence

0→ T
ψ−→M2 → T

α−→M1 → T
ϕ−→ T → 0,

where ψ(m1 +M2) = tm1 + tM2, α(e2 + tM2) = e2 + tM1, ϕ(e1 + tM1) = e1 +M2. This sequence
is exact, therefore [M1] = [M2] in G0(R/m[π, σ, ρ]). In particular [M ] = [tM ] in G0(R/m[π, σ, ρ]),
because tM ⊆ tM ⊆ M . Taking this into account, because all modules are finitely generated, we
may conclude that M ⊆M1 and there exists an integer n > 0, such that tnM1 ⊆M2. Indeed, let us
identify M1 and M2 and the corresponding R[π, σ, ρ]-modules in K⊗RM1 ' K⊗RM2. Then there
exists k > 0 such that M2 ⊆ tkM1. There is: [tkM1] = [tk−1M1] = ... = [tM1] = M1. Therefore,
without loss of generality, we may assume that M2 ⊆M1. Analogously we proceed with respect to
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the second assumption. Hence tnM1 ⊆ M2 ⊆ M1. Let us denote M
′

1 = {m ∈ M1|tn−1m ∈ M2}.
There is tM1 ⊆M

′

1 ⊆M1, tn−1M
′

1 ⊆M2 ⊆M
′

1. The induction on n proves our statement because

we have already proved that [M
′
1] = [M1]. q.e.d.

Corollary 3.3. There exists a homomorphism

G0(K[π, σ, ρ])→ G0(R/m[π, σ, ρ]).

Suppose E ∈M(K[π, σ, ρ]) and E ' K⊗RM , where M ∈M(R[π, σ, ρ]). Then from Proposition
3.2 follows that the mapping [E]→ [M/mM ] is well defined.

Proposition 3.4. Suppose that the conditions of Theorem 3.1 are satisfied and the Cartan map-
ping

χ : K0(R/m[π, σ, ρ])→ G0(R/m[π, σ, ρ]),

which is induced by the embedding P (R/m[π, σ, ρ])→M(R/m[π, σ, ρ]) is a monomorphism. Then
the conclusion of Theorem 3.1 is true.

Proof. Let us consider the R/m[π, σ, ρ] as R[π, σ, ρ]-module by the epimorphism R[π, σ, ρ]
ϕ−→

R/m[π, σ, ρ]. Since P/mP ' R/m[π, σ, ρ] ⊗R[π,σ,ρ] P and P is projective over R[π, σ, ρ], we have
that P/mP is projective over R/m[π, σ, ρ]. Similarly, Q/mQ ∈ P (R/m[π, σ, ρ]). Cosequently,

[P/mP ], [Q/mQ] ∈ K0(R/m[π, σ, ρ]).

Proposition 2.2 implies [P/mP ] = [Q/mQ]) in G0(R/m[π, σ, ρ]). This means that χ([P ]) = χ([Q]).
The mapping χ is monomorphic, and therefore [P ] = [Q] in K0(R/m[π, σ, ρ]). Therefore P ⊕
F ' Q ⊕ F for some free finitely generated R/m[π, σ, ρ]-module F . R/m is a field, therefore
R/m[π, σ, ρ] is an Artinian ring and the Krull-Schmidt theorem holds for it and consequently
P ' Q as R/m[π, σ, ρ]-modules. Let f

′
: P → Q be any R/m[π, σ, ρ]-isomorphism of R/m[π, σ, ρ]-

modules. We may consider f
′

as an isomorphism of R[π, σ, ρ]-modules by the epimorphism ϕ.
Consider the diagram in M(R[π, σ, ρ])

P → P/mP → 0

↓ f ↓ f
′

Q → Q/mQ → 0.

Since P is R[π, σ, ρ]-projective and is mapped on Q/mQ, there exists a R[π, σ, ρ]-morphism f
such that diagramm (6) is commutative. Then we have f(P ) + mQ = Q. But m = rad(R) and
by the lemma of Nakayama f(P ) = Q, i.e. f is an epimorphism. Since Q is projective and f is
epimorphic, therefore P ' Q⊕Kerf . Hence Kerf = Q

′
is projective and finitely generated. From

(3) it follows that Q
′
/mQ

′ ⊆ Kerf
′
. From Kerf

′
= 0 it follows that Q

′
/mQ

′
= 0 and again

from the lemma of Nakayama it follows that Q
′

= 0, i.e. f is an isomorphism. The theorem is
proved. q.e.d.

Since R/m is the field, by Proposition 3.4, to prove Theorem 3.1 it suffices to prove

Theorem 3.5. Let k be the field. Then the Cartan homomorphism

χ : K0(k[π, σ, ρ])→ G0(k[π, σ, ρ]).

is injective.
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Proof. Since by Theorem 1.1 K0(k[π, σ, ρ]) and G0([π, σ, ρ]) are Frobenius modules over the Frobe-
nius functor G0(kπ[π]), the Kerχ functor will also be a Frobenius module over G0(kπ[π]). Therefore
an index of (Kerχ)c(π) in Kerχ is equal to an index of G0(kπ[π])c(π) in G0(kπ[π]), namely it is
n = (π : 1). This means that nKerχ ⊆ (Kerχ)c(π). The ring k[π, σ, ρ] is Artinian and therefore
K0(k[π, σ, ρ]) and its subgroup Kerχ are finitely generated free commutative groups. If we proved
that χ is monomorphic for cyclic groups, then we would have that (Kerχ)c(π) = 0 and nKerχ = 0.
From the freeness of the group Kerχ it would follow that Kerχ = 0. But if π is cyclic with a
generator a, then k[π, σ, ρ] ' k[x, σ]/(xn − α), there k[x, σ] is a ring of skew polynomials of x and
σ is the automorphism σ(a) ∈ Aut(k), n = (π : 1) and α ∈ kπ. The ring k[x, σ] is a principal (non-
commutative) ideal domain, σ has a finite index and any ideal in k[x, σ] is bounded [8]. Therefore
from the next theorem it follows that χ is monomorphic for a cyclic group π q.e.d.

Theorem 3.6. Let A be a (noncommutative) principal ideal domain, in which each ideal is
bounded. If I ⊆ A is a two sided ideal, K0(A/I) and G0(A/I) are Grothendieck groups of the
categories P (A/I) and M(A/I) respectively, then the Cartan homomorphism

χ : K0(A/I)→ G0(A/I)

is injective.

Proof. So A is a noncommutative integral domain in which any right and left ideal is principal. We
say that two elements a1 and a2 are similar if A/a1 ' A/a2 as A-modules. An ideal is bounded if
it contains a nonzero two sided ideal, and such a maximal ideal is called a boundary of A.

We recall that since A/I is Artinian, G0(A/I) is well defined.
We will carry out the proof in several steps.
Step 1. I = Aa∗ splits into the product of coprime maximal two sided ideals (the asterisk over

the letter indicates that we deal with the generator of the ideal):

I = Aa∗ = (Ap∗1)e1(Ap∗2)e1 ...(Ap∗r)
er .

Step 2. It is clear that
K0(A/I) ' ⊕ri=1K0(A/(Ap∗i )

ei),

G0(A/I) ' ⊕ri=1G0(A/(Ap∗i )
ei)

and these isomorphisms and χ commute with each other. Therefore it suffices to prove that χ is
monomorphic if I = A/(Ap∗)e.

Step 3. J = Ap∗/(Ap∗)e is a radical of the ring A = A/(Ap∗)e and A/J ' A/Ap∗.
Step 4. Since the radical of the ring A = A/(Ap∗)e acts trivially on simple modules, simple

A = A/(Ap∗)e-modules will be simple as modules over A = A/(Ap∗). But because A = A/(Ap∗) is
a simple ring, simple modules are direct summands of the ring A = A/(Ap∗).

Step 5. Using Zorn’s lemma it is easy to prove that Ap∗ is contained in some maximal ideal Ap.
If Ap ⊇ Aq∗ ⊇ Ap∗, then Ap∗ = Aq∗ since Ap∗ is maximal, i.e. Ap is the boundary of the ideal Ap.
Since Ap is the maximal left ideal, A/Ap is a simple A-module. From Theorem 3.20, [8] it follows
that A/Ap∗ splits as an A-module into the direct sum of simple A-modules, which are isomorphic
to A/Ap:

A/AP ∗ ' ⊕iAqi/Ap∗, Aqi/Ap
∗ ' A/Ap.
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Therefore the direct summand Aqi/Ap
∗ is indecomposable as an A-module and, consequently, as

an A/(AP ∗)e-module. Since A/AP ∗ is a simple ring, it has a single simple module, i.e. all Aqi/Ap
∗

are isomorphic as A/AP ∗-modules. Let q be one of qi. We may conclude that Aqi/(Ap
∗)e has the

single simple module Aq/Ap∗ which is A-isomorphic to A/Ap.
Step 6. Let us find all indecomposable projective Aqi/(Ap

∗)e-modules. Since Aqi/(Ap
∗)e is

Artinian, such a modules are exhausted by the direct summands of Aqi/(Ap
∗)e. Further, as follows

from the proof of Theorem 3.21, [8], Aqi/(Ap
∗)e splits as a A-module into the direct sum of

indecomposable A-modules, which is isomorphic to the A-module A/p1p2...pe:

Aqi/(Ap
∗)e

ϕ
' ⊕Ari/(Ap∗)e, Ari/(Ap

∗)e ' A/p1p2...pe.

Therefore if r is one of ri then A/(Ap∗)e has a single indecomposable projective module Ar/(Ap∗)e,
which is isomorphic to A/p1p2...pe.

Step 7. From steps 5 and 6 it follows thatG0(A/(Ap∗)e) andK0(A/(Ap∗)e) are free commutative
groups with one generator; the generator for G0(A/(Ap∗)e) is [Aq/Ap∗], and the generator for
K0(A/(Ap∗)e) is [Ar/Ap∗]. It is clear that (Ap∗)e = A(p∗)e. Since A(p∗)e ⊆ Ar, we have (p∗)e =
r
′
r. Therefore, as A-modules

Ar/Ap∗ = Ar/Ar
′
r ' A/Ar

′
.

So A/Ar
′ ' A/Ap1p2...pe, therefore r

′
= p

′

1p
′

2...p
′

1, p
′

i ∼ p.
For Ar/(Ap∗)e there exists a composition row of A/(Ap∗)e-modules

Ar/(Ap∗)e = Ar/p
′

1p
′

2...p
′

er ⊇ Ap
′

er/p
′

1p
′

2...p
′

er ⊇ ... ⊇ Ap
′

2p
′

er/p
′

1p
′

2...p
′

er ⊇ 0

whose factors are A-isomorphic to an A-module A/Ap. It is clear that all these factors are A/(Ap∗)e-
isomorphic to the simple module Aq/Ap∗. Therefore

χ([Ar/(Ap∗)e]) = [Ar/(Ap∗)e] = e[Aq/Ap∗]

and χ is monomorphic. q.e.d.

4 Projective modules

Let ω be a subgroup of π which contains just an elements of π which acts trivially on R, i.e.
ω = Ker(σ : π → Aut(R)). If σ(π) = id, then we denote R[π, σ, ρ] := R[π, ρ].

Theorem 4.1. Let R be a Dedekind domain of characteristic zero. Suppose that no one divider
of n = (π : 1) is invertible in R, and σ : π → Aut(R) is a morphism such that (i) R is projective
over Rπ;

(ii) if p ∈ spec(R), p|(n), then σ(π)(p) ⊆ p;
(iii) if p is a prime divider of (n), p ∈ p ∈ spec(R) and πp is a Sylov p-subgroup of π, then πp

acts trivially on R/p;
(iv) ρ(π × π) ⊆ Rπ. Then any finitely generated projective R[π, σ, ρ]-module splits into the

direct sum of left ideals of the ring R[π, σ, ρ].

For the particular case σ(π) = id, we may prove a stronger result.
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Theorem 4.2. Let R be the Dedekind domain of characteristic zero. Suppose that no one divider
of n = (π : 1) is invertible in R. Then any finitely generated projective R[π, ρ]-module is the direct
sum of the free R[π, ρ]-module and left ideal I ⊆ R[π, ρ]. For any nonzero ideal j ⊆ R we may
choose an ideal I in such a way that I and j would be coprime ideals.

Let us denote R ∩ I = (I : R[π, ρ]) = {r ∈ R|rR[π, ρ] ⊆ I}.
First, we must prove some useful propositions.
Let us denote (ω : 1) = h. It is clear that n = hm and σ(x)m = id for any x ∈ π.

Lemma 4.3. Suppose k is a field, char(k) = p, π is a cyclic group, (p, h) = 1, and ρ(ω × ω) ⊆ kπ.
Then any simple k[π, σ, ρ]-module splits as a kπ[ω, ρ] module into the direct sum isomorphic simple
kπ[ω, ρ] modules: M = N ⊕ N ⊕ N ⊕ ... ⊕ N . The relation M → N induces a bijection between
the isomorphism classes of simple k[π, σ, ρ] and simple kπ[ω, ρ] modules.

Proof. It is clear that k[π, σ, ρ] ' k[x, σ]/(xmh − α), where m = (π : ω), α ∈ kπ\0. It is known
that two-side ideals of k[x, σ] are generated by elements of the form xtϕ(xmγ), where ϕ(x) ∈ kπ(x),
γ ∈ k. Since α 6= 0, two-sided maximal ideals which divide the two-sided ideal k[x, σ]/(xmh − α)
must have the form ϕ(xm)k[x, σ], where ϕ(x) ∈ kπ[x] and ϕ(x) is indecomposable in kπ[x]. I.e.

(xmh − α) = (ϕ1(xm)i1 ...(ϕr(x
m)ir ),

where if i 6= j, then ϕi(x
m) 6' ϕj(x

m). Since (p, h) = 1, the rings k[π, σ, ρ] and kπ[ω, ρ] are
semisimple [8]. Thus i1 = ... = ir = 1. Therefore

k[x, σ]/(xmh − α) ' k[x, σ]/(ϕ1(xm))⊕ ...⊕ k[x, σ]/(ϕr(x
m)).

Since k[x, σ]/(ϕi(x
m)) is a simple ring, it has a single simple module Mi and Mi 6'Mj for different

i and j. On the other hand,

kπ[ω, ρ] ' kπ[x, σ]/(xmh − α) ' kπ[x, σ]/(ϕ1(x))⊕ ...⊕ kπ[x, σ]/(ϕr(x)).

The fields Ni = kπ[x]/(ϕ(x)) are simple kπ[ω, ρ]-modules. From the embedding

kπ[x]/(ϕ(x))→ k[x, σ]/(ϕi(x
m), [f(x)]→ [f(xm)]

it follows that k[x, σ]/(ϕ(xm) is a free kπ[x]/(ϕi(x))-module with a basis [αjx
k], j = 1, 2, ...,m,

k = 0, 1, ...,m − 1, where α1, ..., αm is a kπ-basis of the field k. Therefore k[x, σ]/(ϕi(x
m)) splits

as a kπ[ω, ρ]-module into the direct sum of kπ[ω, ρ]-modules which are isomorphic to the kπ[ω, ρ]-
module Ni. Since Mi is the direct summand of k[x, σ]/(ϕi(x

m)), by the Krull-Schmidt theorem Mi

splits too as a kπ[ω, ρ]-module into the direct sum of kπ[ω, ρ]-modules which are isomorphic to a
simple kπ[ω, ρ]-module Ni. The correspondence Mi → Ni proves the lemma. q.e.d.

Proposition 4.4. Let R be an integral domain with quotient field K, such that char(k) = p,
(p, h) = 1, ρ(ω × ω) ⊆ U(Rπ), R is projective and finitely generated over Rπ and the following
condition holds: (*) For any cyclic subgroup ω0 ⊆ ω and any Q1, Q2 ∈ P (Rπ[ω, ρ]) from rkKπQ1 =
rkKπQ2 it follows that Kπ ⊗Rπ Q1 ' Kπ ⊗Rπ Q2 as Kπ[ω0, ρ]-modules. Then for any P1, P2 ∈
P (R[π, σ, ρ]) from rkK(P1) = rkK(P2) it follows that K ⊗R P1 ' K ⊗R P2 as K[π, σ, ρ]-modules.
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Proof. Rπ ⊆ R is an integral extension of rings and K ' Kπ ⊗Rπ R. Therefore K ⊗R P '
Kπ ⊗Rπ R ⊗R P ' Kπ ⊗Rπ P. Consequently, rkK(P1) = rkK(P2) ' rkKπ (P1) = rkKπ (P2). Let
π0 ⊆ π be a cyclic subgroup. Let us denote ω0 = Ker(σ : π0 → Aut(R)). Since R[ω0, ρ] '
Rπ[ω0, ρ] ⊗Rπ R as R[ω0, ρ] modules, R[ω0, ρ] is projective as a Rπ[ω0, ρ]-module. Since R[π, σ, ρ]
is free over R[ω0, ρ], R[π, σ, ρ] is also projective over R[ω0, ρ]. Therefore P1, P2 ∈ P (R[π, σ, ρ]),
we have P1, P2 ∈ P (Rπ[ω0, ρ]). By the condition rkK(P1) = rkK(P2). As we have already noted
rkKπ (P1) = rkKπ (P2). Then by the condition (*) we have Kπ ⊗Rπ P1 ' Kπ ⊗Rπ P2 as Kπ[ω0, ρ]-
modules or, what is the same, K⊗RP1 ' K⊗RP2 as Kπ[ω0, ρ])-modules. If we suppose in Lemma
4.3 that π = π0, ω = ω0, it follows that K ⊗R P1 and K ⊗R P2 contain Ni as a direct summand
the same number of times (recall that K[π, σ, ρ], Kπ[ω, ρ], K[π0, σ, ρ] and Kπ[ω0, ρ] are semisimole
rings). By Lemma 4.3 Ni is contained as a direct summand only in Mi, and Mi does not contain
other summands. Therefore K⊗RP1 and K⊗RP2 must contain Mi as a direct summand the same
number of times. Therefore K ⊗R P1 ' K ⊗R P2 as K[π0, σ, ρ]-modules. Suppose χi is a character
of K[π, σ, ρ]-modules K⊗R Pi, i = 1, 2, a =

∑
x∈π αxx̄ and πx ⊆ π is the cyclic subgroup generated

by x. Then K ⊗R P1 ' K ⊗R P2 as K[πx, σ, ρ])-modules and therefore χ1(αxx̄) = χ2(αxx̄). Hence
χ1(a) = χ2(a). From the equality of characters it follows that K ⊗R P1 ' K ⊗R P2 as K[π, σ, ρ]-
modules. q.e.d.

Lemma 4.5. Under the conditions of Theorem 3.1 the rank rkK(P ) is divided into n.

Proof. Let n =
∏
pµp . Then (πp : 1) = pµp . p is not convertible in R, therefore there exists p ∈

spec(R) such that p ∈ p. The group πp acts trivially on Rp. Therefore R/p[πp, σ̄, ρ̄] = R/p[πp, ρ̄].
R/p is a field of characteristic p ≥ 0 and πp is the finite p-group, thus R/p[πp, ρ̄] is a local ring [14].
Consequently, the module P/pP is not only projective, but also free over R/p[πp, ρ̄]. Therefore
pµp |(P/pP : R/p). Since R is the Dedekind domain, we have pµp |rkK(P ). Since that is true for all
p|n, we have n|rkK(P ). q.e.d.

Theorem 4.6. Under the conditions of Theorem 3.1 the module K ⊗R P is free over K[π, σ, ρ].

Proof. Let us first prove the theorem for the cyclic group π. More precisely, we must prove that if
π is a finite cyclic group, σ(π) = id, R is the Dedekind domain of characteristic 0, prime dividers
of n are not invertible in R and P ∈ P (R[π, ρ]), then the module K ⊗R P is a free R[π, ρ]-module.

Step 1. Let M be any simple R[π, ρ]-module. From char(K) = 0 it follows that K[π, ρ] is a
semisimple K-algebra. Suppose that K ⊗R P contains M n-times as a direct summand. Then
HomK[π,ρ](M,K ⊗R P ) is isomorphic to the direct sum of r summands, which are isomorphic to
HomK(M,K). The consideration of bases and comparison of dimensions show that the mapping
ϕ(f ⊗ v)(m) := f(m)(v), where v ∈ K ⊗R P , is an isomorphism of K-modules

ϕ : M∗ ⊗K (K ⊗R P ) ' HomK(M,K ⊗R P ).

Step 2. It is clear that M∗⊗K (K ⊗R P ) is a K[π]-module if we suppose x(f ⊗ v) = fx̄−1⊗ x̄v,
where x ∈ K[π] and x̄, x̄−1 ∈ K[π, ρ]. Similarly, HomK(M,K ⊗R P ) is a left K[π]-module via the
action (xf)(m) = x̄f(x̄−1m) and

HomK(M,K ⊗R P )π := {f ∈ HomK(M,K ⊗R P )|(∀x ∈ π)xf = x} =

= HomK[π,ρ](M,K ⊗R P ).
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Let us prove that ϕ from Step 1 is an isomorphism of left K[π]-modules:

ϕ(x(f ⊗ v))(m) = ϕ(fx̄−1 ⊗ x̄v)(m) = f(x̄−1m)x̄v =

= x̄f(x̄−1m)v = [xϕ(f ⊗ v)](m).

Therefore
HomK[π,ρ](M,K ⊗R P ) ' [M∗ ⊗K (K ⊗R P )]π.

Step 3. In our conditions there exists a finitely generated R[π, ρ]-module Q such that Q is
projective, i.e. it is torsion-free over R and M ' K ⊗R Q. Indeed, suppose 0 6= m ∈ M . Let
Q = R[π, ρ]m ⊆ M ; it is clear that M ' K ⊗R Q because M is a semisimple R[π, ρ]-module. If
q ∈ Q and rq = 0, r ∈ R, then r−1(rq) = q, i.e. Q is torsion-free over R. Since R is a Noetherian
ring and Q is a finitely generated R-module, then M∗ ' (K⊗RQ)∗ ' K⊗RQ∗, Q∗ = HomR(Q,R).
Therefore by Lemma 8.2 [1], from step 2 it follows that

HomR[π,ρ](M,K ⊗R P ) ' (K ⊗R Q∗ ⊗R P )π ' K ⊗R (Q∗ ⊗R P )π,

where R[π] acts on Q∗ ⊗R P as x(f ⊗ p) = fx̄−1 ⊗ x̄p.
Step 4. Q∗ ⊗R P is a R[π]-projective module. Then by Lemma 8.3, from [1] we have

rk(Q∗ ⊗R P )π =
1

n
rk(Q∗ ⊗R P ) =

1

n
rk(Q)rk(P ),

where rk(M) = dimK(K ⊗RM), M ∈ R−Mod. Consequently,

1

n
rk(Q)rk(P ) = dimK(HomK[π,ρ](M,K ⊗R P )),

i.e. r depends only on rk(P ). From Lemma 3.5 it follows that there exists a free R[π, ρ]-module F
such that rk(F ) = rk(P ). Therefore M is contained in K ⊗R F and K ⊗R P the same number of
times, and, consequently, K ⊗R P ' K ⊗R F , i.e. K ⊗R P is a free K[π, ρ]-module.

Let us prove the theorem in the general case. It is well known that Rπ is a Dedekind domain
and R is finitely generated over Rπ. Thus P is projective and finitely generated over Rπ[ω, ρ]. As
we have already proved K ⊗R P is a free Rπ[ω0, ρ]-module for all cyclic subgroups ω0 ⊆ ω. By
Proposition 3.4 K ⊗R P is uniquely determined as a K[π, σ, ρ]-module by rk(P ). By Lemma 3.5
there exists a free R[π, σ, ρ]-module F such that rk(P ) = rk(F ), therefore K ⊗R P ' K ⊗R F , i.e.
K ⊗R P is a free K[π, σ, ρ]-module. q.e.d.

Theorem 4.7. Let R be a Dedekind domain, m ⊆ R be a nonzero ideal, m =
∏
i p

νi
i , pi ∈ spec(R)

and π(pi) ⊆ pi for all i. If P ∈ P (R[π, σ, ρ]) and K⊗RP is a free K[π, σ, ρ]-module, then P contains
a free module F such that ω and F are coprime ideals.

Proof. If ω = R then we may suppose that F is equal to any free submodule of P . Let us now
suppose that ω 6= R. Let first ω = p ∈ spec(R). By the condition K ⊗R P ' K ⊗Rp Rp ⊗R P '
K ⊗Rp Pp is free over K[π, σ, ρ], i.e. K ⊗Rp Pp ' K ⊗Rp F0 for some free Rp[π, σ, ρ]-module F0.
Rp is a discrete valued ring. Consequently, by Theorem 3.1 Pp is a free Rp[π, σ]-module. Since
Rp/p ' R/p,

Pp/(pPp) ' Rp/p⊗Rp /Pp ' Rp/p⊗Rp Rp ⊗R P ' Rp ⊗R P ' P/(pP ).
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Therefore P/(pP) is a free (R/p)[π, σ̄, ρ̄]-module.
Let us consider the general case. As we already have proved P/(piP ) are free (R/pi)[π, σ̄, ρ̄]-

modules for all i. Let ā
(i)
1 , ..., ā

(i)
k be a free basis of P/(piP ). Since rkK(P ) = (P/(piP ) : R/pi),

k1 = k2 = ... = k. By the Chinese remainder theorem there exist elements ri ∈ R such that

ri ≡ δij(modpj). Let a
(i)
s be a coimages of the elements ā

(i)
s with the respect to a morphism

P → P/(piP ). Let us denote as =
∑
i αia

(i)
s . Then for any i, the images of elements in P/(piP )

coincide with the basis ā
(i)
1 , ..., ā

(i)
k .

Let F be a R[π, σ, ρ]-submodule of P generated by elements a1, ..., ak. Let us prove that F is a
free R[π, σ, ρ]-module with a basis a1, ..., ak. Otherwise in F there would exist a nontrivial relation
between the elements a1, ..., ak and we would have in K⊗RF that rkKF < nk, n = (π : 1). On the
other hand, (F/(piF ) : R/pi) = (P/(piP ) : R/pi) = nk because F/(pF ) → P/(pP ) is surjective.
But rk(F ) = (F/(piF ) : R/pi), a contradiction. Thus F is a free module.

Since (F/(piF ) ' (P/(piP ) we have (F : P )+pi = R. R is the Dedekind domain; consequently,
(F : P ) + ω = R. q.e.d.

Corollary 4.8. Under the conditions of Theorem 4.7 the module P/(ωP ) is free over R/ω[π, σ̄, ρ̄].

Proof. Indeed, because (F : P ) + ω = R, F/(ωF )→ P/(ωP ) is an isomorphism. q.e.d.

Proposition 4.9. Under the conditions of Theorem 3.1 there exists an embedding of the module
P in the free R[π, σ, ρ]-module F such that (P : F ) + (n) = R, (P : F )Rπ + nRπ = Rπ.

Proof. Let us suppose in Corollary 3.8 that ω = (n) = nR. In the proof of Corollary 3.8 it was
shown that F/(nRF ) ' P/(nRP ). But F/(nRF ) = F/(nF ) = F/(nRπF ) and, similarly, for P .
Therefore F/(nRπF ) ' P/(nRπP ) and (F : P )Rπ + nRπ = Rπ because Rπ is a Dedekind domain.
Therefore there exists a ∈ nRπ, b ∈ (F : P )Rπ such that a+ b = 1. nRπ 6= Rπ and therefore b 6= 0.
From b ∈ Rπ it follows that b is contained in the center of the ring R[π, σ, ρ]. Consequently, bP
is a R[π, σ, ρ]-module and as P is R-torsion-free (finitely generated modules are torsion-free over
Dedekind domains), P ' bP as R[π, σ, ρ]-modules. bP ⊆ F since b ∈ (F : P )Rπ . It is clear that
b ∈ (F : P ). Let us identify P and bP . Then F will be the desired free module and bP ⊆ F will be
the desired embedding for which (P : F )Rπ + nRπ = Rπ and a fortiori (P : F ) + (n) = R. q.e.d.

Proposition 4.10. Let M ∈ M(R[π, σ, ρ]). If annRM + (n) = R, n = (π : 1), annRM = {r ∈
R|rM = 0}, then M is R[π, σ, ρ]-projective.

Proof. By condition there exist a, b ∈ R such that an + b = 1 and bM = 0. Let us define
(n) : M → M , (n) : m → nm. Let nm = 0. Then anm + bm = 0 = m, i.e. this morphism is

injective. If m ∈ M , then by the equality m = anm + bm = anm we have am
(n)−→ m, i.e. (n) is

surjective. Therefore (n) is an isomorphism. On the other hand, R[π, σ, ρ] ⊇ R is a free Frobenius
extension with dual bases {x̄)x∈π and {x̄−1)x∈π. As we have already proved

∑
x∈π x̄x̄

−1 = n is
an isomorphism and therefore from the properties of Frobenius extensions it follows that M is
(R[π, σ, ρ], R)-projective. q.e.d.

Proposition 4.11. Let I ⊆ R[π, σ, ρ] be an ideal such that (I : R[π, σ, ρ]) + (n) = R and let R be
a Dedekind domain. Then I is a R[π, σ, ρ]-projective module.
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Proof. Let us consider a R[π, σ, ρ]-module M = R[π, σ, ρ]/I. Since R is a Dedekind domain,
dimprR(M) ≤ 1. Since (I : R[π, σ, ρ]) = annR(M), annR(M) + (n) = R and by Proposition 3.10
the module M is R([π, σ, ρ], R)-projective. Since R[π, σ, ρ] is free over R, dimprR[π,σ,ρ](M) ≤ 1.
But then there exists an exact sequence

0→ I → R[π, σ, ρ]→M → 0,

from which implies that I is R[π, σ, ρ]-projective. q.e.d.

Proof of Theorem 4.1. Let F be the free module from Proposition 3.9 withR[π, σ, ρ]-basis a1, a2, ..., ak.
Let us consider the morphisms of R[π, σ, ρ]-modules

ϕ1 : F → R[π, σ, ρ],
∑
i

µiai → µ1.

An image ϕ1(P ) = I1 of this morphism is an ideal in R[π, σ, ρ]. Since rF ⊆ P ⇒ rR[π, σ, ρ] ⊆ I1,
(P : F ) ⊆ (I1 : R[π, σ, ρ]). Therefore from (P : F )+(n) = R it follows that (I1 : R[π, σ, ρ])+(n) = R.
Then by Proposition 3.11 the ideal I1 is R[π, σ, ρ]-projective. ϕ : P → I1 is surjective, therefore
P ' P

′ ⊕ I1. Now the theorem is easy to prove by mathematical induction with respect to
rkK(P ). q.e.d.

Example for Theorem 4.1. Let d 6= 0 be a natural number which does not contain a square of a
prime number as a multiplier and such that d ≡ 2 ∨ 3(mod4). Then the ring of integers for the
field Q(

√
d) will be Z([

√
d]). Let us suppose that a natural number n > 0 satisfies the following

condition: If p 6= 2 is a prime number and p|n, then (Dp ) = 0 ∨ −1 where D = 4d is a discriminant

of the field and (Dp ) is a quadratic residue symbol. If (π : 1) = n, then any crossed group ring

Z[
√
d][π, σ, ρ] satisfies the conditions of Theorem 3.1 for any σ and ρ.

Indeed if 2|n, then 2 = p2 for some p ∈ spec(Z[
√
d]), [15]. If p 6= 2, p|n, then from (Dp ) = 0∨−1

it follows that either (p) = p2 for some p ∈ spec(Z[
√
d]) or (p) is prime in Z[

√
d], [15]. It is clear

that in all these cases the group Aut(Z[
√
d]), σ(

√
d) = −

√
d satisfies the condition (ii) of Theorem

3.1 and a fortiori this is true for the group π. Further, (2) = p2 ⇒ Z[
√
d]/p ' F2, but F2 has only

one, identity authomorphism and condition (iii) is satisfied too. q.e.d.

Proposition 4.12. Let ω ⊆ R be a nonzero ideal. Then under the conditions of Theorem 3.2 there
exists an embedding of the module P in the free R[π, ρ]-module F such that (P : F ) + ω = R.

Proof. Proved similarly to Proposition 4.9. q.e.d.

Proposition 4.13. Under the conditions of Theorem 3.2 any module P is isomorphic to the direct
sum

∑
Ii of ideals of R[π, ρ]; in addition the ideals Ii can be chosen in such a way that for all i

(Ii : R[π, ρ]) + ω = R.

Proof. By condition, (π : 1) = n 6= 0 in R. Let us choose in Proposition 3.12 a free R[π, ρ]-module
with the basis a1, a2, ..., ak in such a way that nω + (P : F ) = R. Let us consider the morphism
of R[π, ρ]-modules ϕ1 : F → R[π, ρ],

∑
i µiai → µ1. The image ϕ1(P ) = I1 is the left ideal in

R[π, ρ]. Since rF ⊆ P ⇒ rR[π, ρ] ⊆ I1, (P : F ) ⊆ (I1 : R[π, ρ]). From nω + (P : F ) = R it follows
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that (I1 : R[π, ρ]) + (P : F ) = R and thus the ideals (n) and ω are coprime with the respect to
(I1 : R[π, ρ]). Then from Proposition 4.11 it follows that I1 is R[π, ρ]-projective. Since ϕ1 : P → I1
is an epimorphism, P = P

′
+ I1 and the proposition is easy to prove by mathematical induction

with the respect to rkK(P ). q.e.d.

Remark 4.14. We may suppose that K ⊗R Ii ' K[π, ρ] for all i. Indeed, let ω ⊆ R be an
improper ideal. Then ω(R[π, ρ]Ii) = R[π, ρ]Ii and by Lemma 7.4, [1] there exists a ∈ ω such that
(1− a)R[π, ρ]/Ii = 0. Since ωR is an improper ideal, 1− a 6= 0 and thus K ⊗R I ' K ⊗R R[π, ρ] '
K[π, ρ].

Proof of Theorem 4.2. By Proposition 4.13 and Remark 4.14 it is suffices to prove the following:
let I1, I2 ⊆ R[π, ρ] be a projective ideals such that (I1 : R[π, ρ]) and (I2 : R[π, ρ]) are coprime with
the respect to ω and K ⊗R I1 ' K ⊗R I2 ' K[π, ρ]; then I1 ⊕ I2 ' R[π, ρ] ⊕ I, where I ⊆ R[π, ρ]
is a left ideal and (I : R[π, ρ]) + ω = R.

Let ω1 = (I1 : R[π, ρ]). From Proposition 4.13 it follows that there exists I
′

2 ⊆ R[π, ρ] such that
I2 ' I

′

2 and (I
′

2 : R[π, ρ]) + ωω1 = R. Let us replace I2 by I
′

2. Therefore we may assume that there
exist b1 ∈ (I1 : R[π, ρ]) and b2 ∈ (I2 : R[π, ρ]) such that b1 + b2 = 1.

Let F be the free R[π, ρ]-module with two free generators e1, e2 and V = I1e1 +I2e2 ⊆ F . Then
A ' I1 + I2 and (V : F ) + ω = R. It is clear that the elements e

′

1 = e1b1 + e2b2 and e
′

2 = e1 − e2
are also free generators of F , because e1 = e

′

1 + b2e
′

2, e2 = e
′

1 − b2e
′

2. But e
′

1 ∈ V because b1 ∈ I1,
b2 ∈ I2. Consequently, V = R[π, ρ]e

′

1 + Ie
′

2 where I = {a ∈ R[π, ρ]|re′2 ∈ V }. It is also clear that
(I : R[π, ρ]) + ω = R because (I : R[π, ρ]) = (V : F ). q.e.d.
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