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The maximal variance of Lipschitz functions (with respect to the l
1
-distance) of independent random

vectors is found. This is then used to solve the isoperimetric problem, uniformly in the class of product

probability measures with given variance.
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1. Statements

Let � � ��1; . . . ; �n� be a vector of independent random variables with ®nite variance

�
2

i � var �i; 1 � i � n. Denote by f1 the class of all functions on R
n
which are Lipschitz

with respect to the l
1
-distance

d1�x; y� � kxÿ yk1 �

X

n

k�1

jxk ÿ ykj; x; y 2 R
n
:

By de®nition, f 2f1; if for all x; y 2 R
n
; j f �x� ÿ f �y�j � d1�x; y�. Let Sn � �1 � . . .� �n:

Theorem 1. In the class f1, the maximal value of var f ��� is attained at the function

f �x� � x1 � . . .� xn. In other words, for any f 2f1,

var f ��� � varSn �

X

n

i�1

�
2

i : �1:1�

Fernique (1981, Theorem 3.2) proved an inequality similar to (1.1) for f 2f1 convex.

However, in that case � is only assumed to be symmetrically distributed, i.e. for all �i � �1,

the random vectors (�i�1; . . . ; �n�n� have the same distribution (of course, this assumption

holds if the �i are i.i.d. with a symmetric one-dimensional distribution). In contrast to

Fernique's di�cult proof, Theorem 1 can easily be obtained by induction.

Theorem 1 also has the following consequence: Denote by M
n
��� the family of all the

Bernoulli 2(3), 1996, 249±255

1350-7265 # 1996 Chapman & Hall

*To whom correspondence should be addressed.



product measures � � �1 
 . . .
 �n on R
n
with given variance var��� � �

2
, where

var��� �

X

n

i�1

�

R

xÿ

�

r

td�i�t�

�

�

�

�

�

�

�

�

2

d�i�x�:

Hence, with the above notation, var��� � varSn. Now, given a set A � R
n
and h > 0,

denote by

A
h
� A� hB1 � fx 2 R

n
: d1�a; x� < h; for some a 2 Ag

the open h-neighbourhood of A �B1 is the open l
1
-unit ball in R

n
�. From Theorem 1 we

obtain a solution to the isoperimetric problem with respect to the l
1
-distance uniformly in

the class M
n
��� controlled by the parameter �.

Theorem 2. For any h > 0; � > 0 and p 2 �0; 1�,

inf
�2Mn

���

inf
� �A�� p

��A
h
� �

p; if h �
�

�����������������

p�1ÿ p�
p ;

1ÿ
p�

2

ph2 ÿ �
2
; if h �

�
�����������������

p�1ÿ p�
p :

8

>

>

>

<

>

>

>

:

�1:2�

The ®rst in®mum in (1.2) is taken over all the � 2M
n
���, the second is taken over all the

Borel sets A of �-measure greater or equal to p. In particular, from Theorem 2, we have:

Corollary 3. Given � > 0 and p 2 �0; 1�, one can guarantee that ��A
h
� > p regardless of the

dimension n � 1, regardless of the measure � 2M
n
���, and regardless of the setA � R

n
of �-

measure p, if and only if

h > h�p; �� �
�

�����������������

p�1ÿ p�
p :

Otherwise, it is possible to have ��A
h
� � p.

Equality in (1.2) is easy to obtain when n � 1. Indeed, denote by �x the unit mass at the

point x 2 R. If h � h�p; ��, take

� � p�0 � �1ÿ p��h�p;��; A � f0g:

Then, var��� � �
2
;A

h
� �ÿh; h�; so ��A

h
� � p � ��A�. If h � h�p; ��, take

� � p�0 � q�x � r�h; A � f0g;

with r � p�
2
=�ph

2
ÿ �

2
�; q � 1ÿ pÿ r; x � rh=�p� q�. Then it is again easy to verify that

var��� � �
2
, and that ��A

h
� � 1ÿ p�

2
=�ph

2
ÿ �

2
�.

Since equality in (1.2) is attained when n � 1, (1.2) will not change if the h-neighbour-

hood is de®ned with respect to the l
2
-distance, or, more generally, with respect to the l

�
-

distance in R
n
; 1 � � � �1. Indeed, the l

�
-unit ball B� is larger than B1, hence,

A� hB1 � A� hB�, and therefore ��A� hB1� � ��A� hB��. Hence, the same inequality

holds when one takes the second in®mum in (1.2). But all the balls B� coincide when n � 1

(in which case equality in (1.2) is attained).
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For individual measures � (for example, for those having ®nite exponential moments)

there exist estimates for 1ÿ ��A
h
� which decrease exponentially when h! �1 (see

Talagrand 1994). For example, given �i > 0; 1 � i � n, let � � �1 
 . . .
 �n 2M
n
���,

where �i � ���i � �
ÿ�i
�=2; �

2
� �

2

1 � . . .� �
2

n . Then, as shown in Talagrand (1994, Propo-

sition 2.1.1., Theorem 2.4.1.) (see also Ledoux 1994, p. 24, for an extension to non-identical

marginals), if h > 0; ��A� � p, then

��A� hB1� � 1ÿ
1

p
exp�ÿh

2
=4�

2
�: �1:3�

When all the �i � 1, the extremal sets minimizing ��A
h
�, while ��A� � p is ®xed, are

known, having been obtained by Harper (1966). If one minimizes ��A
h
� over all convex sets

A, the situation changes considerably, and we are then dealing with a much more powerful

concentration principle discovered by Talagrand (1988; 1994). In particular, when all the

�i � 1, one has

��A� hB2� � 1ÿ
1

p
exp�ÿh

2
=8�:

In our case, since one is looking for a uniformly minimal value of ��A� hB1�, it does not

matter whether one considers convex sets or arbitrary sets, since the extremal A � f0g is

convex.

To complete this section, we give an inequality which is actually equivalent to the second

part of (1.2). For non-empty sets A;B � R
n
, let d1�A;B� � inf fd1�a; b� : a 2 A; b 2 Bg.

Corollary 4. For any � 2M
n
���, and any non-empty Borel sets A;B � R

n
,

d1�A;B� � �

����������������������������

1

��A�
�

1

��B�
:

s

�1:4�

Let ��A� > 0; ��B� > 0 be such that ��A� � ��B� � 1. Then, choosing B � fhg with h

equal to the right-hand side of (1.4), it is easily seen that equality in (1.4) is attained at the

same measure � and for the same set A � f0g as the second inequality in (1.2).

2. Proofs

A statement slightly more general than Theorem 1 will actually be proved. Assume we have

n measurable spaces �Xk;�k� and n measurable functions hk � hk�xk; yk� de®ned on

Xk � Xk; 1 � k � n, and which vanish on the diagonal xk � yk. let �k be independent

random variables with values in Xk; 1 � k � n, such that

2�
2

k � Eh
2

k ��k; �k� < �1;

where �k is an independent copy of �k. Put � � ��1; . . . ; �n�.
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Lemma 5. Let f be a measurable function de®ned on X1 � . . .� Xn such that

j f �x� ÿ f �y�j �

X

n

k�1

hk�xk; yk�; �2:1�

for x � �x1; . . . ; xn�; y � �y1; . . . ; yn� 2 X1 � . . .� Xn. Then

var f ��� �

X

n

k�1

�
2

k : �2:2�

Proof. This lemma is proved by induction on the dimension n. For n � 1, and since 2var

f ��� �
� �

� f ��� ÿ f ����
2
d����d����, (2.2) is immediate. Assume now that (2.2) is true for

n. Denote by �n�1 the distribution of �n�1, and by Pn the distribution of the random vector

��1; . . . ; �n�, thus Pn�1 � Pn 
 �n�1 is the distribution of ��1; . . . ; �n�1�. Let f : X1 � . . .�

Xn�1 ! R satisfy (2.1). Now, ®x xn�1. Since the function g�x1; . . . ; xn� � f �x1; . . . ; xn; xn�1�

satis®es (2.1), making use of the induction hypotheses and writing (2.2) for g, we obtain:

�

g
2
dPn �

�

gdPn

� �

2

�

X

n

k�1

�
2

k : �2:3�

The function m�xn�1� �
�

gdPn is well de®ned, measurable and as a function of one

variable,

jm�xn�1� ÿm�yn�1�j � hn�1�xn�1; yn�1�:

Thus m satis®es (2.1), hence
�

m
2
d�n�1 �

�

md�n�1

� �

2

��
2

n�1: �2:4�

Integrating (2.3) over Xn�1 (with respect to �n�1), and taking into account (2.4), gives (2.2)

for f . Lemma 5 and thus Theorem 1 are proved. h

Proof of Theorem 2. Let A � R
n

be such that ��A� � p. Since the function

f �x� � infa2A d1�a; x� belongs tof1, we have, by Theorem 1, that var f � �
2
. In addition,

f � 0 and �� f � 0� � p. Note also that A
h
� fx 2 R

n
: f �x� < hg. To get (1.2), it just

remains to appeal to the following result:

Lemma 6. For any h > 0; � > 0 and p 2 �0; 1�,

supP�� � h� �

1ÿ p; if h �
�

�����������������

p�1ÿ p�
p ;

p�
2

ph2 ÿ �2
; if h �

�
�����������������

p�1ÿ p�
p ;

8

>

>

>

<

>

>

>

:

�2:5�

where the supremum is taken over all non-negative random variables � on a probability space

�
;b;P� such that P�� � 0� � p and var � � �
2
.
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Proof. Denote by l��� the distribution of �. The cases of equality in (2.5) were, in fact,

already settled in Section 1. If

h � h�p; ��; l��� � p�0 � �1ÿ p��h �p;��;

then var��� � �
2
;P�� � 0� � p;P�� � h� � 1ÿ p. If

h > h�p; ��; l��� � p�0 � q�x � r�h;

where r � p�
2
=�ph

2
ÿ �

2
�; q � 1ÿ pÿ r; x � rh=�p� q�, then, as easily veri®ed, we have

var��� � �
2
;P�� � 0� � p, and P�� � h� � r � p�

2
�ph

2
ÿ �

2
�. So, one need only show

that whenever h � h�p; ��,

P�� � h� �
p�

2

ph2 ÿ �
2
: �2:6�

To prove this, we ®rst show, following a suggestion by M. Talagrand, that in (2.6) it

su�ces to consider only those � whose distribution is of the typel��� � p0�0 � p1�x � p2�h,

for some 0 � x < h. Then, keeping p2 constant, we maximize the functional J � p2 over all

p0 � p and x 2 �0; h� such that var��� � �
2
.

Note ®rst that in (2.6), � can be replaced by � � min��; h� since P�� � h� � P�� � h�,

while var��� � var��� � �
2
(� is a Lipschitz function of � : � � f ���, where f �t� �

min�t; h��. Then, let � take values in �0; h�, have distribution �, and assume that

��0; h� > 0. Then, � can (uniquely) be written as

� � p0�0 � p1�� p2�h;

where the distribution � is concentrated in �0; h�. Let �1 be a random variable whose

distribution is �, and let x � E��1�. Then

var��� � p1E��
2

1� � p2h
2
ÿ �p1x� p2h�

2

� p1var ��1� � p1�1ÿ p1�x
2
ÿ 2p1p2hxÿ p2h

2
:

Therefore, given the mean value x, var��� is minimal if and only if � � �x, when var

��1� � 0. Thus, � can be replaced in (2.6) by a random variable � which takes three values, 0,

x and h.

So let us assume that l��� � p0�0 � p1�x � p2�h, 0 � x < h; p0 � p; p1; p2 � 0;

p0 � p1 � p2 � 1. Again, J � p2 is constant. By simple algebra, and for ®xed p0; p1
; p2,

the minimal value of

var��� � �p1x
2
� p2h

2
� ÿ �p1x� p2h�

2
;

as a function of x in �0; h�, is attained at

x �
p2

p0 � p2
h:
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For this value of x, we ®nd

var��� � p1
p
2

2

�p0 � p2�
2
h
2
� p2h

2

 !

ÿ p1
p2

p0 � p2
h� p2h

� �

2

�

p2

�p0 � p2�
2
�p1p2 � �p0 � p2�

2
� ÿ

p
2

2

�p0 � p2�
2
�p1 � �p0 � p2��

2

" #

h
2

�

p2

�p0 � p2�
2
�p1p2 � �p0 � p2�

2
ÿ p2�h

2

�

p0p2

p0 � p2
h
2
:

Now, we have to maximize J � p2 under the condition

var ��� �
p0p2

p0 � p2
h
2
� �

2
: �2:7�

From (2.7), when p0 decreases, var��� also decreases, while J � p2 � 1ÿ p0 ÿ p1 increases

(p1 is ®xed). Hence, to conclude, it is enough to consider only the case p0 � p. The possible

maximal value p2 � 1ÿ p satis®es (2.7) if and only if p�1ÿ p� � �
2
=h

2
, that is, if and only

if h � h�p; ��. Otherwise, if h > h�p; ��, or even if h � h�p; ��, the maximal value of J � p2

is, according to (2.7), the value which satis®es

pp2

p� p2
h
2
� �

2
:

The only solution to this equation is given by

p2 �
p�

2

ph2 ÿ �
2
:

Lemma 6 follows. h

Proof of Corollary 4. Let p � ��A�; q � ��B�. If p � 0 or q � 0, there is nothing to prove. If

p� q > 1, then A \ B 6� ;, so d1�A;B� � 0. Thus, we need consider only the case p� q � 1.

Let p; q > 0; p� q � 1, and assume A \ B � ;. Note that

h � �

�����������

1

p
�

1

q

s

� h�p; ��:

Therefore, by (1.2),

1ÿ ��A
h
� �

p�
2

ph2 ÿ �2
� q;

and again by (1.2), for all h1 > h; 1ÿ ��A
h1
� < q. Hence, B \ �A

h1
nA� 6� ;, and therefore,

d1�A;B� � h1. Letting h1 ! h completes the proof. h
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