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Abstract

Our aim is to present some new properties of functions in p-calculus. The effects of a convex
or monotone function on the p-derivative and vice versa and also the behavior of p-derivative
in a neighborhood of a local extreme point are expressed. Moreover, mean value theorems for
p-derivatives and p-integrals are proved.
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1 Introduction and preliminaries

Quantum calculus is usually known as “calculus without limit”. There are several types of quantum
calculus such as h-calculus, g-calculus and Hahn calculus. The following three expressions,

Dufa) = HI=H,
Duf() = TN
flgz +h) — f(x)
quhf('r) (q _ 1>$ + h )

are called the g-derivative, the h-derivative and g¢,h-derivative, respectively, of the function f(x),
where ¢ is a fixed number different from 1, and A a fixed number different from 0. The h-derivative of
the function f(z) is also known as finite difference operator. Taylor’s “Methods Incrementorum” is
considered the first reference of the h-calculus or the calculus of finite differences [14], but it is Jacob
Stirling who is considered the founder of the h-calculus [13]. In 1750 Euler proved the pentagonal
number theorem which was the first example of a ¢-series and, in some sense, he introduced the g-
calculus. The g-derivative was (re)introduced by Jackson in the early twentieth century [7]. Another
type of quantum calculus is the Hahn quantum calculus which can be seen as a generalization
of both g-calculus and h-calculus. Although Hahn defined this operator in 1949, only in 2009
Aldwoah constructed its inverse operator [1,2]. For more details about quantum calculus, we
refer the readers to [3,}4,/6,[8,/12]. Applications of g-calculus to problems in physics and chemical
physics abound [6,|9,/10]. Also, it has developed into an interdisciplinary subject and has a lot
of applications in different mathematical areas such as orthogonal polynomials, analytic number
theory, basic hyper-geometric functions, combinatorics, etc. A history of the g-calculus was given
by T.Ernst [5].

Throughout this paper, we assume that p is a fixed number different from 1 and domain of
function f(z) is [0,4+00). In this section, we recall some definitions and fundamental results on
p-calculus that is needed to prove our results (see [11]).
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Definition 1.1. Consider an arbitrary function f(x). Its p-derivative is defined as

f@?) = f(x)

P —x

Dy, f(z) = , iz #0,1,

and
Dy f(0) = Ilg(r)l+ Dyf(x), Dpf(1) = }}_}rnl Dy f ().
Corollary 1.2. If f(z) is differentiable, then limlef(x) = f'(x), and also if f'(z) exists in a
p—

neighborhood of £ = 0, z = 1 and is continuous at x = 0 and = 1, then we have

Dy f(0) = f1(0), Dpf(1) = f'(1).

Definition 1.3. The p-derivative of higher order of function f(z) is defined by

(Dpf)(x) = f(x), (Dpf)(@)=Dy(Dy~" f)(x),n € N.

Notice that the p-derivative is a linear operator, i.e., for any constants a and b, and arbitrary
functions f(z) and g(x), we have

Dp(af(x) +bg(x)) = aDp f(x) + bDpg(z).
Also, the p-derivative of the product and the quotient of f(z) and g(x) are computed as follows.

f(@P)g(z) — fx)g(x)
f(aP)g(a?) — f(x)g(a?) + f(x)g(2") — f(x)g(x)
(f(z") = f(2))g(a?) + f(x)(g(a?) — g(x))

- 9

P —x

Dy(f(x)g(x)) =

thus
Dy(f(x)g(x)) = g(a”)Dp f(x) + f(x)Dpg(x). (1.1)

Similarly, we can interchange f and g, and obtain

Dy(f(x)g(x)) = g(x) Dpf(x) + f (") Dpg(x), (1.2)

by changing f(z) to ch((g in , we have

then,
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using ([1.2]) with functions £ EI) and g(x), we obtain

9(z") Dy f(x) — f(2P) Dpg(z)

Now let us define the definite p-integral. We consider the following three cases. Then, the
definite p-integral related to each case is given.

Case 1. Let 1 <a <band p € (0,1) . Notice that for any j € {0,1,2,3,...}, we have W oe (1,9].
We now define the definite p-integral of f(z) on interval (1,].

Definition 1.4. The definite p-integral of f(x) on the interval (1,b] is defined as

N 00

b j pitl j i+ j
[ @y = g S0 - 07 = S0 ), (13)
1 j=0 7=0

/ab f(x)dpa = /1b f(@)dpz — /1a Fl@)dpa

Note 1.5. Geometrically, the integral in corresponds to the area of the union of an infinite
number of rectangles. On [1 + ¢, b], where ¢ is a small positive number, the sum consists of finitely
many terms, and is a Riemann sum. Therefore, as p — 1, the norm of partition approaches zero,
and the sum tends to the Riemann integral on [1 + €, b]. Since ¢ is arbitrary, provided that f(z) is
continuous in the interval [1, b], thus we have

b b
i [ fa)dye = [ fa)a

Case 2. Let 0 < b <1 and p € (0,1). It should be noted that for any j € {0,1,2,3,...}, we have
b’ € [b,1) and b’ < b”’"". We will define the definite p-integral of f(z) on interval [b, 1) as follows.

and

Definition 1.6. The definite p-integral of f(x) on the interval [b, 1) is defined as
1 N j4+1 e +l j
/b flx)dyx = J&?w;(bp - ;0 — ) F(BP).

Note 1.7. The above two definite p-integrals are also denoted by

b 1
/1 f@)dye = 1e f(b), /b f@)dye = I, f(b).

Case 3. Let 0 <a <b<1landpe€ (0,1). For any j € {0,1,2,3,...}, we have v e (0,b] and
b < b’ We will define the definite p-integral of f(z) on interval (0,b] as follows.
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Definition 1.8. The definite p-integral of f(x) on the interval (0,b] (b < 1) is defined as

b N

Lf®) = | S@dr= lim 3@ =0 e =300 eI
=0

j=0 J

/abf(m)dpx = /Ob f(x)dyx — /Oa f(@)dyz.

Note 1.9. We can also apply Note for the p-integrals defined in the cases 2 and 3 on the
intervals [b, 1 — ] and [e, b] respectively, and by it define the Riemann integral.

—j—1

),

and

G+l

Remark 1.10. If p € (0,1), then for any j € {0,+1,+2,...}, we have p”j € (0,1), ppj <pP  and
1 oo ppj+1 oo i1 . .
J J J
| t@ida= 3 [ s@de= 3 @ =007,
0 j=—00 pP j=—00

Property 1.11. Suppose 0 < a < 1 < b. Then by Note [I.5| and Note we have

/ab f(z)dyx = /al f(z)dyx + /lb f(@)dya.

Corollary 1.12. Suppose 0 < a < 1 < b and function f(x) is continuous on [a,b]. Then by Note
[1.5] and Note [[.9 and also property [[.11] ,we have

tim [ )y = liny ( / gt / bf(x)dpx> -/ fla)de + /  fa)de = / ' fa)d

Definition 1.13. The p-integral of higher order of function f(x) is given by
(Ipf)(@) = f(z), (pf(w) =TIy~ f)(z), neN.

2 Mean value theorems for p-derivatives

In this section we establish and prove some p-mean value theorems. Before we get p-mean value
theorems, we describe the behavior of p-derivative in a neighborhood of a local extreme point.

Theorem 2.1. Let 0 < a < b and f(z) be a continuous function on [a,b]. If f assumes a local
maximum at ¢ € (a,b) with ¢ # 1, then there exists p € (0, 1), such that for every p € (p , 1)U(1, p—l,)
there exists 6 € (a,b) such that (D,f)(6) = 0.

Proof. We consider the following three cases.

Case 1. Suppose 1 < a < b. Since c is a point of local maximum of the function f(x), there exists
e > 0, such that f(c) > f(x), for all z € (¢ —e,c+¢€). Let py € (0,1) such that ¢?° € (¢ —¢,¢).
Thus, for all p € (pg,1), we have ¢® < ¢ and f(c?) < f(c). Therefore, (D,f)(c) > 0. Similarly,
there exists p; € (0, 1), such that for all p € (1, p%), we have ¢ € (¢,c+¢) and f(c) > f(cP) and

thus, (Dpf)(c) < 0. Now let us choose p = max{po,p1}. Suppose p € (p/, 1). If n = cpfl, then
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fle) > f(n) and (D, f)(n) < 0. On the other hand, in this case we have (D, f)(c) > 0 and by the
continuity (D f)(z) on (a,b), it implies that there exists § € (¢,n) C (a,b), such that (D, f)(6) = 0.
Now suppose p € (1, i) If = c* ', then n € (¢ —&,¢) and thus (Dpf)(n) > 0. On the other
hand, in this case we have (D, f)(c) < 0 and by the continuity (D, f)(z) on (a,b), it implies that
there exists 0 € (¢,n) C (a,b), such that (D,f)(d) = 0.

Case 2. Suppose 0 < a < b < 1. Let py € (0,1) such that ¢? € (¢,c + €). Thus, for all
p € (po,1), we have ? € (¢,c+¢) and f(c) > f(c?). Therefore, (D,f)(c) < 0. Similarly, there
exists p; € (0,1), such that for all p € (1, p%)’ we have ¢ € (¢ —¢,c) and thus (D,f)(c) > 0. Let
p = max{po,p1}. Suppose p € (p’,1). If n = ¢® ', then (Dpf)(m) > 0. On the other hand, in this
case we have (D, f)(c) < 0 and by the continuity (D, f)(x) on (a,b), it implies that there exists
0 € (¢,n) C (a,b), such that (D,f)(0) =0. If p € (1, i), then the proof is similar to the above
process.

Case 3. Suppose 0 <a<1<b Ifa<1<c<b, then the proof is similar to the proof of case 1
and if a < ¢ < 1 < b, then the proof is similar to the proof of case 2.

Note 2.2. If in Theorem f'(z) exists in a neighborhood of 2 = 1 and is continuous at z = 1
and also if ¢ = 1 is a point of local maximum of the function f(x) on (a,b), then for every p € (0,1),
we have (D, f)(1) = f (1) = 0.

Note 2.3. Theorem is also true if ¢ is a point of local minimum of the function f(z).

Remark 2.4. Suppose 0 < a < b and f(z) is differentiable on (a, b). If ¢ is a point of local extreme
of f(x), then by Corollary we have limlef(c) = f'(c) = 0.
p—

Example 2.5. Consider f(z) = —22 + 5z — 4. Its maximum is at ¢ = 2.5 and
f(zP) — f(x) —a* +52P + 2% — 5z
D = = .
(D)) = =1 i

If ¢ = 0.5 and py = 1—5, then ¢ € (¢ —¢,¢) for all p € (pp,1) and also, if p; = ﬁ, then
P € (c,c+e) for all p € (1, p%) Let p' = max{po,p1} = <. For p = 145, we have (D f)(c) =
(D f)(25)=%>0 Ifn= ®”" = 2.52, then we have (D_1_f)(n) = —0.043 < 0. Therefore,

1.01

there exists 0 € (2.5,2.52), such that (D, f)(d) = 0.
We now are in position to state and prove some p-mean value theorems.

Theorem 2.6. Let 0 < a < b and f(x) be a continuous function on [a, b] satistying f(a) = f(b)
and also f’ (z) exists in a neighborhood of = 1 and be continuous at = 1. Then there exists
p € (0,1), such that for every p € (p,1) U (1, pi,), there exists 6 € (a, b) such that (D, f)(d) =0.

Proof. If f = const, then the result is obvious. If f is not a constant function on [a,b], then it
attains its extreme value in some point in (a,b). If ¢ = 1 is a point of local extreme of f(z), then
by Note the result holds, and if the point of local extreme of f(z) is different from 1, then by
Theorem [2.1] and Note 2.3] the statement follows.

Theorem 2.7. Let 0 < a < b and f(z) be a continuous function on [a,b] and also f (z) exists in
a neighborhood of x = 1 and be continuous at © = 1. Then there exists p € (0,1), such that for
every p€ (p,1)U(1, I%), there exists 0 € (a,b) such that f(b) — f(a) = (Dpf)(6)(b—a).
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Proof. Let g(z) be a function defined on [a,b] by g(z) = f(x) — “;W' Clearly, g(z) is a

continuous function on [a, b] with g(a) = g(b) and also ¢’ () exists in a neighborhood of 2 = 1 and
is continuous at x = 1. Hence, by Theorem the statement follows.

3 Monotone or convex function and its p-derivative

In this section we study relations between monotone or convex function and p-derivatives.

f(a) for all b > a,

Definition 3.1. A function f(z) is called increasing on an interval I if f(b)
1 f(b) < f(a) for all

whenever a,b € I. Also, a function f(x) is called decreasing on an interval T
b>awitha,bel.

>
if

Theorem 3.2. Let p € RT — {1} and f(z) be a function defined on I = (0, +00). Then,
(i) If f(x) is an increasing function on I, then (D, f)(z) > 0, for all x € I — {1}.
(ii) If f(z) is a decreasing function on I, then (D, f)(z) <0, for all x € I — {1}.

Proof. Since the proofs of (i) and (ii) are very similar, we will expose only the first one. Since
f(z) is increasing function on I, hence for every x € I — {1}, if 2P < z, then f(zP) < f(x) and
thus, (Dpf)(z) > 0, and if o > «, then f(a?) > f(x) and we conclude (D, f)(z) > 0.

Note 3.3. We can generalize the results of Theorem [3.2] to interval I = (0, 400) if f'(z) exists in
a neighborhood of = 1 and is continuous at = 1, because in this case if f(x) is an increasing
function, then (D, f)(1) = f (1) > 0, and if f(x) is a decreasing function, then (D, f)(1) = f (1) <
0.

Theorem 3.4. Let 0 < a <band p € Rt — {1} and f(x) be a continuous function on [a,b] such
that for every p € Rt — {1}, we have (D, f)(x) > 0 on (a,b). Then f(z) is an increasing function
on (a,b).

Proof. Suppose a < x1 < x93 < b. By Theorem there exists p € Rt — {1} and ¢ € (x1,x2)
such that f(z2) — f(z1) = (Dpf)(6)(x2 — x1). Since the right side of equality is nonnegative, we
have f(z2) > f(z1). Hence, the proof is complete.

Theorem 3.5. Let 0 < a <band p € Rt — {1} and f(z) be a continuous function on [a,b] such
that for every p € Rt — {1}, we have (D, f)(z) <0 on (a,b). Then f(z) is a decreasing function
on (a,b).

Proof. The proof is similar to the proof of Theorem

Definition 3.6. Let f(x) be a real value function defined on (a,b) where —co < a < b < oo. Then,
f(z) is called convex if for any two point = and y in (a,b) and any A where 0 < A <1,

fOx+ (1= Ny) <Af() + (1 =N f(y).
Lemma 3.7. If f(x) is a convex function on (a,b) and a < s < t < u < b, then we have

F(t) = fs) _ fw) = f(s) _ flw) = F(B)

t—s uU—S - u—t
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Theorem 3.8. Let p € Rt — {1} and f(z) be a convex function on I = (0,+0c0). Then (D, f)(z)
is increasing on I — {1}.

Proof. We prove the result only for the case p € (0,1). The proof for the case p > 1 is similar.
We consider the following three cases.
Case 1. Let 0 < x <y < 1. Thus, wehave 0 < z < 2P < yP < land 0 <z <y < y? < 1. By

Lemma [3.7 we have
f?) = fl@) _ f") — fl@) _ fy") — fly)
-z —  yr—-z Y-y

Therefore, (D, f)(z) < (D, f)(y).
Case 2. Let 1 <z <y < oo. Thus, we have 1 < a? <z <y <oocand 1 < 2P <y? <y <oo. By

Lemm @ we hav
TS T e ) ) - Fe) 1) - F)

< < .
r—zP T y—aP T y—yp
Therefore, (D, f)(z) < (D, f)(y).

Case 3. Let 0 < x < 1 <y < 0o. Thus, we have 0 < z < 2P < y? < y < oo and

f@?) = fx) _ f") = f(=") _ fly) = F(y")
P — x - yp—wp - y—yp ’

Therefore, (D, f)(z) < (D, f)(y). This complete the proof.

Corollary 3.9. Let p € Rt —{1} and f(x) be a convex function on I = (0,400). Then D2 f(x) > 0
for all x € T — {1}.

Proof. (The first way). By Theorem [3.8| and also Theorem [3.2] the statement follows.
(The second way). We prove the result only the case p € (0,1). The case when p > 1 can be proved
in a similar way. By the definition of p-derivative, we have

D2f(@) = Dy(Dy ) () = 2= Dell@) _ 1 (f M) S f;(x)) -

Ifo<zxz<1l,then0 <z <aP < 27’ < 1 and by Lemma we have

J@?) — f(x) F@?’) — f(a?)

P —x ap® — P

)

and it implies, Df,f(x) >0. If x> 1, then 1 < 2P’ < 2P < z and

f(a?) — f(zP") _ S@) = f@r)

P — f(.rPQ) x — xP

)

and therefore, Df)f(x) > 0.

Definition 3.10. Let 0 < a < b and p € Rt — {1} and f(z) be a real value function defined on
(a,b). Then,
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(i) Operator D, f is increasing respect to p on (a,b) if D,, f(x) < D,, f(z) for all p1 < ps.
(ii) Operator D, f is decreasing respect to p on (a,b) if Dy, f(x) > D,, f(z) for all p; < ps.

Theorem 3.11. Let p € Rt — {1} and f(x) be a convex function on I = (1,+0c). Then D, f is
increasing respect to p on (1, +00).

Proof. We prove the result only the case 0 < p; < pa < 1. Cases when 1 < p; < p2 or p1 <1 < po,
can be proved in a similar way. For every x > 1, we have 1 < 2P* < 2P* < z, and by Lemma [3.7]

f(@) — fa™) < f@) - f(xm)’ and it implies D,, f(x) < Dy, f(z).

xr — xP1 - xr — P2

Theorem 3.12. Let p € R — {1} and f(x) be a convex function on I = (0,1). Then D, f is
decreasing respect to p on (0, 1).

we have

Proof. The proof is similar to the proof of Theorem [3.11

4 Mean value theorems for p-integrals

In this section we present mean value theorems for p-integrals.

Theorem 4.1. Let f(z) be a continuous function on [0, ] (b > 0). Then for every p € (0, 1), there
1
exists § € [0,0] such that 7 17 f(x)dpa = £(5).

Proof. It is sufficient to prove the result for the case b > 1. Since f(z) is a continuous function
[0,b] , there exist m and M such that for each z € [0,b], m < f(x) ‘M Let p € (0,1). Then,

for any j € {0,+1,42,+3,...}, we have PP e (0,1) and m < f(p? "y < M, and also for any
§ €{0,1,2,3,...}, we have b*" € (1,b] and m < f(b*") < M. Hence,

i (ppj+1 +§: J+1 (bpj) S i (ppj+1 M—|—Z J+1
j=—00 j=0 j==—oo
= M+ Mb-1)=Mb,
also,
> - )+ Z e 2 Y T z —0"")m
Jj=—00 j=—00

= m+m(b—1): mb.

Now by Remark [1.10| and Property [1.11|, we have m < — fo z)dpz < M. By the intermediate

value theorem, there exists ¢ € [0, b] such that — fo x)dpx = f(9).

Theorem 4.2. Let f(z) be a continuous function on [a,b] (a > 0). Then, there exists p' € (0,1)

/ 1
such that for every p € (p, 1) there exists § € (a,b) such that b a ff f(z)dpx = f(9).
—a
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Proof. By Note|1.5(and Note and also Corollary we have lim;, 1 ff f(z)dyx = ff f(x)dx
Thus, for every ¢ > 0, there exists pg € (0,1) such that for all p € (pg, 1), we have

/abf(z)dx—e</abf(x)dpx</abf(x)dx+a

By the mean value theorem for integrals, there exists ¢ € (a, b) such that

f f(z)dz = f(c).
Let e < (b—a)min{M — f(c), f(¢) —m}, where m and M are the minimum and maximum of f(z)
on [a, b], respectively. Hence, there exists p € (0,1) such that for all p € (p , 1),

b
(o) | f@)de < £ +

1
It implies, m < b a fab f(z)dpx < M and therefore, there exists § € (a,b) such that
—a

b
o [ S = 6.

Theorem 4.3. Let f(x) and g(x) be some continuous functions on [a,b] (a > 0). Then, there
exists p € (0,1) such that for all p € (p,1) there exists ¢ € (a,b) such that

[ 1wt =gio) [ 1w

Proof. Suppose f is not constant function zero. By the second mean value theorem for integrals,
there exists ¢ € (a,b) such that f: f(x)g(x)dx = g(c f f(z)dz. Hence, we have

proving the intended result.

b
tim [ @)y = o(c) lny / f(@)dya,
or
f(z
f— =g(c).
p—>1 f f
Thus, for every ¢ > 0, there exists pg € (0,1) such that for p € (pg, 1), we have
flx
g(c) — f— <g(c) +e.

J; fa
Since g(z) is a continuous function on [a, b], there exist m, and M, such that for each = € [a, b],
mg < g(x) < M. Let e < min{M g(c), g(c) —my}. Hence, there exists p € (0,1) such that for

Sy f(@)
ff

allp e (p',1), my < < M,. Therefore, there exists § € (a,b) such that

/a f@a(@)dyz = 9(6) [  fa)dye
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