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1. Introduction

In Doob (1949) an application of the martingale convergence theorem to the study of

consistency of Bayesian procedures is pointed out. In particular, it is proved that if there

exists a consistent estimator of a parameter ~ŁŁ, then the posterior distribution of ~ŁŁ
accumulates in neighbourhoods of ~ŁŁ almost surely.

In order to highlight connections between the present paper and Doob’s result, some

notation is introduced. Let (X n)n>1 be a sequence of random variables, on some measurable

space (�, � ), taking values in (X, X ), where X is a Polish space and X is the Borel � -field

of sets of X. As usual, Xn is the n-fold Cartesian product X 3 � � � 3 X and X1 is the

infinite product space, while X n and X1 are the corresponding � -fields. Moreover, denote

by ¨ the parameter space, assumed to be Polish, and by A¨ a � -field of sets of ¨. Let

fPŁ : Ł 2 ¨g be a family of probability distributions on (X, X ) such that Ł 7! PŁ(A) is

A¨-measurable, for every A in X . For our purposes, it is useful to consider X 1, X2, . . . , ~ŁŁ
as coordinate random variables defined on � ¼ X1 3¨ and to set � ¼ X1 �A¨ as the

usual product � -field. Hence, if — is a probability distribution on the parameter space

(¨, A¨), a probability measure P on the product space (X1 3¨, X1 �A¨) is uniquely

defined by

P(A3 B) ¼
ð
B

Yn
i¼1

PŁ(Ai)—(dŁ) (1)

for any B 2 A¨ and A ¼ A1 3 � � � 3 An 3 X1, with A1, . . . , An 2 X , for any n. The

probability measure — will be referred to as the prior distribution of ~ŁŁ. The posterior
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distribution, given the data X (n) ¼ (X 1, . . . , X n), is denoted by —n. According to Doob, if ~ŁŁ
is X1-measurable, that is, it is a function of the whole sequence of observations, then

—n(A) ! IA(~ŁŁ) a.s.[P], (2)

for any measurable set A, where IB is the indicator function of a set B. Schwartz (1965)

reconsidered this result and extended it to a decision-theoretic framework.

Denote now by (F, H) the metric space of densities with respect to some � -finite

measure º on X, where H is the Hellinger distance defined by

H2( f , g) ¼
ð
X

f (x)1=2 � g(x)1=2
n o2

º(dx)

for any pair of densities g and f in F. If º is the Lebesgue measure on R, the space of

absolutely continuous distribution functions is not closed under pointwise limits of sequences

of its elements and, thus, hypothesis (A) in Doob (1949) is not met. In other words, if ~ŁŁ is a

nonparametric random density function on R, one needs to prove the consistency result in (2)

without resorting to the assumption that ~ŁŁ is X1-measurable. In this sense we provide an

extension of Doob’s result and show that the posterior distribution —n accumulates in

Hellinger neighbourhoods of an essentially unique random density function ~gg and that the X k

are independent and identically distributed (i.i.d.) given ~gg.

Recent studies on consistency rely upon a ‘frequentist’, or so-called ‘what if’, method

due to Diaconis and Freedman (1986). This approach is usually motivated by the fact that P

null sets in (2) can be large. Nonetheless, we believe that Doob-type results are still worth

examining in a nonparametric framework for various reasons. Firstly, the objection relating

to the size of the P null sets can be circumvented by ensuring that the prior — has full

Hellinger support. This implies that the P null sets are just single densities, meaning that

they are isolated points in F with respect to the L1 topology. In Section 3 it is proved that

many common priors on densities do have full Hellinger support under fairly natural

conditions. Secondly, the results presented here are genuinely Bayesian since they refer to

the product measure P defined in (1), instead of fixing a ‘true’ but ‘unknown’ density

function f0. When Bayesian consistency results are available and P null sets are single

densities, one might wonder whether possible inconsistency at a hypothesized f 0 can be

thought of as an irrelevant nuisance. Apart from its theoretical relevance, a Doob-type result

for random densities is also of practical interest. To clarify this point, here we refer to

consistency of decision problems involving sample sizes for which the ‘frequentist’

approach is meaningless. Let D ¼ fa1, . . . , aNg be a finite set of actions and let U (a, g)

be the utility one attains when undertaking action a, where g is a random element

describing the ‘state of nature’ and taking values in a set ¨. Define ag to be the element in

D that maximizes a 7! U (a, g), that is, U (ag, g) ¼ maxD U (a, g). A Bayesian would fix a

prior — on ¨ and, given a set of n observations, would determine the posterior —n. Hence,

the corresponding action, denoted by a(n), is such thatð
¨
Ufa(n), gg—n(dg) ¼ max

a2D

ð
¨
U (a, g)—n(dg):
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By definition, the best expected utility is given by

U :¼
ð
¨
U (ag, g)—(dg),

and the expected utility U (n) associated with the sample size n is defined as

U (n) :¼ E

ð
¨
Ufa(n), gg—n(dg)

� �
,

where the expectation is computed with respect to the marginal distribution of the

observations. At this point, it is natural to require the expected utility U (n) to converge to U ,

as the sample size n increases, meaning that the best possible outcome is achieved if ‘all the

information’ is available. This happens if U is bounded andð
¨
Ufa(n), gg—n(dg) ! U (a ~gg, ~gg) a.s.[P],

where ~gg is distributed according to the prior —. With further regularity conditions on

U (a, g), namely continuity in g, one has the above if —n converges weakly to a probability

measure with all its mass on ~gg. But this is guaranteed if a Doob consistency result holds for

—n.

In Section 2 the consistency result is stated and proved. In Section 3 some illustrative

examples of priors with full Hellinger support are provided. Section 4 provides information

concerning rates of convergence, and finally Section 5 contains a brief discussion.

2. Extension of Doob’s result

In accordance with notation introduced in the previous section, suppose the parameter

space, ¨, coincides with the set, F, of all densities on (X, X ) with respect to some measure

º. Moreover, let F denote a � -field of subsets of F. The predictive density function, given

n observations X1, . . . , X n, is

f n(x) ¼
ð
F

f (x)—n(d f ),

where

—n(d f ) ¼

Yn
i¼1

f (X i)—(d f )

ð
F

Yn
i¼1

f (X i)—(d f )

is the posterior distribution. Simple computations lead to the useful equality

—nþ1(A)

—n(A)
¼ f n A(X nþ1)

f n(X nþ1)
(3)
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for any measurable set of densities A. Here, f nA is the predictive density based on the

posterior restricted to the set A, that is,

f n A(x) ¼

ð
A

f (x)—n(d f )

—n(A)
, 8x 2 X:

Finally, instead of using the Hellinger distance H , a slight modification of it is considered,

that is,

h( f , g) ¼ 1 �
ð
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f (x) g(x)

p
º(dx), 8 f , g 2 F:

In the following, �x denotes the Dirac function at the point x. The following theorem can

now be proved.

Theorem 1. There exists a random element ~gg such that

—n(A) ! � ~gg(A) a.s.[P]

as n tends to þ 1, for any A in F . Moreover, such a ~gg is essentially unique and the X j are

conditionally i.i.d. given ~gg.

Proof. If � n ¼ � (X1, . . . , X n), then E(—nþ1(A)j� n) ¼ —n(A) for any A 2 F. Hence by the

martingale convergence theorem, there exists a random element —1 such that

—n(A) ! —1(A) a.s.[P],

for all sets A 2 F . Moreover, by a result proved in Grey (2001), —1 is a probability measure

on a set having P probability 1. By suitably completing the definition of —1 outside such a

set, one has that —1 is a random probability measure. Moreover, by virtue of (3), one easily

obtains

E —1=2
nþ1(A)j� n

n o
¼ —1=2

n (A)f1 � h( f n A, f n)g:

Consider, now, the martingale (SN , �
N
)N>1 defined by

SN ¼
XN
n¼1

—1=2
n (A) �—1=2

n�1(A) 1 � h( f n A, f n)f g
h i

(4)

¼ —1=2
N (A) �—1=2(A) þ

XN
n¼1

—1=2
n�1(A)h( f n�1 A, f n�1):

One can prove that

E
X
n

—1=2
n (A)h( f n A, f n)

( )
, 1:
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Straightforward application of the Borel–Cantelli lemma yields

—1=2
n (A)h( f n A, f n) ! 0 a.s.[P],

as n tends to +1. Let �0 be the set on which convergence occurs. Then for any ø 2 �0

there exists a density function g such that —1(A�) . 0 for all � . 0, where A� ¼
f f 2 F : h( f , g) , �g, since —1 is a probability measure. Hence, one has

h( f n A� , f n) ! 0 (n ! þ1)

and, by virtue of the triangular inequality and of the convexity of h( � , � ), it follows that

h( f n, g) ! 0. Moreover, it is easy to show that such a g is unique. Thus, let ~gg : � ! F be a

function that associates to each ø a density function g such that —1(A�) . 0, for any � . 0.

Such a function is measurable. Indeed, for any B 2 F,

~gg�1(B) � fø 2 � : —1(B) . 0g:

On the other hand, if ø 2 � is such that —1(B) . 0, there exists a density g in B such that

g is in the support of —1. This means that

~gg�1(B) � fø 2 � : —1(B) . 0g

and measurability of ~gg follows from the fact that —1 is a random probability measure.

Moreover, equality between the two sets above implies

—1 ¼ � ~gg:

Finally, knowing that the observations are conditionally i.i.d. given a random density ~ff , we

wish to prove that ~ff ¼ ~gg a.s.[P]. If P ~ff (B) ¼
Ð
B
~ff (x) º(dx) for any B in X , then

EfP ~ff (B)j� ng ¼ P(X nþ1 2 Bj� n) ¼
ð
F

Pf (B)—n(d f )

¼
ð
F

Pf (B)Ef—1(d f )j� ng ¼ E

ð
F

Pf (B)—1(d f )j� n

� �

where the last equality follows from the definition of conditional expectation. Since P ~ff (B)

and
Ð
F
Pf (B)—1(d f ) are bounded, one has

E(P ~ff (B)j�1) ¼ E

ð
F

Pf (B)—1(d f )j�1

� �

¼
ð
F

Pf (B)—1(d f ) ¼ P~gg(B),

where the last equality follows from the fact that —1 ¼ � ~gg. Moreover, by de Finetti’s

representation theorem, P ~ff is �1 measurable, and then

P ~ff (B) ¼ P~gg(B) a.s.[P],

for every B in X . This completes the proof. h
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3. Illustrative examples

A few examples involving priors on space of densities are presented. They all have full

Hellinger support, under suitable conditions, thus providing evidence of the fact that the

only P null sets on which consistency may fail are single densities.

3.1. Mixture models

Let k be a non-negative valued kernel on (X3 Y, X � Y), X and Y being subsets of the

real line, such that:

(i)
Ð
X
k(x, y) º(dx) ¼ 1 for any y 2 Y, and for some � -finite measure º on (X, X );

(ii) y 7! k(x, y) is bounded, continuous and Y measurable, for each x in X.

If ~QQ is a random probability measure on (Y, Y), the quantity

~ff (x) ¼
ð
Y

k(x, y) ~QQ(dy) (5)

is a random density function. Such a mixture has been investigated by Lo (1984) for

Bayesian density estimation when ~QQ is a Dirichlet process, and has recently gained some

attention with reference to consistency problems when used as a prior on a space of densities;

see, for example, Ghosal et al. (1999a) and Petrone and Wasserman (2002).

Here, it is shown that if a kernel satisfies (i)–(ii) and a mild additional condition to be

specified later on, the probability distribution of ~ff in (5) puts positive mass on all Hellinger

neighbourhoods of f 0(x) ¼
Ð
Y
k(x, y) Q0(dy) as long as the distribution �� of ~QQ has full

weak support. In other terms, given any such density f 0, its �-Hellinger neighbourhoods

have positive probability, for any � . 0.

Let Q0 be any probability measure on (Y, Y) whose �-weak neighbourhood, W
(0)

� say, has

positive ��-probability, for any � . 0. Given � . 0, fix a compact set K 2 X such thatð
K c

f 0(x) º(dx) ,
�

8
, (6)

with º(K) , þ1. From now on, Q is any probability measure in W
(0)

� . Then����
ð
K c

ð
Y

k(x, y) Q(dy) º(dx) �
ð
K c

ð
Y

k(x, y) Q0(dy)º(dx)

���� , �

since y 7!
Ð
K c k(x, y)º(dx) is bounded and continuous, and combination with (6) yieldsð

K c

ð
Y

k(x, y) Q(dy) º(dx) ¼
ð
K c

f (x) º(dx) ,
�

8
þ �: (7)

Moreover, for any r . 0, one can set Mr . 0 such that Q0([�Mr þ �, Mr � �]c) , r
which, in turn, implies Q([�Mr, Mr]c) , rþ �.

It is proved that the distribution of ~ff in (5) has full Hellinger support if the following

additional condition is met by the kernel k:
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(iii) The family fk(x, y) : x 2 Kg of functions of y, as y varies in [�Mr, Mr], is

uniformly equicontinuous.

By virtue of the Arzelà–Ascoli theorem, (iii) implies that, given � . 0, there exists a finite

partition of K into sets A1, . . . , Am and points x1, . . . , xm such that

sup
j yj,Mr

jk(x, y) � k(xj, y)j , �

for any x 2 Aj and for each j ¼ 1, . . . , m. Note thatð
X

j f (x) � f 0(x)j º(dx) ¼
ð
K
j f (x) � f 0(x)j º(dx) þ

ð
K c

j f (x) � f 0(x)j º(dx),

and observe that the second summand on the right-hand side is bounded by (�=4) þ �. As far

as the integral over K is concerned, simple algebra yieldsð
K
j f (x) � f0(x)j º(dx) < I1 þ I2 þ I3

where

I1 ¼
Xm
j¼1

ð
A j

����
ð
Y

k(x, y) Q(dy) �
ð
Y

k(xj, y) Q(dy)

���� º(dx),

I2 ¼
Xm
j¼1

ð
A j

����
ð
Y

k(xj, y) Q(dy) �
ð
Y

k(xj, y) Q0(dy)

���� º(dx),

I3 ¼
Xm
j¼1

ð
A j

����
ð
Y

k(xj, y) Q0(dy) �
ð
Y

k(x, y) Q0(dy)

���� º(dx):

It is easy to show that I2 < � º(K). When dealing with I1 and I3 it is worth considering the

partition of Y into [�Mr, Mr] and [�Mr, Mr]c. We confine ourselves to considering just I1.

Set V :¼ max1< j<m sup y k(xj, y) and notice that it is finite because of (ii). Hence,

I1 <
Xm
j¼1

ð
A j

ð
j yj<Mr

jk(x, y) � k(xj, y)jQ(dy) º(dx)

þ
Xm
j¼1

ð
A j

ð
j yj.Mr

jk(x, y) � k(xj, y)jQ(dy) º(dx)

< � º(K) þ rþ r V º(K):

A similar bound is obtained for I3. Accordingly, if

� ,
�

4(1 þ º(K))
, � ,

�

8 º(K)
, r ,

�

8(1 þ V º(K))
,

one has
Ð
X
j f (x) � f0(x)jº(dx) , �.

Extending Doob’s consistency theorem to nonparametric densities 657



3.2. Pólya trees

The family of Pólya tree priors has been investigated in depth by Mauldin et al. (1992) and

Lavine (1992). A brief introductory description is now provided. Let E ¼ f0, 1g and

Em ¼ f0, 1gm for m ¼ 1, 2, . . . . Having set E0 ¼ ˘, define E� ¼ [m>0E
m. Introduce the

sequence of nested and binary partitions (Pm)m>1 of [0, 1] into dyadic intervals such that

Pm ¼ fB� : � 2 Emg. Moreover, let P0 ¼ [0, 1] and P ¼ fPm : m ¼ 0, 1, 2, . . . , g. Intro-

duce a collection of non-negative numbers A ¼ fÆ� : � 2 E�g and a collection of mutually

independent random variables Y ¼ fY� : � 2 E�g with Y� distributed according to the beta

law of parameters Æ�,0 and Æ�,1 for each � in E�. Hence, a random probability measure ~PP
on [0, 1] is said to have a Pólya tree distribution with parameters (P, A), PT(P, A), if

~PP(B�1,...,�m ) ¼
Ym

j¼1; � j¼0

Y�1,...,� j�1

8<
:

9=
;

Ym
j¼1; � j¼1

(1 � Y�1,...,� j�1
)

8<
:

9=
;

for m ¼ 1, 2, . . . . In Kraft (1964) it is shown that if Y� becomes concentrated around 1=2

sufficiently rapidly as B� shrinks along P, then ~PP will have a density with respect to the

Lebesgue measure with probability 1. In Lavine (1994) and Ghosal et al. (1999b) properties

of the support of ~PP are studied. In particular, Ghosal et al. (1999b), by refining a similar

result due to Lavine (1994), prove that ~PP has full Kullback–Leibler support provided that Æ�,

where � 2 Em, increases faster than m2þ�, for any � . 0, as m goes to þ1. Here, it is shown

that ~PP enjoys the weaker condition of full Hellinger support without imposing any conditions

on the Æ�, apart from those guaranteeing absolute continuity of ~PP.

Let f 0 be any density function on [0, 1] and proceed by contradiction, supposing that it

does not belong to the Hellinger support of PT(P, A), that is, there is a � . 0 such that

PTf f 2 F : h( f , f 0) . �g ¼ 1: (8)

For any positive integer N, define

~ff N (x) ¼
YN

j¼1;� j¼0

2 Y�1,...,� j
(x)

8<
:

9=
;

YN
j¼1;� j¼1

2 1 � Y�1,...,� j
(x)

� �8<
:

9=
;,

where Y�1,...,� j
(x) denotes Y indexed by the first j digits in the dyadic expansion of x 2 [0, 1].

It is proved in Kraft (1964) that ~ff N converges, in L1, to the random density function ~ff
(almost surely). Given f 0, there exists a collection of numbers fy� : � 2 E�g such that

f N ,0(x) ¼
YN

j¼1;� j¼0

2 y�1,...,� j
(x)

8<
:

9=
;

YN
j¼1;� j¼1

2 1 � y�1,...,� j
(x)

� �8<
:

9=
;

and f 0(x) ¼ limN f N ,0(x) for any x in [0, 1]. By the Scheffé theorem, f N ,0 converges, in L1,

to f 0. By virtue of the triangular inequality, (8) implies

PTf f 2 F : h( f , f N ) þ h( f N , f N ,0) þ h( f N ,0, f 0) . �g ¼ 1:
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The first and third summand in the previous probability statement can be made arbitrarily

small. As far as the second is concerned, notice that

h( f N , f N ,0) ¼ 1 �
ð

[0,1]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f N (x) f N ,0(x)

p
º(dx)

is expressed in terms of the product of N independent beta random variables. Hence, non-

singularity of the beta distribution ensures that h( f N , f N ,0) can be made arbitrarily small with

positive probability. Thus, there exists an integer N 9 ¼ N 9(�) such that, for any N > N 9,

PT h( f , f N ) ,
�

3

� �
\ h( f N ,0, f N ) ,

�

3

� �
\ h( f N ,0, f0) ,

�

3

� �� �
. 0,

which contradicts (8).

3.3. Infinite-dimensional exponential families

This particular family of priors on the space of densities was studied by Leonard (1978) and

Lenk (1988; 1991). Let � ¼ (łn)n>1 be a sequence of independent Gaussian random

variables with łn having zero mean and variance equal to �2
n. Moreover, introduce a

sequence � ¼ (�n)n>1 of orthogonal polynomials on [0, 1] and choose the �n in such a way

that
P

j sup0<x<1j� j(x)j � j , þ1. Hence

f (x) ¼ exp
X1
n¼1

łn�n(x) � C(�)

( )

is a random probability density function on [0, 1], with respect to the Lebesgue measure º.

The quantity C(�) is the normalizing constant. In Barron et al. (1999) it is proved that the

distribution of f has full Kullback–Leibler support among densities f0 for whichÐ
f 0 log f 0 , 1. Thus, a fortiori, it has full Hellinger support.

4. Rates of convergence

As pointed out in Section 2, consistency is mainly based on the almost sure convergence of

the sequence of predictive densities to the random density ~gg, in the Hellinger distance. This

also raises the issue of determining the rates at which the sequence ( f n)n>1 converges to ~gg.

This result is new, since previous contributions provide rates within the ‘frequentist’

approach; see, for example, Shen and Wasserman (2001) and Ghosal et al. (2000). It should

be pointed out that it is not possible to compare the results contained in such papers with

ours. Indeed, we consider rates of convergence to the random density ~gg while they study, in

a different setting, convergence to some fixed f 0.

Here we determine rates of convergence of the cumulative average N�1
PN

n¼1h( f n, ~gg),

where ( f n)n>1 is the sequence of predictive densities. Taking into account that h is the

square of H , the following result essentially means that the rate for the cumulative averages

of Hellinger distances is N�1=4.
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Theorem 2. Let (X n)n>1 be a sequence of random variables which are conditionally i.i.d.

given a random density function ~gg. Denote by ( f n)n>1 the sequence of predictive density

functions. Then, for any � . 0, there exists a positive constant k� and an integer N0 such

that

P
1

N

XN
n¼1

h( f n, ~gg) ,
k�

N 1=2�r

( )
> 1 � �,

for any N . N0 and for any r . 0.

Proof. According to Theorem 1, we denote by �0 a set such that P(�0) ¼ 1 and

h( f n, ~gg) ! 0 as n ! þ1 for any ø 2 �0. Define a function that associates with each

ø 2 � a decreasing sequence (Bn)n>1 of measurable sets of densities such that:

(a) ~gg(ø) 2 \n>1Bn(ø) for any ø.

(b) diamh(Bn(ø)) , rn�=2 for any n > 1 and for each ø, where (rn)n>1 is a sequence

of positive numbers decreasing to 0 and diamh(B) indicates the diameter of the set of

densities B with respect to distance h.

(c) ø 7! Bn(ø) is � n-measurable, for any n > 1.

For notational simplicity, from now on we suppress the dependence of Bn on ø. By virtue of

the Markov inequality and of the convexity of h one can easily show that, for any N > 1,

P
1

N

XN
n¼1

h( f n Bn
, ~gg) > rN

( )
<

1

NrN

XN
n¼1

E h( f n Bn
, ~gg)½ � (9)

<
1

NrN

XN
n¼1

ð
�

ð
Bn(ø)

h( f , ~gg(ø))
—n(d f )

—n(Bn)
P(dø)

< �=2:

Consider the martingale (TN , � N )N>1 defined by

TN ¼
XN�1

n¼1

—1=2
nþ1(Bn) �—1=2

n (Bn) 1 � h( f n Bn
, f n)ð Þ

n o
,

and use the monotonicity of the sequence (Bn)n>1 to show that

TN >
XN�1

n¼1

—1=2
nþ1(Bnþ1) �—1=2

n (Bn) 1 � h( f n Bn
, f n)ð Þ

n o

¼ —1=2
N (BN ) �—1=2

1 (B1) þ
XN�1

n¼1

—1=2
n (Bn)h( f n Bn

, f n) ¼: ZN :

Moreover, if (bn)n>1 is a sequence defined in such a way that bn ¼ n1=2þr, for each n > 1,

the stability theorem yields
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TN

bN

! 0 a.s.[P]

which, in turn, implies

N

bN

1

N
(—1=2

N (BN ) �—1=2
1 (B1)) þ 1

N

XN�1

n¼1

—1=2
n (Bn)h( f n Bn

, f n)

( )
! 0

almost surely. Consequently, for any � . 0, one can determine a k� . 0 and a positive

integer n0 ¼ n0(�) such that, for any N > n0,

P
ZN

N
,

k�

N1=2�r

� �
> 1 � �

2
:

Now, condition (a) for the sequence (Bn)n>1 and —1 ¼ � ~gg give

P lim inf
n
—n(Bn) ¼ 1

n o
¼ 1:

Hence, Pf—N (BN )1=2 �—1(B1)1=2 > 0g ¼ 1 for all N greater than some n0 and

P
1

N

XN�1

n¼1

h( f n Bn
, f n) ,

k�

N1=2�r

( )
. 1 � �

2
, 8N > n0 _ n0:

Since we are interested in convergence rates for h( f n, ~gg), choose rN ¼ k� bN=N in (9) and

use the triangular inequality to obtain

P
1

N

XN�1

n¼1

h( f n, ~gg) ,
k�

N1=2�r

( )

> P
1

N

XN�1

n¼1

h( f n Bn
, f n) ,

k�

N1=2�r

( )
\ 1

N

XN�1

n¼1

h( f n Bn
, ~gg) ,

k�

N 1=2�r

( ) !

> 1 � P
1

N

XN�1

n¼1

h( f n Bn
, f n) .

k�

N1=2�r

 !
� P

1

N

XN�1

n¼1

h( f n Bn
, ~gg) .

k�

N 1=2�r

 !

> 1 � �,

thus completing the proof. h

5. Discussion

If the prior puts positive mass on all Hellinger neighbourhoods of all densities then

Bayesian consistency holds almost surely with respect to the prior, in the sense that the

posterior accumulates in Hellinger neighbourhoods of an essentially unique random density

function, conditional on which the data are i.i.d. In this case the null sets on which
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consistency can fail are single densities. To our knowledge no work has been done on this

version of Bayesian consistency since Doob (1949) and Schwartz (1965).
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della Ricerca (MIUR), grants 2002015111 and 2001138888. I. Prünster gratefully

acknowledges support from MIUR, grant 2002015111, and the Progetto Giovani Ricercatori.

The research of S.G. Walker was funded by an EPSRC Advanced Research Fellowship.

The authors are grateful to Patrizia Berti and Pietro Rigo for providing some insights

which improved a part of the manuscript. Special thanks are also due to a referee for

comments on an earlier version of this paper.

References

Barron, A., Schervish, M.J. and Wasserman, L. (1999) The consistency of posterior distributions in

nonparametric problems. Ann. Statist., 27, 536–561.

Diaconis, P. and Freedman, D. (1986) On the consistency of Bayes estimates. Ann. Statist., 14, 1–26.

Doob, J.L. (1949) Application of the theory of martingales. In Le Calcul des Probabilités et ses

Applications, Colloques Internationaux du Centre National de la Recherche Scientifique 13, pp.

23–27. Paris: CNRS.

Ghosal, S., Ghosh, J.K. and Ramamoorthi, R.V. (1999a) Posterior consistency of Dirichlet mixtures in

density estimation. Ann. Statist., 27, 143–158.

Ghosal, S., Ghosh, J.K. and Ramamoorthi, R.V. (1999b) Consistent semiparametric Bayesian inference

about a location parameter. J. Statist. Plann. Inference, 77, 181–193.

Ghosal, S., Ghosh, J.K. and van der Vaart, A. (2000) Convergence rates of posterior distributions. Ann.

Statist., 28, 500–531.

Grey, D.R. (2001) A note on convergence of probability measures. J. Appl. Probab., 38, 1055–1058.

Kraft, C.H. (1964) A class of distribution function processes which have derivatives. J. Appl. Probab.,

1, 385–388.
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