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processes

A . E . K Y P R I A N O U 1 and Z. PALMOWSKI 2,3

1School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS,

UK. E-mail: kyprianou@ma.hw.ac.uk
2Mathematical Institute, University of Wroclaw, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland.

E-mail: zpalma@math.uni.wroc.pl
3Mathematical Institute, Utrecht University, P.O. Box 80 010, 3508 TA Utrecht, Netherlands.

E-mail: palmowski@math.uu.nl

In recent years there has been some focus in work by Bertoin, Chaumont and Doney on the behaviour

of one-dimensional Lévy processes and random walks conditioned to stay positive. The resulting

conditioned process is transient. In earlier literature, however, one encounters for special classes of

random walks and Lévy processes a similar, but nonetheless different, type of asymptotic conditioning

to stay positive which results in a limiting quasi-stationary distribution. We extend this theme into the

general setting of a Lévy process fulfilling certain types of conditions which are analogues of known

classes in the random walk literature. Our results generalize those of E.K. Kyprianou for special types

of one-sided compound Poisson processes with drift and of Martı́nez and San Martı́n for Brownian

motion with drift, and complement the results due to Iglehart, Doney, and Bertoin and Doney for

random walks.
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1. Introduction

Denote by X ¼ fX t : t > 0g a Lévy process defined on the filtered space (�, F , F, P)

where the filtration F ¼ fF t : t > 0g is assumed to satisfy the usual assumptions of right

continuity and completion. We work with the probabilities fPx : x 2 Rg such that

Px(X 0 ¼ x) ¼ 1 and P0 ¼ P. The probabilities fP̂Px : x 2 Rg are defined in a similar sense

for the dual process, �X .

Define the first passage time into the lower half-line (�1, 0) by

� ¼ infft . 0 : X t , 0g:

In this short paper, the principal object of interest is the existence and characterization of the

so-called limiting quasi-stationary distribution (or Yaglom’s limit)

lim
t"1

Px(X t 2 Bj� . t) ¼ �(B) (1)

for B 2 B([0, 1)) where, in particular, � does not depend on the initial state x > 0. The

sense in which this limit is quasi-stationary follows the classical interpretations of works such
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as Seneta and Vere-Jones (1966), Tweedie (1974), Jacka and Roberts (1995) and other

references therein. We consider the limit (1) for x > 0 in the case of Lévy processes for

which (�1, 0) is irregular for 0, and for x . 0 in the case of Lévy processes for which

(�1, 0) is regular for 0. Note that the asymptotic conditioning in (1) is different but

nonetheless closely related to the recent work of Bertoin (1993, 1996), Bertoin and Doney

(1994), Chaumont (1996) and Chaumont and Doney (2005).

The existence and characterization result we obtain improves on the same result for

spectrally positive compound Poisson processes with negative drift and jump distribution

whose characteristic function is a rational function proved by Kyprianou (1971) (within the

context of the M=G=1 queue), as well as on the same result for Brownian motion with drift

proved by Martı́nez and San Martı́n (1994), and complements an analogous result for

random walks obtained by Iglehart (1974) as well as related results due to Doney (1989).

In the next section we state the main result and give some special examples. Following

that, in Section 3 we give two preparatory lemmas and then the proof of the main result.

2. Main result

In order to state and prove the main result it is necessary to introduce some notation. The

method we appeal to requires the use of the classical exponential change of measure.

Hence, it is necessary to introduce the Laplace exponent of X given by the relation

E(eŁX t ) ¼ eł(Ł) t

whenever it is well defined. Note that in that case ł(Ł) ¼ ��(�iŁ), where

�(º) ¼ �log E(eiºX1 ) is the Lévy–Khinchine exponent. Whenever jł(Ł)j is well defined

and finite, the exponential change of measure referred to above takes the form

dPŁ
x

dPx

����
F t

¼ eŁ(X t�x)�ł(Ł) t:

It is well known that under this change of measure X is still a Lévy process and its new

Laplace exponent satisfies

łŁ(�) ¼ ł(Łþ �) � ł(Ł) (2)

whenever ł(Łþ �) is well defined. One also sees from the latter equality that under the

change of measure, the new Lévy measure satisfies —Ł(dx) ¼ eŁx—(dx).

We also need to recall some standard notation from the theory of fluctuations of Lévy

processes; see, for example, Bertoin (1996). The process (L�1, H) ¼ f(L�1
t , H t): t > 0g

denotes the ladder process of X and is characterized by its Laplace exponent k(Æ, �)

satisfying

E(e�ÆL�1
t ��H t ) ¼ e�k(Æ,�) t

for Æ, � > 0. The latter exponent and the analogous quantity k̂k(Æ, �) defined for the dual �X

are related to the renewal function
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V (x) ¼ E

ð1
0

1( H t<x) dt

� �

via the Laplace transform

º

ð1
0

e�ºxV (x)dx ¼ 1

k(0, º)
: (3)

The quantities ĤH , V̂V and k̂k associated with �X can also be identified in the obvious way.

Further, kŁ, k̂kŁ, VŁ and V̂VŁ all correspond to the aforementioned when working under the

measure PŁ.

The main result will apply to two classes of Lévy process. We call them class A and

class B, and the definitions are given below. The choice of name for each class allows us to

keep some consistency with the existing literature. Analogues of classes A and B were

defined for random walks in Bertoin and Doney (1996).

Before formally giving the definitions, recall that it can easily be checked from the

Lévy–Khinchine formula that when Łr ¼ supfŁ . 0 : jł(Ł)j , 1g, ł is strictly convex on

(0, Łr) and by monotonicity ł(Łr) ¼ ł(Łr�) and ł9(Łr) ¼ ł9(Łr�) are well defined. Also

the right derivative at zero, ł9(0) ¼ ł9(0þ) ¼ E(X1).

Definition 1. A Lévy process belongs to class A if

(i) there exists a Laplace exponent ł for 0 , Ł , Łr, where Łr . 0;

(ii) ł(Ł) attains its negative infimum at 0 , Ł0 < Łr, with ł9(Ł0) ¼ 0;

(iii) X1 is non-lattice; and

(iv) (X , PŁ0 ) is in the domain of attraction of a stable law with index 1 , ª < 2.

Definition 2. A Lévy process belongs to class B if

(i) there exists a Laplace exponent ł for 0 < Ł < Łr, where Łr 2 (0, 1);

(ii) ł(Ł) attains its negative infimum at Ł0 ¼ Łr;

(iii) �EŁ0 (X1) ¼ �ł9(Ł0) 2 (0, 1);

(iv) X 1 is non-lattice; and

(v) the function x 7! —Ł0
(x, 1) is regularly varying at infinity with index ��, where

� 2 (2, 1).

A number of important points that follow from these assumptions are now discussed.

Firstly, the assumption that X 1 is non-lattice is not absolutely necessary for the results in

this paper. Analogues of the required analysis of the Lévy processes in classes A and B can

in principle be reconstructed. To understand how, the reader is referred to the analogous

definitions for random walks given in Bertoin and Doney (1996) as well as the respective

results which are taken from that paper in the analysis here.

Secondly, in class A, it is implicit in the definition that E(X 1) ¼ ł9(0þ) , 0 and hence

the process drifts to �1. Under the change of measure PŁ0 , the process X oscillates as,

according to (2) and the definition of a0, ł9Ł0
(0�) ¼ ł9(Ł0�) ¼ 0. Note also that if (X , P)

belongs to class A then so does (X , PÆ) for any Æ 2 [0, Ł0). This is easy to check,
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remembering that under PÆ the negative infimum of łÆ is obtained at ŁÆ0 ¼ Ł0 � Æ (a

picture of ł will help to make this obvious).

Thirdly, in class B it is also implicit in the definition that E(X1) ¼ ł9(0) , 0. Like class

A, it is again true that if (X , P) belongs to class B then for any Æ 2 [0, Ł0) the process

(X , PÆ) also belongs to the same class. To deal with the fifth condition, recall again that

ŁÆ0 ¼ Ł0 � Æ plays the role of Ł0 under PÆ. From the earlier-mentioned effect of the change

of measure —Æ(dx) ¼ eÆx—(dx), it is now easily checked that (v) holds. Essentially it is a

statement about (X , PŁ0 ) and hence independent of Æ.

Finally, recall from the Wiener–Hopf factorization that (up to a multiplicative constant)

for all Ł 2 R,

�(Ł) ¼ k(0, �iŁ)k̂k(0, iŁ): (4)

In both class A and B, since �(�iŁ)=k̂k(0, Ł) is well defined for all Ł 2 [0, Łr), it follows that

k(0, Ł) may be analytically extended to (�Łr, 1).

We now state the main result of this paper.

Theorem 1. If X is a Lévy process of class A or B then there exists a quasi-stationary

distribution (1) satisfying

�(dy) ¼ Ł0kŁ0
(0, Ł0)e�Ł0 yVŁ0

(y)dy

on [0, 1). In particular, �(f0g) ¼ 0. The existence of (1) holds for all initial states x . 0

when 0 is regular for (�1, 0) and for all [0, 1) when 0 is irregular for (�1, 0).

Below we give three special cases of this theorem.

Example 1 Spectrally negative processes. Suppose that X is spectrally negative and drifts to

�1. (Note that we exclude negative subordinators from the definition of spectral negativity.)

It falls into class A as jł(Ł)j is finite for all Ł > 0 (cf. Chapter VII of Bertoin 1996). In this

case it is well known that when the process oscillates the ascending ladder height process is a

linear drift with unit rate. We thus have that kŁ0
(0, Ł0) ¼ Ł0 and VŁ0

(x) ¼ x. It therefore

follows that

�(dx) ¼ Ł2
0xe�Ł0 x dx:

Example 2 Brownian motion with drift. This example is a continuation of the previous one

as Brownian motion with drift, having no jumps at all, is spectrally negative. Necessarily, to

be in class A the drift must be negative. Hence ł(Ł) ¼ 1
2
Ł2 � rŁ for some r . 0. A

straightforward exercise shows that Ł0 ¼ r and, hence,

�(dx) ¼ r2xe�rx dx:

This result was first established in Martı́nez and San Martı́n (1994).

Example 3 Spectrally positive processes. In the case of spectral positivity one may consider

either class A or class B. We see that in both cases, (X , PŁ0 ) either drifts to �1 or oscillates.
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This implies that k̂kŁ0
(0, Ł) ¼ Ł for all Ł > 0. Hence, from the Wiener–Hopf factorization (4)

applied to (X , PŁ0 ), it follows that

łŁ0
(Ł) ¼ �ŁkŁ0

(0, �Ł) (5)

for all Ł < Łr � Ł0. As will transpire from the proof, the result is established by proving that

for 0 , Æ , Ł0, ð
[0,1)

eÆx�(dx) ¼ Ł0kŁ0
(0, Ł0)

(Ł0 � Æ)kŁ0
(0, Ł0 � Æ)

, (6)

from which the density given in Theorem 1 can be identified. Note that since ł is finite on

(�1, 0], equality (6) can be analytically extended to negative values of Æ. Using (2) and (5)

we see that the left-hand side of (6) is also equal to

łŁ0
(�Ł0)

łŁ0
(Æ� Ł0)

¼ �ł(Ł0)

ł(Æ) � ł(Ł0)
:

Kyprianou (1971) found the Laplace transform of the quasi-stationary distribution for the

workload process of the stable M=G=1 queue whose service times were distributed with a

rational moment generating function. In this case, it is not difficult to show that X belongs to

class A or B. The workload process whilst the queue is busy is just a compound Poisson

process with negative drift having Laplace exponent equal to

ł(Ł) ¼ �Łþ º(m̂mB(Ł) � 1),

where B is the distribution of the service times and m̂mB(Ł) ¼ E(eŁB).

Suppose now that X belongs to class A. Note that Ł0 . 0 solves ºm̂m9B(Ł0) ¼ 1. The

Laplace transform for this process isð
[0,1)

e��x�(dx) ¼ �Ł0 þ º(m̂mB(Ł0) � 1)

�Ł0 � �þ º(m̂mB(Ł0) � m̂mB(�))
:

This agrees with the expression given in Theorem 2a(ii) of Kyprianou (1971) but now for a

more general class of Lévy processes.

3. Proof of main result

The proof of Theorem 1 requires two preparatory lemmas.

Lemma 2. For all sufficiently large W . Ł0 the following hold.

(i) If X belongs to class A, then

P(X t > 0) þ E[eWX t ; X t , 0] � W
W� Ł0

gª(0)

Ł0

t�1=ªLA(t)eł(Ł0) t (7)

as t " 1 where LA is slowly varying and gª is a continuous version of the density of the

stable law mentioned in the definition of class A.
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(ii) If X belongs to class B, then

P(X t > 0) þ E[eWX t ; X t , 0] � W
(W� Ł0)

jł9(Ł0)j��

Ł0

t�(��1) LB(t)eł(Ł0) t, (8)

where LB is slowly varying as t " 1.

Proof. For each h . 0 and within class A or B we consider a random walk

S h ¼ fS h
n : n > 0g where

S h
n ¼

Xn

i¼1

X i, n > 0,

and X i ¼ X (ih) � X ((i � 1)h) are obviously independent and identically distributed random

variables having moment generating function

f h(Ł) ¼ EeŁS h
1 ¼ E(eŁX h ) ¼ eł(Ł)h

for Ł 2 [0, Łr).

(i) When X belongs to class A, it is easy to check that for each h . 0, S h belongs to

class A for random walks defined in Bertoin and Doney (1996). Following the arguments in

Lemma 2.6 of Getoor and Sharpe (1994), we have that P(X t > 0) þ E(eWX t ; X t , 0) is

always a right or left continuous function (in fact it is continuous if X is not a compound

Poisson process with drift). Hence, we may apply Croft’s lemma (see Croft 1957; and

Corollary 2 of Kingman 1963); that is to say, if there exists a continuous slowly varying

function LA which does not depend on h such that

P(S h
n > 0) þ E(eWS h

n ; S h
n , 0) � W

W� Ł0

gª(0)

Ł0

(nh)�1=ªLA(nh)eł(Ł0)nh (9)

as n " 1 for each h . 0, then (7) holds.

Note that by virtue of the fact that X is in class A, there exists a slowly varying

function, LA, such that X t=(t1=ªLA(t)) converges in distribution under PŁ0 as t " 1 to a

stable random variable with density gª. Hence, the same limit holds on any subsequence.

This in turn implies that the random walk S h belongs to class A of random walks as

defined in Bertoin and Doney (1996). The limit in (9) follows directly from Lemma 4(i) of

Bertoin and Doney (1996). According to Theorem 1.3.3 of Bingham et al. (1987), we may

choose LA to be continuous.

(ii) To see that S h also belongs to class B for random walks as defined in Bertoin and

Doney (1996) for each h . 0 when X belongs to class B, we argue as follows. From a

classic result of Embrechts et al. (1979) it now follows from the assumed regular variation

of —Ł0
(�, 1) that PŁ0 (X h . x) � h—Ł0

(x, 1) as x " 1. Now from Lemma 4(ii) of Bertoin

and Doney (1996) we infer that

P(S h
n > 0) þ E(eWS h

n ; S h
n , 0) � W

W� Ł0

jł9(Ł0)j��

Ł0

(nh)�(��1) LB(nh)eł(Ł0)nh
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as n " 1. The remaining part of the proof essentially mimics the proof of (i) using Croft’s

lemma. h

Lemma 3. For Æ 2 [0, Ł0) the following two cases hold.

(i) If X belongs to class A then we have that jk(ł(Ł0), �Æ)j is finite and, for all x > 0,

Ex(eÆX t ; � . t) � eŁ0 xV̂VŁ0
(x)

1

k(ł(Ł0), �Æ)

gª(0)

Ł0 � Æ
t�(1=ªþ1) LA(t)eł(Ł0) t

as t " 1, where LA is the same as in Lemma 2(i).

(ii) If X belongs to class B then we have that jk(ł(Ł0), �Æ)j is finite and, for all x > 0,

Ex(eÆX t ; � . t) � eŁ0 xV̂VŁ0
(x)

1

k(ł(Ł0), �Æ)

jł9(Ł0)j��

Ł0 � Æ
t��LB(t)eł(Ł0) t

as t " 1, where LB is the same as in Lemma 2(ii).

Note that if 0 is regular for (�1, 0) then the descending ladder height process is not a

compound poisson process, and hence V̂VŁ0
(0) ¼ 0 consistently with the expectations

mentioned in the above lemma for x ¼ 0. As indicated earlier, in the regular case, we only

consider quasi-stationary laws for x . 0. If, on the other hand, 0 is irregular for (�1, 0)

then the descending ladder height process is a compound Poisson process and hence

V̂VŁ0
(0) . 0, so that the statement of the above lemma for x ¼ 0 is non-trivial.

Proof of Lemma 3. Let e� be an exponentially distributed random variable with parameter

� ¼ q þ ł(Ł0) . 0 which is independent of X . Denote X t ¼ sups< t X s. From the Wiener–

Hopf factorization (which gives the independence of X e� and X e� � X e�) and duality (which

gives the equality in distribution of X e� under P̂P and X e� � X e� under P) we obtainð1
0

e�� tEx[eÆX t ; � . t]dt

¼ 1

�

ð
[0,1)

eÆ y P(X e� 2 dy) � eÆx

ð
[0,x]

e�Æz P̂P(X e� 2 dz):

(The last calculation is essentially taken from the proof of Theorem VI.20 of Bertoin 1996:

176). From Theorem VI.5 of Bertoin (1996: 160), we then have thatð1
0

e�� tEx[eÆX t ; � . t]dt ¼ 1

�

k(�, 0)

k(�, �Æ)
eÆx

ð
[0,x]

e�Æz P̂P(X e� 2 dz): (10)

Taking the Laplace transforms of both sides of (10) with respect to x, we obtain with the help

of Fubini’s theorem thatð1
0

ð1
0

e�� te�ŁxEx[eÆX t ; � . t]dx dt ¼ 1

�

1

Ł� Æ

k(�, 0)

k(�, �Æ)

k̂k(�, 0)

k̂k(�, Ł)
(11)

for Ł . Æ.

It is known that one can put expf
Ð1

0
(e� t � e�� t)t�1 P(X t ¼ 0)dtg into the normalization
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constant of the product k̂k(�, �Æ)k̂k(�, Ł) (which itself is present as a consequence of an

arbitrary normalization of local time at the maximum) and hence, with the help of the

expressions for k and k̂k given by Bertoin 1996: 166), we may write s ¼ k(s, 0)k̂k(s, 0) andð1
0

e�� t

ð1
0

e�ŁxEx[eÆX t ; � . t]dx

� �
dt

¼ 1

Ł� Æ

1

k(�, �Æ)k̂k(�, Ł)

¼ 1

Ł� Æ
exp �

ð1
0

e� t � at(Ł)e�(qþł(Ł0)) t

t
dt

� �
, (12)

where

at(Ł) ¼ E[eÆX t ; X t > 0] þ E[eŁX t ; X t , 0]:

For the right-hand side of (12) we have used the integral representations of k and k̂k in terms

of the distribution of X ; see Corollary VI.10 in Bertoin (1996: 165). By exponential change

of measure we have

at(Ł) ¼ eł(Æ) t PÆ(X t > 0) þ EÆ[e(Ł�Æ)X t ; X t , 0]
� �

:

(i) Now assume that (X , P) belongs to class A and recall that for Æ 2 [0, Ł0) the Lévy

process (X , PÆ) remains in the same class as assumed, and hence Lemma 2(i) may be

applied to the latter process. In that case one should replace ł by łÆ and Ł0 by

ŁÆ0 :¼ Ł0 � Æ. Importantly, one should also note that the limiting density gª appearing in

the definition of class A applied to (X , PÆ) does not depend on Æ 2 [0, Ł0) as it concerns

the distribution of (X , PŁ0 ).

Taking note of (2), it follows from Lemma 2(i) that for all sufficiently large Ł . Ł0,

at(Ł) � Ł� Æ

Ł� Ł0

gª(0)

Ł0 � Æ
t�1=ªLA(t)eł(Ł0) t: (13)

as t " 1. This implies that the right-hand side of (12) is finite for q > 0. In particular, when

q ¼ 0 one may check that in the integral
Ð1

0
(e� t � at(Ł)e�(qþł(Ł0)) t)t�1 dt the integrand

behaves like O(1) as t # 0 and O(t�(1þ1=ª)) as t " 1. It is also the case that

jk̂k(ł(Ł0), Ł)j , 1. To see this, note that lim inf t"1 X t ¼ �1 and hence L̂L�1
1 is an almost

surely finite stopping time. We may use Doob’s optional stopping theorem (cf. Jacod and

Shiryaev 2003, Theorem III.3.4) and the fact that k̂k(0, Ł� Ł0) , 1 to deduce that

e�k̂kŁ0
(0,Ł�Ł0) ¼ EŁ0 (e�(Ł�Ł0) ĤH1 )

¼ E(e
Ł0 X

L̂L�1
1

�ł(Ł0)L̂L�1
1 e�(Ł�Ł0)ĤH1 )

¼ E(e�ł(Ł0) L̂L�1
1 �ŁĤH1 )

¼ e�k̂k(ł(Ł0),Ł), (14)

578 A.E. Kyprianou and Z. Palmowski



proving the last claim. Since the right-hand side of (12) for q ¼ 0 is finite and, from

Corollary VI.10 of Bertoin (1996), is equal to limq#0k(q þ ł(Ł0), �Æ)k̂k(q þ ł(Ł0), Ł), and

since jk̂k(ł(Ł0), Ł)j is finite, it follows that jk(ł(Ł0), �Æ)j , 1.

Now since both sides of (12) are analytical functions in the variable q . 0, the identity

can be extended for this parameter range. Differentiating equation (12) with respect to q

yields ð1
0

e�qte�ł(Ł0) t t

ð1
0

e�ŁxEx[eÆX t ; � . t]dx

� �
dt

¼ 1

Ł� Æ
exp �

ð1
0

e� t � at(Ł)e�(qþł(Ł0)) t

t
dt

� �ð1
0

e�qte�ł(Ł0) t at(Ł)dt:

Now taking q # 0, we obtain from (13) and the converse to the monotone density theorem –

which does not require a monotone density (see Feller 1971, Section XIII.5: 446) – thatð1
0

e�qte�ł(Ł0) t t

ð1
0

e�ŁxEx[eÆX t ; � . t]dx

� �
dt

� 1

Ł� Æ

1

k(ł(Ł0), �Æ)k̂k(ł(Ł0), Ł)
ˆ 1 � 1

ª

� �
Ł� Æ

Ł� Ł0

1

Ł0 � Æ
gª(0)q1=ª�1 LA(1=q),

and henceð1
0

e�ŁxEx[eÆX t ; � . t]dx

� 1

(Ł� Ł0)(Ł0 � Æ)

1

k(ł(Ł0), �Æ)k̂k(ł(Ł0), Ł)
gª(0)t�(1=ªþ1) LA(t)eł(Ł0) t: (15)

From (3) we have ð1
0

e�ŁxeŁ0 xV̂VŁ0
(x)dx ¼ 1

Ł� Ł0

1

k̂kŁ0
(0, Ł� Ł0)

,

¼ 1

Ł� Ł0

1

k̂k(ł(Ł0), Ł)
, (16)

where the second equality follows from (14).

To conclude, let X t ¼ inf s< t X s and observe that Ex(eÆX t ; � . t) ¼ Ex(eÆX t ; X t > 0) is

right continuous in x on [0, 1) by temporal right continuity of the bivariate process

(X , X ). In addition, from Proposition I.15 of Bertoin (1996), V̂VŁ0
(x) is continuous on

(0, 1). (Note that, in the case where 0 is irregular for (�1, 0), it is known that ĤH is also

a compound Poisson subordinator and the assumptions imply that its jump distribution is

diffuse and hence V̂V has no atoms except at zero.) Comparing (16) with (15) then, the

statement of the theorem follows.

(ii) The proof for the case that (X , P) belongs to class B is essentially the same as in (i)

with obvious changes using Lemma 2(i). h
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We have the following corollary corresponding to the case Æ ¼ 0.

Corollary 4. The following asymptotic results hold as t " 1.

(i) If X belongs to class A then, for all x > 0,

Px(� . t) � eŁ0 xV̂VŁ0
(x)

1

k(ł(Ł0), 0)

gª(0)

Ł0

t�(1=ªþ1) LA(t)eł(Ł0) t

as t " 1.

(ii) If X belongs to class B then, for all x > 0,

Px(� . t) � eŁ0 xV̂VŁ0
(x)

1

k(ł(Ł0), 0)

jł9(Ł0)j��

Ł0

t��LB(t)eł(Ł0) t

as t " 1.

We are ready now to prove the main result.

Proof of Theorem 1. From Lemma 2 and Corollary 4, we obtain that, for 0 , Æ , Ł0,

ð
[0,1)

eÆ y�(dy) ¼ lim
t"1

Ex(eÆX t ; � . t)

Px(� . t)
¼ Ł0k(ł(Ł0), 0)

(Ł0 � Æ)k(ł(Ł0), �Æ)
:

However, with a similar calculation to the one at the end of the proof of Lemma 3 we can

show that

k(ł(Ł0), �Æ) ¼ kŁ0
(0, Ł0 � Æ):

Further, from (3),

ð1
0

eÆxe�Ł0 xVŁ0
(x)dx ¼ 1

Ł0 � Æ

1

kŁ0
(0, Ł0 � Æ)

:

The statement of the main theorem now follows. h
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