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We present an algorithm for exact simulation of a class of Itô’s diffusions. We demonstrate that when

the algorithm is applicable, it is also straightforward to simulate diffusions conditioned to hit specific

values at predetermined time instances. We also describe a method that exploits the properties of the

algorithm to carry out inference on discretely observed diffusions without resorting to any kind of

approximation apart from the Monte Carlo error.

1. Introduction

Applications of diffusion models are ubiquitous throughout science; a representative list

might include finance, biology, physics and engineering. In many cases the evolution of

some phenomenon is described by a scalar stochastic process X ¼ fX t; 0 < t < Tg
determined as the solution of a stochastic differential equation (SDE) of the type

dX t ¼ b(X t) dt þ � (X t) dBt, X0 ¼ x 2 R, t 2 [0, T ], (1)

driven by the Brownian motion fBt; 0 < t < Tg. The drift b and the coefficient function �
are presumed to satisfy the regularity conditions (locally Lipschitz, with a growth bound) that

guarantee the existence of a weakly unique, global solution of (1); see Kloeden and Platen

(1995: Chapter 4). In fact, we will restrict our attention to SDEs of the type

dX t ¼ Æ(X t) dt þ dBt, X0 ¼ x 2 R, t 2 [0, T ], (2)

for some drift function Æ, since (1) can be transformed into an SDE of unit coefficient under

mild additional conditions on � , by applying the transformation X t ! �(X t), where

�(x) ¼
ðx
z

1

� (u)
du, (3)

with z some element of the state space of X .

Simulation and inference for SDEs of the form (1) generally require some kind of
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discrete approximation (see, for example, Roberts and Stramer 2001; Kloeden and Platen

1995). To do this, an Euler approximation of the SDE might be used:

X tþ˜ ¼ X t þ Æ(X t)˜þ N (0, ˜):

Such methods are correct only in an infill asymptotic sense (i.e. as ˜ ! 0 with N˜ ¼ T ).

When applicable, our exact algorithm returns skeletons of exact paths of X .

The exact algorithm carries out rejection sampling using Brownian paths as proposals,

and returns skeletons of the target SDE (2) obtained at some random time instances. The

skeletons can be filled in later independently of X by interpolation of Brownian bridges. An

initial version of the exact algorithm was given in Beskos and Roberts (2005). Its most

demanding restriction was that the functional Æ2 þ Æ9 of the drift be bounded. In this paper

we describe an easier and more flexible method of applying the rejection sampling

algorithm proposed by Beskos and Roberts, but most importantly we substantially relax the

boundedness condition on the drift. Assuming that Æ2 þ Æ9 is bounded from below, we now

require that lim supu!1(Æ2 þ Æ9)(u) and lim supu!�1(Æ2 þ Æ9)(u) are not both þ1. Thus,

the method introduced in this paper can now be applied to a substantially wider class of

diffusion processes.

A major appeal of the exact algorithm is that it can be adapted to provide solutions to a

variety of challenging problems related to diffusion processes, and in this paper we explore

some of these possibilities. Maximum likelihood inference for discretely observed diffusions

is known to be particularly difficult, even when the drift and diffusion coefficients are

restricted to small-dimensional parametric classes. This problem has received considerable

attention in the last two decades from the statistical, applied probability and econometric

community; see, for example, Sørensen (2004) for a recent review and references. All

current methods are subject to approximation error, and are often either difficult to

implement or subject to substantial Monte Carlo error. We show how our simulation

algorithm can easily be used to provide efficient Monte Carlo maximum likelihood

estimators (MLEs).

The exact algorithm can also be used to simulate diffusion processes conditioned to hit

specific values at predetermined time instances (diffusion bridges). Contrary to all other

current simulation methods, with our approach the conditional simulation is in fact easier

than the unconditional simulation.

The structure of the paper is as follows. In Section 2 we present the Exact Algorithm. In

Section 3 we describe analytically the extension noted above; it requires the stochastic

calculus theory that makes possible a simulation-oriented decomposition of a Brownian path

at its minimum. Section 4 presents some results on the efficiency of the algorithm. In

Section 5 we apply our algorithm to simulate exactly from the otherwise intractable logistic

growth model. In Section 6 we demonstrate the use of the method for the simulation of

conditional diffusions and parametric inference. We finish in Section 7 with some general

remarks about the exact algorithm and possible extensions in future research.
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2. Retrospective rejection sampling for diffusions

Before we introduce the basic form of the exact algorithm we require the following

preliminary notation. Let C � C([0, T ], R) be the set of continuous mappings from [0, T ]

to R and ø be a typical element of C. Consider the coordinate mappings Bt : C ! R,

t 2 [0, T ], such that for any t, Bt(ø) ¼ ø(t) and the cylinder � -algebra C ¼
� (fBt; 0 < t < Tg). We denote by W x ¼ fWx

t ; 0 < t < Tg the Brownian motion starting

at x 2 R.

Let Q be the probability measure induced by the solution X of (2) on (C, C ), that is, the

measure with respect to which the coordinate process B ¼ fBt; 0 < t < Tg is distributed

according to X , and W the corresponding probability measure for W x. The objective is to

construct a rejection sampling algorithm to draw from Q. The Girsanov transformation of

measures (see, for instance, Øksendal 1998: Chapter 8) implies that

dQ

dW
(ø) ¼ exp

ðT
0

Æ(Bt) dBt �
1

2

ðT
0

Æ2(Bt) dt

� �
:

Under the condition that Æ is everywhere differentiable we can eliminate the Itô integral after

applying Itô’s lemma to A(Bt) for A(u) :¼
Ð u

0
Æ(y) dy, u 2 R. Simple calculations give

dQ

dW
(ø) ¼ exp A(BT ) � A(x) � 1

2

ðT
0

Æ2(Bt) þ Æ9(Bt)
� �

dt

� �
: (4)

To remove the possible inconvenience of A being unbounded and in any case to simplify the

Radon–Nikodym derivative of the two probability measures, we will use candidate paths

from a process identical to W x except for the distribution of its ending point. We call such a

process a biased Brownian motion.

We thus consider the biased Brownian motion defined as ŴW ¼d (W x jWx
T � h) for a

density h proportional to expfA(u) � (u� x)2=2Tg, u 2 R. It is now necessary that this

function is integrable. Let Z be the probability measure induced on (C, C ) by this process.

Note that it is straightforward to simulate a skeleton of ø � Z just by simulating first its

ending point ø(T ) � h. The measures Z and W are equivalent and their Radon–Nikodym

derivative can be easily derived from the following proposition, proved in the Appendix:

Proposition 1. Let M ¼ fMt; 0 < t < Tg, N ¼ fNt; 0 < t < Tg be two stochastic

processes on (C, C ) with corresponding probability measures M, N. Assume that f M , f N
are the densities of the ending points MT and NT respectively, with identical support R. If it

is true that (M jMT ¼ r) ¼d (N j NT ¼ r), for all r 2 R, then

dM

dN
(ø) ¼ f M

f N
(BT ):

Therefore, dW(ø)=dZ ¼ N x,T=h(BT ) / expf�A(BT )g, where N x,T represents the density of

the normal distribution with mean x and variance T , and
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dQ

dZ
(ø) ¼ dQ

dW
(ø)

dW

dZ
(ø) / exp �

ðT
0

1

2
Æ2(Bt) þ

1

2
Æ9(Bt)

� �
dt

� �
:

Assume now that (Æ2 þ Æ9)=2 is bounded below. Then we can obtain a non-negative function

� such that

dQ

dZ
(ø) / exp �

ðT
0

�(Bt) dt

� �
< 1, Z-almost surely: (5)

Analytically, � is defined as

�(u) ¼ Æ2(u) þ Æ9(u)

2
� k, u 2 R, for a fixed k < inf

u2R
(Æ2 þ Æ9)(u)=2: (6)

We now summarize the three conditions that allow the derivation of (5):

1. The drift function Æ is differentiable.

2. The function expfA(u) � (u� x)2=2Tg, u 2 R, for A(u) ¼
ðu

0

Æ(y) dy, is integr-

able.

3. The function (Æ2 þ Æ9)=2 is bounded below.

In a simulation context, were it possible to draw complete continuous paths ø � Z on [0, T ]

and calculate the integral involved in (5) analytically, then rejection sampling on the

probability measures Q, Z would be straightforward. The exact algorithm manages to

circumvent these difficulties in order to carry out exact rejection sampling using only finite

information about the proposed paths from Z. Given a proposed path ø � Z, it defines an

event of probability expf�
Ð T

0
�(Bt) dtg. The truth or falsity of this event can be determined

after unveiling ø only at a finite collection of time instances. The rejection sampling scheme

is carried out in a retrospective way since the realization of the proposed variate (the path

ø � Z) at some required instances follows that of the variates that decide for the acceptance

or not of this proposed variate. The idea of retrospective sampling, in a different context, is

introduced in Papaspiliopoulos and Roberts (2004), where it is applied to an MCMC

algorithm for Bayesian analysis from a Dirichlet mixture model.

We now present a simple theorem that demonstrates the idea behind the method.

Theorem 1. Let ø be any element of C([0, T ], R) and M(ø) an upper bound for the

mapping t 7! �(ø t), t 2 [0, T ]. If � is a homogeneous Poisson process of unit intensity on

[0, T ] 3 [0, M(ø)] and N is the number of points of � found below the graph

f(t, �(Bt)); t 2 [0, T ]g, then

P[N ¼ 0 jø] ¼ exp �
ðT

0

�(Bt) dt

� �
:

Proof: Conditionally on ø, N follows a Poisson distribution with mean
Ð T

0
�(Bt) dt. h

Theorem 1 suggests that were it possible to generate complete, continuous paths ø � Z of

the biased Brownian motion ŴW then we could carry out rejection sampling on Q, Z without
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having to evaluate the integral involved in (5); we would only have to generate a realization

of the Poisson process � and check if all the points of � fall above the �-graph to decide on

the acceptance (or rejection in any other case) of ø.

The simple observation that only finite information about some ø � Z suffices for the

algorithm to decide about it will yield a simple, valid rejection sampling scheme which

involves finite computations. The technical difficulty of locating a rectangle for the

realization of the Poisson process, or equivalently an upper bound for the map t 7! �(ø t),

imposes some restrictions on the applicability of the algorithm.

2.1. The case when � is bounded

Let M be an upper bound of �. This is the simple case and is similar to the one considered

in Beskos and Roberts (2005). We now devise a different approach which is simpler and

even more efficient than the one presented by Beskos and Roberts. Moreover, this method is

particularly useful for the more general case of Section 3. Based on Theorem 1 and (5), we

can generate a feasible rejection sampling scheme just by thinking retrospectively, that is,

first realizing the Poisson process and then constructing the path ø � Z only at the time

instances required to determine N .

Exact Algorithm 1

1. Produce a realization fx1, x2, . . . , x�g, of the Poisson process � on

[0, T ] 3 [0, M], where xi ¼ (xi,1, xi,2), 1 < i < �.

2. Simulate a skeleton of ø � Z at the time instances fx1,1, x2,1, . . . , x�,1g.

3. Evaluate N .

4. If N ¼ 0 go to step 5, else go to step 1.

5. Output the currently constructed skeleton S(ø) of ø.

Exact Algorithm 1(EA1) returns an exact skeleton of X and is shown (see Section 4) to

run in finite time. In Section 4 we present details about the efficiency of the algorithm.

When a skeleton S(ø) is accepted as a realization from Q, we can continue constructing it

according to Z, that is, using Brownian bridges between the successive currently unveiled

instances of ø. In this way, the corresponding path of Q can be realized at any requested

time instances.

Figure 1 illustrates the retrospective idea behind EA1. Figure 1(b) emphasizes the fact

that skeletons can be readily filled in using independent Brownian bridges and without

further reference to the dynamics of the target process X . This is precisely the property we

shall exploit in Section 6.1 to carry out maximum likelihood parametric inference.
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3. The case when either lim supu!1 �(u) , 1 or

lim supu!�1�(u) , 1
It is well-known that it is possible to construct a Brownian path (or a biased Brownian path

such as ŴW ) on a bounded time interval after simulating first its minimum (or maximum)

and then the rest of the path using Bessel(3) processes. For definitions and properties of

Bessel processes, see, for instance, Karatzas and Shreve (1991) and Revuz and Yor (1991).

We will exploit this decomposition of the Brownian path to present an extension of EA1

when either lim supu!1 �(u) , 1 or lim supu!�1 �(u) , 1. Without loss of generality,

we will consider the case when lim supu!1 �(u) , 1; it is then possible to identify an

upper bound M(ø) for the mapping t 7! �(ø t), t 2 [0, T ], after decomposing the proposed

path ø at its minimum, say b, and considering

M(ø) � M(b) ¼ supf�(u); u > bg , 1: (7)

By symmetry, the same theory covers the case when lim supu!�1 �(u) , 1. To describe the

decomposition of a Brownian path at its minimum we need to recall some properties of

Brownian motion.

3.1. Decomposing the Brownian path at its minimum

Let W ¼ fWt; 0 < t < Tg be a Brownian motion starting at 0, mT ¼ inffWt; 0 < t < Tg
and ŁT ¼ supft 2 [0, T ] : Wt ¼ mTg. Then, for any a 2 R,

Figure 1. The retrospective idea: crosses (3) show the points from a realization fx1, . . . , x5g of �.

The black dots in (a) show the only instances of the path �(ø t) we needed to realize before accepting

(since N ¼ 0) the corresponding unveiled instances of ø (the black dots in (b)) as an exact skeleton

of X . Intermediate points of the skeleton are obtained via Brownian bridges between successive

instances of it.
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P[mT 2 db, ŁT 2 dt jWT ¼ a] / b(b� a)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t3(T � t)3

p exp � b2

2t
� (b� a)2

2(T � t)

� �
db dt, (8)

with b < minfa, 0g and t 2 [0, T ]. For the derivation of this distribution see, for instance,

Karatzas and Shreve (1991: Chapter 2). In the following proposition (proved in the Appendix)

we describe a simple algorithm for drawing from (8). We denote by Unif(0, 1) the uniform

distribution on (0, 1) and by IGau(�, º), � . 0, º . 0, the inverse Gaussian distribution with

density

IGau(�, º, u) ¼
ffiffiffiffiffiffiffiffiffiffiffi
º

2�u3

r
exp � º(u� �)2

2�2u

� �
, u . 0:

A very simple algorithm for drawing from this density is described in Devroye (1986:

Chapter IV). We take I½a , b� to be 0 if a . b and 1 otherwise, for any a, b 2 R.

Proposition 2. Let E(1) be a random variable distributed according to the exponential

distribution with unit mean and Z1 ¼ (a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 TE(1) þ a2

p
)=2. If Z1 ¼ b is a realization of

Z1, set c1 ¼ (a� b)2=2T, c2 ¼ b2=2T . Let U � Unif(0, 1), I1 � IGau(
ffiffiffiffiffiffiffiffiffiffiffi
c1=c2

p
, 2c1) and

I2 � 1=IGau(
ffiffiffiffiffiffiffiffiffiffiffi
c2=c1

p
, 2c2) independently, and define

V ¼ I[U , (1 þ
ffiffiffiffiffiffiffiffiffiffiffi
c1=c2

p
)�1] � I1 þ I[U > (1 þ

ffiffiffiffiffiffiffiffiffiffiffi
c1=c2

p
)�1] � I2:

Then the pair (Z1, Z2), for Z2 :¼ T=(1 þ V ), is distributed according to (8).

Recall from the definition of ŴW that to construct a path ø � Z it is necessary that we first

draw its ending point. Thus, we actually have to decompose a Brownian bridge at its

minimum which justifies the conditioning on WT at (8). Proposition 2 provides precisely the

method for drawing the minimum and the time instance when it is achieved for a path ø � Z

given its ending point; Theorem 2 below gives the way of filling in the remainder of ø;

Figure 2 illustrates the construction.

We denote by R(�) ¼ fRt(�); 0 < t < 1g a three-dimensional Bessel bridge of unit

length from 0 to � > 0 and by W c ¼ ( W j mT ¼ b, ŁT ¼ t, WT ¼ a ) the Brownian motion

of length T starting at 0 and conditioned on obtaining its minimum b at time t and ending

at a.

Theorem 2. The processes fWc
s ; 0 < s < tg and fWc

s ; t < s < Tg are independent with

fWc
s ; 0 < s < tg ¼d

ffiffi
t

p
fR( t�s)= t(�1); 0 < s < tg þ b,

fWc
s ; t < s < Tg ¼d

ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
fR(s� t)=(T� t)(�2); t < s < Tg þ b,

where �1 ¼ �b=
ffiffi
t

p
and �2 ¼ (a� b)=

ffiffiffiffiffiffiffiffiffiffiffi
T � t

p
.

Proof: This is Proposition 2 of Asmussen et al. (1995) with the difference that we have

rescaled the Bessel processes to obtain bridges of unit length and the Brownian path to

incorporate the case where decomposition of a path of arbitrary length T is requested. h
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It is well known (see Bertoin and Pitman 1994) that if Wbr
1 , Wbr

2 , Wbr
3 are three independent

standard Brownian bridges (bridges of unit length, starting and ending at 0) then we can

produce a Bessel bridge R(�) as:

Rt(�) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(� � t þ Wbr

1, t)
2 þ (Wbr

2, t)
2 þ (Wbr

3, t)
2

q
, t 2 [0, 1]:

Recall also (Bertoin and Pitman 1994) that a standard Brownian bridge W br can easily be

expressed in terms of an unconditional Brownian motion W starting at 0 via the

transformation Wbr
t ¼ Wt � t W1.

3.2. The extension of the exact algorithm

Theorem 2 makes possible the construction of a subroutine, say decompose

(T , �0, �T , t, b, s), that returns the location at the time instances s ¼ fs1, . . . , sng of a

Brownian path on [0, T ] starting at �0, conditioned on obtaining its minimum b at time t

and finishing at �T . Furthermore, from Proposition 2, we can extend EA1 for exact

simulation from (2) when the functional � > 0 considered in (5) is not necessarily bounded

above but satisfies the weaker condition lim supu!1 �(u) , 1. In translating the

Figure 2. The decomposition of ø � Z, at its minimum. The order in the simulation of the involved

random elements is øT , mT , ŁT . The two independent Bessel bridges connect the already simulated

instances of ø.
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construction to the present setting, the Poisson process � defined in Theorem 1 in this case

is a point process on rectangles whose height depends on the current proposed path ø.

Exact Algorithm 2

1. Initiate a path ø � Z on [0, T ] by drawing øT � h.

2. Simulate its minimum m and the moment Ł when it is achieved.

3. Find an upper bound M(m) for t 7! �(ø t), t 2 [0, T ].

4. Produce a realization fx1, x2, . . . , x�g of � in [0, T ] 3 [0, M(m)].

5. Call decompose( ) to construct ø at fx1,1, x2,1, . . . , x�,1g.

6. Evaluate N .

7. If N ¼ 0 go to step 8, else go to step 1.

8. Output the currently constructed skeleton S(ø) of ø.

Note that, in comparison with the skeleton returned by EA1, in Exact Algorithm 2 (EA2)

the skeleton S(ø) is more informative about the underlying continuous path ø since it

includes its minimum and the instance when it is achieved. As with the initial algorithm, we

can continue filling in the accepted skeleton S(ø) at any other time instances under the two

independent Bessel bridges’ dynamics.

4. The efficiency of the exact algorithms

It is critical for the efficiency of the exact algorithm that we can exploit the Markov

property of the target diffusion X (2) and merge skeletons of some appropriately chosen

length T (or even of varying lengths) to construct a complete skeleton on some larger

interval. In what follows we preserve T to denote the length of the time interval upon

which the exact algorithm is applied (and which is typically smaller than the length, say l,

of the sample path of interest).

Assume that we apply the exact algorithm on X over the time interval [0, T ] for some

starting point x 2 R. Let E denote the probability of accepting a proposed path and D the

number of Poisson process points needed to decide whether to accept the proposed path.

Let N (T ) be the total number of Poisson process points needed until the first accepted path.

The following proposition is proved in the Appendix.

Proposition 3. Consider EA1 with � < M . Then

E > exp(�M � T ), E[D] ¼ M 3 T :

For EA2 with M ¼ M(ø) defined as in (7),

E > exp �E[M(m̂m)] � Tf g, E[D] ¼ E[M(m̂m)] 3 T ,

where m̂m is the minimum of a proposed path ø � Z. In both cases,

E[N (T )] < E[D] = E:
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It is natural to ask how we should implement the algorithms in order to simulate the diffusion

on the time interval [0, KT ] for some positive integer K. For concreteness, consider EA1.

Proposition 3 suggests that implementing the rejection sampling algorithm on the entire

interval will incur a computational cost which is O(KMT eKMT ), which will be huge even for

moderate K-values. On the other hand, the simulation problem can be broken down into K

simulations performed sequentially, each on an interval of length T , and each incurring a cost

which is O(MT eMT ) and therefore giving an overall cost which is O(KMT eMT ), linear in the

length of the time interval required.

Clearly there are important practical problems of algorithm optimization (by choosing T )

for simulating from a diffusion on a fixed time-scale. We shall not address these here,

except to remark that the larger M is, the smaller T ought to be.

It is difficult to obtain explicit results on the efficiency of EA2. From Proposition 3 it is

clear that to show that the algorithm runs in finite time we need to bound E[M(m̂m)], which

is difficult. The following proposition (proved in the Appendix) gives a general result we

have obtained, and which will be found useful in the case of the logistic growth model

example of Section 5.

Proposition 4. Assume that the drift function Æ is bounded below and there exist k . 0 and

b0 such that M(b) < exp(�kb) for b < b0. Then for any starting value x and any length T of

the time interval under consideration, E[M(m̂m)] , 1. Therefore for EA2, the expected

number of proposed Poisson points needed to accept a sample path is finite.

Note that once we have established a theoretical result about the finiteness of E[M(m̂m)] we

can easily proceed to a Monte Carlo estimation of its actual value.

4.1. User-impatience bias

Many non-trivial simulation schemes return results in unbounded, random times. If the

experiment is designed in such a way that its running time is not independent of the output,

then the results can be ‘user-impatience’ biased; the experimenter might be tempted (or

even obliged) to stop a long run and restart the simulation procedure. So the sample will be

biased towards the observations that require shorter runs. The case where this situation has

appeared in its most concrete form is the coupling from the past (CFTP) technique for the

perfect simulation of distributions using Markov chains. The discussion in Section 7 of

Propp and Wilson (1998) presents analytically the problem in the CFTP case.

A similar problem can be identified for EA2. The time to decide about the acceptance or

otherwise of the current proposed path ø depends on ø. If D is the number of Poisson

process points to decide about a proposed path, then E[D jø] ¼ T 3 M(m̂m(ø)), for T the

length of the time interval under consideration, m̂m(ø) the minimum of the path ø and M as

defined in (7). Since, in theory, the proposed path ø can produce any small value, it is

impossible to bound E[D jø] uniformly over all ø. For the example with the logistic growth

model we present in Section 5 we had to adjust the length T of the time interval to which

EA2 is applied, according to the values of the parameters. In this way we have not only
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approximately optimized efficiency, but also minimized the effects of the user-impatience

bias.

In line with the suggestions in Propp and Wilson (1998), the experimenter should try

some preliminary executions of the algorithm to obtain some evidence about the distribution

of the running time and, if necessary (and possible), redesign the algorithm so that this

distribution is of small variance.

5. Application: the logistic growth model

EA2 can be applied to the stochastic analogue of the logistic growth model:

dVt ¼ r Vt(1 � Vt=K) dt þ � Vt dBt, V0 ¼ v . 0, t 2 [0, T ], (9)

for positive parameters r, �, K. This diffusion is useful for modelling the growth of

populations. The instantaneous population of some species Vt grows, in the absence of any

restraints, exponentially fast in t with growth rate per individual equal to r. The actual

evolution of the population is cut back by the saturation-inducing term (1 � Vt=K). The

constant K . 0 is called the ‘carrying capacity’ of the environment and usually represents

the maximum population that can be supported by the resources of the environment. The

parameter � represents the effect of the noise on the dynamics of V . For an example of how

(9) can be derived, see Goel and Richter-Dyn (1974: Chapter 6).

After setting X t ¼ �log(Vt)=� we obtain the SDE

dX t ¼
�

2
� r

�
þ r

�K
exp(��X t)

� �
dt þ dBt, X0 ¼ x ¼ � log(v)

�
, t 2 [0, T ]: (10)

It can be shown using the theory of scale and speed densities (see Karlin and Taylor 1981:

Section 15.7), that the original process V with probability 1 does not hit 0 in finite time for

any values of the parameters, so considering log(Vt) is valid. Let Æ be the drift function of

the modified SDE (10). Then

(Æ2 þ Æ9)(u) ¼ r2

�2K2
exp(�2�u) � 2r2

�2K
exp(��u) þ �

2
� r

�

� �2

, u 2 R:

This mapping is bounded below and has the property lim supu!þ1(Æ2 þ Æ9)(u) , 1, so it

satisfies the conditions required for the applicability of EA2.

We follow the analysis of Section 2 to construct the Radon–Nikodym derivative (5) that

is appropriate for rejection sampling. The ending point of the biased Brownian motion ŴW

must be distributed according to a density h proportional to

exp
�

2
� r

�

� �
u� r

�2K
e��u � (u� x)2

2T

� �
/ exp � (u� g1)2

2T
� g2e��u

� �
, u 2 R, (11)

for g1 ¼ xþ T (�=2 � r=�), g2 ¼ r=(�2K). We can draw from this density in a very efficient

way via rejection sampling with envelope function
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exp � (u� g1)2

2T
� g2e�� g1 (1 � �(u� g1))

� �
, u 2 R,

This function is proportional to an N (g1 þ T�g2e�� g1 , T ) density. We can now obtain (5) for

Z the probability measure that corresponds to the biased Brownian motion ŴW with ending

point ŴWT distributed according to (11) and

�(u) ¼ r2

2�2K2
e�2�u � r2

�2K
e��u þ r2

2�2
> 0, u 2 R,

If b is the minimum of a proposed path ø � Z we can use (7) to find an upper bound for the

mapping t 7! �(ø t):

M(ø) � M(b) ¼ maxf�(b), r2=2�2g:

It is now easy to apply the algorithm. Empirical evidence suggests that the efficiency of EA2

for this problem is sensitive to r, � and the ratio v=K. Table 1 gives a comparison of running

times as parameters vary in all simulations we have taken K ¼ 1000. Since we can take

advantage of the Markov property of the process V to merge exact skeletons of some

appropriate length T to reach the instance l ¼ 10, we have approximately optimized over the

choice of T in each case. We also compare the results with the Euler scheme that

approximates (9) with the discrete time process:

Y0 ¼ v, Y(iþ1)h ¼ Yih þ r Yih(1 � Yih=K) hþ � Yih Z(iþ1)h, i > 0,

where fZ(iþ1)hgi>0 are independent and identically distributed with Zh � N (0, h). We

applied the Euler scheme for increments of the type h ¼ 2�n, for n ¼ 1, 2, . . . . To find the

increment h that generates a good approximation to the true process, we carried out four

separate Kolmogorov–Smirnov tests on pairs of samples of size 105 from X t, Yt, for

t ¼ 1=2, 1, 5, 10 (all eight samples were independent) and found the maximum h for which

at least three of the four tests did not reject the null hypothesis of equivalence in distribution

of the two samples at a 10% significance level. This ensures a significance level for the

composite test of 0:052.

From the evidence presented in Table 1 and other simulations we have performed, EA2

for the logistic growth model seems to be generally computationally quicker than the Euler

approximation. However, when r=� is very large, EA2 becomes rather slow. For r ¼ 1 and

� ¼ 0:1, for instance, the ‘sufficiently accurate’ Euler approximation appears to be

considerably more rapid, although of course Euler still only produces an approximation to

the true distribution.

To illustrate the output obtained from the algorithm, Figure 3 shows an exact skeleton of

the target diffusion fVt; 0 < t < 1000g, V0 ¼ 1000, for parameter values K ¼ 1000,

r ¼ 0:5, and � ¼ 0:5 as generated by EA2. We applied EA2 at time intervals of length

T ¼ 0:5 and we show the instances of the skeleton for the times t ¼ 0, 1, 2, . . . . We will

use these data in Section 6.1.
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Table 1. Comparative presentation of the EA2 and the Euler scheme as applied to the logistic growth

model for different parameter values. In each case, simulation was carried out over the time interval

[0, 10]. D denotes the mean number of Poisson process points needed to decide about a proposed

path; I denotes the mean number of proposed paths until (and including) the first successful one; and

T denotes the time interval used to apply the EA2. The times given represent the overall running time

to obtain a sample of 100 000 sample paths. The Euler simulations are given for sufficiently small h

to satisfy the composite Kolmogorov–Smirnov test described in the main text

Parameters Exact Euler

v r � T D I Time (s) h Time (s)

1000 0.01 0.10 5.00 0.0245 1.0011 1.2 2�5 19.4

50 0.01 0.10 5.00 0.0250 1.0228 1.9 2�3 7.8

1800 0.01 0.10 5.00 0.0367 1.0173 1.4 2�6 35.2

1000 1.00 1.00 0.25 0.1623 1.0652 21.6 2�9 256.9

1 1.00 1.00 0.25 0.1273 1.1174 22.3 2�8 137.9

3500 1.00 1.00 0.25 0.2396 1.0808 25.7 2�10 558.1

1000 1.00 0.10 0.10 5.0031 1.0223 284.2 2�6 35.4

750 1.00 0.10 0.10 5.0009 1.0458 291.7 2�7 86.4

1250 1.00 0.10 0.10 5.0000 1.0398 297.6 2�8 152.9

Figure 3. An exact skeleton of length 1000 of the logistic growth model (9), for r ¼ 0:5, � ¼ 0:5 and

initial value v ¼ 1000.
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6. Applications of the exact algorithm

6.1. Monte Carlo maximum likelihood for discretely observed diffusions

An important problem in inference from diffusions involves the calculation of maximum

likelihood estimators from a finite discrete set of observations of the diffusions. Assume

that the drift b and the diffusion coefficient � of the SDE in (1) have parametric forms

which depend on certain unknown parameters ł. As a running example in this section,

consider the logistic growth model (9), where ł ¼ (r, K, �). The goal is to find the MLE

of ł based on discrete-time observations of X , say X t0 ¼ x0, X t1 ¼ x1, . . . , X tn ¼ xn. It is

common practice to set t0 ¼ 0 and treat the first point x0 as fixed, although this is not

essential. Let pł(t, x, y) be the transition density of the diffusion process, that is, the

Lebesgue density of the transition measure P[X t 2 dy j X 0 ¼ x], which we index by ł to

denote its implicit dependence on the unknown parameters. The likelihood function is the

density of the observed data x1, . . . , xn (conditionally on X t0 ¼ x0) as a function of ł,

L(ł) ¼
Yn
i¼1

pł(ti � ti�1, xi�1, xi) ¼
Yn
i¼1

Li(ł), (12)

where we define

Li(ł) ¼ pł(ti � ti�1, xi�1, xi), i ¼ 1, . . . , n,

to be the likelihood contribution of the ith data point. Notice that the factorization in (12) is

due to the Markov property. The aim is to maximize (12) as a function of ł; however, this is

a daunting task since the transition density pł(t, x, y) is typically not analytically available.

Hence, this problem has attracted considerable attention and constitutes a very active area of

research; a recent review and references can be found in Sørensen (2004).

Here we present a simple, fast and efficient Monte Carlo method for estimating

Li(ł), i ¼ 1, . . . , n, for any given value ł. The MLE can then be found by a grid search

method, although more sophisticated stochastic search algorithms can also be applied for its

identification. Our approach is applicable whenever EA1 or EA2 can simulate from the

diffusion process which generates the data (or at least from the process transformed to have

unit diffusion coefficient). Thus, using our exact algorithm together with a variance

reduction technique, we provide independent unbiased estimators L̂L1(ł), . . . , L̂Ln(ł). We

proceed by describing how to find L̂L1(ł), since the derivation for any other i . 1 proceeds

in the same way.

Let ~ppł(t, x, y) be the transition density of the process (2) transformed to unit diffusion

coefficient, that is, of the process obtained by the transformation X t ! �(X t), where � is

defined in (3). Then

pł(t, x, y) ¼ ~ppł(t, �(x), �(y)) j�9(y)j,

where � might also depend on ł (as, for example, for the logistic growth model). Let S be a

skeleton of the transformed process starting at �(X 0) ¼ �(x), returned by our exact algorithm

on [0, t þ ª], ª . 0, for t � t1 the instance of the first datum. We can write
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S ¼ f(u0, �(Xu0
)), . . . , (ul, �(Xul

))g,

where u0 ¼ 0, ul ¼ t þ ª and �(Xu0
) ¼ �(x), but otherwise the time instances ui, 0 , i , l,

will be random. We define

~ppł(t, z, w j�) ¼ P[�(X t) 2 dw j �(X0) ¼ z, �]=dw

to be the density of �(X t) given the starting value and any other random elements. Then, by

the standard property of conditional expectation, we have

~ppł(t, �(x), �(y)) ¼ E[ ~ppł(t, �(x), �(y)jS)], when � is bounded,

E[ ~ppł(t, �(x), �(y)jS, mtþª, Łtþª)], when lim supu!1 �(u) , 1,

�

where mtþª is the minimum of the diffusion path and Łtþª is the time when the minimum

occurs. In the second case, both mtþª and Łtþª are elements of S (see the discussion at the

end of Section 3.2), but we write them separately to distinguish between the skeleton

produced by EA1 and EA2. To avoid excessively cumbersome notation, we will drop the

subscript t þ ª from both m and Ł in the rest of the section.

We first consider the case of EA1, when S is simulated as in Section 2.1. This is the case

when the functional � is bounded. Notice that due to the Markov property,

~ppł(t, �(x), �(y) j S) � ~ppł(t, �(x), �(y) j �(X t� ), �(X tþ)), (13)

where we define

t� � supfui, i ¼ 0, . . . , l : ui , tg, tþ � inffui, i ¼ 0, . . . , l : ui . tg:

By construction, both t� and tþ are well defined, since the skeleton contains at least the

instances u0 � 0 , t and ul � t þ ª . t. However, we have already argued (Section 2.1)

that, given the skeleton, the distribution of the process at any time s 2 (0, t þ ª) is given by

the law of the Brownian bridge between the points of the skeleton adjacent to s. Therefore,

(13) becomes

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� � Var

p exp � 1

2 � Var
�(y) � �(X t�) � t � t�

tþ � t�
(�(X tþ) � �(X t� ))

� �2
( )

, (14)

for Var ¼ (t � t�)(tþ � t)=(tþ � t�). Note that expression (14) does not depend on ł.

We turn now to EA2. When S is simulated as in Section 3, where we first simulate the

minimum of the diffusion paths, we have that

~ppł(t, �(x), �(y)jS, m, Ł) � ~ppł(t, �(x), �(y)j�(X t� ), �(X tþ), m, Ł): (15)

Let q(t, z, w) be the transition density of the three-dimensional Bessel process, which is

known analytically and can be readily computed (see, for example, Revuz and Yor 1991:

446). Then, using Theorem 2 and working from first principles, it can be shown that (15) is
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q
t � t�

t þ ª� Ł
,
�(X t�) � mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t þ ª� Ł
p ,

�(X t) � mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ ª� Ł

p
 !

3 q
tþ � t

t þ ª� Ł
,
�(X t) � mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ ª� Ł

p ,
�(X tþ) � mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t þ ª� Ł
p

 !

q
tþ � t�
t þ ª� Ł

,
�(X t�) � mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t þ ª� Ł
p ,

�(X tþ) � mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t þ ª� Ł

p
 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t þ ª� Ł
p ,

Ł , t,

q
tþ � t

Ł
,
�(X tþ) � mffiffiffi

Ł
p ,

�(X t) � mffiffiffi
Ł

p
� �

3 q
t � t�
Ł

,
�(X t) � mffiffiffi

Ł
p ,

�(X t�) � mffiffiffi
Ł

p
� �

q
tþ � t�

Ł
,
�(X tþ) � mffiffiffi

Ł
p ,

�(X t�) � mffiffiffi
Ł

p
� � ffiffiffi

Ł
p ,

Ł > t,

(16)

which, as in (14), does not depend on ł.

Therefore, we can now construct a Monte Carlo algorithm for the unbiased estimation of

L̂L1(ł), for any given value of ł. We describe it analytically for the more involved situation

where S is simulated as in Section 3; it is clear how to modify the algorithm for the

simpler case when � is bounded.

Monte Carlo estimation of L1(ł)

1. For j ¼ 1 : k, repeat:

2. Using the exact algorithm, return a skeleton S j on [0, t1 þ ª] starting from

�(X t0 ) ¼ �(x0). Let (Ł j, mj) be the time and value of the minimum of S j.

3. Compute ~pp(t1, �(x0), �(x1)jS j, mj, Ł j) according to (16).

4. Go to step 1.

5. Output the estimate

L̂L1(ł) ¼ 1

m

Xm
j¼1

~pp(t1, �(x0), �(x1)jS j, mj, Ł j) j�9(x1)j:

As an initial illustration of the validity of the algorithm we implemented it for the case

of the Brownian motion with drift X t ¼ at þ � Bt with parameters ł ¼ (a, � ) when the

likelihood over a set of data is explicitly known. We generated a data set fX 0,

X 1, . . . , X 1000g, X0 ¼ 0, after using a ¼ 1 and � ¼ 1 and applied the algorithm that uses

the Bessel process described above (although we could have used the simpler algorithm

with the Brownian bridges). For this trivial example the exact algorithm will propose paths

from a probability measure that coincides with the probability measure of the target process

X , so they will be accepted with probability 1 and the skeletons S j will always include

precisely three points obtained at the instances u0 ¼ 0, u1 ¼ Łtþª and u2 ¼ t þ ª. In our

case, t ¼ 1; also, we chose ª ¼ 0:5. Figure 4 shows the logarithm of the actual profile

likelihoods for the two parameters and their estimation as provided by our algorithm for

5000 Monte Carlo iterations and a grid (for both parameters) of increment 0.05.

1092 A. Beskos, O. Papaspiliopoulos and G.O. Roberts



We then applied our algorithm to the logistic growth model (9) and for the data shown

in Figure 3 which are generated for K ¼ 1000, r ¼ 0:5, � ¼ 0:5 and initial value

v ¼ 1000. The data are equidistant with time increment 1 and are obtained on the time

interval [0, 1000]. We considered K as known and tried to find the MLEs for r and �.

Figure 5 shows the logarithm of the profile likelihoods for both parameters as estimated

by our algorithm for 10 000 Monte Carlo iterations and grid increment 0:05; we used

ª ¼ 0:1.

The success of our Monte Carlo method lies in the fact that both ~pp(t, z, wjS) and

~pp(t, z, wjS, m, Ł) have known explicit forms, given in (14) and (16), respectively. Thus the

only source of Monte Carlo error is on the averaging over the skeletons. The technique of

obtaining closed-form expressions when conditioning on certain random variables, and then

averaging over these variables using Monte Carlo, is known as Rao–Blackwellization

(Gelfand and Smith 1990) and is a well-established variance reduction method. In this paper

we have only briefly outlined the potential of this method, and it will be pursued in detail in

subsequent work.

Figure 4. The actual and the estimated (based on 5000 samples) profile likelihoods for the parameters

a, � in the case of the Brownian motion with drift.

Figure 5. The estimated (based on 10 000 samples) profile likelihoods for the parameters r, � of the

logistic growth model.
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6.2. Exact simulation of conditioned diffusions

In this section, we address the problem of exact simulation from SDEs of type (2)

conditioned on XT ¼ y for a fixed y 2 R. This is an important problem, in particular for

problems of Bayesian inference for discretely observed diffusions. Recent advances in the

simulation of diffusion bridges include Roberts and Stramer (2001), Stuart et al. (2004) and

Chib et al. (2004).

We shall see that our exact methods extend easily to the problem of simulating diffusion

bridges. However, first we will demonstrate why conventional simulation methods are

problematic for conditioned diffusions.

If Y is a diffusion with the law of (2) conditioned on XT ¼ y, then it is well known (for

instance by h-transforms; see Rogers and Williams 2000: Section IV.39) that Y satisfies the

SDE

dYt ¼ dWt þ Æ(Yt) þ
@ log h(T � t, Yt)

@z

� �
dt, (17)

where h(s, z) is the density of the diffusion (2) starting from z at location y and time s, that

is, Pz(X s 2 dy)=dy. It satisfies the parabolic partial differential equation

@h(s, z)

@s
¼ 1

2

@2h(s, z)

@z2
þ Æ(z)

@h(s, z)

@z
: (18)

Conventional approximate methods for simulating from (17) pose great difficulties. They

require a preliminary numerical calculation of h from (18) and have to deal with the fact

that the drift explodes as t approaches T .

In contrast, the Radon–Nikodym derivative between the law of Y and that of a Brownian

bridge from (0, x) to (T , y) is proportional to

exp �
ðT

0

�(Bt) dt

� �

for � as defined in (6). So, the exact algorithm can easily be adapted to conditional

simulation simply by omitting the biased Brownian motion step (since BT is now considered

fixed). It will be feasible under conditions 1 and 3 given in Section 2 and the property that

lim supu!1 �(u) and lim supu!�1 �(u) are not both þ1.

7. Conclusions

This paper has introduced an algorithm for perfect simulation of diffusion processes,

relaxing some of the regularity conditions imposed by the previous method of Beskos and

Roberts (2005). The algorithm seems to be computationally efficient in many cases, as

demonstrated by our simulation study for the logistic growth model. Currently, we know

little about why the method’s efficiency relative to a standard Euler-scheme alternative

varies so considerably, and a systematic simulation study and theoretical analysis will be

required to investigate this further.
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We outline two potential application areas, both of which warrant further investigation.

The Monte Carlo maximum likelihood approach capitalizes on the form of the output given

by EA1 or EA2 to provide unbiased likelihood estimates. The computational efficiency of

this and related techniques will rely on being able to provide likelihood estimates which are

smooth as a function of the parameter, and with variances which are robust to data sample

sizes.

Simulation of conditioned diffusions is a straightforward by-product of EA1 or EA2.

However, there are a number of potentially important examples of it. Our primary

motivation comes from the need to carry out imputation of unobserved sample paths as part

of data-augmentation schemes for Bayesian inference for diffusions.

This paper has focused on the simulation of one-dimensional diffusions. Progress is

certainly possible for some multidimensional diffusions at least. For instance, for diffusions

which can be reduced by tranformation to unit diffusion coefficient (using a multivariate

analogue of (3)), the integration-by-parts argument leading to (4) generalizes trivially so

long as the diffusion drift can be written as the gradient of a suitable potential function.

Details of this generalization will appear in subsequent work.

The major unsolved problem in this area involves the simulation of diffusions whose drift

is not bounded in either tail. This is considerably more challenging than the case considered

here, mainly due to the difficulties with obtaining simple closed-form solutions to two-sided

boundary crossing problems for Brownian motion.

Appendix

Proof of Proposition 1. Recall that Bt, t 2 [0, T ], is the coordinate mapping on (C, C ), that

is, Bt(ø) ¼ ø(t) for any ø 2 C. The property (M jMT ¼ r) ¼d (N j NT ¼ r), for all r 2 R,

can be expressed in a rigorous way as

M[A j � (BT )] ¼ N[A j � (BT )], N-almost surely,

for any A 2 C. It suffices to prove that:

M[A] ¼ EN IA �
f M

f N
(BT )

� 	
, for any A 2 C,

where the index on the expectation shows the probability measure with respect to which this

expectation is considered. Simple calculations give:

EN IA �
f M

f N
(BT )

� 	
¼ EN EN IA �

f M

f N
(BT ) j � (BT )

� 	� 	
¼ EN

f M

f N
(BT ) � N[A j � (BT )]

� 	

¼ EM[N[A j � (BT )]] ¼ EM[M[A j � (BT )]] ¼ M[A]:

h

Proof of Proposition 2. From Karatzas and Shreve (1991: 95) we obtain
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P[mT 2 db jWT ¼ a] ¼ 2

T
(a� 2b)exp � (a� 2b)2

2T
þ a2

2T

� �
db, b < minfa, 0g:

We can easily derive the representation

[mT jWT ¼ a] ¼d (a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 TE(1) þ a2

p
)=2 � Z1:

It is clear from (8) that

P[ŁT 2 dt j mT ¼ b, WT ¼ a] / 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t3(T � t)3

p exp � b2

2t
� (a� b)2

2(T � t)

� �
dt, 0 < t < T :

If V :¼ (T � ŁT )=ŁT and f denotes the density of V conditionally on WT ¼ a, mT ¼ b then

f (y) / y�3=2 exp � c1

y
� c2 y

� �
þ y�1=2 exp � c1

y
� c2 y

� �
, y > 0, (19)

for c1 ¼ (a� b)2=2T, c2 ¼ b2=2T . This density can be identified as the mixture of an

IGau(
ffiffiffiffiffiffiffiffiffiffiffi
c1=c2

p
, 2c1) and 1=IGau(

ffiffiffiffiffiffiffiffiffiffiffi
c2=c1

p
, 2c2). The ratio of the integral of the left summand

in (19) to the integral of f is

p ¼ 1

1 þ
ffiffiffiffiffiffiffiffiffiffiffi
c1=c2

p ,

so with probability p we draw I1 � IGau(
ffiffiffiffiffiffiffiffiffiffiffi
c1=c2

p
, 2c1), and with probability 1 � p we draw

I2 � 1=IGau(
ffiffiffiffiffiffiffiffiffiffiffi
c2=c1

p
, 2c2). If we use U � Unif (0, 1) to decide on the choice between the

densities of the mixture we can obtain that for the Z2 defined in Proposition 2,

[Z2 j Z1 ¼ b] ¼d [ŁT j mT ¼ b, WT ¼ a]. h

Proof of Proposition 3. When � < M , it is clear from (5) that E > exp(�M � T ). Trivially,

Theorem 1 gives that E[D] ¼ M 3 T .

When lim supu!1 �(u) , 1 and M(b) ¼ supf�(u); u > bg, b 2 R, then we can bound E
using Jensen’s inequality:

E ¼ E exp �
ðT

0

�(ø t) dt

� �� 	
> E exp �M(m̂m) � Tf g½ � > exp �E[M(m̂m)] � Tf g:

Also, E[D] ¼ E[E[D j m̂m]] ¼ E[M(m̂m)] 3 T . For both cases, to estimate N (T ), assume that

fø1, ø2, . . .g is a sequence of proposed paths, Di is the number of Poisson process points

needed to decide on the acceptance or rejection of the ith proposed path for any i > 1, and

I ¼ inffi > 1 : øi is acceptedg. Assume also that E[D j A], E[D j Ac] are the expected

number of Poisson process points conditionally on accepting and rejecting the proposed path,

respectively. Then, if E[D] , 1,
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E[N (T )] ¼ E[D1 þ D2 þ . . . þ DI ] ¼ E[E[D1 þ D2 þ � � � þ DI j I]]

¼ E[(I � 1) � E[D j Ac] þ E[D j A]] ¼ 1

E
� 1

� �
E[D j Ac] þ E[D j A]

¼ E[D]

E
:

If E[D] ¼ 1 then E[N (T )] ¼ 1. h

Proof of Proposition 4. Ex[M(m̂m)] is decreasing in x; the minimum of the Z-path is

stochastically increasing in x and M(b) ¼ supf�(u); u > bg is decreasing. To simplify the

proof, we can choose x , b0; for this x, M(m̂m) < exp(�k m̂m) for any m̂m in its domain

(�1, x). Consider a real � such that Æ(u) > �, u 2 R. It can be easily shown that:

biased Brownian motion ŴW >
stoch:

Brownian motion (BM) with drift �, (20)

where both processes are considered on [0, T ] and for the same starting point x. This follows

after representing the Brownian motion with drift � as a biased Brownian motion with ending

point distributed according to f (u) / expf�u� (u� x)2=2Tg. Recall that the ending point of

ŴW is distributed according to h(u) / expfA(u) � (u� x)2=2Tg. Also

log
h

f

� �� �
9
(u) ¼ Æ(u) � � > 0,

so h= f is increasing. That indicates that the distribution with density h is stochastically larger

than that with density f , which implies (20).

We denote by m� the minimum of the Brownian moiton with drift �. Property (20) yields

E[M(m̂m)] < E[M(m�)] < E[exp(�k � m�)]: (21)

Using Girsanov’s theorem we can derive the density of m� (Borodin and Salminen 2002):

P[m� 2 db]=db ¼ 2N xþ�T ,T (b) þ 2� � expf2�(b� x)g �� b� xþ �Tffiffiffiffi
T

p
� �

, b 2 (�1, x),

where N �,� 2 (b) is the density of a normal distribution with mean � and variance � 2

evaluated at b and �(u) ¼
Ð u
�1 N 0,1(y) dy, u 2 R. It is easy now to check that this density

has finite exponential expectations, E[exp(�k � m�)] , 1. h
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Chib, S., Pitt, M.K. and Shephard, N. (2004) Likelihood-based inference for diffusion

driven models. Unpublished manuscript. http://www.nuff.ox.ac.uk/economics/papers/2004/w20/

chibpittshephard.pdf.

Devroye, L. (1986) Nonuniform Random Variate Generation. New York: Springer-Verlag.

Gelfand, A.E. and Smith, A.F.M. (1990) Sampling-based approaches to calculating marginal densities.

J. Amer. Statist. Assoc., 85, 398–409.

Goel, N.S. and Richter-Dyn, N. (1974) Stochastic Models in Biology. New York: Academic Press.

Karatzas, I. and Shreve, S.E. (1991) Brownian Motion and Stochastic Calculus, 2nd edn. New York:

Springer-Verlag.

Karlin, S. and Taylor, H.M. (1981) A Second Course in Stochastic Processes. New York: Academic

Press.

Kloeden, P.E. and Platen, E. (1995) Numerical Solution of Stochastic Differential Equations. Berlin:

Springer-Verlag.

Øksendal, B.K. (1998) Stochastic Differential Equations: An Introduction with Applications. Berlin:

Springer-Verlag.

Papaspiliopoulos, O. and Roberts, G.O. (2004) Retrospective MCMC methods for Dirichlet process

hierarchical models. Manuscript. Department of Mathematics and Statistics, Lancaster University.

Submitted for publication. http://www.maths.lancs.ac.uk/~papaspil/research.html. In revision.

Propp, J. and Wilson, D. (1998) Coupling from the past: a user’s guide. In Microsurveys in Discrete

Probability (Princeton, NJ 1997), volume 41 of DIMACS Ser. Discrete Math. Theoret. Comput.

Sci., pp. 181–192. Providence, RI: American Mathematical Society.

Revuz, D. and Yor, M. (1991) Continuous Martingales and Brownian Motion. Berlin: Springer-Verlag.

Roberts, G.O. and Stramer, O. (2001) On inference for partially observed nonlinear diffusion models

using the Metropolis–Hastings algorithm. Biometrika, 88(3), 603–621.

Rogers, L.C.G. and Williams, D. (2000) Diffusions, Markov Processes, and Martingales. Vol. 2: Itô
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