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Abstract

Our aim is to present some new properties of functions in p-calculus. The effects of a convex
or monotone function on the p-derivative and vice versa and also the behavior of p-derivative
in a neighborhood of a local extreme point are expressed. Moreover, mean value theorems for
p-derivatives and p-integrals are proved.
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1 Introduction and preliminaries

Quantum calculus is usually known as “calculus without limit”. There are several types of quantum
calculus such as h-calculus, q-calculus and Hahn calculus. The following three expressions,

Dqf(x) =
f(qx)− f(x)

(q − 1)x
,

Dhf(x) =
f(x+ h)− f(x)

h
,

Dq,hf(x) =
f(qx+ h)− f(x)

(q − 1)x+ h
,

are called the q-derivative, the h-derivative and q,h-derivative, respectively, of the function f(x),
where q is a fixed number different from 1, and h a fixed number different from 0. The h-derivative of
the function f(x) is also known as finite difference operator. Taylor’s “Methods Incrementorum” is
considered the first reference of the h-calculus or the calculus of finite differences [14], but it is Jacob
Stirling who is considered the founder of the h-calculus [13]. In 1750 Euler proved the pentagonal
number theorem which was the first example of a q-series and, in some sense, he introduced the q-
calculus. The q-derivative was (re)introduced by Jackson in the early twentieth century [7]. Another
type of quantum calculus is the Hahn quantum calculus which can be seen as a generalization
of both q-calculus and h-calculus. Although Hahn defined this operator in 1949, only in 2009
Aldwoah constructed its inverse operator [1, 2]. For more details about quantum calculus, we
refer the readers to [3, 4, 6, 8, 12]. Applications of q-calculus to problems in physics and chemical
physics abound [6, 9, 10]. Also, it has developed into an interdisciplinary subject and has a lot
of applications in different mathematical areas such as orthogonal polynomials, analytic number
theory, basic hyper-geometric functions, combinatorics, etc. A history of the q-calculus was given
by T.Ernst [5].

Throughout this paper, we assume that p is a fixed number different from 1 and domain of
function f(x) is [0,+∞). In this section, we recall some definitions and fundamental results on
p-calculus that is needed to prove our results (see [11]).
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Definition 1.1. Consider an arbitrary function f(x). Its p-derivative is defined as

Dpf(x) =
f(xp)− f(x)

xp − x
, if x 6= 0, 1,

and
Dpf(0) = lim

x→0+
Dpf(x), Dpf(1) = lim

x→1
Dpf(x).

Corollary 1.2. If f(x) is differentiable, then lim
p→1

Dpf(x) = f ′(x), and also if f ′(x) exists in a

neighborhood of x = 0, x = 1 and is continuous at x = 0 and x = 1, then we have

Dpf(0) = f ′+(0), Dpf(1) = f ′(1).

Definition 1.3. The p-derivative of higher order of function f(x) is defined by

(D0
pf)(x) = f(x), (Dn

p f)(x) = Dp(Dn−1
p f)(x), n ∈ N.

Notice that the p-derivative is a linear operator, i.e., for any constants a and b, and arbitrary
functions f(x) and g(x), we have

Dp(af(x) + bg(x)) = aDpf(x) + bDpg(x).

Also, the p-derivative of the product and the quotient of f(x) and g(x) are computed as follows.

Dp(f(x)g(x)) =
f(xp)g(xp)− f(x)g(x)

xp − x

=
f(xp)g(xp)− f(x)g(xp) + f(x)g(xp)− f(x)g(x)

xp − x

=
(f(xp)− f(x))g(xp) + f(x)(g(xp)− g(x))

xp − x
,

thus
Dp(f(x)g(x)) = g(xp)Dpf(x) + f(x)Dpg(x). (1.1)

Similarly, we can interchange f and g, and obtain

Dp(f(x)g(x)) = g(x)Dpf(x) + f(xp)Dpg(x), (1.2)

by changing f(x) to
f(x)

g(x)
in (1.1), we have

Dpf(x) = Dp(
f(x)

g(x)
g(x)) = g(xp)Dp(

f(x)

g(x)
) +

f(x)

g(x)
Dpg(x),

then,

Dp(
f(x)

g(x)
) =

g(x)Dpf(x)− f(x)Dpg(x)

g(x)g(xp)
,
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using (1.2) with functions f(x)
g(x) and g(x), we obtain

Dp(
f(x)

g(x)
) =

g(xp)Dpf(x)− f(xp)Dpg(x)

g(x)g(xp)
.

Now let us define the definite p-integral. We consider the following three cases. Then, the
definite p-integral related to each case is given.

Case 1. Let 1 < a < b and p ∈ (0, 1) . Notice that for any j ∈ {0, 1, 2, 3, ...}, we have bp
j ∈ (1, b].

We now define the definite p-integral of f(x) on interval (1, b].

Definition 1.4. The definite p-integral of f(x) on the interval (1, b] is defined as∫ b

1

f(x)dpx = lim
N→∞

N∑
j=0

(bp
j

− bp
j+1

)f(bp
j

) =

∞∑
j=0

(bp
j

− bp
j+1

)f(bp
j

), (1.3)

and ∫ b

a

f(x)dpx =

∫ b

1

f(x)dpx−
∫ a

1

f(x)dpx.

Note 1.5. Geometrically, the integral in (1.3) corresponds to the area of the union of an infinite
number of rectangles. On [1 + ε, b], where ε is a small positive number, the sum consists of finitely
many terms, and is a Riemann sum. Therefore, as p → 1, the norm of partition approaches zero,
and the sum tends to the Riemann integral on [1 + ε, b]. Since ε is arbitrary, provided that f(x) is
continuous in the interval [1, b], thus we have

lim
p→1

∫ b

1

f(x)dpx =

∫ b

1

f(x)dx.

Case 2. Let 0 < b < 1 and p ∈ (0, 1). It should be noted that for any j ∈ {0, 1, 2, 3, ...}, we have

bp
j ∈ [b, 1) and bp

j

< bp
j+1

. We will define the definite p-integral of f(x) on interval [b, 1) as follows.

Definition 1.6. The definite p-integral of f(x) on the interval [b, 1) is defined as∫ 1

b

f(x)dpx = lim
N→∞

N∑
j=0

(bp
j+1

− bp
j

)f(bp
j

) =

∞∑
j=0

(bp
j+1

− bp
j

)f(bp
j

).

Note 1.7. The above two definite p-integrals are also denoted by∫ b

1

f(x)dpx = Ip+f(b),

∫ 1

b

f(x)dpx = Ip−f(b).

Case 3. Let 0 < a < b < 1 and p ∈ (0, 1). For any j ∈ {0, 1, 2, 3, ...}, we have bp
−j ∈ (0, b] and

bp
−j−1

< bp
−j

. We will define the definite p-integral of f(x) on interval (0, b] as follows.
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Definition 1.8. The definite p-integral of f(x) on the interval (0, b] (b < 1) is defined as

Ipf(b) =

∫ b

0

f(x)dpx = lim
N→∞

N∑
j=0

(bp
−j

− bp
−j−1

)f(bp
−j−1

) =

∞∑
j=0

(bp
−j

− bp
−j−1

)f(bp
−j−1

),

and ∫ b

a

f(x)dpx =

∫ b

0

f(x)dpx−
∫ a

0

f(x)dpx.

Note 1.9. We can also apply Note 1.5 for the p-integrals defined in the cases 2 and 3 on the
intervals [b, 1− ε] and [ε, b] respectively, and by it define the Riemann integral.

Remark 1.10. If p ∈ (0, 1), then for any j ∈ {0,±1,±2, ...}, we have pp
j ∈ (0, 1), pp

j

< pp
j+1

and

∫ 1

0

f(x)dpx =

∞∑
j=−∞

∫ ppj+1

ppj
f(x)dpx =

∞∑
j=−∞

(pp
j+1

− pp
j

)f(pp
j

).

Property 1.11. Suppose 0 ≤ a < 1 < b. Then by Note 1.5 and Note 1.9, we have∫ b

a

f(x)dpx =

∫ 1

a

f(x)dpx+

∫ b

1

f(x)dpx.

Corollary 1.12. Suppose 0 ≤ a < 1 < b and function f(x) is continuous on [a, b]. Then by Note
1.5 and Note 1.9 and also property 1.11 ,we have

lim
p→1

∫ b

a

f(x)dpx = lim
p→1

(∫ 1

a

f(x)dpx+

∫ b

1

f(x)dpx

)
=

∫ 1

a

f(x)dx+

∫ b

1

f(x)dx =

∫ b

a

f(x)dx.

Definition 1.13. The p-integral of higher order of function f(x) is given by

(I0pf)(x) = f(x), (Inp f)(x) = Ip(In−1p f)(x), n ∈ N.

2 Mean value theorems for p-derivatives

In this section we establish and prove some p-mean value theorems. Before we get p-mean value
theorems, we describe the behavior of p-derivative in a neighborhood of a local extreme point.

Theorem 2.1. Let 0 < a < b and f(x) be a continuous function on [a, b]. If f assumes a local
maximum at c ∈ (a, b) with c 6= 1, then there exists p

′ ∈ (0, 1), such that for every p ∈ (p
′
, 1)∪(1, 1

p′
)

there exists δ ∈ (a, b) such that (Dpf)(δ) = 0.

Proof. We consider the following three cases.
Case 1. Suppose 1 < a < b. Since c is a point of local maximum of the function f(x), there exists
ε > 0, such that f(c) ≥ f(x), for all x ∈ (c − ε, c + ε). Let p0 ∈ (0, 1) such that cp0 ∈ (c − ε, c).
Thus, for all p ∈ (p0, 1), we have cp < c and f(cp) ≤ f(c). Therefore, (Dpf)(c) ≥ 0. Similarly,
there exists p1 ∈ (0, 1), such that for all p ∈ (1, 1

p1
), we have cp ∈ (c, c + ε) and f(c) ≥ f(cp) and

thus, (Dpf)(c) ≤ 0. Now let us choose p
′

= max{p0, p1}. Suppose p ∈ (p
′
, 1). If η = cp

−1

, then
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f(c) ≥ f(η) and (Dpf)(η) ≤ 0. On the other hand, in this case we have (Dpf)(c) ≥ 0 and by the
continuity (Dpf)(x) on (a, b), it implies that there exists δ ∈ (c, η) ⊂ (a, b), such that (Dpf)(δ) = 0.

Now suppose p ∈ (1, 1
p′

). If η = cp
−1

, then η ∈ (c − ε, c) and thus (Dpf)(η) ≥ 0. On the other

hand, in this case we have (Dpf)(c) ≤ 0 and by the continuity (Dpf)(x) on (a, b), it implies that
there exists δ ∈ (c, η) ⊂ (a, b), such that (Dpf)(δ) = 0.
Case 2. Suppose 0 < a < b < 1. Let p0 ∈ (0, 1) such that cp0 ∈ (c, c + ε). Thus, for all
p ∈ (p0, 1), we have cp ∈ (c, c + ε) and f(c) ≥ f(cp). Therefore, (Dpf)(c) ≤ 0. Similarly, there
exists p1 ∈ (0, 1), such that for all p ∈ (1, 1

p1
), we have cp ∈ (c − ε, c) and thus (Dpf)(c) ≥ 0. Let

p
′

= max{p0, p1}. Suppose p ∈ (p
′
, 1). If η = cp

−1

, then (Dpf)(η) ≥ 0. On the other hand, in this
case we have (Dpf)(c) ≤ 0 and by the continuity (Dpf)(x) on (a, b), it implies that there exists
δ ∈ (c, η) ⊂ (a, b), such that (Dpf)(δ) = 0. If p ∈ (1, 1

p′
), then the proof is similar to the above

process.
Case 3. Suppose 0 < a < 1 < b. If a < 1 < c < b , then the proof is similar to the proof of case 1
and if a < c < 1 < b, then the proof is similar to the proof of case 2.

Note 2.2. If in Theorem 2.1, f
′
(x) exists in a neighborhood of x = 1 and is continuous at x = 1

and also if c = 1 is a point of local maximum of the function f(x) on (a, b), then for every p ∈ (0, 1),
we have (Dpf)(1) = f

′
(1) = 0.

Note 2.3. Theorem 2.1 is also true if c is a point of local minimum of the function f(x).

Remark 2.4. Suppose 0 < a < b and f(x) is differentiable on (a, b). If c is a point of local extreme
of f(x), then by Corollary 1.2, we have lim

p→1
Dpf(c) = f ′(c) = 0.

Example 2.5. Consider f(x) = −x2 + 5x− 4. Its maximum is at c = 2.5 and

(Dpf)(x) =
f(xp)− f(x)

xp − x
=
−x2p + 5xp + x2 − 5x

xp − x
.

If ε = 0.5 and p0 = 1
1.2 , then cp ∈ (c − ε, c) for all p ∈ (p0, 1) and also, if p1 = 1

1.1 , then

cp ∈ (c, c+ ε) for all p ∈ (1, 1
p1

). Let p
′

= max{p0, p1} = 1
1.1 . For p = 1

1.01 , we have (D 1
1.01

f)(c) =

(D 1
1.01

f)(2.5) = 4
3 > 0. If η = cp

−1

= 2.52, then we have (D 1
1.01

f)(η) = −0.043 < 0. Therefore,

there exists δ ∈ (2.5, 2.52), such that (Dpf)(δ) = 0.

We now are in position to state and prove some p-mean value theorems.

Theorem 2.6. Let 0 < a < b and f(x) be a continuous function on [a, b] satisfying f(a) = f(b)
and also f

′
(x) exists in a neighborhood of x = 1 and be continuous at x = 1. Then there exists

p
′ ∈ (0, 1), such that for every p ∈ (p

′
, 1) ∪ (1, 1

p′
), there exists δ ∈ (a, b) such that (Dpf)(δ) = 0.

Proof. If f = const, then the result is obvious. If f is not a constant function on [a, b], then it
attains its extreme value in some point in (a, b). If c = 1 is a point of local extreme of f(x), then
by Note 2.2, the result holds, and if the point of local extreme of f(x) is different from 1, then by
Theorem 2.1 and Note 2.3, the statement follows.

Theorem 2.7. Let 0 < a < b and f(x) be a continuous function on [a, b] and also f
′
(x) exists in

a neighborhood of x = 1 and be continuous at x = 1. Then there exists p
′ ∈ (0, 1), such that for

every p ∈ (p
′
, 1) ∪ (1, 1

p′
), there exists δ ∈ (a, b) such that f(b)− f(a) = (Dpf)(δ)(b− a).
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Proof. Let g(x) be a function defined on [a, b] by g(x) = f(x) − x f(b)−f(a)
b−a . Clearly, g(x) is a

continuous function on [a, b] with g(a) = g(b) and also g
′
(x) exists in a neighborhood of x = 1 and

is continuous at x = 1. Hence, by Theorem 2.6, the statement follows.

3 Monotone or convex function and its p-derivative

In this section we study relations between monotone or convex function and p-derivatives.

Definition 3.1. A function f(x) is called increasing on an interval I if f(b) ≥ f(a) for all b > a,
whenever a, b ∈ I. Also, a function f(x) is called decreasing on an interval I if f(b) ≤ f(a) for all
b > a with a, b ∈ I.

Theorem 3.2. Let p ∈ R+ − {1} and f(x) be a function defined on I = (0,+∞). Then,

(i) If f(x) is an increasing function on I, then (Dpf)(x) ≥ 0, for all x ∈ I − {1}.

(ii) If f(x) is a decreasing function on I, then (Dpf)(x) ≤ 0, for all x ∈ I − {1}.

Proof. Since the proofs of (i) and (ii) are very similar, we will expose only the first one. Since
f(x) is increasing function on I, hence for every x ∈ I − {1}, if xp < x, then f(xp) ≤ f(x) and
thus, (Dpf)(x) ≥ 0, and if xp > x, then f(xp) ≥ f(x) and we conclude (Dpf)(x) ≥ 0.

Note 3.3. We can generalize the results of Theorem 3.2 to interval I = (0,+∞) if f
′
(x) exists in

a neighborhood of x = 1 and is continuous at x = 1, because in this case if f(x) is an increasing
function, then (Dpf)(1) = f

′
(1) ≥ 0, and if f(x) is a decreasing function, then (Dpf)(1) = f

′
(1) ≤

0.

Theorem 3.4. Let 0 < a < b and p ∈ R+ − {1} and f(x) be a continuous function on [a, b] such
that for every p ∈ R+ − {1}, we have (Dpf)(x) ≥ 0 on (a, b). Then f(x) is an increasing function
on (a, b).

Proof. Suppose a < x1 < x2 < b. By Theorem 2.7, there exists p ∈ R+ − {1} and δ ∈ (x1, x2)
such that f(x2) − f(x1) = (Dpf)(δ)(x2 − x1). Since the right side of equality is nonnegative, we
have f(x2) ≥ f(x1). Hence, the proof is complete.

Theorem 3.5. Let 0 < a < b and p ∈ R+ − {1} and f(x) be a continuous function on [a, b] such
that for every p ∈ R+ − {1}, we have (Dpf)(x) ≤ 0 on (a, b). Then f(x) is a decreasing function
on (a, b).

Proof. The proof is similar to the proof of Theorem 3.4.

Definition 3.6. Let f(x) be a real value function defined on (a, b) where −∞ ≤ a < b ≤ ∞. Then,
f(x) is called convex if for any two point x and y in (a, b) and any λ where 0 ≤ λ ≤ 1,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Lemma 3.7. If f(x) is a convex function on (a, b) and a < s < t < u < b, then we have

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
.
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Theorem 3.8. Let p ∈ R+ − {1} and f(x) be a convex function on I = (0,+∞). Then (Dpf)(x)
is increasing on I − {1}.

Proof. We prove the result only for the case p ∈ (0, 1). The proof for the case p > 1 is similar.
We consider the following three cases.
Case 1. Let 0 < x < y < 1. Thus, we have 0 < x < xp < yp < 1 and 0 < x < y < yp < 1. By
Lemma 3.7, we have

f(xp)− f(x)

xp − x
≤ f(yp)− f(x)

yp − x
≤ f(yp)− f(y)

yp − y
.

Therefore, (Dpf)(x) ≤ (Dpf)(y).
Case 2. Let 1 < x < y <∞. Thus, we have 1 < xp < x < y <∞ and 1 < xp < yp < y <∞. By
Lemma 3.7, we have

f(x)− f(xp)

x− xp
≤ f(y)− f(xp)

y − xp
≤ f(y)− f(yp)

y − yp
.

Therefore, (Dpf)(x) ≤ (Dpf)(y).
Case 3. Let 0 < x < 1 < y <∞. Thus, we have 0 < x < xp < yp < y <∞ and

f(xp)− f(x)

xp − x
≤ f(yp)− f(xp)

yp − xp
≤ f(y)− f(yp)

y − yp
.

Therefore, (Dpf)(x) ≤ (Dpf)(y). This complete the proof.

Corollary 3.9. Let p ∈ R+−{1} and f(x) be a convex function on I = (0,+∞). Then D2
pf(x) ≥ 0

for all x ∈ I − {1}.

Proof. (The first way). By Theorem 3.8 and also Theorem 3.2 the statement follows.
(The second way). We prove the result only the case p ∈ (0, 1). The case when p > 1 can be proved
in a similar way. By the definition of p-derivative, we have

D2
pf(x) = Dp(Dpf)(x) =

Dpf(xp)−Dpf(x)

xp − x
=

1

xp − x

(
f(xp

2

)− f(xp)

xp2 − xp
− f(xp)− f(x)

xp − x

)
.

If 0 < x < 1, then 0 < x < xp < xp
2

< 1 and by Lemma 3.7, we have

f(xp)− f(x)

xp − x
≤ f(xp

2

)− f(xp)

xp2 − xp
,

and it implies, D2
pf(x) ≥ 0. If x > 1, then 1 < xp

2

< xp < x and

f(xp)− f(xp
2

)

xp − f(xp2)
≤ f(x)− f(xp)

x− xp
,

and therefore, D2
pf(x) ≥ 0.

Definition 3.10. Let 0 < a < b and p ∈ R+ − {1} and f(x) be a real value function defined on
(a, b). Then,



166 A. Neamaty, M. Tourani

(i) Operator Dpf is increasing respect to p on (a, b) if Dp1f(x) ≤ Dp2f(x) for all p1 < p2.

(ii) Operator Dpf is decreasing respect to p on (a, b) if Dp1
f(x) ≥ Dp2

f(x) for all p1 < p2.

Theorem 3.11. Let p ∈ R+ − {1} and f(x) be a convex function on I = (1,+∞). Then Dpf is
increasing respect to p on (1,+∞).

Proof. We prove the result only the case 0 < p1 < p2 < 1. Cases when 1 < p1 < p2 or p1 < 1 < p2,
can be proved in a similar way. For every x > 1, we have 1 < xp1 < xp2 < x, and by Lemma 3.7,

we have
f(x)− f(xp1)

x− xp1
≤ f(x)− f(xp2)

x− xp2
, and it implies Dp1f(x) ≤ Dp2f(x).

Theorem 3.12. Let p ∈ R+ − {1} and f(x) be a convex function on I = (0, 1). Then Dpf is
decreasing respect to p on (0, 1).

Proof. The proof is similar to the proof of Theorem 3.11.

4 Mean value theorems for p-integrals

In this section we present mean value theorems for p-integrals.

Theorem 4.1. Let f(x) be a continuous function on [0, b] (b > 0). Then for every p ∈ (0, 1), there

exists δ ∈ [0, b] such that
1

b

∫ b

0
f(x)dpx = f(δ).

Proof. It is sufficient to prove the result for the case b > 1. Since f(x) is a continuous function
[0, b] , there exist m and M such that for each x ∈ [0, b], m ≤ f(x) ≤ M . Let p ∈ (0, 1). Then,

for any j ∈ {0,±1,±2,±3, ...}, we have pp
j ∈ (0, 1) and m ≤ f(pp

j

) ≤ M , and also for any

j ∈ {0, 1, 2, 3, ...}, we have bp
j ∈ (1, b] and m ≤ f(bp

j

) ≤M . Hence,

∞∑
j=−∞

(pp
j+1

− pp
j

)f(pp
j

) +

∞∑
j=0

(bp
j

− bp
j+1

)f(bp
j

) ≤
∞∑

j=−∞
(pp

j+1

− pp
j

)M +

∞∑
j=0

(bp
j

− bp
j+1

)M

= M +M(b− 1) = Mb,

also,

∞∑
j=−∞

(pp
j+1

− pp
j

)f(pp
j

) +

∞∑
j=0

(bp
j

− bp
j+1

)f(bp
j

) ≥
∞∑

j=−∞
(pp

j+1

− pp
j

)m+

∞∑
j=0

(bp
j

− bp
j+1

)m

= m+m(b− 1) = mb.

Now by Remark 1.10 and Property 1.11 , we have m ≤ 1

b

∫ b

0
f(x)dpx ≤ M . By the intermediate

value theorem, there exists δ ∈ [0, b] such that
1

b

∫ b

0
f(x)dpx = f(δ).

Theorem 4.2. Let f(x) be a continuous function on [a, b] (a > 0). Then, there exists p
′ ∈ (0, 1)

such that for every p ∈ (p
′
, 1) there exists δ ∈ (a, b) such that

1

b− a
∫ b

a
f(x)dpx = f(δ).
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Proof. By Note 1.5 and Note 1.9 and also Corollary 1.12, we have limp→1

∫ b

a
f(x)dpx =

∫ b

a
f(x)dx.

Thus, for every ε > 0, there exists p0 ∈ (0, 1) such that for all p ∈ (p0, 1), we have∫ b

a

f(x)dx− ε <
∫ b

a

f(x)dpx <

∫ b

a

f(x)dx+ ε.

By the mean value theorem for integrals, there exists c ∈ (a, b) such that
1

b− a
∫ b

a
f(x)dx = f(c).

Let ε ≤ (b− a) min{M − f(c), f(c)−m}, where m and M are the minimum and maximum of f(x)
on [a, b], respectively. Hence, there exists p

′ ∈ (0, 1) such that for all p ∈ (p
′
, 1),

f(c)− ε

b− a
<

1

b− a

∫ b

a

f(x)dpx < f(c) +
ε

b− a
.

It implies, m <
1

b− a
∫ b

a
f(x)dpx < M and therefore, there exists δ ∈ (a, b) such that

1

b− a

∫ b

a

f(x)dpx = f(δ).

proving the intended result.

Theorem 4.3. Let f(x) and g(x) be some continuous functions on [a, b] (a ≥ 0). Then, there
exists p

′ ∈ (0, 1) such that for all p ∈ (p
′
, 1) there exists δ ∈ (a, b) such that∫ b

a

f(x)g(x)dpx = g(δ)

∫ b

a

f(x)dpx.

Proof. Suppose f is not constant function zero. By the second mean value theorem for integrals,

there exists c ∈ (a, b) such that
∫ b

a
f(x)g(x)dx = g(c)

∫ b

a
f(x)dx. Hence, we have

lim
p→1

∫ b

a

f(x)g(x)dpx = g(c) lim
p→1

∫ b

a

f(x)dpx,

or

lim
p→1

∫ b

a
f(x)g(x)dpx∫ b

a
f(x)dpx

= g(c).

Thus, for every ε > 0, there exists p0 ∈ (0, 1) such that for p ∈ (p0, 1), we have

g(c)− ε <
∫ b

a
f(x)g(x)dpx∫ b

a
f(x)dpx

< g(c) + ε.

Since g(x) is a continuous function on [a, b], there exist mg and Mg such that for each x ∈ [a, b],

mg ≤ g(x) ≤Mg. Let ε ≤ min{Mg − g(c), g(c)−mg}. Hence, there exists p
′ ∈ (0, 1) such that for

all p ∈ (p
′
, 1), mg <

∫ b

a
f(x)g(x)dpx∫ b

a
f(x)dpx

< Mg. Therefore, there exists δ ∈ (a, b) such that

∫ b

a

f(x)g(x)dpx = g(δ)

∫ b

a

f(x)dpx.



168 A. Neamaty, M. Tourani

References

[1] K.A. Aldwoah, Generalized time scales and associated difference equations, Ph.D. thesis, Cairo
University, 2009.

[2] K.A. Aldwoah, A.E. Hamza, Difference time scales, Int. J. Math. Stat. 9, no. A11, 106125,
2011.

[3] M.H. Annaby, Z.S. Mansour, q-Fractional Calculus and Equations, Springer-Verlag, Berlin
Heidelberg, 2012.

[4] A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory, New York,
Springer, 2013.

[5] T. Ernst, The history of q-calculus and a new method, Thesis, Uppsala University, 2001.

[6] T. Ernst, A comprehensive treatment of q-calculus, Springer Science, Business Media, 2012.

[7] F.H. Jackson, On q-functions and a certain difference operator, Trans. Roy Soc. Edin. 46,
(1908), 253–281.

[8] V. Kac, P. Cheung, Quantum calculus, Springer Science, Business Media, 2002.

[9] E. Koelink, Eight lectures on quantum groups and q-special functions, Revista colombiana de
Matematicas. 30, (1996), 93–180.

[10] T.H. Koornwinder, R.F. Swarttow, On q-analogues of the Fourier and Hankel transforms,
Trans. Amer. Math. Soc. 333, (1992), 445–461.

[11] A. Neamaty, M.Tourani, The presentation of a new type of quantum calculus, Tbilisi Mathe-
matical Journal-De Gruyter, (2017), 15-28

[12] K.R. Parthasarathy, An introduction to quantum stochastic calculus, Springer Science, Busi-
ness Media, 2012.

[13] J. Stirling, Methodus Differentialis, London, 1730.

[14] B. Taylor, Methods Incrementorum, London, 1717.


	Some results on p-calculus A. Neamaty1,* and M. Tourani2
	Introduction and preliminaries
	Mean value theorems for p-derivatives
	Monotone or convex function and its p-derivative
	Mean value theorems for p-integrals


