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In the classical setting of bivariate extreme value theory, the procedures for estimating the probability

of an extreme event are not applicable if the componentwise maxima of the observations are

asymptotically independent. To cope with this problem, Ledford and Tawn proposed a submodel in

which the penultimate dependence is characterized by an additional parameter. We discuss the

asymptotic properties of two estimators for this parameter in an extended model. Moreover, we

develop an estimator for the probability of an extreme event that works in the case of asymptotic

independence as well as in the case of asymptotic dependence, and prove its consistency.
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1. Introduction

Suppose that (X i, Yi), i ¼ 1, . . . , n, is a sequence of independent and identically distributed

(i.i.d.) random vectors. Given two large threshold values, u and v, we are interested in

estimating probabilities of the type

P(X i . u and Yi . v): (1:1)

For instance, if (X i, Yi) are the levels of two different air pollutants, the exceedance of both

at some prespecified levels may represent a dangerous situation to be avoided. In financial

mathematics (X i, Yi) may represent the losses suffered in two different investments.

Let F be the common distribution function of (X i, Yi) with marginal distributions F1 and

F2. Since only large values of X i and Yi are involved, one would expect multivariate

extreme value theory to provide the appropriate framework for systematic estimation of the

above probability. To be more specific, we assume that there exist normalizing constants an,

cn . 0 and bn, dn 2 R such that
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lim
n!1

F n(anxþ bn, cn yþ dn)

¼ lim
n!1

P
maxfX1, . . . , X ng � bn

an

< x,
maxfY1, . . . , Yng � dn

cn
< y

� �
¼ G(x, y), (1:2)

in the weak sense where G is a distribution function with non-denenerate marginals (Resnick

1987, Chapter 5).

We say that the maxima of the X i and of the Yi are asymptotically independent if

G(x, y) ¼ G(x, 1)G(1, y), for all x and y. This is a rather common situation; for instance,

it holds for non-degenerate bivariate normal distributions with jrj , 1. Unfortunately, in this

case the limit assumption (1.2) is of little help in estimating probability (1.1). Note that

under the given conditions the marginal distributions F1 and F2 converge to the marginals

G1 and G2, respectively, of the limiting distribution. Taking logarithms in (1.2), one obtains

lim
n!1

nP
X � bn

an

. x or
Y � dn

cn
. y

� �
¼ �logG(x, y), (1:3)

hence

lim
n!1

nP
X � bn

an

. x and
Y � dn

cn
. y

� �
¼ logG(x, y)� logG1(x)� logG2(y): (1:4)

Therefore if the marginals of the limiting distribution are independent, that is,

G(x, y) ¼ G1(x)G2(y), the right-hand side in (1.4) is identically zero.

In order to overcome this problem, Ledford and Tawn (1996; 1997; 1998; see also Coles

et al. 1999) introduced a submodel in which the penultimate tail dependence is

characterized by a coefficient � 2 (0, 1]. More precisely, they assumed that the function

t 7! P(1� F1(X ) , t and 1� F2(Y ) , t) is regularly varying at 0 with index 1=�. Then
� ¼ 1 in the case of asymptotic dependence, whereas � , 1 implies asymptotic

independence. Ledford and Tawn also suggested estimators for the so-called coefficient

of tail dependence �, but they did not establish their asymptotic properties.

In Section 2 of the present paper we interpret an extension of Ledford’s and Tawn’s

condition as a bivariate second-order regular variation condition, thereby generalizing an

approach by Peng (1999). Then we prove the asymptotic normality of modified versions of

two estimators for � proposed by Ledford and Tawn. In Section 3 we set up a procedure to

estimate the probability of a failure set of type (1.1). Its consistency is established under

asymptotic independence as well as under asymptotic dependence. We report the results of

a simulation study in Section 4. Here we compare the performance of both the estimators

for � proposed in the present paper and the estimator introduced by Peng (1999). In

addition, we examine the small-sample behaviour of tests for the hypothesis � ¼ 1 which

are based on these estimators. We also study the behaviour of the estimator of a failure

probability in a simple situation. In Section 5 we investigate the dependence between still

water level, wave heights and wave periods at a particular point in the Dutch coastal

protection system. Section 6 contains the proofs of the results of Sections 2 and 3.
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An extended simulation study and more detailed proofs can be found in the technical

report by Draisma et al. (2001).

2. Estimating the coefficient of tail dependence

Let (X , Y ) be a random vector whose distribution function F has continuous marginal

distribution functions F1 and F2. Our basic assumption is that

lim
t#0

Pf1� F1(X ) , tx and 1� F2(Y ) , tyg
q(t)

� c(x, y)

� ��
q1(t) ¼: c1(x, y) (2:1)

exists, for all x, y > 0 with xþ y . 0, some positive functions q and q1 ! 0 as t ! 0, and a

function c1 which is neither constant nor a multiple of c. Moreover, we assume that the

convergence is uniform on f(x, y) 2 [0, 1)2jx2 þ y2 ¼ 1g.
Essentially, relation (2.1) is a second-order regular variation condition for the function Q

defined by Q(x, y) :¼ Pf1� F1(X ) , x and 1� F2(Y ) , yg. The function (x, y) 7!
Q(1� x, 1� y) is sometimes called a copula survivor function. It follows that the function

q is regularly varying at zero with index 1=� for some � 2 (0, 1] – in the paper by Ledford

and Tawn (1996) q(t) equals t1=�. The function q1 is also regularly varying at zero with an

index � > 0. Without loss of generality we may take c(1, 1) ¼ 1 and

q(t) ¼ Pf1� F1(X ) , t and 1� F2(Y ) , tg. For these results and more information on

such a second-order condition, see the Appendices in de Haan and Resnick (1993) and

Draisma et al. (2001).

In addition, we assume that l :¼ lim t#0 q(t)=t exists. This condition is always satisfied if

� , 1 or � . 0. Since F1(X ) and F2(Y ) are uniformly distributed, obviously

lim sup q(t)=t < 1. Moreover, l ¼ 0 if � , 1, and l . 0 if the marginals are asymptotically

dependent.

Our assumptions imply that (2.1) holds locally uniformly on (0, 1)2. The bivariate

normal distribution satisfies these conditions: see the example at the end of this section.

Several other examples were given by Ledford and Tawn (1997) and Heffernan (2000).

The function c is homogeneous of order 1=�, that is, c(tx, ty) ¼ t1=�c(x, y). The measure

� defined by �([0, x]3 [0, y]) ¼ c(x, y) inherits this homogeneity:

�(tA) ¼ t1=��(A) (2:2)

for t . 0 and all bounded Borel sets A � [0, 1)2.

The parameter � has the same meaning as in Ledford and Tawn (1996; 1997), and

condition (2.1) is similar to condition (2.2) in Ledford and Tawn (1997). Under the given

assumptions, l . 0 implies asymptotic dependence and l ¼ 0 implies asymptotic

independence. Hence � , 1 implies asymptotic independence.

We now turn to estimators for �, given an i.i.d. sample f(X 1, Y1),

(X2, Y2), . . . , (X n, Yn)g. We start with an informal introduction to the estimators of

Ledford and Tawn (1996). They proposed first to standardize the marginals to the unit

Fréchet distribution, using either the empirical marginal distributions (that is, using the

ranks of the components) or extreme value estimators for the marginal tails, and then to
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estimate � as the shape parameter of the minimum of the components, for example by the

maximum likelihood estimator or the Hill estimator. However, since these estimators have

larger bias for Fréchet distributions than for Pareto distributions (see Drees, 1998a, 1998b),

we prefer to standardize to the unit Pareto distribution using the ranks of the components.

For this purpose consider the random variable

T :¼ 1

1� F1(X )
^ 1

1� F2(Y )
:

Its distribution function FT satifies 1� FT (t) ¼ q(1=t); in particular, 1� FT is regularly

varying with index 1=�. Since the marginal distribution functions Fi are unknown, we replace

them with their empirical counterparts. After a small modification to prevent division by 0,

this leads to

T
(n)
i :¼ nþ 1

nþ 1� RX
i

^ nþ 1

nþ 1� RY
i

, i ¼ 1, . . . , n,

with RX
i denoting the rank of X i among (X 1, X2, . . . , X n) and RY

i that of Yi among

(Y1, Y2, . . . , Yn).

Now � can be estimated by the maximum likelihood estimator �̂�1 in a generalized Pareto

model, based on the largest mþ 1 order statistics of the T
(n)
i (cf. Drees et al. 2004); here

m ¼ m(n) denotes an intermediate sequence, that is, m ! 1 and m=n ! 0. (Smith (1987)

defined the maximum likelihood estimator in terms of excesses over a high threshold u;

here we use the random threshold u ¼ T (n)
n,n�m.)

Alternatively the Hill estimator can be used:

�̂�2 :¼
1

m

Xm
i¼1

log
T
(n)
n,n�iþ1

T (n)
n,n�m

:

Note that one important advantage of the maximum likelihood estimator over the Hill

estimator in the classical i.i.d. setting, namely its location invariance, is not relevant here:

there is no shift after standardizing the marginals to unit Pareto (see Lemma 6.2). Since �̂�2
has smaller variance, one might expect �̂�2 to outperform �̂�1.

Theorem 2.1 (Asymptotic normality). Assume that (2.1) holds with a function c that has

first-order partial derivatives cx ¼ @c(x, y)=@x and cy ¼ @c(x, y)=@ y. Suppose that m is an

intermediate sequence such that
ffiffiffiffi
m

p
q1(q

�1(m=n)) ! 0 as n ! 1. Then
ffiffiffiffi
m

p
(�̂�i � �),

i ¼ 1, 2, are asymptotically normal with mean 0 and variance

� 2
1 ¼ (1þ �)2(1� l )(1� 2lcx(1, 1)c y(1, 1)),

� 2
2 ¼ �2(1� l )(1� 2lcx(1, 1)cy(1, 1)),

respectively.

Remark 2.1. (i) Since q1 � q�1 is ��-varying at 0, for � . 0 the conditionffiffiffiffi
m

p
q1(q

�1(m=n)) ! 0 is satisfied if m ¼ O(n2��=(2��þ1)��) for some � . 0.

(ii) Note that instead of (2.1) the weaker condition lim t!0 Pf1� F1(X ) , tx and

254 Draisma et al.



1� F2(Y ) , tyg=q(t)� c(x, y) ¼ O(q1(t)) is sufficient to prove the assertions of Theorem

2.1. However, under (2.1) similar results can be easily deduced if the intermediate sequence

m is such that
ffiffiffiffi
m

p
q1(q

�1(m=n)) ! c > 0. In that case, usually a non-negligible bias occurs

if c . 0 (and the present results correspond to the simpler case c ¼ 0).

In order to construct confidence intervals for � or to test the hypothesis � ¼ 1, we need

consistent estimators for the unknown quantities in the asymptotic variances in Theorem

2.1.

Theorem 2.2. Define

l̂l :¼ m

n
T (n)

n,n�m,

ĉcx(1, 1) :¼
k̂k5=4

n
(T n, k̂k�1=4)

n,n�m � T (n)
n,n�m),

with k̂k :¼ m= l̂l, and T
(n,u)
n,i , i ¼ 1, . . . , n, the order statistics of

T
(n,u)
i :¼ min

nþ 1

nþ 1� RX
i

(1þ u),
nþ 1

nþ 1� RY
i

� �
, i ¼ 1, . . . , n,

and define ĉc y(1, 1) analogously to ĉcx(1, 1). If the conditions of Theorem 2.1 hold then

l̂l!p l:

If, in addition, � ¼ 1 then

ĉcx(1, 1)!
p
cx(1, 1), ĉc y(1, 1)!

p
c y(1, 1):

Moreover, let

�̂� 2
1 :¼ (1þ �̂�)2(1� l̂l)(1� 2 l̂lĉcx(1, 1)ĉc y(1, 1))

and define �̂� 2
2 likewise. Then �̂� 2

i , i ¼ 1, 2, are consistent estimators of � 2
i for all � 2 (0, 1].

Remark 2.2. Note that cy(1, 1) may also be estimated by 1� ĉcx(1, 1) if � ¼ 1.

Example 2.1. The bivariate normal distribution with mean 0, variance 1 and correlation

coefficient r =2 f1, �1g, satisfies (2.1) with

� ¼ (1þ r)=2, c(x, y) ¼ (xy)1=(1þr),

q(t) ¼ k1(r)t2=(1þr)(�log t)�r=(1þr) 1� k2(r)
log(�log t)

2 log t

� �
,

c1(x, y) ¼ �k3(r)� k4(x, y, r), q1(t) ¼
1

2 log t
,
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where

k1(r) ¼
(1� r2)3=2

(1� r)2
(4�)�r=(1þr), k2(r) ¼

r
1þ r

,

k3(r) ¼
r log(4�)þ 2

1þ r
� (1þ r)(2� r)

1� r
,

k4(x, y, r) ¼ log xþ log yþ (r� 1)(log xþ log y)þ r log x log y� r(log2 xþ log2 y)=2

(1� r2)
:

This can be checked using the tail expansion of the bivariate normal distribution by Ruben

(1964) as given in Ledford and Tawn (1997), combined with a sufficiently precise expansion

of the function f, the inverse function of 1=(1��) where � is the standard univariate normal

distribution function:

f 2(t) ¼ 2 log t � log(log t)� log(4�)þ log(log t)

2 log t
þ log(4�)� 2

2 log t

þ 1

2

log(log t)

2 log t

� �2

þo
log(log t)

log t

� �2
 !

, as t ! 1:

3. Estimation of failure probabilities

Throughout this section we assume that the marginal distribution functions Fi of F are

continuous and belong to the domain of attraction of a univariate extreme value distribution,

and that condition (2.1) holds.

If we wish to estimate the probability of an extreme set of the form fX . x or Y . yg
and we assume that F belongs to the domain of attraction of a bivariate extreme value

distribution, then we can use the approximate equality

Pf1� F1(X ) , 1� F1(x) or 1� F2(Y ) , 1� F2(y)g

� tPf1� F1(X ) , (1� F1(x))=t or 1� F2(Y ) , (1� F2(y))=tg, (3:1)

since for small t the right-hand side can be estimated using the empirical distribution function

(de Haan and Sinha 1999). However, if the marginals are asymptotically independent and the

failure set is, for example, of the form fX . x and Y . yg then a different approximation

holds under condition (2.1):

Pf1� F1(X ) , 1� F1(x) or 1� F2(Y ) , 1� F2(y)g

� t1=�Pf1� F1(X ) , (1� F1(x))=t and 1� F2(Y ) , (1� F2(y))=tg: (3:2)

We develop an estimation procedure which works in this situation.

More generally, we aim to be able to estimate the failure probability pn ¼
Pf(X , Y ) 2 Cng for failure regions Cn � [xn, 1]3 [yn, 1] for some xn, yn 2 R such that
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(x, y) 2 Cn ) [x, 1]3 [y, 1] � Cn: (3:3)

The latter property means that if an observation (x, y) causes a failure (e.g., the

concentrations of two pollutants exceed maximum acceptable levels) then an event with

both components larger will do so, too. Asymptotically we let both xn and yn converge to the

right endpoint of the pertaining marginal distribution to ensure that pn ! 0, that is, that we

are indeed estimating the probability of an extremal event.

The basic idea is to use a generalized version of the scaling property (3.2) to inflate the

transformed failure set (1� F1, 1� F2)(Cn) :¼ f(1� F1(x), 1� F2(y))j(x, y) 2 Cng such

that it contains sufficiently many observations and hence the empirical probability gives an

accurate estimate. Since the marginal distribution functions Fi are unknown, their tails are

estimated by suitable generalized Pareto distributions.

We begin by recalling from univariate extreme value theory that there exist normalizing

constants ai(n=k) . 0 and bi(n=k) 2 R such that the following generalized Pareto

approximation is valid:

1� Fi(x) �
k

n
1þ ªi

x� bi(n=k)

ai(n=k)

� �
�1=ªi ¼:

k

n
(1� Faibi,ªi

(x)), i ¼ 1, 2, (3:4)

for x close to the right endpoint F�1
i (1). Here ai and bi are abbreviations for ai(n=k) and

bi(n=k), respectively; and (1þ ªx)�1=ª is defined as 1 if ª . 0 and x < �1=ª, and as 0 if

ª , 0 and x > �1=ª. Dekkers et al. (1989) proposed and analysed the following estimators

of the parameters ai, bi and ªi. Define

M j(X ) :¼
1

k

Xk
i¼1

(log X n,n�iþ1 � log X n,n�k)
j, j ¼ 1, 2,

ª̂ª1 :¼ M1(X )þ 1� 1

2
1� (M1(X ))

2

M2(X )

� ��1

,

b̂b1
n

k

� �
:¼ X n,n�k ,

âa1
n

k

� �
:¼ X n,n�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M1(X )2 � M2(X )

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� 4ª̂ª�1 )=((1� ª̂ª�1 )

2(1� 2ª̂ª�1 ))
p with ª̂ª�1 :¼ ª̂ª1 ^ 0;

for ª̂ª2, âa2 and b̂b2 replace X by Y in these formulae. The estimator ª̂ªi for the extreme value

index ªi is often called a moment estimator.

Using these definitions, nk�1(1� Fi(x)) may be estimated by

1� F
âai ,b̂bi ,ª̂ªi

(x) ¼ 1þ ª̂ªi

x� b̂bi(n=k)

âai(n=k)

 !�1=ª̂ªi

:

Write 1� F(x, y) as a shorthand for (1� F1(x), 1� F2(y)); likewise 1� Fa,b,ª ¼
(1� Fa1,b1,ª1 , 1� Fa2,b2,ª2 ) and 1� Fâa,b̂b,ª̂ª ¼ (1� Fâa1,b̂b1,ª̂ª1

, 1� Fâa2,b̂b2,ª̂ª2
) are functions from

R2 to [0, 1]2. Then, in view of (3.4), the transformed failure set nk�1(1� F(Cn)) can be

approximated by
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Dn :¼ 1� Fa,b,ª(Cn)

which in turn is estimated by

D̂Dn :¼ 1� Fâa,b̂b,ª̂ª(Cn):

Now we may argue heuristically as follows, using a generalization of the scaling property

(3.2) to inflate the transformed failure set by the factor 1=cn for some cn ! 0 chosen in a

suitable way:

pn ¼ Pf1� F(X , Y ) 2 1� F(Cn)g

� P
n

k
(1� F(X , Y )) 2 Dn

n o
� c1=�n P

n

k
(1� F(X , Y )) 2 Dn

cn

� �
(3:5)

� c1=�̂�n Pf(X , Y ) 2 BgjB¼F�1

âa,b̂b,ª̂ª
(1� D̂Dn=cn)

� c1=�̂�n

1

n

Xn
i¼1

1f(X i, Yi) 2 F�1

âa,b̂b,ª̂ª(1� D̂Dn=cn)g (3:6)

¼: p̂pn (3:7)

where �̂� denotes one of the estimators for � examined in Section 2.

In the following, we state the exact conditions under which we will prove consistency of

the estimator p̂pn, that is, p̂pn=pn ! 1 in probability as n ! 1. For the sake of simplicity,

we will not determine the non-degenerate limit distribution of the standardized estimation

error. However, employing the ideas of de Haan and Sinha (1999), one may establish

asymptotic normality of p̂pn under more complex conditions.

To study the asymptotic behaviour of p̂pn, we have to impose a regularity condition on the

sequence of failure sets Cn, or rather on the transformed sets Dn. Note that Dn will shrink

towards the origin because we are interested in extremal events. We assume that, after a

suitable standardization, Dn converges in the following sense:

Condition D. There exist a sequence d n ! 0 and a measurable bounded set A � [0, 1)2

with �(A) . 0 such that for all � . 0 one has, for sufficiently large n,

A�� �
Dn

dn

� Aþ�:

Here Aþ� :¼ fx 2 [0, 1)2j infy2Akx� yk < �g and A�� :¼ [0, 1)2n(([0, 1)2nA)þ�) denote

the outer and inner �-neighbourhood of A with respect to the maximum norm

kx� yk ¼ jx1 � y1j _ jx2 � y2j, and � is the measure corresponding to the function c (cf.

Section 2).

Note that dn and A are not determined by this condition as the former may be multiplied by a
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fixed factor and the latter divided by the same number. Moreover, even for given dn the set A

is determined only up to its boundary.

Condition (3.3) on Cn implies

(x, y) 2 Dn ) [0, x]3 [0, y] � Dn: (3:8)

Example 3.1. For Cn ¼ [xn, 1]3 [yn, 1] we have Dn ¼ [0, 1� Fa1,b1,ª1 (xn)]3

[0, 1� Fa2,b2,ª2 (yn)]. Hence Condition D is satisfied with dn ¼ 1� Fa1,b1,ª1 (xn) if

(1� Fa2,b2,ª2 (yn))=(1� Fa1,b1,ª1 (xn)) converges in (0, 1).

This example demonstrates that Condition D essentially means that the convergence of the

failure set in the x- and the y-direction is balanced.

Next we need a certain rate of convergence for the marginal estimators to ensure that the

transformation of the failure set does not introduce too big an error. For that purpose note

that

Ri(t, x) :¼ t(1� Fi(ai(t)xþ bi(t)))� (1� ªix)
�1=ªi ! 0, i ¼ 1, 2,

locally iniformly for x 2 (0, 1] as t ! 1, since Fi belongs to the domain of attraction of an

extreme value distribution (cf. (3.4)). Here we impose the following slightly stricter

condition:

Rx1,x2 (t) :¼ max
i¼1,2

sup
xi,x,1=((�ªi)_0)

jRi(t, x)(1þ ªix)
1=ªi j ! 0 (3:9)

for some �1=(ªi _ 0) , xi , 1=((�ªi) _ 0), i ¼ 1, 2. Observe that then (3.9) even holds for

all such xi. For example, if Fi satisfies the second-order condition

Ri(t, x)

Ai(t)
! �(x)

for some ri-varying function Ai with ri , 0 (i ¼ 1, 2), then (3.9) holds with

Rx1,x2 (t) ¼ O(A1(t) _ A2(t)). In addition, we require that not too many order statistics are

used for estimation of the marginal parameters:

k1=2Rx,x

n

k

� �
¼ O(1) (3:10)

for some x , 0. Then it follows that the estimators âai, b̂bi and ª̂ªi are
ffiffiffi
k

p
-consistent in the

following sense: 				 âaiai � 1

				 _ 				 b̂bi � bi

ai

				 _ jª̂ªi � ªij ¼ OP(k
�1=2), i ¼ 1, 2 (3:11)

(cf. Dekkers et al. 1989; de Haan and Resnick 1993).

We will see that using the estimated parameters instead of the unknown true ones for the

transformation of the failure sets does not cause problems provided

wª1^ª2 (dn) ¼ o(k1=2) with wª(x) :¼ �xª
ð1
x

u�ª�1 log u du: (3:12)

Bivariate tail estimation 259



Check that

wª(x) �

� 1

ª
log x, ª . 0

(log x)2

2
, ª ¼ 0

xª

ª2
, ª , 0,

8>>>>>>><>>>>>>>:
as x ! 0. Though at first glance (3.12) seems rather strict a condition if one of the extreme

value indices is negative, it is indeed a natural one; for without it the difference between the

transformed set Dn and its estimate D̂Dn would be at least of the same order in probability as

the typical elements of Dn, namely at least of the order dn, which of course would render

impossible any further statistical inference on the failure probability.

In addition, the scaling factor cn chosen by the statistician when applying the estimator

p̂pn must be related to the actual scaling factor dn as follows:

dn ¼ O(cn), wª1^ª2
cn

d n

� �
¼ o(k1=2),

cn

d n

� �1=�

¼ o((r(n))1=2), (3:13)

with r(n) :¼ nq(k=n). In particular, (3.13) is satisifed if cn and dn are of the same order.

Below the choice of cn is discussed more thoroughly.

Note that the scaling property (3.2) is a consequence of approximation (2.1) and the

homogeneity of the measure �. In order to justify (3.5) in the motivation for p̂pn given

above, we need the following condition, which applies to more general sets than just upper

quadrants:

sup
B2B n

				 Pf1� F(X , Y ) 2 1� F(B)g
q(kn�1)�(nk�1(1� F(B)))

� 1

				! 0, as n ! 1, (3:14)

where

Bn :¼ F�1
~aa,~bb,~ªª 1�

1� F~aa,~bb,~ªª(Cn)

cn

� �												 ~aaa� 1

								 _ 								 ~bb� b

a

								 _ k~ªª� ªk < �n

� �
for some �n ! 0 such that k1=2�n ! 1, and

Bn :¼ Bn [ Cn,
[

B2Bm,m>n

B

( )
:

It will turn out (see (6.16)) that for sufficiently large n the denominator in (3.14) is strictly

positive.

Notice that the convergence of the absolute value in (3.14) for sets of the form

1� F(B) ¼ [0, xk=n]3 [0, yk=n] follows from convergence (2.1) with t ¼ k=n.
Finally, to make approximation (3.6) rigorous, we need a kind of uniform law of large

numbers. This is provided by the theory of Vapnik–Chervonenkis (VC) classes of sets as

outlined, for example, in the monograph by Pollard (1984, Section II.4). For this we require
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B ¼
[
n2N

Bn is a VC class: (3:15)

Theorem 3.1. Suppose that Conditions D, (3.3) (or (3.8)), (3.9), (3.10) and (3.12)–(3.15) are

satisfied. If �̂�� � ¼ OP((r(n))
�1=2), log cn ¼ o((r(n))1=2), and k(n)=n is almost decreasing,

which means supm>n k(m)=m ¼ O(k(n)=n), then

p̂pn

pn
! 1 in probability:

Remark 3.1. (i) In the most important case that npn is bounded, the conditions (3.12)–(3.14)

can be jointly satisifed only if ª1 ^ ª2 . �1=2.
(ii) If the conditions of Theorem 2.1 are satisfied for m(n) ¼ br(n)c, then

�̂�i � � ¼ OP((r(n))
�1=2).

(iii) The sequence k(n)=n is almost decreasing, for example, if k(n) is regularly varying

with index less than 1 or, more generally, has an upper Matuszewska index Æ < 1 (see

Bingham et al., 1987, Theorem 2.2.2).

The scaling factor 1=cn by which the transformed failure set is inflated determines the

number of large observations taken into account for the empirical probability (3.6). More

precisely, according to (6.17) in the proof of Lemma 6.6, this number is of the order

r(n)=(dn=cn)
1=�. Hence if dn and cn are of the same order and �̂� is based on the largest

m(n) ¼ br(n)c order statistics of T
(n)
i , then the numbers of observations used in both steps

of the estimation procedure are of the same order of magnitude, which seems quite natural.

In practice, of course, dn and r(n) are not known. However, one may conversely choose

cn such that about r(n) observations lie in the inflated set D̂Dn=cn. To be more concrete, let

cn(º) :¼ sup c . 0

				Xn
i¼1

1 (X i, Yi) 2 F�1

âa,b̂b,ª̂ª 1� D̂Dn

c

� �� �
> ºdr(n)r(n)

( )
(3:16)

for some º . 0, where

dr(n)r(n) :¼
Xn
i¼1

1fX i . X n,n�k and Yi . Yn�k,ng:

Following the lines of the proof of Theorem 3.1, one may show that the estimator p̂pn is

consistent for pn if one chooses cn ¼ cn(º) and m(n) ¼ dr(n)r(n).

Alternatively, one may copy a heuristic approach which is common in univariate extreme

value statistics: one plots p̂pn as a function of cn and chooses a value cn where this graph

seems sufficiently stable.

Finally, it is worth mentioning that one may use other estimators for the marginal

parameters, such as the maximum likelihood estimator examined by Smith (1987) and

Drees et al. (2004), provided these estimators converge with the same rate.
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4. Simulations

We examine the small-sample behaviour of the estimators �̂�1 and �̂�2 for four different

distributions:

(i) the bivariate Cauchy distribution (� ¼ 1);

(ii) the bivariate extreme value distribution (BEV) with a logistic dependence function,

with Æ ¼ 0:75 (� ¼ 1) (Ledford and Tawn 1996; 1997);

(iii) the bivariate normal distribution with correlation r ¼ 0:6 (� ¼ 0:8);
(iv) the Morgenstern distribution with Æ ¼ 0:75 (� ¼ 0:5) (Ledford and Tawn 1996;

1997).

From each distribution we generated 250 samples of size 1000. All calculations were carried

out with the GAUSS package. For comparison we also simulated Peng’s (1999) estimator of �:

�̂�3 :¼ log 2=log
Sn(m)

Sn(bm=2c)

� �
with Sn(k) :¼

Xn
i¼1

1fX i . X n,n�k and Yi . Yn,n�kg:

Note that the meaning of m is different here from that in the definitions of �̂�1 and �̂�2.
In Table 1, besides the averages, the root mean squared errors and the standard deviations

of the estimates, we report the means of two different estimates of the approximate standard

deviation obtained in Theorem 2.1 and Peng’s Theorems 2.1 and 2.2. The first estimator,

referred to as �̂� i(�̂�i), is defined as �̂� im
�1=2 with �̂� i defined in Theorem 2.2 for i ¼ 1, 2,

while for i ¼ 3 we use the variance estimator proposed by Peng (1999); the second variance

estimator, called �̂� i(1), is defined similarly but the estimator for � is replaced with 1.

These estimators for the standard deviations can be used to construct two different tests

for asymptotic dependence (or � ¼ 1) with nominal size 0.05. More concretely, asymptotic

dependence is accepted if (1� �̂�i)=�̂� i(�̂�i) < ��1(0:95) or, alternatively, if (1� �̂�i)=�̂� i(1)

< ��1(0:95), with ��1 denoting the standard normal quantile function. The proportion of

simulations in which the hypothesis � ¼ 1 is accepted is also reported in Table 1. Finally,

the number of simulations in which the test statistics could not be calculated is given in the

last column. For the maximum likelihood estimator this occurred when no solution of the

likelihood equations could be found, for Peng’s estimator Sn(m) may be equal to Sn(bm=2c)
and the estimated variance can be negative. The values m were chosen in a range where the

overall performance of the tests seems best.

In Figure 1 the averages of the observed �̂�i are plotted against m, and the standard

deviations of the three estimators are indicated for the Cauchy and the normal distribution.

The maximum likelihood estimator �̂�1 exhibits the greatest stability with respect to the

choice of m, but it is biased downward for the BEV and the normal distribution. The Hill

estimator �̂�2 is also biased downward for the Cauchy, the BEV and the normal distribution,

and the bias increases rapidly with m. Peng’s estimator is nearly unbiased for small values

of m, but it shows a growing negative bias in particular for the Cauchy and the BEV

distribution. The variance of the estimates is smallest for �̂�2 and largest for �̂�3. The

estimators for the standard deviations are reasonably accurate.

Table 1 shows that the tests based on the maximum likelihood estimator �̂�1 perform best.
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Table 1. Mean and root mean squared errors (RMSE) of �̂�i, observed standard deviation of the

estimator, mean of estimates �̂� i(�̂�i) and �̂� i(1), and proportion of samples in which � ¼ 1 is accepted

by a 5% test, based on �̂� i(�̂�i) or �̂� i(1). The last column indicates the number of simulations where

calculations failed (sample size n ¼ 1000, 250 simulations)

�̂�i Standard deviation � ¼ 1 accepted; test

No.

mn Mean RMSE Obs. �̂� i(�̂�i) �̂� i(1) with �̂� i(�̂�i) with �̂� i(1) failed

Maximum likelihood, �̂�1
Cauchy 80 0.98 0.18 0.18 0.17 0.17 0.89 0.92 0

160 1.03 0.13 0.13 0.11 0.11 0.93 0.95 0

240 1.04 0.10 0.09 0.08 0.08 0.95 0.94 4

BEV 80 0.91 0.18 0.16 0.15 0.15 0.81 0.86 0

160 0.91 0.15 0.11 0.09 0.10 0.68 0.72 0

240 0.90 0.13 0.09 0.07 0.07 0.55 0.58 0

Normal 80 0.72 0.18 0.17 0.13 0.15 0.36 0.38 0

160 0.74 0.13 0.12 0.08 0.09 0.16 0.18 0

240 0.74 0.11 0.09 0.06 0.07 0.04 0.05 0

Morgenstern 80 0.47 0.16 0.16 0.12 0.17 0.05 0.06 0

160 0.49 0.11 0.11 0.08 0.10 0.00 0.00 0

240 0.50 0.08 0.08 0.06 0.08 0.00 0.00 0

Hill, �̂�2
Cauchy 40 0.93 0.14 0.12 0.11 0.12 0.81 0.88 0

80 0.89 0.14 0.08 0.08 0.09 0.57 0.63 0

120 0.84 0.17 0.06 0.06 0.07 0.15 0.22 0

BEV 40 0.87 0.17 0.11 0.10 0.11 0.60 0.71 0

80 0.84 0.17 0.08 0.06 0.08 0.29 0.34 0

120 0.82 0.19 0.06 0.05 0.06 0.05 0.08 0

Normal 40 0.73 0.12 0.10 0.08 0.11 0.12 0.18 0

80 0.74 0.09 0.07 0.05 0.07 0.01 0.01 0

120 0.73 0.08 0.05 0.04 0.06 0.00 0.00 0

Morgenstern 40 0.51 0.07 0.07 0.07 0.13 0.00 0.00 0

80 0.53 0.06 0.05 0.04 0.08 0.00 0.00 0

120 0.54 0.06 0.04 0.03 0.06 0.00 0.00 0

Peng, �̂�3
Cauchy 40 1.05 0.37 0.36 0.23 0.25 0.92 1.00 6

80 0.97 0.18 0.18 0.16 0.18 0.88 1.00 1

120 0.88 0.17 0.12 0.11 0.14 0.67 0.97 1

BEV 40 0.96 0.23 0.23 0.20 0.23 0.90 1.00 5

80 0.85 0.20 0.12 0.12 0.17 0.60 0.97 2

120 0.80 0.21 0.09 0.09 0.14 0.28 0.67 0

Normal 40 0.78 0.20 0.19 0.18 0.30 0.60 1.00 2

80 0.75 0.10 0.09 0.12 0.19 0.27 0.94 0

120 0.74 0.09 0.07 0.09 0.14 0.05 0.27 0

Morgenstern 40 0.55 0.23 0.22 0.24 0.74 0.32 1.00 10

80 0.54 0.11 0.11 0.12 0.37 0.03 1.00 0

120 0.55 0.08 0.07 0.09 0.25 0.00 0.10 0
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ûMaximum likelihood estimator, η1

ûHill estimator, η2

ûPeng’s estimator, η3

Cauchy Normal

Figure 1. Estimators of � versus m for bivariate Cauchy (left) and normal distributions (right);

average over 250 simulations (solid line) and �1.64 standard deviations (dashed lines). Horizontal

line: true �.
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For the Cauchy and the BEV distribution, the smaller variance and the somewhat larger bias

of the Hill estimator lead to an empirical size of the test based on this estimator that is

much larger than the nominal size. Conversely, the number of simulations in which the test

based on Peng’s estimator and �̂�3(1) rejects the hypothesis is quite low for the normal and

the Morgenstern distribution, because �̂�3(1) is rather large.

We also studied the finite-sample behaviour of the proposed estimator of a failure

probability. For this we considered failure sets of the form [a, 1)2 where a is chosen such

that the failure probability pn equals (100n)�1 ¼ 10�5 for sample size n ¼ 1000. We use

the maximum likelihood estimator �̂�1 to estimate the coefficient of tail dependence and

consider the following three estimators of pn: p̂p(�̂�) ¼ p̂pn as defined in (3.7) with

cn ¼ cn(1) defined by (3.16); p̂p(1) ¼ c1�1=�̂�
n p̂pn (thus assuming � ¼ 1); and p̂p ¼ p̂p(1) or p̂p(�̂�)

depending on whether the hypothesis � ¼ 1 is accepted or rejected by the test with standard

deviation estimated by �̂�1(1). Table 2 summarizes the main results for the failure probability

estimators. The corresponding boxplots are shown in Figure 2.

For the Cauchy distribution we have asymptotic dependence, so p̂p(1) is appropriate. As

expected, p̂p(�̂�) spreads more widely than p̂p(1) (see Figure 2).

For the normal distribution the main problem is to estimate the marginals. In particular,

Table 2. Median of ª̂ªi and of estimated failure probabilities; ‘Exponential/Normal’ indicates a

bivariate normal distribution with marginals standardized to exponential distribution (true failure

probability pn ¼ 10�5, sample size n ¼ 1000, 250 simulations)

k ª̂ª1 ª̂ª2 � p̂p(�̂�) p̂p(1) p̂p

Cauchy 1 1 1 310�5

40 0.89 0.95 0.91 0.1310 0.2996 0.2914

80 0.98 1.02 0.99 0.3738 0.5056 0.4810

160 0.91 0.96 1.03 1.0815 0.7973 0.7973

240 1.00 1.04 1.04 1.6677 1.1440 1.1285

Morgenstern 1 1 0.5 310�5

40 0.96 0.99 0.44 0.3277 11.7065 0.3277

80 1.01 1.03 0.46 0.3754 27.0215 0.3754

160 0.94 0.97 0.48 0.6287 57.5168 0.6287

240 1.00 1.02 0.50 0.7640 83.7799 0.7640

Normal 0 0 0.8 310�5

40 �0.13 �0.15 0.68 0.0000 0.0600 0.0000

80 �0.17 �0.20 0.71 0.0000 0.0024 0.0000

160 �0.13 �0.13 0.73 0.0000 0.0000 0.0000

240 �0.17 �0.20 0.75 0.0000 0.0000 0.0000

Exponential/Normal 0 0 0.8 310�5

40 �0.00 0.02 0.68 0.0054 0.8557 0.0212

80 0.04 0.06 0.71 0.0723 2.2344 0.0975

160 0.01 0.04 0.73 0.2384 3.7091 0.2467

240 0.04 0.06 0.75 0.3623 6.1357 0.3623
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the estimates for ª1 and ª2 are often negative. This implies a finite right endpoint of the

marginal distributions and in quite many simulations the failure area lies outside the support

of the distribution, leading to an estimated failure probability equal to 0.

When the marginals are first transformed to the exponential distribution, the estimators of

the marginal parameters are much more accurate with ª̂ªi, i ¼ 1, 2, close to 0, and the

estimators for pn perform much better. Nevertheless, in several simulations p̂pn ¼ 0 when

one or both estimates of ªi are negative. Here the estimator p̂p(1), which assumes � ¼ 1,

overestimates the probability, while p̂p(�̂�) underestimates it.

The Morgenstern distribution has asymptotically independent marginals. The estimator

p̂p(�̂�) is slightly biased downward, whereas p̂p(1) has a strong positive bias. Estimating the

marginals does not cause problems here as the Morgenstern distribution has extreme value

(Fréchet) marginals.

Cauchy Morgenstern

Normal Exponential/Normal

Figure 2. Each panel shows boxplots indicating the 5th, 25th, 50th, 75th and 95th percentiles of p̂p(�̂�)
(left) and p̂p(1) (right) for different values of k; the horizontal line shows the true failure probability

pn ¼ 10�5 (sample size n ¼ 1000, 250 simulations)
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5. An application: dependence of sea state parameters

In the course of the Neptune project, we studied the joint distribution of three sea state

variables and its consequences for the sea wall at Petten. The data set, supplied by the

Dutch National Institute for Marine and Coastal management, consists of date, time and sea

characteristics recorded from 1979 to 1991, at three-hourly intervals at the Eierland station,

20 km off the Dutch coast. To obtain (nearly) independent observations of wave height

HmO, wave period Tpb and still water level SWL, the maximum values of each of these

state variables in distinct storm events are considered (see de Valk, 1994, for details). De

Haan and de Ronde (1998) estimated the failure probability of the ‘Pettemer zeewering’

assuming asymptotic dependence between the variables. Figure 3 shows a scatterplot of

HmO and SWL and illustrates the estimation of the corresponding coefficient of tail

dependence. While the test based on Peng’s estimator and the estimator �̂�3(1) of the

standard deviation accepts the hypothesis of asymptotic dependence at the 5% level, the

Figure 3. From top left to bottom right: scatterplot of still water level SWL versus wave height HmO,

the maximum likelihood estimator �̂�1, Hill’s estimator �̂�2 and Peng’s estimator �̂�3; �̂�i versus m (solid

line) and upper boundary of critical region of 5% test for � ¼ 1 (dotted line). Horizontal line: � ¼ 1.
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maximum likelihood estimator suggests this hypothesis should be rejected, because for m

between 60 and 160, where the curve of estimates for � is most stable, the estimates lie in

the critical region. Also the test based on the Hill estimator rejects the hypothesis for small

values of m. In view of the results from the simulation study reported in Section 4, it seems

plausible to assume asymptotic independence between the wave heights and the still water

level.

6. Proofs for Sections 2 and 3

Define uniformly distributed random variables Ui :¼ 1� F1(X i) and Vi :¼ 1� F2(Yi) and

denote the pertaining order statistics by Un,i and Vn,i, with the convention Un,0 ¼ Vn,0 ¼ 0.

We will use the following notation:

S1(x, y) :¼
Xn
i¼1

1fUi < x and Vi < yg, S2(x, y) :¼
Xn
i¼1

1fUi < x or Vi < yg: (6:1)

Let W1(x, y) and W2(x, y) be Gaussian processes with mean zero and covariance structure

given by

EfW1(x1, y1)W1(x2, y2)g ¼ c(x1 ^ x2, y1 ^ y2),

EfW2(x1, y1)W2(x2, y2)g ¼ x1 ^ x2 þ y1 ^ y2 � lc(x1, y1)� lc(x2, y2)þ lc(x1 _ x2, y1 _ y2),

respectively. Moreover, let k ¼ dnq�1(m=n)e, so that m=k ! l.

Lemma 6.1. Under the conditions of Theorem 2.1,ffiffiffiffi
m

p S1(Un,bkxc, Vn,bkyc)

m
� c(x, y)

� �
!D W (x, y):

Here, and below, !D denotes convergence in distribution in D([0, 1)2), and W (x, y) is a

Gaussian process with mean zero and covariance structure depending on l: if l ¼ 0,

W (x, y) ¼ W1(x, y);

if l . 0,

W (x, y) ¼ 1ffiffi
l

p (W 2(x, 0)þ W 2(0, y)� W2(x, y))

�
ffiffi
l

p
cx(x, y)W2(x, 0)�

ffiffi
l

p
cy(x, y)W2(0, y),

where the term in the first line of the right-hand side has the same distribution as W1(x, y).

Proof. From Peng (1999), Huang (1992) and Einmahl (1997, Theorem 3.1), it follows thatffiffiffiffi
m

p S1(kn
�1x, kn�1 y)

m
� c(x, y)

� �
!D W1(x, y): (6:2)
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Similarly, one obtains

ffiffiffi
k

p S2(kn
�1x, kn�1 y)

k
� (xþ y� lc(x, y))

� �
!D W2(x, y): (6:3)

This implies

ffiffiffi
k

p 1

k

Xn
i¼1

1 Ui <
k

n
x

� �
� x

 !
!D W2(x, 0):

Note that the generalized inverse of x 7! k�1
Pn

i¼11fUi < k=nxg equals x 7! (n=k)Un,bkxc.
Vervaat’s (1972) lemma yields ffiffiffi

k
p n

k
Un,bkxc � x

� �
!D �W2(x, 0)

ffiffiffi
k

p n

k
Vn,bkyc � y

� �
!D �W2(0, y): (6:4)

For l ¼ 0, we have m ¼ o(k) and henceffiffiffiffi
m

p n

k
Un,bkxc � x

� �
!p 0

ffiffiffiffi
m

p n

k
Vn,bkyc � y

� �
!p 0:

Therefore, the assertion follows from (6.2) and the differentiability of c.

In the case m=k ! l with l . 0, one may derive the result in a similar fashion using

S1(Un,bkxc, Vn,bkyc) ¼ bkxc þ bkyc � S2(Un,bkxc, Vn,bkyc)

(cf. Peng 1999). h

Denote by Qn the tail empirical quantile function pertaining to T
(n)
i , 1 < i < n, that is,

Qn(t) :¼ T
(n)

n,n�bmtc, 0 , t , n=m:

The following lemma is central to the proof of the asymptotic normality of estimators for �
based on largest order statistics of T

(n)
i .

Lemma 6.2. Under the conditions of Theorem 2.2 there exist suitable versions of Qn, a

suitable process W equal in distribution to a standard Brownian motion if l ¼ 0 and to

x 7! W (x, x) if l . 0 such that, for all t0, � . 0,

sup
0, t< t0

t�þ1=2þ�

				m1=2 k

n
Qn(t)� t��

� �
� �t�(�þ1)W (t)

				 ¼ oP(1):
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Proof. First, check that

Xn
i¼1

1fT (n)
i . xg ¼

Xn
i¼1

1fRX
i . (nþ 1)(1� 1=x) and RY

i . (nþ 1)(1� 1=x)g

¼
Xn
i¼1

1fUi , Un,d(nþ1)=xe and Vi , Vn,d(nþ1)=xeg a:s:

with the convention Un,nþ1 ¼ Vn,nþ1 ¼ 1. Hence

Fn(x) :¼
1

n

Xn
i¼1

1
k

nþ 1
T
(n)
i . x

� �
¼ 1

n
S1 Un,dk=xe�, Vn,dk=xe�

 �

,

where f (x�) denotes the left-hand limit of f at x. From Lemma 6.1 one readily obtains that

m1=2 Fn(x)

q(k=n)
� x�1=�

� �
0,x,@

! (W (1=x, 1=x))0,x,1

) m1=2 Fn(x
��)

q(k=n)
� x

� �
0,x,1

! (W (x�, x�))0,x,1 ¼: W

) m1=2((F
�1

n (q(k=n)t))�1=� � t)0, t,1 ! �W

weakly in D(0, 1), where in the last step Vervaat’s (1972) lemma is used. For this, note that

W has almost surely continuous sample paths, because by the definition of W it is a Brownian

motion for l ¼ 0 and can be represented as a sum of Brownian motions if l . 0. Thus the �-
method yields, for suitable versions,

F
�1

n (q(k=n)t) ¼ t��(1þ m�1=2�t�1W (t)þ o(m�1=2)) a:s:

uniformly on compact intervals bounded away from 0.

Next, note that F
�1

n (q(k=n)t) ¼ k=nQn(t) ¼ O(1=m) uniformly and sup0, t,W t
�1=2þ�

jW (t)j ¼ oP(1) as W # 0 by the law of the iterated logarithm and the aforementioned

representation of W . Thus it suffices to prove that, for all � . 0,

lim
W#0

lim sup
n!1

P sup
0, t<W

m1=2 t�þ1=2þ�

				 k

nþ 1
Qn(t)� t��

				 . �

� �
¼ 0: (6:5)

Here we will only consider

P sup
0, t<W

m1=2 t�þ1=2þ� k

nþ 1
Qn(t)� t��

� �
. �

� �

< P 91 < i < mWþ 1 :
k

nþ 1
T
(n)
n,n�iþ1 . xi,n and xi,n , k

� �
(6:6)
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with

xi,n :¼
i

m

� ���

þ �m�1=2 i

m

� ��(�þ1=2þ�)

:

The other inequality can be treated in a similar way.

Let Ti :¼ (1=Ui) ^ (1=Vi). Then the right-hand side of (6.6) can be bounded by

P 91 < i < mWþ 1 :
Xn
j¼1

1fT j . (1=Un, dk=xi,ne) ^ (1=Vn,dk=xi,ne)g > i and xi,n , k

( )
:

We now distinguish two different ranges of i-values.

According to Shorack and Wellner (1986, Theorem 10.3.1), for all � . 0 there exists

� . 0 such that eventually, with probability greater than 1� �,

(1=Un,dk=xi,ne) ^ (1=Vn,dk=xi,ne) >
n

k
xi,n� > �Lk�1m�n1��(n=i)�, (6:7)

for all i < in :¼ b(�m�=L)1=(1=2þ�)c, with xi,n , k.

Since q�1 is �-varying at 0 and the quantile function F�1
T of Ti is (��)-varying at 1, in

the case � , 1, we have k=n ¼ o((m=n)�þØ) and F�1
T (1� t) ¼ o(t�(�þØ)) as t # 0 for all

Ø . 0. Hence the right-hand side of (6.7) is of larger order than F�1
T (1� 2i=�Ln)).

If � ¼ 1, in view of (2.1) and Lemma 2.1 of Drees (1998a), we have

sup
x<1

xØ�1

				 q(tx)q(t)
� x

				 ¼ o(q1(t)):

Apply this bound with t ¼ k=n and x ¼ i=(�Lm) to obtain 1� FT (xi,n�n=k) < 2i=(�Ln),
since xi,n > Lm=i and (i=m)1�Øq1(k=m) ¼ o(m1=2q1(k=n)i=m) ¼ o(i=m) uniformly for 1 <

i < in.

Hence, for all �, it follows that

lim sup
n!1

P 91 < i < in :
Xn
j¼1

1fT j . (1=Un,dk=xi,ne) ^ (1=Vn,dk=xi,ne)g > i and xi,n , k

( )

< lim sup
n!1

P 91 < i < in : Tn,n�iþ1 .
n

k
xi,n�

n o
þ �

< lim sup
n!1

P max
1<i<mþ1

Tn,n�iþ1

F�1
T (1� 2i=(�Ln))

. 1

( )
þ �

, 2� (6:8)

for sufficiently large L, where for the last step we again use Theorem 10.3.1 of Shorack and

Wellner (1986).

Let

yi,n :¼
n

k
xi,n � ~��nk�3=2x

3=2þØ
i,n
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for some Ø 2 (0, �) and ~�� . 0. Using

lim
W#0

lim sup
n!1

P sup
0, t<W

k1=2 t3=2þØ

				 k

nUn,dkte
� t�1

				 . ~��

� �
¼ 0

(Drees 1998a, Theorem 2.1) instead of (6.7), one can conclude by similar arguments to those

above that

lim
W#0

lim sup
n!1

P 9in , i < mWþ 1 :
Xn
j¼1

1fT j . (1=Un,dk=xi,ne) ^ (1=Vn,dk=xi,ne)g > i

( )

< lim
W#0

lim sup
n!1

P 9in , i < mWþ 1 : m1=2 i

m

� ��þ1=2þ�
k

n
Tn,n�iþ1 �

i

m

� ���� �
. �=2

( )

¼ 0: (6:9)

In the last step, we again use Theorem 2.1 of Drees (1998a), where (2.1) implies Condition 1

of that paper and m1=2q1(k=n) ! 0 ensures that the bias is aymptotically negligible.

Combining (6.8) and (6.9), one arrives at (6.5). h

Proof of Theorem 2.1 (asymptotic normality of �̂�1 and �̂�2). Note that this approximation is

analogous to the approximation of the tail empirical quantile function established in Drees

(1998a) in the classical situation of i.i.d. random variables. Hence, the asymptotic normality

of �̂�1 and �̂�2 follows from Lemma 6.2 exactly as in Drees (1998a, Example 4.1) and Drees

(1998b, Example 3.1) using the �-method. The asymptotic variance is given byð1
0

ð1
0

cov(W (s), W (t))(st)�(�þ1)��(ds)��(dt)

with ��(dt) :¼ (�þ 1)2(t� � (2�þ 1)t2�)=� dt þ (�þ 1)�1(dt) for the maximum likelihood

estimator �̂�1 and ��(dt) :¼ �(t� dt � �1(dt)) in case of the Hill estimator. (Here �1 denotes the
Dirac measure at 1.) Now using the homogeneity of order 1 of the covariance function

which implies
Ð t
0
cov(W (s), W (t))(st)�1 ds ¼

Ð 1
0
cov(W (u), W (1))u�1 du, one obtains

(�þ 1)2 var(W (1)) and �2 var(W (1)), respectively, as asymptotic variance and thus the

assertion, using cx(1, 1)þ c y(1, 1) ¼ 1=�.

Proof of Theorem 2.2. By Lemma 6.2,

l̂l ¼ m

k
� k
n
Qn(1)!

p
l

and k= k̂k ¼ k=nQn(1) ! 1 in probability.

In the same way as in Lemma 6.2, one can prove that

k

n
T
(n,u)

n,n�bmtc ¼
t

c(1þ u, 1)

� ���

þ OP(m
�1=2):

272 Draisma et al.



Hence, if � ¼ 1, then

ĉcx(1, 1) ¼
k̂k

k
( k̂k1=4(c(1þ k�1=4, 1)� c(1, 1))þ OP(k

1=4m�1=2))!P cx(1, 1):

The consistency of ĉc y(1, 1) can be proved in a similar way, so that the consistency of �̂� 2
i

follows readily in that case.

Likewise, if � , 1, we have

ĉcx(1, 1) ¼ (�cx(1, 1)þ OP(k
1=4m�1=2))(1þ oP(1)),

and thus

l̂l1=2 ĉcx(1, 1) ¼ oP(1)þ OP(m
1=2k�3=4) ¼ oP(1):

Together with the analogous result for ĉc y(1, 1) and the consistency of l̂l and �̂�i, this implies

�̂� 2
i ! � 2

i in probability. h

The proof of Theorem 3.1 will be given in several steps. The following sequence of

equalities and asymptotic (in probability) equivalences provides an overview of the line of

reasoning:

pn ¼ Pf1� F(X , Y ) 2 1� F(Cn)g

�(3:14) q k

n

� �
�

n

k
(1� F(Cn))

� �
�Lemma 6:4

q
k

n

� �
�(Dn)

¼(2:2) c1=�n q
k

n

� �
�

Dn

cn

� �

�Cor: 6:3
c1=�n q

k

n

� �
� 1� Fa,b,ª F�1

âa,b̂b,ª̂ª 1� D̂Dn

cn

� �� �� �

�Lemma 6:5
c1=�n q

k

n

� �
�

n

k
1� F F�1

âa,b̂b,ª̂ª 1� D̂Dn

cn

� �� �� �� �
�(3:14) c1=�n Pf1� F(X , Y ) 2 1� F(B)gjB¼F�1

âa,b̂b,ª̂ª
(1� D̂Dn=cn)

�Lemma 6:6
c1=�n

1

n

Xn
i¼1

1 (X i, Yi) 2 F�1

âa,b̂b,ª̂ª 1� D̂Dn

cn

� �� �
� p̂pn: (6:10)
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Lemma 6.3. Let a ¼ a(n), ~aa . 0, b, ~bb, ª, ~ªª 2 R denotes sequences such that				 ~aaa� 1

				 _ 				 ~bb� b

a

				 _ j~ªª� ªj ¼ O(�n)

for some �n # 0. Suppose that the sequence ºn . 0 is bounded and satisfies �n log ºn ! 0

and �nwª(ºn) ! 0, with wª defined in (3.12). Then

1� F~aa,~bb,~ªª(F
�1
a,b,ª(1� x)) ¼ xþ o(ºn) (6:11)

uniformly for 0 < x < ºn.

Proof. First, note that

T (x) :¼ 1� F~aa,~bb,~ªª(F
�1
a,b,ª(1� x)) ¼ 1þ ~ªª

a

~aa

x�ª � 1

ª
þ b� ~bb

a

 !" #�1=~ªª

,

where, as usual, (x�ª � 1)=ª :¼ �log x if ª ¼ 0. We now distinguish three cases.

ª . 0. Then

T (x) ¼ (1þ (1þ O(�n))(x
�ª � 1þ O(�n)))

�(1þO(�n))=ª

¼ (x�ª(1þ O(�n))þ O(�n))
�(1þO(�n))=ª

¼ x exp(O(�n)log x)(1þ o(1))

uniformly for 0 < x < ºn. For ºn�n < x < ºn,

jlog xj�n < (jlog ºnj þ jlog �nj)�n ! 0,

and thus T (x) ¼ x(1þ o(1)) ¼ xþ o(ºn) uniformly. Otherwise, that is, for 0 < x , ºn�n,

T (x) < T (ºn�n) ¼ ºn�n(1þ o(1)) ¼ o(ºn) ¼ xþ o(ºn)

by the monotonicity of T.

ª , 0. Choose �n ! 0 such that �n(ºn�n)
ª ! 0 and hence also �n log �n ! 0 (e.g.,

�n ¼ (�nº
ª
n)

�1=(2ª)). Then, uniformly for ºn�n < x < ºn,

T (x) ¼ x1þO(�n)(1þ O(�n)þ O(�n(ºn�n)
ª))�(1þO(�n))=ª ¼ x(1þ o(1)),

and again (6.11) follows from the monotonicity of T.

ª ¼ 0. Note that ~ªªjlog xj ! 0 uniformly for ºn�n < x < ºn. Hence a Taylor expansion of

log yields

274 Draisma et al.



T (x) ¼ exp � 1

~ªª
log(1þ ~ªª(1þ O(�n))(�log xþ O(�n)))

� �

¼ exp � 1

~ªª
[~ªª(1þ O(�n))(�log xþ O(�n))þ O(~ªª2(log xþ O(�n))

2]

� �
¼ x exp(O(�n)log xþ O(�n)þ O(�n log

2 x))

¼ x(1þ o(1)),

and thus the assertion follows by the aforementioned arguments. h

Remark 6.1. For fixed sequences a, b and ª, assertion (6.11) even holds uniformly for

(~aa, ~bb, ~ªª) 2 M(�n) :¼ (a, b, ª) 2 (0, 1)3 R2

								 aa� 1

				 _ 				 b� b

a

				 _ jª� ªj < �n

� �
: (6:12)

Corollary 6.1. If Condition D, (3.8) and (3.11)–(3.12) are satisfied then, for all � . 0,

P A�� �
D̂Dn

d n

� Aþ�

� �
! 1:

Proof. Since the set A is bounded, there exists L . 0 such that Dn � [0, dnL]
2 for all

sufficiently large n. Because of (3.12), one can find a sequence �n ! 0 such that k�1=2

¼ o(�n) and the conditions of Lemma 6.3 hold for ºn ¼ dnL. Then Pf(âa, b̂b, ª̂ª) 2
(M(�n))2g ! 1 with M(�n) defined in (6.12), and Lemma 6.3 yields

sup
(x, y)2Dn

k1� Fâa,b̂b,ª̂ª(F
�1
a,b,ª(1� (x, y)))� (x, y)k <

�

2
dn (6:13)

with probability tending to 1. Thus, in view of D̂Dn ¼ 1� Fâa,b̂b,ª̂ª(F
�1
a,b,ª(1� Dn)) and Condition

D,

P
D̂Dn

d n

� Dn

dn

� �
þ�=2

� Aþ�

( )
! 1:

On the other hand, by the definition of the inner neighbourhood of a set, (x, y) 2
(Dn=dn)��=2 implies (xþ �=2, yþ �=2) 2 Dn=dn. Since, in view of (6.13),

dn(x, y) < 1� Fâa,b̂b,ª̂ª F�1
a,b,ª 1� dn xþ �

2
, yþ �

2

� �� �� �
componentwise, (3.8) shows that dn(x, y) 2 D̂Dn. Hence, again by Condition D,

P A�� �
Dn

dn

� �
��=2

� D̂Dn

d n

( )
! 1:

h
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Corollary 6.2. If the conditions of Corollary 6.1 hold, and (3.13) also holds, then, for all

� . 0,

P A�� � cn

d n

1� Fa,b,ª F�1

âa,b̂b,ª̂ª 1� D̂Dn

cn

� �� �� �
� Aþ�

� �
! 1:

Proof. According to Corollary 6.1, there exists L . 0 such that PfD̂Dn=cn � [0, ºn]
2g ! 1

for ºn :¼ Ldn=cn. It follows from (3.11) and (3.13) that ºª̂ªi

n ¼ ºªi

n (1þ oP(1)), i ¼ 1, 2.

Hence, one may apply Lemma 6.3 with (a, b, ª) ¼ (âai, b̂bi, ª̂ªi) and (~aa, ~bb, ~ªª) ¼ (ai, bi, ªi) to

obtain

sup
(x, y)2 D̂Dn=cn

k1� Fa,b,ª(F
�1

âa,b̂b,ª̂ª(1� (x, y)))� (x, y)k <
�

2

dn

cn

with probability tending to 1, for all � . 0. Now one may conclude the proof following the

lines of the previous proof. h

Corollary 6.3. Under the conditions of Corollary 6.2,

� 1� Fa,b,ª F�1

âa,b̂b,ª̂ª 1� D̂Dn

cn

� �� �� �
¼ �

Dn

cn

� �
(1þ oP(1)):

Proof. Denote the boundary of the set A by @A. Condition (3.8) implies a slightly weaker

version for A, namely (x, y) 2 A ) [0, x)3 [0, y) � A. Hence, º � @A � A for all º 2 (0, 1),

and these sets are pairwise disjoint. Since � is homogeneous in the sense of (2.2) and

�(A) , 1 by the boundedness of A, it follows that �(@A) ¼ 0. Moreover, Aþ�nA�� # @A as

� # 0, so that �(Aþ�nA��) ! 0. Thus Corollary 6.2 and Condition D yield

�
cn

d n

1� Fa,b,ª F�1
âa,b̂b,ª̂ª 1� D̂Dn

cn

� �� �� �� �
! �(A)

and �(Dn=dn) ! �(A). Now the assertion is an obvious consequence of the homogeneity

(2.2). h

Lemma 6.4. If Condition D, (3.8) and (3.9) hold, then

�(Dn) ¼ �
n

k
(1� F(Cn))

� �
(1þ o(1)):

Proof. There exists L . 0 such that Dn � [0, dnL]
2 for all sufficiently large n. Choose

arbitrary �1=(ªi _ 0) , xi , 1=((�ªi) _ 0), i ¼ 1, 2. Then, by (3.9), for all (x, y) 2 Dn,

n

k
(1� F(F�1

a,b,ª(1� (x, y)))) ¼ (x(1þ �x), y(1þ � y)), (6:14)

with j�xj _ j� yj < Rx1,x2 (n=k), for sufficiently large n. According to (3.8), the left-hand side

of (6.14) is an element of Dn(1þ Rx1,x2 (n=k)). Thus, by the definition of Dn,
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n

k
(1� F(Cn)) � Dn 1þ Rx1,x2

n

k

� �� �
:

Likewise, (6.14) together with (3.8) implies

Dn 1� Rx1,x2

n

k

� �� �
� n

k
(1� F(Cn))

eventually. Now the assertion is obvious from the homogeneity property (2.2). h

Lemma 6.5. Under Condition D, (3.8), (3.9) and (3.11)–(3.13) one has

� 1� Fa,b,ª F�1
âa,b̂b,ª̂ª 1� D̂Dn

cn

� �� �� �� �
¼ �

n

k
1� F F�1

âa,b̂b,ª̂ª 1� D̂Dn

cn

� �� �� �� �
(1þ oP(1)):

Proof. The proof is very much the same as that for Lemma 6.4, with Dn replaced by

1� Fa,b,ª(F
�1
âa,b̂b,ª̂ª

(1� D̂Dn=cn)). Note that, by the boundedness of dn=cn and the assertion

of Corollary 6.2, this set is eventually bounded. Hence (3.9) is applicable for sufficiently

small x1 and x2. h

Lemma 6.6. If the conditions of Theorem 3.1 are satisfied, then

sup
B2B n

n�1
Xn
i¼1

1f1� F(X i, Yi) 2 1� F(B)g

Pf1� F(X , Y ) 2 1� F(B)g � 1

									

									! 0 in probability:

Proof. We will apply Theorem 5.1 of Alexander (1987). To check the conditions of this

uniform law of large numbers, first note that every set B 2 Bn can be represented as

B ¼ F�1
~aa,~bb,~ªª 1�

1� F~aa,~bb,~ªª(Cn)

cn

� �
(6:15)

with (~aa, ~bb, ~ªª) 2 (M(�n))2 (cf. (6.12)). Therefore the arguments of the proofs for Lemma 6.5

and Corollary 6.3 show that

�
n

k
(1� F(B))

� �
¼ �(1� Fa,b,ª(B))(1þ o(1)) ¼ �

Dn

cn

� �
(1þ o(1))

¼ dn

cn

� �1=�

�(A)(1þ o(1)) (6:16)

uniformly for B 2 Bn (cf. Remark 6.1). Now (3.14) leads to

Pf1� F(X , Y ) 2 1� F(B)g ¼ q
k

n

� �
dn

cn

� �1=�

�(A)(1þ o(1)) (6:17)

uniformly. In particular, there exists n0 such that Pf1� F(X , Y ) 2 1� F(B)g , 1=2 for all

n > n0 and all B 2 Bn.
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Next, note that

Bt :¼
[

B2B n,n>n0,
Pf1�F(X ,Y )21�F(B)g(1�Pf1�F(X ,Y )21�F(B)g)< t

B

�
[

B2B n,n>n0,
Pf1�F(X ,Y )21�F(B)g<2 t

B: (6:18)

In view of (6.15), one may prove as in Corollary 6.2 that, for all � . 0, eventually

1� Fa,b,ª(B) � Aþ�dn=cn for all B 2 Bn. Hence, it follows as in the proof of Lemma 6.4

that

n

k
(1� F(B)) � dn

cn
Aþ�(1þ o(1)) (6:19)

uniformly for B 2 Bn.

Let n(t) :¼ minfn > n0jq(k=n)(dn=cn)
1=��(A) < 3tg, which tends to 1 as t tends to 0.

Combining (6.17)–(6.19), we arrive at

1� F(Bt) �
[

n>n( t)

k(n)dn

ncn
Aþ�(1þ o(1)) � 2 sup

n>n( t)

k(n)dn

ncn
Aþ�

for sufficiently small t. By (3.14), the regularity condition on k(n) and the definition of n(t),

it follows that

Pf1� F(X , Y ) 2 1� F(Bt)g ¼ O q
k(n(t))

n(t)

� �
n(t)

k(n(t))
sup
n>n( t)

k(n)dn

ncn

 !1=�
0@ 1A

¼ O q
k(n(t))

n(t)

� �
dn

cn

� �1=�
 !

¼ O(t):

Since Bn is a VC class, Theorem 5.1 of Alexander (1987) yields

sup

n�1
Xn
i¼1

1f1� F(X i, Yi) 2 1� F(B)g

Pf1� F(X , Y ) 2 1� F(B)g � 1

									

									jB 2 Bn, Pf1� F(X , Y ) 2 1� F(B)g > �n

8>>><>>>:
9>>>=>>>;

! 0,

provided n�n ! 1. Because of (6.17) and the last assumption of (3.13), the choice

�n ¼ q(k=n)(dn=cn)
1=��(A)=2 leads to the assertion. h
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Proof of Theorem 3.1. Now the consistency of p̂pn can be proven as shown in (6.10). To this

end, note that, because of (3.11), F�1

âa,b̂b,ª̂ª
(1� D̂Dn=cn) belongs to Bn with probability tending to

1 and that log cn ¼ o((r(n))1=2) implies c1=�̂�n ¼ c1=�n (1þ oP(1)) since �̂� was assumed
ffiffiffiffiffiffiffiffiffi
r(n)

p
-

consistent for �. h
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