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On the quantiles of Brownian motion and
their hitting times

ANGELOS DASSIOS
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The distribution of the a-quantile of a Brownian motion on an interval [0, 7] has been obtained
motivated by a problem in financial mathematics. In this paper we generalize these results by
calculating an explicit expression for the joint density of the a-quantile of a standard Brownian
motion, its first and last hitting times and the value of the process at time ¢. Our results can easily be
generalized to a Brownian motion with drift. It is shown that the first and last hitting times follow a
transformed arcsine law.
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1. Introduction

Let (X(s), s = 0) be a real-valued stochastic process on a probability space (€2, F, Pr). For
0 < a <1, define the a—quantile of the path of (X(s), s = 0) up to a fixed time ¢ by

Mx(a, t) = inf{x : J;I(X(s) < x)ds > at}. (1)

The study of the quantiles of various stochastic processes has been undertaken as a response
to a problem arising in the field of mathematical finance, the pricing of a particular path-
dependent financial option; see Miura (1992), Akahori (1995) and Dassios (1995). This
involves calculating quantities such as E(2(M x(«a, 1)), where A(x) = (e* — b)" or some other
appropriate function, and requires obtaining the distribution of X(7). In the case where
(X(s), s = 0) is a process with exchangeable increments the following result was obtained:

Proposition 1. Let X'(s) = X(at + s) — X(at). Then

(Mx(a, ), X(0) "= (Nx(a, 1), X(at) + X'(1 — a)p), )
where
Ny(a, f) = sup X(s)+ inf X'(s). 3)
0<s<at 0<s<(l—a)t

Note that if (X(s), s = 0) is a Lévy process (having stationary and independent increments),
then X'(s) is an independent copy of X(s).

1350-7265 @© 2005 ISI/BS



30 A. Dassios

When (X(s), s = 0) is a Brownian motion, we can use this result and obtain an explicit
formula for the joint density of My(a, f) and X(¢). This result was first proved for a
Brownian motion with drift by Dassios (1995) and Embrechts et al. (1995), and for Lévy
processes by Dassios (1996). There is also a similar result for discrete-time random walks
first proved by Wendel (1960).

We now let

Lx(a, t) =inf{s € [0, 1] : X(s) = M x(a, 1)}

be the first, and
Kx(a, t)y =sup{s € [0, 1] : X(s) = Mx(a, 1)}

the last time the process hits M y(a, 7). One can now introduce a ‘barrier’ element to the
financial application by making the option worthless if the quantile is hit too early or too late.
For example, this can involve calculating quantities such as E(A(M x(a, 1)1(Lx(a, t) >
v, Kx(a, t) < u)).

The first study of these quantities can be found in Chaumont (1999). By using
combinatorial arguments he derives results of the same type as Proposition 1 that are
extensions of Wendel’s results in discrete time. In the case where the random walk steps can
only take the value +1 or —1, a representation for the analogues of Lyx(a, f) and Kx(a, )
is obtained. Finally, he derives a continuous-time representation for the triple law of
Mx(a, t), Lx(a, t) and X(#), extending Proposition 1 when X(7) is a Brownian motion. We
will demonstrate that Chaumont’s results point to a representation involving Ky(a, ) as
well. We will use this to obtain an explicit form in Section 3. We will also derive
alternative representations and prove a remarkable arcsine law.

For the rest of the paper we assume that (X(s), s = 0) is a standard Brownian motion,
unless otherwise specified. Without loss of generality, we will restrict our attention to the
case ¢ = 1, taking advantage of the Brownian scaling. For simplicity we set M y(a, t) =
Myx(a), Lx(a,t)= Ly(a) and Kx(a, {) = Kx(a).We will derive the joint density of
Mx(a), Ly(a), Ky(a) and X(1). If we denote this density by f(y, x, u, v), our results can
be generalized for a Brownian motion with drift m, using a Cameron—Martin—Girsanov
transformation. The corresponding density will be

(v, x, u, v)exp(mx — m2/2).

Before we obtain the density of (M y(a), Ly(a), Kx(a), X(1)), we will first show that the
law of Ly(a) (and Kx(a)) is a transformed arcsine law.

2. An arcsine law for Ly(a, 1)
Let Sx(f) = supo<s<:{X(s)} and Ox(7) = sup{s € [0, 1] : X(s) = Sx(#)}. Define also the

stopping time 7. = inf{s > 0: X(s) = c}. We will first obtain the joint distribution of
(M x(a), Lx(a)) and of (Mx(a) — X(1), 1 — Kx(a)).
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Theorem 1. For b > 0,
Pr(M x(a) € db, Ly(a) € du) = Pr(Sx(1) € db, Ox(1) € du)1(0 < u < a), 4)

and for, b <0,
Pr(M x(a) € db, Ly(a) € du) = Pr(Sx(1) € d|b], Ox(1) € di)1(0 < u <1 — a). 5)

Furthermore, (M x(), Lx(a)) and (M x(a) — X(1), | — Kx(a)) have the same distribution.

Proof. Let b > 0 and u < a. We then have that

Pr(M x(a) > b, Lyx(a) > u) = Pr(Sx(u) < Mx(a), Mx(a) > b)
— Pr(b < Sy(u) < My () + Pr(Sx(u) < b < My(a)). (6)

Let 7, = inf{s > 0 : X(s) = b} and X™(s) = X () +5) — b; (X™(s), s =0) is a standard
Brownian motion which is independent of (X(s), 0 =< s < 7). We then have

Pr(b < Sy(u) < My(a))

1

= Pr(SX(u) > b, J

1(X(s) = Sx(u))ds < a)
0

1
=Pr (SX(u) > b, J 1(X(s) — X(u) < Sy(u) — X(u))ds < o — u) (7)

We now condition on o {X(s), 0 < s < u}. Let X™(s) = X(u+ 5) — X(u). (X*(s), s = 0) is
a standard Brownian motion which is independent of (X(s), 0 < s < u). We condition on
Sy(u) — X(u)=c, and set 7. =inf{s>0:X*(s)=c} and X *(s) = X*(r. +5)—c.
(X**(s), s =0) is a standard Brownian motion which is independent of both (X(s),
0<s<u)and (X*(s), 0 < s < 7.). We have that

1—u a—u 1—u—r
Pr(J 1(X*(s)<c)ds<a-— u> = J Pr(t. € dr)Pr(J 1X** () <0)ds<a—u— r)
0 0

0

l—u—r

and since | 1(X™*(s) < 0)ds has the same (arcsine) law as 6y« (1 — u — r), this is
equal to

J Pr(z. € dr)Pr(Oy+(1 —u—r)y<a—u—r)
0

0 Osssa—u—r oa—u—r<ssl—u—r

= JaiuPr(rc € dr)Pr( sup X H(s) > sup X**(s))

:Pr( sup X*(s)>  sup  X*(s), sup X*(s)>c>,

O<s<a—u a—ussst—u Oss<a—u

and so (7) is equal to
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sup X(s) — X(u) > sup X(s) — X(u),

Uss<a ass<l|
pr| sup X(s) — X(u) > sup X(s) — X(u),
Uss<=a 0=s<u
sup X(s) > b
O=s=<u
=Pr(Sx(u) > b, u < 0x(1) < a). ®)

Furthermore,

1

Pr(Sx(u) < b < Mx(a)) =Pr <SX(u) < b, J

1(X(s) < b)ds < a>
0

o 1—r
= J Pr(r, € dr)Pr (J 1X*s)<0)<a-— r)
0

u

= JaPr(Tb edr)Pr(@y(1—r)<a-—r)

u

= Pr<u < 0y(1) < &, Sx(u) < b, sup X(s)> b>. )

Uss=a

Adding (8) and (9) together, we see that (6) is equal to

Pr(u <Ox(l)<a, sup X(s)> b) =Pr(u < 0x(1) < a, Sx(1) > b),
Usss=a
which leads to (4).
Since (—X(s), s = 0) is a standard Brownian motion and M_y(a) = —M x(1 — a) almost
surely, we use —X(s) instead of X(s) and obtain that, for b <0,

Pr(M x(at) < b, Ly(a) > 1) = Pr(u < 0x(1) < (1 — a), Sx(1) > |b]),

which leads to (5).

To see that (f — Kx(a), M x(a) — X(1)) has the same distribution as (Ly(a), Mx(a)),
again set X(s) = X(1 —s) — X(1). Clearly (X(s), 0 < s < 1) is a standard Brownian motion
and we can easily see that Mgz(a)= Mx(a)—X(1), Mz(a)— X(1)= Mx(a) and
Ky(a)=1— Ly(a). ]

Remark 1. The distribution of (6x(1), Sx(1)) is well known (see, for example, Karatzas and
Shreve 1988, p. 102). From this and Theorem 2, we can deduce the density of (Ly(a),
M x(a)). This is given by

S L ( b_z)
Pr(Mx(a) € db, Lx(a) € du) = nm exp ey

NO<u<a,b>0)+10<u<1—a b<0)]dbdu. (10)
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Remark 2. Theorem 1 also leads to an alternative expression for the distribution of M y(a);
that is,

Pr(Mx(a) € db) = Pr(Sx(1) € db, 0 < Ox(1) < ),

for b >0, and
Pr(M x(a) € db) = Pr(Sx(1) € d|b], 0 < 0x(1) < 1 — a),

for b <O0.
From Theorem 1, we can immediately obtain the following corollary:

Corollary 1. For u > (,
Pr(Ly(a) > u)=Pr(u < Oy() = a)+Pru<0x(1)<1—a) (11)

and

1(u$a)—|—1(u$1—a)du

Pr(L du) = 12
I'( X(a)e u) n\/m ( )
Furthermore, K x(a) has the same distribution as 1 — Ly(a).
3. The joint law of (Lx(a), Kx(a), Mx(a), X(1))
From now on we will denote the density of 7, by (-, -); that is, for v > 0,
Pr(z) € dv) = k(v, b)dv = 14 ex fb—Z dv (13)
b - > - /—23_503 p 20 .
We will also denote the joint density of (Mx(v/t, ©), X(#)) by g(, -, -, -); that is, for

o<v<it,
Pr(MX (g t) e db, X(1) € da) — a(b, a, v, )dbda.
From Proposition 1 this is also the density of
(Nx(a, 1), X(at) + X'((1 — ap))),
where Ny(a, f) is defined by (3).

We can calculate g(-, -, -, -) by using Proposition 1. Note that
inf X'(s)=— sup (—X'(s))
O=s<(l—a)t 0<s<(1—a)t

and that the density of (Sx(7), X(¢)) is given by

Pr(Sy(1) € db, X(1) € da) = 222 =D o (— M)ub =>0,b=a)dadb (14

V23 2t
(see Karatzas and Shreve, 1988, p. 95). We observe that since (14) is bounded, g(-, -, -, -) is a
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bounded density. We first need to calculate g(0, 0, v, ¢). This is the same as the value of the
density of (Mx(v/t, 1), Mx(v/t, ) — X(¢)) at (0, 0). From (14) we see that

2049 (_ (v +x)°
V2ms 2t

and it is a simple exercise to verify that

Pr(Sx(7) € dy, Sx(£) — X(£) € dx) =

>1(y =0, x = 0)dydx, (15)

2y + ) +x*\ 20+ (v +x)?

8(0.0.0.)= Jo Jo V2mu3 P <_ 2v ) V20(t — v)3 . (_ 2(t - U))dXd
4ot —v) (16)
o

We will also use the following lemma
Lemma 1. Let (X(s), s = 0) be a standard Brownian motion, T, =inf{s >0 : X(s) = x}
and T, = sup{s < t : X(s) = y}. Then, for 0 <x<zand w<y <z,
Pr(r, € du, T, € dv, Sx(¢) € dz, X(r) € dw)

= k(u, x)k(t — v, y — w)Pr(Sx(v — u) € d(z — y), X(v — u) € d(x — y)). (17)

Proof. Using the strong Markov property as in the previous section, we see that the right-
hand side of (17) is equal to

Pr(z, € du)Pr(z,_, € d(v — u), Sx(t — u) € d(z — x), X(t — u) € d(w — x))
and, replacing X(s) by the standard Brownian motion X(¢# — u — s5) — X(¢ — u), this is equal
to

Pr(z, € du)Pr(z,_,, € d(1 — v), Sx(t — u) € d(z — w), X(t — u) € d(x — w)),
which leads to (17). U

The following extension to Proposition 1 can be derived as a direct consequence of the
results of Chaumont (1999) (see Theorem 7 and the remark after Theorem 4 in his paper):

Proposition 2. Let (X(s), s = 0) be a continuous process with exchangeable increments and
X'(s) = X(a+s) — X(a). Then,

(Lx(a), Kx(@), My(a), X(1)) "2 (Ty(a), Ux(@), Nx(a@), X(@)+ X'(1 —a)),  (18)

where

Tx(a) =inf{s =0 : X(s) = Nxy()}1(Nx(a) = 0) +inf{s = 0 : X'(s) = Nx(a)}1(Nx(a) < 0)

and
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Ux(@)=(1 —a+sup{s<a:X(s)=Nx(a)— X'(1 —a)DI(Nx(a) = X(a) + X'(1 — a))
+@+sup{s<1—a:X'(s) = Nxy(a) - X()PDI(Nx(a) < X(a) + X'(1 — a)).

Note that the expression for Uy(a) is a slight modification of the one in Chaumont’s

paper that better serves our purpose. We now deduce the law of (Ly(a), Kx(a),

M x(a), X(1)).

Theorem 2. For the standard Brownian motion (X(s), s = 0),

Pr(Ly(a) € du, Kx(a) € dv, M x(a) € db, X(1) € da)

_ 2[b||b — a|dudv db da ( b (b—a)2>

T - upyd—op P\ 2u

2u 2(1—-v)

Vo-—u—(T-a)I-a)l(u>0,u+(l-a)<v<l), b>0,b>a,
Viao—u)v—a)ll<u<a<v<l), b>0,b<a,

X (19)
Vo—u—a)al(u>0,u+a<v<l), b<0,b>a,
Vd—a—uww->1-a)l0<u<l-a<v<l), b<0,b<a.

Proof- We start with the case b >0, b > a; we use Proposition 2 and Lemma 1 with
z=">b— infosyc(i—ay X'(5), w=a—X'(1 —a), x=>band y = b — X'(1 — a). This leads to

k(b, wk(b—a, 1 —v)g(0,0, v —u—(1—a),v—u)
Au>0,u+ (1 —a)t<v<t)dudvdbda. (20)

Substituting (13) and (15) into (20), we obtain the first part of the right-hand side of (19). For
the case b > 0, b < a, note that we can rewrite Uy(a) in Proposition 2 as

Ux(a)=1—inf{s =0: X"(s) = sup X(s)+ . intl" X"(s) — X(a)},
sssl—a

O=s=<a
where X"(s) = X'(1 —a —s) — X'(1 — a). The left-hand side of (19) is then the density of
inf{s =0: X(s) =b},inf{s=0: X"(s) =b— a},

sup X(s)+ . infl‘ X"(s)— X"(1 —a), X(a) — X"(1 —a)
0=s=a =ss<l—-a

at (u, 1 — v, b, a). This in turn is equal to k(b, u)k(|b — a|, 1 — v) multiplied by the density
of

( sup  X(s)+ inf )X”(s)—X"(U—a),X(a—u)—X”(U—a)),

0<s<(a—u) Oss<(v—
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which leads to the second part of the right-hand side of (19).
Considering the process (—X(s), 0 =< s =< 1) and observing that M_y(a) = —Mx(1 — a),
L_y(a)=Lx(l —a) and K_y(a) = Kx(1 — a) yields the rest of (19). O

Remark 3. One could derive Theorem 1 from Theorem 2 by integrating out two variables.
However, it is difficult to obtain the result without knowing it in advance.
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