
Semi-parametric efficiency, distribution-

freeness and invariance

M A R C H A L L I N 1 and BAS J.M. WERKER2
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Semi-parametric models typically involve a finite-dimensional parameter Ł 2 ¨ � Rk, along with an

infinite-dimensional nuisance parameter f. Quite often, the submodels corresponding to a fixed value

of Ł possess a group structure that induces a maximal invariant � -field B(Ł). In classical examples,

where f denotes the density of some independent and identically distributed innovations, B(Ł) is the � -

field generated by the ranks of the residuals associated with the parameter value Ł. It is shown that

semi-parametrically efficient distribution-free inference procedures can generally be constructed from

parametrically optimal ones by conditioning on B(Ł); this implies, for instance, that semi-parametric

efficiency (at given Ł and f ) can be attained by means of rank-based methods. The same procedures,

when combined with a consistent estimation of the underlying nuisance density f, yield conditionally

distribution-free semi-parametrically efficient inference methods, for example, semi-parametrically

efficient permutation tests. Remarkably, this is achieved without any explicit tangent space or efficient

score computations, and without any sample-splitting device. By means of several examples, including

both i.i.d. and time-series models, we show how these results apply in models for which rank-based

inference or permutation tests have so far seldom been considered.
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1. Introduction

Semi-parametric models typically involve a finite-dimensional parameter Ł 2 ¨ � Rk of

interest, along with an infinite-dimensional nuisance parameter f – often the unspecified

density of some white noise underlying the data generating process. Classical examples

include the one-, two-, and K-sample location and scale models, linear models with

independent autoregressive moving average (ARMA) or conditional heteroscedastic (ARCH)

type errors, linear as well as nonlinear time series models. The fact that f, in the semi-

parametric model, remains unspecified induces, in general, a loss of efficiency with respect

to the parametric situation. This loss is essentially formal, though, since parametric models

seldom can be trusted to provide a correct description of the situation at hand: semi-

parametric efficiency, as a rule, is the best realistic objective statisticians should

contemplate. While recognizing the practical importance of a semi-parametric approach

to statistical problems, much of the literature and a great deal of everyday practice still

avoids addressing the specific features of semi-parametric models, contenting itself with the
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fact that traditional parametric approaches remain valid in the semi-parametric setting. This

is the case for the so-called pseudo- or quasi-likelihood methods, where the parametric

procedures associated with some predetermined f 0 (mostly Gaussian or exponential

likelihood procedures) are imported, without much change, into the semi-parametric context.

Such procedures, if valid under unspecified f, reach parametric efficiency at Gaussian f only.

Efficiency, here and in what follows, is to be understood á la Le Cam, in a local and

asymptotic sense, under the local asymptotic normality (LAN) structure (more precise

definitions are given below). LAN induces bounds on the asymptotic performance of

statistical procedures in parametric as well as semi-parametric models. The following

somewhat heavy, terminology will be needed. We say that a method is somewhere

parametrically efficient (parametrically efficient at f 0) if it is efficient in the parametric

model induced by some f 0. A parametrically efficient method (a method that is

parametrically efficient at any f ) is clearly uniformly best. Such a method is usually

called adaptive and generally does not exist. A similar terminology is used with respect to

semi-parametric efficiency. Methods that are semi-parametrically efficient at some f 0 are

called somewhere semi-parametrically efficient, and a method that is semi-parametrically

efficient at any f is simply called semi-parametrically efficient. Finally, when the parametric

and semi-parametric lower bounds coincide at some f0, the model is called somewhere

adaptive (adaptive at f 0). If the two bounds coincide for all f, the model is called adaptive.

Approaches that take into account the semi-parametric nature of the models at hand

mainly belong to one of two types. Basically, the two possible attitudes are either to

estimate the nuisance f in some way, or to take care of it by means of some adequate

statistical principle. These two attitudes, combined with the LAN paradigm, are the starting

points of two seemingly quite different strands of the statistical literature: efficient and

adaptive inference on the one hand, where f is estimated from the sample; and permutation

tests and rank-based inference on the other, where the influence of f is eliminated via either

a conditioning or an invariance argument.

A comprehensive account of efficient and adaptive inference can be found in the

monograph by Bickel et al. (1993) for semi-parametric models with independent

observations. Semi-parametric time series models have been studied in a series of papers

– Kreiss (1987; 1990), Jeganathan (1995; 1997), Drost et al. (1997), Koul and Schick

(1997), Schick and Wefelmeyer (2000), and Müller and Wefelmeyer (2001) to name but a

few. The basic idea in this literature is to estimate the underlying f, and to consider the so-

called (locally and asymptotically, at fixed f and Ł) ‘least favourable parametric submodel’

of the full semi-parametric model. The Le Cam theory allows parametrically efficient

inference procedures to be constructed for such submodels. If, for the original semi-

parametric model, inference procedures can be constructed which are (locally and

asymptotically, either at some f or over some class C of f values) equivalent to these

submodel-parametrically efficient ones, then they can be considered semi-parametrically

efficient (either at some f or over some class C of f values). This approach – let us call it

the tangent space approach – thus involves reducing, locally and asymptotically, the semi-

parametric problem to a simpler parametric one, through the least favourable submodel

argument. In general, the resulting computations are non-trivial.

The second strand of literature addresses the same problem of constructing inference
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procedures in semi-parametric models, and also involves reducing the original semi-

parametric problem to a parametric one. The reduction, however, is based on an entirely

different argument and is related to classical unbiasedness or invariance principles. The

submodels corresponding to a fixed value of Ł do quite often either possess a group

structure or allow for a complete sufficient statistic. The traditional invariance argument

leads to the consideration of statistical procedures which are measurable with respect to the

corresponding maximal invariant � -field B(Ł). If, for instance, the semi-parametric nature of

the model is due to the unspecified density f of some innovation process, then this approach

typically leads to rank-based inference, where the ranks are those of the innovations. In a

hypothesis testing context, the unbiasedness principle and Neyman structure argument lead

to permutation tests.

Somewhere parametrically efficient rank-based procedures do not always exist. However,

we show in Section 3 that somewhere semi-parametrically efficient procedures can always

be found within the class of rank-based procedures. While the classical literature on rank

tests so far has essentially been limited to linear models with independent observations (see

Puri and Sen 1985; or Hájek et al. 1999), we establish this result in a much broader

context, including most familiar time series models. Rank-based methods inherit all the

desirable features resulting from their invariance properties, which entail, for example,

distribution-freeness of test statistics. They are robust, and may even outperform, uniformly

in f and Ł, the more classical methods, based on ad hoc, mostly Gaussian, quasi-likelihoods

(Chernoff and Savage 1958; Hallin 1994). Relevant papers in this direction are Hallin et al.

(1985) and Hallin and Puri (1991; 1994). Similar properties also hold for permutation tests,

of which rank tests are only a particular case.

A related approach to the same problem – albeit in a completely opposite direction –

can be found in van der Vaart (1988), where sufficiency in the nonparametric fixed-Ł
submodels is exploited rather than invariance (for independent observations).

The objective of this paper is to bring together the two approaches to semi-parametric

inference just mentioned – the tangent space approach and the invariance approach. Earlier

results in this direction have been obtained by, for example, Hájek (1962) (see Hájek et al.

1999, Section 8.5, for a discussion) and Beran (1974). These results, however, concentrate

on specific cases, and are restricted to adaptive models (symmetric location, regression, etc.)

with independent observations. As mentioned above, we establish that the usual way to

construct rank-based inference procedures generally yields somewhere semi-parametrically

efficient procedures, and this extends to a very general class of possibly nonadaptive time

series models. Furthermore, we show that the benefits of both approaches can be cumulated,

yielding semi-parametrically efficient and conditionally distribution-free inference proce-

dures.

The basic results we obtain are described in Section 2 in a general and rather abstract

context. These general results are specialized to (signed) rank-based inference in Section 3;

in order to illustrate the general ideas, we employ the very simple example of a moving-

average model of order one. However, we stress that our results are not limited to rank-

based methods, and are valid whatever the underlying invariance or distribution-freeness

structure of the fixed-Ł-submodels, as long as the fixed-f-submodels satisfy the LAN

property and some additional regularity conditions. In Section 3.4 we discuss the
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construction of semi-parametrically efficient conditionally distribution-free inference

procedures, such as semi-parametrically efficient permutation tests. Finally, in Section 4,

we particularize further to some specific examples, such as location, regression and

autoregression models, and a simple ARCH model. We stress that the results are applicable

to many further situations, such as ARMA models, threshold autoregressive models, other

ARCH-type models and random coefficient autoregressive models, for which rank-based

inference has so far seldom been considered.

2. General results

2.1. Local asymptotic normality

Consider a sequence of semi-parametric models

E (n) :¼ (X (n), A(n), P(n) ¼ fP(n)
Ł,j : Ł 2 ¨, j 2 �g), n 2 N,

with ¨ an open subset of Rk and � an arbitrary set. We will study this sequence of models

in the neighbourhood of arbitrary, but for the rest of this section fixed, parameter values

(Ł 0, j0) 2 ¨3�. Write P
(n)
0 for P

(n)
Ł 0,j0

, and denote expectations under P
(n)
0 by E

(n)
0 . We

assume throughout this paper that the sequence of parametric models obtained by fixing the

nuisance parameter at j ¼ j0, that is,

E(n)
j0

:¼ (X (n), A(n), P(n)
j0
¼ fP(n)

Ł,j0
: Ł 2 ¨g), n 2 N,

is locally asymptotically normal at Ł 0, with central sequence ˜(n)(Ł 0, j0) and Fisher

information I(Ł 0, j0). To be precise, we have the following assumption.

Assumption A. For any bounded sequence (� n) in Rk , we have

dP
(n)

Ł 0þ� n=
ffiffiffi
n
p

,j0

dP
(n)
0

¼ exp �T
n˜

(n)(Ł 0, j0)� 1

2
�T

nI(Ł 0, j0)� n þ rn

� �
, (2:1)

where ˜(n)(Ł 0, j0)!L N (0, I(Ł 0, j0)) and rn!
P

0, under P
(n)
0 , as n!1.

2.2. Least favourable submodels

Though much of the semi-parametric terminology has been developed in the context of

independent observations, it transposes, in a more or less obvious way, into a context

of serially dependent observations; whenever possible, we will try to avoid formal

redefinitions.

Semi-parametrically efficient inference about the parameter Ł in the sequence of semi-

parametric models (E (n)) must be based on the so-called efficient influence function, which

is obtained as the influence function (for inference about Ł) of a parametric submodel E(n)
qlf

(of the form (2.2) described below) that includes the so-called ‘least favourable direction’
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H(n)
qlf

(Ł, j). For independently and identically distributed (i.i.d.) semi-parametric models, this

most difficult direction is found by projecting the score for Ł onto the tangent space

generated by the nuisance parameter (see, for example, Bickel et al. 1993). However, in our

general set-up, we do not necessarily have a product structure for the experiments and,

therefore, the definition of a tangent space concept is more delicate.

As usual, semi-parametric efficiency considerations are based on a local (and asymptotic)

analysis of suitable parametric submodels of the full semi-parametric model E (n). Let Q
denote the set of all maps q : (�1, 1)k ! � such that: (i) q(0) ¼ j0; and (ii) the sequence

of parametric experiments (E(n)
q , n 2 N) defined by

E(n)
q (j0) :¼ (X (n), A(n), P(n)

q ¼ fP
(n)
Ł,q(�) : Ł 2 ¨, � 2 (�1, 1)kg) (2:2)

is locally asymptotically normal (with respect to Ł and �) at (Ł 0, 0). We write

(˜(n)(Ł 0, j0)T, H(n)
q (Ł 0, j0)T)T for the corresponding central sequence, and

Iq(Ł 0, j0) :¼ I(Ł 0, j0) CT
q(Ł 0, j0)

Cq(Ł 0, j0) IHq
(Ł 0, j0)

� �
(2:3)

for the Fisher information matrix at (Ł 0, 0).

Asymptotically efficient inference on Ł in this parametric submodel should be based on

the so-called influence function, which is defined as the Ł-component of

I�1
q (Ł 0, j0)(˜(n)(Ł 0, j0)T, H(n)

q (Ł 0, j0)T)T,

taking (after elementary algebra) the form

(I(Ł 0, j0)� CT
q(Ł 0, j0)I�1

Hq
(Ł 0, j0)Cq(Ł 0, j0))�1˜(n)

q (Ł 0, j0), (2:4)

where

˜(n)
q (Ł 0, j0) :¼ ˜(n)(Ł 0, j0)� CT

q(Ł 0, j0)I�1
Hq

(Ł 0, j0)H(n)
q (Ł 0, j0): (2:5)

Intuitively, ˜(n)
q (Ł 0, j0) is the residual of the regression of the Ł-part ˜(n) of the central

sequence with respect to the �-part H(n)
q , using the asymptotic covariance matrix (2.3). And

the classical theory of Gaussian inference tells us that, in the Gaussian shift experiment

Gq(Ł 0, j0) :¼ (R2k , B2k , fN (Iq(Ł 0, j0)(�T, rrT)T, Iq(Ł 0, j0)) : (�, rr) 2 R2kg),

optimal inference on �, when rr is unspecified, should be based on such a residual. In view of

the convergence, in the Le Cam distance, of the local experiments

E(n)
q (Ł 0, j0) :¼ (X (n), A(n), P(n)

q ¼ fP
(n)

Ł 0þn�1=2�,q(n�1=2rr)
: (�, rr) 2 R2kg), n 2 N,

to Gq(Ł 0, j0), the same holds, in a local and asymptotic sense, for inference on Ł in E(n)
q (j0)

when � remains unspecified. The residual Fisher information in the experiment characterized

by ˜(n)
q (Ł 0, j0) is I(Ł 0, j0)� CT

q(Ł 0, j0)I�1
Hq

(Ł 0, j0)Cq(Ł 0, j0). The loss of Ł-information

due to the non-specification of � in E(n)
q (j0) is thus CT

q(Ł 0, j0)I�1
Hq

(Ł 0, j0)Cq(Ł 0, j0).

Now, the L2 projection (2.5) takes care, in a local and asymptotically optimal way, of the

influence on ˜(n) of local perturbations of j0 in the parametric subexperiment characterized

by q. The question is: does there exist a qlf 2 Q such that (a version of) the corresponding
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˜(n)
qlf

is asymptotically orthogonal to (some version of) any Hq(Ł 0, j0), q 2 Q? If such a qlf

exists, the corresponding loss of information clearly will be maximal. Thus, Hqlf
quite

naturally can be called a least favourable direction, and the corresponding ˜(n)
qlf

(Ł 0, j0) a

semi-parametrically efficient (at (Ł 0, j0)) central sequence.

2.3. Distribution-free sub-�-algebras

Turning to the fixed-Ł subexperiments, denote by

E(n)
Ł0

:¼ (X (n), A(n), P(n)
Ł 0
¼ fP(n)

Ł0,j : j 2 �g), n 2 N,

the sequence of nonparametric experiments corresponding to a fixed value Ł 0 2 ¨. The

present paper focuses on the situation where these experiments (E(n)
Ł 0

, n 2 N) allow for some

distribution-freeness or invariance structure. More precisely, assume the existence, for all Ł 0,

of a sequence (B (n)(Ł 0), n 2 N) of � -fields, with B (n)(Ł 0) % A(n), such that the restriction of

P
(n)
Ł 0,j to B (n)(Ł 0), which we denote by P

(n)
Ł 0,jjB ( n)(Ł0), does not depend on j 2 �. This

distribution-freeness of B (n)(Ł 0) generally follows from some invariance property, under

which B (n)(Ł 0) is generated by the orbits of some group acting on (X (n), A(n)) – see Section

3 for examples concerned with ranks. Note that the sequences B (n)(Ł) in general strongly

depend on the parameter Ł but not on the nuisance j.

The following proposition constitutes an essential ingredient of this paper. It states that,

whenever P
(n)
Ł 0,jjB ( n)(Ł0) does not depend on j 2 �, the conditional (upon B (n)(Ł 0))

expectation of the �-part H(n)
q (Ł 0, j0) of the central sequence associated with experiment

(2.2) converges to zero in the L1 norm, under P
(n)
0 , as n!1.

Proposition 2.1. Fix q 2 Q, and consider the sequence of experiments (E(n)
q ) as defined in

(2.2). Let B (n)(Ł 0) % A(n) be a sequence of � -fields such that P
(n)
Ł0,q(�)jB(Ł0) does not depend on

�. Moreover, assume that the �-part H(n)
q (Ł 0, j0) of the central sequence corresponding to

E(n)
q is uniformly integrable under P

(n)
0 . Then

E
(n)
0 fH(n)

q (Ł 0, j0)jB (n)(Ł 0)g ¼ oL1
(1),

under P
(n)
0 , as n!1.

Note that the assumption on the uniform integrability of H(n)
q (Ł 0, j0) does not induce

any restriction on E (n). Indeed, uniformly integrable versions of the central sequences of

locally asymptotically normal experiments always exist. This interesting property of locally

asymptotically normal models appears not to be so well known, and we could not find any

explicit reference to it in the literature. Therefore, we turn it into a formal statement and

prove the following lemma.

Lemma 2.2. Denote by ˜(n)
Ł an arbitrary central sequence in some locally asymptotically

normal sequence of experiments E (n), with parameter Ł and probability distributions P(n)
Ł

.

Then there exists a sequence ˜(n):
Ł ¼ (˜(n):

Ł;i ), n 2 N such that:
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(i) for any p 2 (�1, 1), the sequences j˜(n):
Ł;i j p, n 2 N, i ¼ 1, . . . , k, are uniformly

integrable;

(ii) ˜(n)
Ł �˜(n):

Ł ¼ oP(1) under P
(n)
Ł as n!1, so that, for any p 2 (�1, 1), ˜(n):

Ł
constitutes a uniformly pth order integrable version of the central sequence.

Proof. Denote by (I ij(Ł)) the information matrix for E (n), by � the standard normal

distribution function, and by F
(n)
Ł;i the marginal distribution function, under P

(n)
Ł , of the ith

component ˜(n)
Ł;i of ˜(n)

Ł . With no loss of generality, we may assume that F
(n)
Ł;i is continuous

(if necessary, ˜(n)
Ł;i can be smoothed in an asymptotically negligible way). Put

˜(n):
Ł;i :¼ I

1=2
ii (Ł)��1(F

(n)
Ł;i (˜

(n)
Ł;i )): clearly, the distribution of ˜(n):

Ł does not depend on n,

and coincides with the asymptotic normal distribution of ˜(n)
Ł;i . Due to the convergence in

distribution of ˜(n)
Ł;i and the continuous mapping theorem (since ��1 is continuous),

˜(n):
Ł;i �˜(n)

Ł;i is oP(1) under P
(n)
Ł . The lemma then follows from the fact that Gaussian random

variables have finite absolute moments of order p for any p 2 (�1, 1). h

In order to prove Proposition 2.1, we need the following simple lemma.

Lemma 2.3. Consider the sequence of experiments (E(n)
q ) as in (2.2). Write

dP
(n)

Ł0,q(rr=
ffiffiffi
n
p

)

dP
(n)
0

¼ exp rrTH(n)
q (Ł 0, j0)� 1

2
rrTIHq

(Ł 0, j0)rrþ r(n)
q (rr)

� �
,

where, under P
(n)
0 , H(n)

q (Ł 0, j0) is uniformly integrable, H(n)
q (Ł 0, j0)!L N (0, IHq

(Ł 0, j0)),

and r(n)
q (rr)!P 0. Then

lim
rr!0

lim sup
n!1

E
(n)
0 [krrk�1jexp(rrTH(n)

q (Ł 0, j0)þ r(n)
q (rr))� 1� rrTH(n)

q (Ł 0, j0)j] ¼ 0:

Proof. The contiguity of the sequences (P
(n)

Ł0,q(rr=
ffiffiffi
n
p

)
) and (P

(n)
0 ) (which is an immediate

consequence of LAN), together with the uniform integrability of (H(n)
q (Ł 0, j0)), implies that

exp(rrTH(n)
q (Ł 0, j0)þ r(n)

q (rr))� 1� rrTH(n)
q (Ł 0, j0)

is uniformly integrable under P
(n)
0 . Hence, as n!1,

E
(n)
0 [krrk�1jexp(rrTH(n)

q (Ł 0, j0)þ r(n)
q (rr))� 1� rrTH(n)

q (Ł 0, j0)j]

! E[krrk�1jexp(rrTH)� 1� rrTHj],

where H ( N (0, IHq
(Ł 0, j0)). Letting rr! 0 yields the desired result. h

Proof of Proposition 2.2. Invariance of P
(n)

Ł 0,q(�)jB ( n)(Ł 0)
with respect to � implies that, for all

rr 2 (�1, 1)k ,

E
(n)
0

dP
(n)

Ł 0,q(rr=
ffiffiffi
n
p

)

dP
(n)
0

����B (n)(Ł 0)

8<:
9=; ¼ 1:
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Therefore, we may write

krrk�1E
(n)
0 frrTH(n)

q (Ł 0, j0)jB (n)(Ł 0)g

¼ krrk�1E
(n)
0 exp rrTH(n)

q (Ł 0, j0)� 1

2
rrTIHq

(Ł 0, j0)rrþ r(n)
q (rr)

� �
� 1

�
� rrTH(n)

q (Ł 0, j0)jB (n)(Ł 0)
o
:

Letting n!1 and then rr! 0, Lemma 2.3 gives the desired result. h

2.4. Least favourable submodels

Proposition 2.1 implies that, for any q 2 Q, the �-part Hq if the central sequence is

asymptotically orthogonal to B (n)(Ł). This suggests that

H
(n)
lf (Ł, j) :¼ ˜(n)(Ł, j)� E

(n)
Ł,jf˜(n)(Ł, j)jB (n)(Ł)g (2:6)

might be a reasonable candidate as a least favourable direction,

˜(n)
lf (Ł, j) :¼ E

(n)
Ł,jf˜(n)(Ł, j)jB (n)(Ł)g (2:7)

being the corresponding semi-parametrically efficient (at j) central sequence. This suggested

semi-parametrically efficient central sequence thus results from reducing the information

available in the original experiment by conditioning on B (n)(Ł). There is no guarantee that

such conditioning preserves LAN nor, for that matter, any other properties of the original

experiment. However, see Le Cam and Yang (1988) for some positive results in this direction.

We therefore establish a sufficient condition for H
(n)
lf (Ł, j) to be least favourable. This

condition is extremely mild, as it simply requires H
(n)
lf (Ł, j) to correspond to some mapping

q 2 Q (for a point estimation version of the same condition in the i.i.d. context, see Bickel

et al. 1993, Section 3.1; or Klaassen 1987, Theorem 3.1):

(LF1) H
(n)
lf (Ł, j0) defined in (2.6) can be obtained as the �-part of the central sequence

(˜(n)(Ł, j0)T, H
(n)
lf (Ł, j0)T)T of some parametric submodel E(n)

lf (j0) of the form

(2.2).

Proposition 2.4. Assume that condition (LF1) holds. Then H
(n)
lf (Ł, j0) is least favourable,

and ˜(n)
lf (Ł, j0) is a semi-parametrically efficient (at j0) central sequence in the sense of

Section 2.2.

Proof. For arbitrary q 2 Q, let H(n)
q (Ł, j0) be a uniformly integrable version of the �-part of

the corresponding central sequence (such a version exists in view of Lemma 2.2). It follows

from Proposition 2.1 that a further version of the same central sequence, H
(n)
q?(Ł, j0), say, is

orthogonal to B (n)(Ł), hence to ˜(n)
lf (Ł, j) defined in (2.7) for all n. Since this holds for any

144 M. Hallin and B.J.M. Werker



q, and since, under condition (LF1), ˜(n)
lf (Ł, j) is obtained from some parametric submodel

E(n)
lf (j0) of the form (2.2), the result follows. h

Proposition 2.4 deals with a fixed j value, hence with semi-parametric efficiency at given

j. If efficiency is to be attained over some class C of values of j, an additional

requirement is the following:

(LF2) For all j 2 C � �, there exists a version of the influence function (2.4) for Ł in

E(n)
lf (j) that does not depend on j.

In general, condition (LF2) will be satisfied when a version ˜(n)
lf (Ł) that does not depend on

j 2 C of the efficient central sequence ˜(n)
lf (Ł, j) :¼ E

(n)
Ł,jf˜(n)(Ł, j)jB (n)(Ł)g can be

obtained, along with a consistent (for any j 2 C � �) estimator of its covariance matrix.

Under condition (LF2), semi-parametrically efficient inference over C clearly can be

based on ˜(n)
lf (Ł).

Assuming that condition (LF1) holds, the information matrix in E(n)
lf has the form

I(Ł 0, j0) I(Ł 0, j0)� I�(Ł 0, j0)

I(Ł 0, j0)� I�(Ł 0, j0) I(Ł 0, j0)� I�(Ł 0, j0)

� �
, (2:8)

where I�(Ł 0, j0) is the variance of the limiting distribution of E
(n)
Ł,jf˜(n)(Ł, j)jB (n)(Ł)g. Up

to oP(1) terms, the efficient influence function is thus the Ł-part of

I(Ł, j) I(Ł, j)� I�(Ł, j)

I(Ł, j)� I�(Ł, j) I(Ł, j)� I�(Ł, j)

� ��1
˜(n)(Ł, j)

H
(n)
lf (Ł, j)

� �
(2:9)

which, still under (LF1), admits the asymptotic representation.

I�(Ł, j)�1E
(n)
Ł, jf˜

(n)(Ł, j)jB(n)(Ł)g þ oP(1) (2:10)

as n!1 under P
(n)
Ł,j, for any (Łj) 2 ¨ 3 �:

If the information matrix in (2.9) is not invertible (this happens, for instance, in adaptive

models, where I(Ł, j) ¼ I�(Ł, j)), its inverse should be replaced by any generalized inverse.

In practice, conditions (LF1) and (LF2) cannot easily be checked for. We will not discuss

the conditions under which condition (LF2) can be satisfied in the general set-up of this

section. We only do so, in Section 3.4, for the specific case of rank-based inference.

However, we do give a precise statement of a set of assumptions that are sufficient for

condition (LF1) to hold and that can be easily checked for in a given model. As before, fix

Ł 0 2 ¨ and j0 2 �, and consider the following set of assumptions.

Assumption B.

(i) Let H
(n)
lf (Ł 0, j0) defined in (2.6) be such that (˜(n)(Ł 0, j0)T, H

(n)
lf (Ł 0, j0)T)T is

asymptotically normal (automatically, with mean zero, and covariance matrix (2.8))

under P
(n)
0 , as n!1.

(ii) There exists a function qlf : (�1, 1)k ! � such that, for any sequence

Łn ¼ Ł 0 þ O(1=
ffiffiffi
n
p

), the sequence of experiments
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(X (n), A(n), fP(n)
Łn,qlf (�) : � 2 (�1, 1)kg)

is locally asymptotically normal at � ¼ 0 with central sequence H
(n)
lf (Łn, j0) and

Fisher information matrix I(Ł 0, j0)� I�(Ł 0, j0).

(iii) The sequence H
(n)
lf (Ł, j0) satisfies a local asymptotic linearity property, in the sense

that, for any bounded sequence � n in Rk , we have

H
(n)
lf (Ł 0, j0)�H

(n)
lf (Ł 0 þ � n=

ffiffiffi
n
p

, j0) ¼ [I(Ł 0, j0)� I�(Ł 0, j0)]� n þ oP(1)

under P
(n)
0 , as n!1.

Under Assumptions A and B, we have a LAN property (jointly) in (Ł, �) at (Ł 0, 0) for the

parametric subexperiments E(n)
qlf

(j0) of E (n) given by (2.2). Formally, we prove that qlf belongs

to Q. Note that Assumption B(ii) does not directly assert that qlf 2 Q , because it requires the

quadratic expansion of the LAN condition only with respect to � and not jointly in (Ł, �).

Proposition 2.5. Suppose that Assumptions A and B are satisfied. Then the model

(X (n), A(n), fP(n)
Ł,qlf (�) : Ł 2 ¨, � 2 (�1, 1)kg),

is locally asymptotically normal at (Ł 0, 0) with central sequence (˜(n)(Ł 0, j0)T,

H
(n)
lf (Ł 0, j0)T)T and Fisher information matrix (2.8), and condition (LF1) is satisfied.

Proof. Let � n and rrn be bounded sequences in Rk . Observe, using Assumption B(ii), the

contiguity of P
(n)
Ł0þ� n=

ffiffiffi
n
p

,j0
and P

(n)
0 which follows from Assumption A via Le Cam’s first

lemma, and Assumption B(iii), that

log
dP

(n)

Ł 0þ� n=
ffiffiffi
n
p

,q(rrn=
ffiffiffi
n
p

)

dP
(n)
0

¼ log
dP

(n)

Ł0þ� n=
ffiffiffi
n
p

,q(rrn=
ffiffiffi
n
p

)

dP
(n)

Ł0þ� n=
ffiffiffi
n
p

,j0

þ log
dP

(n)

Ł 0þ� n=
ffiffiffi
n
p

,j0

dP
(n)
0

¼ rrT
nH

(n)
lf (Ł 0 þ � n=

ffiffiffi
n
p

, j0)� 1

2
rrT

n[I(Ł 0, j0)� I�(Ł 0, j0)]rrn

þ �T
n˜

(n)(Ł 0, j0)� 1

2
�T

nI(Ł 0, j0)� n þ o�(1)

¼ rrT
nH

(n)
lf (Ł 0, j0)þ �T

n˜
(n)(Ł 0, j0)� rrT

n[I(Ł 0, j0)� I�(Ł 0, j0)]� n

� 1

2
rrT

n[I(Ł 0, j0)� I�(Ł 0, j0)]rrn �
1

2
�T

nI(Ł 0, j0)� n þ oP(1):

Assumption B(i) asserts the asymptotic normality of the central sequence, and this completes

the proof. h

2.5. Adaptiveness

An important property of some semi-parametric models is adaptiveness. Adaptiveness
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occurs if inference problems are no more difficult (locally and asymptotically) in the semi-

parametric model than in the underlying parametric model. In the above notation,

adaptiveness occurs at (Ł 0, j0) if I�(Ł 0, j0) ¼ I(Ł 0, j0) – hence if, under P
(n)
0 ,

˜(n)(Ł 0, j0) ¼ E
(n)
0 f˜(n)(Ł 0, j0)jB (n)(Ł 0)g þ oP(1), (2:11)

or, for that matter, if there exists any B (n)(Ł 0)-measurable version of the central sequence

˜(n)(Ł 0, j0). These statements are made rigorous in the following proposition.

Proposition 2.6. Fix q 2 Q, that is, let (X (n), A(n), fP(n)
Ł,q(�) : (Ł, �) 2 ¨3 (�1, 1)kg) denote

an arbitrary submodel of the semi-parametric model that satisfies the LAN property at

(Ł 0, 0), with central sequence (˜(n)(Ł 0, j0)T, H(n)
q (Ł 0, j0)T)T.

If a B (n)(Ł 0)-measurable version ˜(n)
B (Ł 0, j0) of the central sequence ˜(n)(Ł 0, j0) exists,

then, under P
(n)
0 and as n!1, we have, for any q 2 Q,

˜(n)(Ł 0, j0)

H(n)
q (Ł 0, j0)

� �
!L N 0,

I(Ł 0, j0) 0

0 IHq
(Ł 0, j0)

� �� �
,

so that the model E (n) is adaptive at (Ł 0, j0).

Proof. The fact that P
(n)
Ł 0,q(�)jB (n)(Ł 0) does not depend on � 2 (�1, 1)k implies that

LŁ0,q(�)(˜
(n)
B (Ł 0, j0)) ¼ L0(˜(n)

B (Ł 0, j0)),

so that the limiting distribution of (˜(n)(Ł 0, j0)T, H(n)(Ł 0, j0)T)T is the same under � ¼ 0 as

under local alternatives of the form (Ł 0, �n :¼ 0þ O(1=
ffiffiffi
n
p

)). Le Cam’s third lemma

completes the proof. h

Remark 2.1. Under condition (LF1), Proposition 2.6 can be reinforced: adaptiveness holds (at

(Ł 0, j0)) if and only if (2.11) holds, that is, if and only if a B (n)(Ł 0)-measurable version of

the central sequence ˜(n)(Ł 0, j0) exists.

3. Semi-parametrically efficient rank-based inference

3.1. White noise, invariance and ranks

In this section, we specialize the general results of Section 2 to models where the

randomness is due to the presence of some underlying white noise – a sequence of i.i.d.

random variables 
(n)
1 , . . . , 
(n)

n with unspecified probability density f. To be precise, we

consider a sequence of semi-parametric models

E (n) ¼ (X (n), A(n), P(n) ¼ fP(n)
Ł, f : Ł 2 ¨, f 2 Fg), (3:1)

with ¨ an open subset of Rk and F a set of densities. We suppose again that the parametric

model obtained by fixing f 2 F is locally asymptotically normal. For the sake of simplicity, we

restrict ourselves to the case where F is a subset of the class F0 of all non-vanishing densities

over the real line. Other classes of densities can be considered with more or less obvious
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changes, such as the class of non-vanishing densities which are symmetric with respect to the

origin (yielding signed ranks instead of ranks) and the class of non-vanishing densities with

median zero (yielding signs and ranks).

The role of this underlying white noise is described by the following pair of assumptions.

Assumption I.

(i) For all f 2 F , the parametric model E(n)
f :¼ (X (n), A(n), P(n)

f ¼ fP
(n)
Ł, f : Ł 2 ¨g) is

locally asymptotically normal in Ł at all Ł 2 ¨, with central sequence ˜(n)(Ł, f ) of

the form

˜(n)(Ł, f ) :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

Xn

t¼ pþ1

J f (
(n)
t (Ł), . . . , 
(n)

t�q(Ł)), (3:2)

where the function J f : R pþ1 ! Rk is allowed to depend on f and Ł (for the sake of

simplicity, however, we avoid the notation JŁ, f ); the residuals 
(n)
t (Ł), t ¼ 1, . . . , n,

are an invertible function of the observations such that 
(n)
1 (Ł), . . . , 
(n)

n (Ł) under P
(n)
Ł, f

are i.i.d. with density f. The Fisher information matrix corresponding to this LAN

condition is denoted as I f (Ł).

(ii) The class F is a subset of the class F0 of all densities f (over the real line) such that

f (x) . 0, x 2 R.

As an illustration, we consider a simple MA(1) process as an example.

Example 3.1. Denote by Y
(n)
1 , . . . , Y (n)

n a finite realization of the MA(1) process

characterized by

Yt ¼ 
 t þ Ł
 t�1, t 2 N,

where Ł 2 (�1, 1), f
 t, t > 1g is a process of independent random variables with common

density f, and 
0 is a fixed starting value that, for convenience, we assume is observed. We

need the assumption that f is absolutely continuous, with finite variance � 2
f and finite Fisher

information for location I ( f ) :¼
Ð

( f 9= f )2 f dx ,1. Under this assumption, the results of,

for example, Kreiss (1987) imply that this MA(1) model is locally asymptotically normal

with (univariate) central sequence

˜(n)(Ł, f ) ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

Xn

t¼2

� f 9

f
(
(n)

t (Ł))
(n)
t�1(Ł),

where the residuals 
(n)
t (Ł), 1 < t < n, are computed from the recursion 
(n)

t (Ł) :¼
Y

(n)
t � Ł
(n)

t�1, with initial value 
(n)
0 (Ł) ¼ 
0. This central sequence is clearly of the form (3.2).

Under Assumption I(ii), for fixed Ł and n, the nonparametric model

E(n)
Ł :¼ (X (n), A(n), P(n)

Ł ¼ fP
(n)
Ł, t f : f 2 Fg)

is generated by the group (Gz(n), :) ¼ (fG(n)
h , h 2 Hg, :) of continuous order-preserving
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transformations acting on 
(n)
1 (Ł), . . . , 
(n)

n (Ł). More precisely, these transformations G(n)
h are

such that

G(n)
h (
(n)

1 (Ł), . . . , 
(n)
n (Ł)) :¼ (h(
(n)

1 (Ł)), . . . , h(
(n)
n (Ł))), (3:3)

where h belongs to the set H of all functions h : R! R that are continuous, strictly

increasing, and satisfy limx!
1 h(x) ¼ 
1. The corresponding maximal invariant � -algebra

is the � -algebra � (R
(n)
1 (Ł), . . . , R(n)

n (Ł)) generated by the ranks R
(n)
1 (Ł), . . . , R(n)

n (Ł) of the

residuals 
(n)
1 (Ł), . . . , 
(n)

n (Ł). This � -algebra is distribution-free under E(n)
Ł and will play the

role, in this section, of B (n)(Ł).

In order for the results of Section 2 to be applicable, we need conditions on the function

J f ensuring that either condition (LF1) alone or conditions (LF1) and (LF2) together hold.

In Section 3.2, we check that condition (LF1) is satisfied, with a rank-based efficient (at

given f ) influence function. Section 3.3 similarly deals with condition (LF2), and Section

3.4 draws some conclusions.

3.2. Ranks and the least favourable direction: checking for condition

(LF1)

The notation 
0, . . . , 
p here is used for an arbitrary ( pþ 1)-tuple of i.i.d. random variables

with density f, independent of the residuals 
(n)
t . Expectations with respect to 
0, . . . , 
p will

be denoted by E f which indicates that they depend neither on n nor on Ł. Consider the

following set of conditions on the function J f .

Assumption J.

(i) The function J f is such that 0 , E f fkJ f (
0, . . . , 
p)k2g ,1, and, (
1, . . . , 
p)-a.e.,

E f fJ f (
0, 
1, . . . , 
p)j
1, . . . , 
pg ¼ 0: (3:4)

(ii) The function J f is componentwise monotone increasing with respect to all its

arguments, or a linear combination of such functions.

(iii) For all sequences Łn ¼ Ł 0 þ O(1=
ffiffiffi
n
p

), we have, under P
(n)
Ł 0, f , as n!1,

1ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

Xn

t¼ pþ1

[J f (
(n)
t (Łn), . . . , 
(n)

t� p(Łn))� J f (
(n)
t (Ł 0), . . . , 
(n)

t� p(Ł 0))]

¼ �I f (Ł 0)
ffiffiffi
n
p

(Łn � Ł 0)þ oP(1), (3:5)

where the matrix-valued function Ł 7! I f (Ł) :¼ E f fJ f (
0, . . . , 
p)(J f (
0, . . . , 
p))Tg
is continuous in Ł for all f (recall that J f may depend on Ł). Moreover, letting

J�f (
(n)
t , . . . , 
(n)

t� p) :¼ J f (
(n)
t , . . . , 
(n)

t� p)� E f fJ f (
(n)
t , 
1, . . . , 
p)j
(n)

t g, (3:6)

we have, under P
(n)
Ł0, f ,
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1ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

Xn

t¼ pþ1

[J�f (
(n)
t (Łn), . . . , 
(n)

t� p(Łn))� J�f (
(n)
t (Ł 0), . . . , 
(n)

t� p(Ł 0))]

¼ �I�f (Ł 0)
ffiffiffi
n
p

(Łn � Ł 0)þ oP(1), (3:7)

where Ł 7! I�f (Ł) :¼ E f fJ�f (
0, . . . , 
p)(J�f (
0, . . . , 
p))Tg is also continuous in Ł for

all f.

The assumption that J f depends only on a finite number p of lagged innovations is made

for notational convenience. This assumption rules out the autoregressive model. However,

such models can easily be incorporated at the cost of technical details that are discussed in

detail in Remark 3.2. Moreover, we do not explicitly allow here for the possibility that J f

depends on exogenous variables. This would rule out, for example, regression models with

random design. Also this situation can easily be incorporated (see Remark 3.3 for the

technicalities). The existence, for J f , of a moment of order 2 is needed to establish

Proposition 3.1. Condition (3.4) allows us to conclude that the parametric central sequence

˜(n)
Ł, f

is asymptotically normal,

1ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

Xn

t¼ pþ1

J f (
(n)
t , . . . , 
(n)

t� p)!L N (0, I f (Ł)),

via, for example, the martingale central limit theorem. Assumption J(ii) will allow us to

replace the score functions J f (
(n)
t , . . . , 
(n)

t� p) with rank-based versions. More precisely, the

same argument as in Lemma 3.1 of Hallin and Puri (1991) shows the existence of functions

a
(n)
f : f1, . . . , ng pþ1 ! Rk , such that

lim
n!1

E f [kJ f (
(n)
1 , . . . , 
(n)

pþ1)� a
(n)
f (R

(n)
1 , . . . , R

(n)
pþ1)k2] ¼ 0, (3:8)

as n!1, where R
(n)
1 , . . . , R(n)

n denote the ranks of 
(n)
1 , . . . , 
(n)

n . Classical choices for a
(n)
f

(with F the distribution function corresponding to f ) are

a
(n)
f (R

(n)
t , . . . , R

(n)
t� p) :¼ E f fJ f (
(n)

t , . . . , 
(n)
t� p)jR(n)

1 , . . . , R(n)
n g

(exact scores), and

a
(n)
f (R

(n)
t , . . . , R

(n)
t� p) :¼ J f F�1 R

(n)
t

nþ 1

 !
, . . . , F�1

R
(n)
t� p

nþ 1

 !0@ 1A
(approximate scores). Assumption J(iii) is a smoothness condition on J f and J�f that is

required to verify Assumption B(iii). Moreover, we will use it in Section 3.4 to handle the

effects of preliminary estimation of Ł. Recall that the LAN condition together with (3.5) is

equivalent to the LAN condition uniformly over 1=
ffiffiffi
n
p

-neighbourhoods of Ł, referred to as

the ULAN condition.

Example 3.1 (continued). For the MA(1) model (3.1), the function Jf is given by
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Jf (
0, 
1) :¼ � f 9

f
(
0)
1,

which obviously satisfies Assumption J(i). Assumption J(ii) imposes an extra regularity

condition on the density f that is satisfied for most well-known densities; recall that a

monotone increasing log-derivative � f 9= f characterizes the class of strongly unimodal

densities f. Writing 	 f :¼
Ð

zf (z)dz, we immediately obtain

J�f (
0, 
1) ¼ � f 9

f
(
0)(
1 � 	 f ):

In order to verify Assumption J(iii), observe that


(n)
t (Łn) ¼ Y

(n)
t � Łn


(n)
t�1(Łn) ¼ 
(n)

t (Ł0)þ Ł0

(n)
t�1(Ł0)� Łn


(n)
t�1(Łn):

Assumption J(iii) now follows from standard arguments; see, for example Drost et al. (1997,

Theorem 2.1).

The results of Section 2 suggest that the least favourable direction is, in the present case,

generated by the sequence

H
(n)
lf (Ł, f ) ¼ ˜(n)(Ł, f )� E

(n)
Ł, f f˜

(n)(Ł, f )jB (n)(Ł)g

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

Xn

t¼ pþ1

J f (
(n)
t (Ł), . . . , 
(n)

t� p(Ł))

� E
(n)
Ł, f

1ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

Xn

t¼ pþ1

J f (
(n)
t (Ł), . . . , 
(n)

t� p(Ł))

����R(n)
1 (Ł), . . . , R(n)

n (Ł)

( )

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

Xn

t¼ pþ1

[J f (
(n)
t (Ł), . . . , 
(n)

t� p(Ł))

� E
(n)
Ł, f fJ f (
(n)

t (Ł), . . . , 
(n)
t� p(Ł))jR(n)

1 (Ł), . . . , R(n)
n (Ł)g]: (3:9)

Under Assumptions I and J, this can indeed be proved by checking that condition (LF1) is

satisfied.

Before doing this, we need a corollary of a result in Hallin et al. (1985). In the rest of

this paper, we simplify notation by writing 
(n)
t for 
(n)

t (Ł 0) when it is safe to do so. Recall

that 
(n)
1 , . . . , 
(n)

n are i.i.d. with density f under P
(n)
Ł 0, f . The following result is proved in

Section 4.1 of Hallin et al. (1985).

Proposition 3.1. Suppose that Assumptions J(i) and J(ii) are satisfied. Let a
(n)
f be any

function satisfying (3.8). Writing
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S
(n)
f (Ł 0) :¼ 1

n� p

Xn

t¼ pþ1

a
(n)
f (R

(n)
t , R

(n)
t�1, . . . , R

(n)
t� p), (3:10)

m
(n)
f :¼ [n(n� 1) � � � (n� p)]�1

X
1<i0 6¼... 6¼i p<n

. . .
X

a
(n)
f (i0, . . . , ip), (3:11)

define

e˜(n)
f (Ł 0) :¼ ffiffiffiffiffiffiffiffiffiffiffiffi

n� p
p

(S
(n)
f �m

(n)
f ): (3:12)

Then,

e˜(n)
f (Ł 0) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

n� p
p

Xn

t¼ pþ1

J f (
(n)
t , . . . , 
(n)

t� p) (3:13)

�
ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

n(n� 1) � � � (n� p)

X
1<i0 6¼... 6¼i p<n

. . .
X

J f (
(n)
i0

, . . . , 
(n)
i p

)þ oL2
(1),

under P
(n)
Ł 0, f , as n!1.

Expression (3.13), and more particularly the U-statistic term with kernel J f , looks somewhat

awkward. We therefore provide the following corollary.

Corollary 3.2. Under the same conditions as in Proposition 3.1, we also have

e˜(n)
f (Ł 0) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

n� p
p

Xn

t¼ pþ1

J�f (
(n)
t , . . . , 
(n)

t� p)þ oP(1),

with J�f defined in (3.6).

Proof. Note that by Proposition 3.1 we have

ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

S
(n)
f �m

(n)
f �

1

n� p

Xn

t¼ pþ1

J�f (
(n)
t , . . . , 
(n)

t� p)

 !

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

Xn

t¼ pþ1

E f fJ f (
(n)
t , 
1, . . . , 
p)j
(n)

t g

�
ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

n(n� 1) � � � (n� p)

X
1<i0 6¼... 6¼i p<n

. . .
X

J f (
(n)
i0

, . . . , 
(n)
i p

)þ oP(1)

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

1

n(n� 1) � � � (n� pþ 1)

X
1<i0 6¼... 6¼i p<n

. . .
X

J�f (
(n)
i0

, 
(n)
i1

, . . . , 
(n)
i p

)þ oP(1):
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By classical results on U-statistics (see, for example, Serfling 1980, Section 5.3.4) and the

fact that E f fJ�f (
0, . . . , 
p)j
sg ¼ 0, for s ¼ 0, 1, . . . , p, the claim is proved. h

The following theorem shows that, under the assumptions made, condition (LF1) is

indeed satisfied.

Proposition 3.3. Consider the semi-parametric model (3.1). Assume that Assumptions I and J

are satisfied. Then, there exists a mapping q : (�1, 1)k ! F such that the parametric model

E(n)
q ¼ (X (n), A(n), P(n) ¼ fP(n)

Ł,q(�): Ł 2 ¨, � 2 (�1, 1)kg),

is locally asymptotically normal at (Ł 0, 0) with central sequence

1ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

Xn

t¼ pþ1

Jf (
(n)
t (Ł 0), . . . , 
(n)

t� p(Ł 0))

J�f (
(n)
t (Ł 0), . . . , 
(n)

t� p(Ł 0))

 !
!L N 0,

I f (Ł 0) I f (Ł 0)� I�f (Ł 0)

I f (Ł 0)� I�f (Ł 0) I f (Ł 0)� I�f (Ł 0)

" # !
,

(3:14)

where I�f (Ł 0) is the variance of the limiting distribution of E
(n)
Ł, f f˜(n)(Ł, f )jB (n)(Ł)g.

Hence, H
(n)
lf (Ł, f ) satisfies condition (LF1); the corresponding influence function (for Ł)

is I�f (Ł 0)�1e˜(n)
f

(Ł 0). It follows that semi-parametrically efficient inference (at Ł and f) can

be based on the efficient central sequence

˜�(n)
Ł, f :¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

n� p
p

Xn

t¼ pþ1

J�f (
(n)
t , . . . , 
(n)

t� p), (3:15)

of which e˜(n)
f (Ł) defined in (3.12) provides a rank-based version.

Proof. We need to verify the conditions of Proposition 2.5. Assumption A is just the

equivalent of Assumption I. In order to verify Assumption B, we first rewrite the candidate

least favourable direction H
(n)
lf (Ł 0, f ). Let S

(n)
f ;exact be defined by (3.10), using the exact score

functions given above. Observe that the corresponding centring constants m
(n)
f ;exact in (3.11)

are zero. Hence, from (3.9) and Corollary 3.3,

H
(n)
lf (Ł 0, f ) ¼ ˜(n)(Ł 0, f )� ffiffiffiffiffiffiffiffiffiffiffiffi

n� p
p

S
(n)
f ;exact

¼ ˜(n)(Ł 0, f )� ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

(S
(n)
f ;exact �m

(n)
f ;exact)

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p E f fJ f (
(n)

t , 
1, . . . , 
p)j
(n)
t g þ oP(1):

In view of Corollary 3.2, the same result actually holds for any score functions a f satisfying

(3.8). Assumption B(i) now follows easily from the martingale central limit theorem.

Moreover, Assumption B(iii) is an immediate consequence of Assumption J(iii) (in particular,

of subtracting (3.5) and (3.7)). To prove that Assumption B(ii) is satisfied, we use the general

construction of least favourable parametric submodels for i.i.d. models as in Example 3.2.1 of

Bickel et al. (1993). More precisely, we define
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f�(x) :¼ f (x)ł(�TE f fJ f (
0, . . . , 
p)j
0 ¼ xg)Ð
ł(�TE f fJ f (
0, . . . , 
p)j
0 ¼ zg) f (z)dz

, (3:16)

where ł is a positive, bounded, three times continuously differentiable function with bounded

derivatives and ł(0) ¼ ł9(0) ¼ 1. For example, let ł(z) ¼ 2=(1þ exp(�2z)). Intuitively, the

�-score now takes the form

grad� log f�(
0)j�¼0 ¼ E f fJ f (
0, . . . , 
p)j
0g, (3:17)

and the LAN condition in � required in Assumption B(ii) follows as in Example 3.2.1

of Bickel et al. (1993). The form of the resulting influence function directly follows from

(2.10). h

Proposition 3.3 shows that e˜(n)
f (Ł 0) constitutes a rank-based version of the semi-

parametrically efficient (at f ) central sequence. Using only the ranks of the innovations, one

can thus construct somewhere efficient inference procedures in the semi-parametric model

where f is considered a nuisance parameter. This result, moreover, is obtained without

explicitly going through tangent space calculations, and without computing the efficient

score function (which, as we will see, turns out to be J�f ). The intuition for this can,

however, easily be explained using tangent space arguments. The efficient score is obtained

by taking the residual of the projection of the parametric score on the tangent space

generated by f (see Bickel et al. 1993, Chapter 3). In the set-up of this subsection, f is

completely unrestricted, so that the tangent space consists of all square-integrable functions

of 
(n)
t , which have expectation zero and vanish when f vanishes. The projection of

J f (
(n)
t , . . . , 
(n)

t� p) onto this space obviously is E f fJ f (
(n)
t , 
1, . . . , 
p)j
(n)

t g, which therefore

generates the least favourable submodel. This substantiates our claim that J�f indeed is the

efficient score function.

Example 3.1 (continued). For the MA(1) model, the efficient score function is J�f (
0, 
1) ¼
(� f 9= f )(
0)(
1 � 	 f ). In case 	 f ¼ 0, the efficient score function J�f and the parametric

score function Jf coincide, and the model is adaptive – a well-known result (see Kreiss 1987;

or Drost et al. 1997, Example 4.2).

We conclude this section with some remarks.

Remark 3.1. The semi-parametric model is often not defined for all densities f, but is

restricted, for example, to those that are absolutely continuous, with finite Fisher information

for location as in Example 3.1. In this case, (3.16) need not define a true parametric

submodel, as f� does not necessarily satisfy the same regularity conditions. However, the

class of densities that do satisfy the regularity conditions is generally ‘dense’ in the class of

all densities (this can actually be taken as a definition of what is meant by ‘regularity

condition’). In that case, it is always possible to choose a family of densities f� that satisfy

the imposed regularity conditions, while generating the same �-score as in (3.17). Formally, it

can be shown that the tangent spaces generated by such dense (in the L2 sense) subsets
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coincide with those of the complete model; see, for example, Bickel et al. (1993, Chapter 4),

for similar problems.

Remark 3.2. The restriction, in Assumption J, to score functions involving only a finite

number p of residuals formally excludes some important models such as the AR ones. This is

not a serious restriction, however. To show this, let us consider the simple AR(1) model

Yt � ŁYt�1 ¼ 
 t, with jŁj , 1 and innovation density f. This model, under the same

assumptions on f as in Example 3.1, is locally asymptotically normal, with central sequence

˜(n)(Ł, f ) ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

Xn

t¼2

� f (
 t(Ł))Yt�1,

where 
 t(Ł) :¼ Yt � ŁYt�1 (assuming, for simplicity, that Y0 has been observed, and that the

likelihoods are conditional upon Y0) and � f :¼ � f 9= f . Since, under P
(n)
Ł, f , Yt�1 ¼P t�1

i¼0Ł
i
 t�1�i, the same central sequence can be re-expressed (up to oP(1) terms) as

˜(n)(Ł, f ) ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

Xn�1

i¼1

Łi�1
Xn

t¼iþ1

� f (
 t(Ł))
 t�i(Ł) (3:18)

¼
Xq

i¼1

Łi�1 1ffiffiffiffiffiffiffiffiffiffiffi
n� i
p

Xn

t¼iþ1

� f (
 t(Ł))
 t�i(Ł)þ R(n)
q ¼ ˜(n)

(q) (Ł, f )þ R(n)
q ,

say, where

Ł�q R(n)
q :¼

Xn�q�1

i¼1

Łi�1 1ffiffiffiffiffiffiffiffiffiffiffi
n� i
p

Xn

t¼iþ1

� f (
 t(Ł))
 t�i(Ł),

hence

varŁ(R(n)
q ) ¼ Ł2q� 2

f I ( f )
Xn�q�1

i¼1

Ł2(i�1) < Ł2q� 2
f I ( f )

1

1� Ł2
: (3:19)

Letting q ¼ q(n) " 1, (this convergence to infinity can be arbitrarily slow, as long as

q(n) < n� 1), we thus have that R
(n)
q(n) ¼ OP(jŁjq(n)) ¼ oP(1) as n!1. It follows that

˜(n)
(q(n))(Ł, f ) is a central sequence. Now, for any value of q, ˜(n)

(q) (Ł, f ) is a linear

combination of terms satisfying Assumption J. A straightforward adaptation of the proofs

shows that all the results of this section still hold in such cases. The higher-order AR(p) case

follows along the same lines, with the coefficient Ł2q in (3.19) replaced with ¸2q, where ¸�1

denotes the modulus of the characteristic root which lies closest to the unit circle.

Remark 3.3. The results of this section remain valid if the model contains exogenous

variables, that is, observable random variables whose distribution does not depend on the

parameters Ł or on f, such as the regression model with random design to be discussed

in detail in Example 4.2. In this case, the exogenous variables, denoted, for instance, by

X(n) :¼ (X
(n)
1 , . . . , X (n)

n ), can be included in the invariant � -algebra B (n)(Ł); using the same
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notation as above, we would obtain B (n)(Ł) ¼ � (R
(n)
1 (Ł), . . . , R(n)

n (Ł); X(n)). The central

sequence will now generally be of the form

˜(n)(Ł, f ) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
p

Xn

t¼ pþ1

J f (
(n)
t (Ł), . . . , 
(n)

t� p(Ł); X
(n)
t ):

Writing J f : t(
0, . . . , 
p) for J f (
0, . . . , 
p; X
(n)
t ), Assumptions J(i) and J(ii) are supposed to

hold for J f , t. Assumption J(iii) also is supposed to hold, with (cf. Drost et al., 1997, relation

(2.3))

1

n� p

Xn

t¼ pþ1

J f , t(
0, . . . , 
p)(J f , t(
0, . . . , 
p))T!P I f (Ł),

and

1

n� p

Xn

t¼ pþ1

J�f , t(
0, . . . , 
p)(J�f , t(
0, . . . , 
p))T!P I�f (Ł):

Proposition 3.3 now continues to hold, under appropriate assumptions on the asymptotic

behaviour of the exogenous variables, and with obvious notational changes.

3.3. Ranks and the efficient influence function: checking for condition

(LF2)

From the results of Section 3.2, it thus follows that locally and asymptotically optimal (at Ł
and f ) inference in the parametric submodel of Proposition 3.3 should be based on the

central sequence (3.15), of which the e˜(n)
f (Ł), with either exact or approximate scores a

(n)
f ,

provide rank-based versions. The same inference will be semi-parametrically efficient (still

at Ł) over some subset C � F provided that not only condition (LF1) but also condition

(LF2) can be shown to hold for all f 2 C.
In order to satisfy condition (LF2), we should be able to neutralize the dependence on f

of the influence function I�f (Ł)�1e˜(n)
f (Ł) by substituting some adequate estimator f̂f n for f.

Define C as the class of all densities f in F such that:

(i) J f satisfies Assumption J; and

(ii) there exists an estimator f̂f n, measurable with respect to the order statistics of the

residuals 
(n)
1 (Ł), . . . , 
(n)

n (Ł), such that

E f fka(n)

f̂f n

(R
(n)
1 , . . . , R

(n)
pþ1)� a

(n)
f (R

(n)
1 , . . . , R

(n)
pþ1)k2j f̂f ng ¼ oP(1) (3:20)

as n!1, where the rank scores a
(n)
f are defined in (3.8).

The class C thus contains all densities f 2 F such that Assumption J holds, and the rank

scores a
(n)
f can be estimated consistently. A possible estimator, for an important special case

that arises in all the examples considered Section 4, is given in (1.5.7) of Hájek and Šidák
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(1967, Chapter VII). While this estimator may not be the best choice from a practical point

of view, it shows that the assumption that f 2 C is not overly restrictive.

Finally, denote by ÎI
(n)�
f̂f n

(Ł) :¼ var(e˜(n)

f̂f n
(Ł)j f̂f n) the covariance matrix of e˜(n)

f̂f n
(Ł) conditional

on f̂f n. Since e˜(n)

f̂f n
(Ł) is conditionally distribution-free, ÎI

(n)�
f̂f n

(Ł) does not depend on f, and

can be computed from the observations; as we shall see, it consistently estimates I�f (Ł). The

following result shows that conditions (LF1) and (LF2) are satisfied for all f 2 C.

Proposition 3.4. For all f 2 C and Ł 2 ,̈

ÎI
(n)�
f̂f n

(Ł)�1e˜(n)

f̂f n

(Ł) ¼ I�f (Ł)�1e˜(n)
f (Ł)þ oP(1) under P

(n)
Ł, f :

Conditions (LF1) and (LF2) are thus satisfied, and ˜�Ł, f n
, as well as e˜(n)

f̂f n

(Ł), are versions of

the efficient (at f and Ł) central sequence for E (n).

Proof. Let f 2 C. It follows from Lemma 4 of Hallin et al. (1985) that, for any measurable

function d : R pþ1 ! R such that Efd(R
(n)
1 , . . . , R

(n)
pþ1)2g ,1 and any js� tj . p, we have

jcov(d(R(n)
s , . . . , R

(n)
sþ p), d(R

(n)
t , . . . , R

(n)
tþ p))j < K

n
Efd(R

(n)
1 , . . . , R

(n)
pþ1)2g, n 2 N:

This implies that, for any sequence d(n) :¼ a
(n)

f̂f n

� a
(n)
f such that f̂f (n) satisfies (3.20), we have

var
1ffiffiffiffiffiffiffiffiffiffiffiffi

n� p
p

Xn

t¼ pþ1

d(n)(R
(n)
t , . . . , R

(n)
t� p)j f̂f n

 !

¼ 1

nþ p

Xn

t¼ pþ1

var(d(n)(R
(n)
t , . . . , R

(n)
t� p)j f̂f n)

þ
Xp

k¼1

2

n� p

Xn

t¼ pþ1

cov(d(n)(R
(n)
t , . . . , R

(n)
t� p), d(n)(R

(n)
tþk , . . . , R

(n)
tþk� p)j f̂f n)

þ 2

n� p

Xn

t¼ pþ1

Xn

s¼ tþ pþ1

cov(d(n)(R
(n)
t , . . . , R

(n)
t� p), d(n)(R(n)

s , . . . , R(n)
s� p)j f̂f n)

< (1þ 2 p) var(d(n)(R
(n)
t , . . . , R

(n)
t� p)j f̂f n)

þ 2

n� p
(n� p)

1

2
(n� 2 p)

K

n
Efd(n)(R

(n)
1 , . . . , R

(n)
pþ1)2j f̂f ng ¼ oP(1):

This result readily extends to vector-valued functions d(n) ¼ a
(n)

f̂f n

� a
(n)
f : R pþ1 ! Rk ,

yielding

var e˜(n)

f̂f n

(Ł)� e˜(n)
f (Ł)j f̂f n

� �
¼ oP(1): (3:21)
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Since E[e˜(n)

f̂f n

(Ł)] ¼ 0 P
(n)
Ł, f -almost surely and E[e˜(n)

f (Ł)] ¼ 0, (3.21) and the Chebyshev

inequality imply that

e˜(n)

f̂f n

(Ł) ¼ e˜(n)
f (Ł)þ oP(1): (3:22)

Similarly, (3.21) also implies that

var e˜(n)

f̂f n

(Ł)j f̂f n

� �
� var e˜(n)

f (Ł)j f̂f n

� �
¼ var e˜(n)

f̂f n

(Ł)j f̂f n

� �
� var e˜(n)

f (Ł)

� �
¼ ÎI

(n)�
f̂f n

(Ł)� I�f (Ł) ¼ oP(1): (3:23)

The end of the proof directly follows from (3.22) and (3.23). h

3.4. Semi-parametrically efficient, conditionally distribution-free

inference, and semi-parametrically efficient permutation tests

Proposition 3.4 establishes the possibility of semi-parametrically efficient inference using

the rank-based central sequences constructed from estimated densities. In particular,

comparing e˜ f̂f n
(Ł)-measurable statistics with their conditional (with respect to f̂f n) quantiles

– i.e., treating them as if they were genuine rank statistics, with deterministically

determined scores – yields distribution-free, semi-parametrically efficient sequences of tests;

see Choi et al. (1996) or Hallin and Werker (1999) for a discussion of locally

asymptotically optimal testing in locally asymptotically normal families. Such tests actually

are permutation tests, exhibiting Neyman Æ-structure with respect to the (sufficient and

complete) order statistic of the residuals (
(n)
1 (Ł), . . . , 
(n)

n (Ł)).

The ideas leading to rank-based inference, as outlined above, remain valid in models with

other invariance structures. Suppose, for example, that the density f 2 F of the innovations

is known to be symmetric with respect to the origin. The corresponding maximal invariant

� -algebra, playing the role of B (n)(Ł), is now generated by the signs of the innovations and

the ranks of their absolute values, that is, the traditional signed ranks. The functions a
(n)
f

introduced in Assumption J(ii) will then depend on these signed ranks as well. Hence, the

density estimator in (3.20) may only depend on the order statistics of the absolute values of

the innovations (as is intuitively clear). A signed-rank equivalent of Proposition 3.1 is

established in Hallin and Puri (1991). The construction of the least favourable parametric

submodel follows along the same lines as above, and Proposition 3.4 remains valid with

obvious adaptations. Assuming that the densities f are symmetric with respect to the origin

provides the innovations 
(n)
t with a well-identified location. Another way of achieving this

involves restricting f to the class of densities having zero median. The corresponding

maximal invariant � -algebra, playing the role of B (n)(Ł), is now generated by the signs of

the innovations and their ranks. Methods based on signs and ranks are the subject of

ongoing research (Hallin et al. 2002).
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4. Examples

In this section, we briefly discuss several examples where the general theory of the previous

sections can be used. For pedagogical reasons, we restrict the discussion to the simplest

cases, but it should be stressed that much more elaborate models can be treated similarly.

Example 4.1 One-sample location models. Consider the model defined by

Y
(n)
t ¼ Łþ 
(n)

t , t ¼ 1, . . . , n,

where Ł 2 R ( p ¼ K ¼ 1) and 
(n)
1 , . . . , 
(n)

n are i.i.d. with density f. Under the condition that

f is absolutely continuous, with
Ð

( f 9(z)= f (z))2 f (z)dz ,1, this model satisfies the ULAN

condition with central sequence (3.2), and Jf (
) ¼ � f 9(
)= f (
). Let R
(n)
1 , . . . , R(n)

n denote the

ranks of the residuals 
(n)
1

(Ł), . . . , 
(n)
n (Ł), where 
(n)

t (Ł) ¼ Y
(n)
t � Ł. These ranks coincide

with the ranks of the observations Y
(n)
1 , . . . , Y (n)

n themselves. If the density f is completely

unrestricted (but for the regularity imposed above), it follows from Section 3 that an efficient

central sequence is

E
(n)
Ł

1ffiffiffi
n
p

Xn

t¼1

Jf (
(n)
t )jR(n)

1 , . . . , R(n)
n

( )
¼ 0: (4:1)

This is of course not surprising, since Ł in this model is not identified.

In order to identify Ł, we need to impose a location restriction on f. If we impose the

condition that f 2 F0, that is, that f has median zero, the maximal invariant � -field (at Ł)

is generated by the ranks R
(n)
1 , . . . , R(n)

n and the signs s
(n)
1 , . . . , s(n)

n , where s
(n)
t ¼

sign(
(n)
t (Ł)). The efficient central sequence is now

E
(n)
Ł

1ffiffiffi
n
p

Xn

t¼1

Jf (
(n)
t )jR(n)

1 , . . . , R(n)
n , s

(n)
1 , . . . , s(n)

n

( )
¼ 2 f (0)ffiffiffi

n
p

Xn

t¼1

s
(n)
t , (4:2)

since E f fJf (
)j sign(
)g ¼ 2 f (0) sign(
). The density f (0) at the origin of course should be

estimated (as it only appears as a constant factor, a simple consistent estimation is sufficient).

A vast literature has been devoted to this estimation problem; see Yang (1985), Falk (1986) or

Zelterman (1990) for recent references.

It follows from (4.2) that the optimal semi-parametric estimator is the sample median, the

optimal semi-parametric test the sign test. This is quite a classical result; see, for example,

Lehmann (1986). No further improvement can be expected from estimating f.

If we restrict the model further by imposing the condition that f 2 Fþ ( f symmetric

about zero), then adaptive inference is possible, since, if we denote by

s
(n)
1 R

(n)
þ;1, . . . , s(n)

n R
(n)
þ;n the signed ranks associated with 
(n)

t (Ł), we obtain, from Hájek’s

projection theorem (see, for example, Puri and Sen 1985),
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E
(n)
Ł

1ffiffiffi
n
p

Xn

t¼1

Jf (
(n)
t )j s(n)

1 R
(n)
1 , . . . , s(n)

n R(n)
n

( )
¼ 1ffiffiffi

n
p

Xn

t¼1

s
(n)
t Jf F�1

1

nþ 1þ R
(n)
þ; t

2(nþ 1)

 ! !
þ oP(1)

¼ 1ffiffiffi
n
p

Xn

t¼1

Jf (
(n)
t )þ oP(1): (4:3)

Signed rank methods here are thus somewhere efficient. Substituting an adequate estimator

f̂f n for f (see Section 3.4) yields adaptive (a fortiori semi-parametrically efficient) inference.

Example 4.2 Regression models. Let X
(n)
1 , . . . , X(n)

n be a sequence of K-dimensional

exogenous covariables. Consider the model defined by

Y
(n)
t ¼ (X

(n)
t )TŁþ 
(n)

t , t ¼ 1, . . . , n,

where Ł 2 Rk and 
(n)
1 , . . . , 
(n)

n are i.i.d. with density f. In this case, the maximal invariant

(at Ł) � -algebra B (n)(Ł) is generated by (R
(n)
1 , . . . , R

(n)
n ; X

(n)
1 , . . . , X(n)

n ), where R
(n)
t ¼ R

(n)
t (Ł)

again denotes the rank of the residual 
(n)
t (Ł) ¼ Y

(n)
t � (X

(n)
t )TŁ among 
(n)

1 (Ł), . . . , 
(n)
n (Ł);

see Remark 3.3. The ULAN property is satisfied if the exogenous variables are square-

integrable and f satisfies the conditions of Example 4.1. The central sequence then is

˜(n)
f (Ł) ¼ 1ffiffiffi

n
p

Xn

t¼1

Jf (
(n)
t )X

(n)
t : (4:4)

Letting Æ(n)
f (r) ¼ E

(n)
f fJf (
(n)

t )jR(n)
t ¼ rg, the efficient central sequence follows from

E
(n)
f f˜

(n)
f (Ł)jB (n)(Ł)g ¼ E

(n)
f

1ffiffiffi
n
p

Xn

t¼1

Jf (
(n)
t (Ł))X

(n)
t jB (n)(Ł)

( )

¼ 1ffiffiffi
n
p

Xn

t¼1

Æ(n)
f (R

(n)
t )X

(n)
t : (4:5)

It can be shown (Bickel 1982; or Drost et al. 1997) that a version of the efficient central

sequence for this model is

1ffiffiffi
n
p

Xn

t¼1

Jf 
(n)
t


 �
X

(n)
t � X(n)


 �
, (4:6)

provided that X(n) ¼ (1=n)
Pn

t¼1X
(n)
t ¼ oP(1). One may also verify directly that (4.5) and

(4.6) are asymptotically equivalent, since

1ffiffiffi
n
p

Xn

t¼1

Jf (
(n)
t )(X

(n)
t � X(n))� 1ffiffiffi

n
p

Xn

t¼1

Æ(n)
f (R

(n)
t )X

(n)
t

¼ 1ffiffiffi
n
p

Xn

t¼1

(Jf (
(n)
t )� Æ(n)

f (R
(n)
t ))(X

(n)
t � X(n))� 1ffiffiffi

n
p X(n)

Xn

t¼1

Æ(n)
f (R

(n)
t ),
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where the first term is oP(1) by Hájek’s projection theorem, and the second term is oP(1)

since X(n) is oP(1), and

1ffiffiffi
n
p

Xn

t¼1

Æ(n)
f (R

(n)
t ) ¼ 1ffiffiffi

n
p

Xn

r¼1

Æ(n)
f (r) ¼

ffiffiffi
n
p

E f [Jf (
)] ¼ 0:

Note that extremely little has been assumed about the exogeneous covariates.

Instead of the exact scores Æ(n)
f (r), one may prefer using the approximate scores; (4.5)

and (4.6) remain asymptotically equivalent, provided that the centred version

Æ(n)
f (r) ¼ Jf F�1 r

nþ 1

� �� �
� 1

n

Xn

s¼1

Jf F�1 s

nþ 1

� �� �
is considered.

If the model contains a constant term, that is, if the first component of X
(n)
i , say, equals 1

for all i, then the efficient central sequence for this component equals zero. This is again

due to unidentifiability. However, the efficient central sequence for the other components

equals the one in the parametric model where the constant term is considered to be a

nuisance parameter. In that sense, adaptive estimation of the other components is possible

(cf. Bickel 1982). Under a symmetry assumption ( f 2 Fþ), adaptiveness holds for all

parameters. Under a weaker zero median assumption ( f 2 F0), the constant term is

identified and consistently (but not adaptively) estimable, whereas adaptivity holds for all

other components. Again, adaptiveness and the underlying invariance structure of the model

under study are very closely related.

The following is an example of a time series model fitting into our framework.

Example 4.3 Autoregressive models. For simplicity we consider the AR(1) model

Y
(n)
t ¼ ŁY

(n)
t�1 þ 
(n)

t , t ¼ 1, . . . , n,

where Ł 2: i ¨ ¼ (�1, 1), with starting value Y
(n)
0 ¼ 0, and i.i.d. innovations 
(n)

1 , . . . , 
(n)
n ,

with density f. Assuming that f is absolutely continuous, with finite second-order moments

and finite Fisher information for location (
Ð

( f 9(z)= f (z))2 f (z)dz ,1), it is well known

(Swensen 1985; Kreiss 1987) that this model is ULAN, with central sequence ˜(n)
f (Ł) given

in (3.18). The score function Jf thus actually involves infinitely many lagged residuals.

However, the results of Section 3 remain valid in view of Remark 3.2. In this case, ˜(n)
f (Ł)

also decomposes into ˜(n)
f (Ł) ¼ ffiffiffi

n
p Pn�1

i¼1 Ł
i r

(n)
f ;i, where r

(n)
f ;i: ¼ 1=n

Pn
t¼iþ1� f (
(n)

t (Ł))
(n)
t�i

(Ł)

can be interpreted as a measure of serial dependence at lag i among residuals, a form of

generalized residual autocorrelation, adapted to the innovation density f (see Hallin and

Werker 1999, for details).

If no further assumption is made about f 2 F – more particularly, if f has arbitrary

mean 	 f – then the group of order-preserving transformations G(n), : described in (3.3) is a

generating group in the sense of Section 3, with maximal invariant the ranks

(R
(n)
1 , . . . , R(n)

n ) of the residuals 
(n)
t (Ł). Denoting by f 1 the standardized version of f and

by F1 the corresponding distribution function, consider the so-called rank-based residual

autocorrelations
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er(n)
f ;i :¼

1

n� i

Xn

t¼iþ1

� f1
F�1

1

R
(n)
t

nþ 1

 ! !
F�1

1

R
(n)
t�i

nþ 1

 !
� m

(n)
f

24 35(� (n)
f ;i)
�1 (4:7)

introduced in Hallin and Puri (1991) (m
(n)
f and � (n)

f ;i are the exact mean and standard error

respectively, so that E
(n)
Ł, f [er(n)

f ;i] ¼ 0 and E
(n)
Ł, f [(n� i)(er(n)

f ;i)
2] ¼ 1). It is easily seen that

er(n)
f ;i ¼ E

(n)
Ł, f [r

(n)
f ;ijR

(n)
1 , . . . , R(n)

n ]þ oP(1=
ffiffiffi
n
p

),

under P
(n)
Ł, f , so that Proposition 3.1 and Corollary 3.2 imply that

er(n)
f ;i ¼

1

n

Xn

t¼iþ1

� f (
(n)
t (Ł))(
(n)

t�i(Ł)� 	 f )þ oP(1=
ffiffiffi
n
p

),

still under P
(n)
Ł, f , as n!1. Hence,

e˜(n)
f (Ł): ¼

ffiffiffi
n
p Xn�1

i¼1

Łi�1er(n)
f ;i

is a rank-based efficient (at Ł and f ) central sequence. Clearly, e˜(n)
f (Ł) and ˜(n)

f (Ł) do not

coincide (asymptotically), unless 	 f ¼ 0. This confirms the fact that the semi-parametric

model under which f remains totally unspecified within F is not adaptive (Drost et al. 1997),

as well as the results of Sections 3.3 and 3.4 that parametrically efficient rank-based inference

is impossible in non-adaptive models.

Now, if a location parameter is specified for f, adaptivity and rank-based efficiency are

recovered for Ł. If, for instance, the usual assumption that 	 f ¼ 0 is made, then e˜(n)
f (Ł) and

˜(n)
f (Ł) are asymptotically equivalent. Similarly, if the median of f is assumed to be zero

(i.e., f 2 F0), then the maximal invariant � -field (at Ł) is generated by the ranks

R
(n)
1 , . . . , R(n)

n and the signs s
(n)
1 , . . . , s(n)

n , and sign-and-rank versions of the residual

autocorrelations (4.7) can be used in the construction of an invariant version of ˜(n)
f (Ł); see

Hallin et al. (2002) for details. If f is assumed to be symmetric with respect to the origin

( f 2 Fþ), the same conclusions hold for the signed-rank autocorrelations defined in Hallin

and Puri (1991).

Finally, adaptive rank-based residual correlograms, consisting of autocorrelations of the

form er (n)

f̂f n;i, can be constructed along the lines of Proposition 3.4, leading to conditionally

distribution-free, semi-parametrically efficient inference; see Hallin and Werker (1999).

We conclude this section with an example of a simple ARCH model.

Example 4.4 ARCH models. Consider the ARCH(1) model given by

Y
(n)
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ł(Y

(n)
t�1)2

q

(n)

t , (4:8)

where 
(n)
1 , . . . , 
(n)

n are i.i.d. square-integrable random variables with density f and, in order

to guarantee the existence of a stationary solution, 0 , Ł , 1=
Ð

x2 f (x)dx. We assume that
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Y
(n)
0 ¼ 0. In this pure scale model, absolute continuity of xf (x) guarantees that the ULAN

condition is satisfied if ð
([xf (x)]9= f (x))2 f (x)dx ,1:

This follows, for example, from Drost et al. (1997, Theorem 2.1), combined with Hájek et al.

(1999, Theorem 7.2.2.1). The central sequence is given by

˜(n)
f (Ł) :¼ 1ffiffiffi

n
p

Xn

t¼1

ł f (
(n)
t (Ł))

(Y
(n)
t�1)2

1þ Ł(Y
(n)
t�1)2

,

where ł f (x) :¼ �[xf (x)]9= f (x) and 
(n)
t (Ł) :¼ Y

(n)
t =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ł(Y

(n)
t�1)2

q
, t ¼ 1, . . . , n. Iterating

(4.8) yields (Y
(n)
t�1)2 ¼

P t�1
i¼1Ł

i�1
Qi

j¼1(
(n)
t� j)

2, which shows that the function Jf actually

involves infinitely many lagged residuals. This again, much as in the AR model of Example

4.3, does not affect our general results. In the present case, letting

et�1( p) :¼ (Y
(n)
t�1)2

1þ Ł(Y
(n)
t�1)2

�
P p

i¼1Ł
i�1
Qi

j¼1(
(n)
t� j)

2

1þ Ł
P p

i¼1Ł
i�1
Qi

j¼1(
(n)
t� j)

2
,

we have that jet�1( p)j <
P t�1

i¼ pþ1Ł
i�1
Qi

j¼1(
(n)
t� j)

2. Hence, writing � 2 :¼
Ð

x2 f (x)dx, we

obtain

E
(n)
0 jet�1( p)j < � 2

1� Ł� 2
Ł� 2
� �

pþ1,

which, as for the autoregressive model, converges to zero at a geometric rate, uniformly in n.

Somewhere semi-parametrically efficient inference on Ł should, consequently, be based on

e˜(n)
f (Ł) :¼ 1ffiffiffi

n
p

Xn

t¼1

ł f F�1 R
(n)
t

nþ 1

 ! !
� ł (n)

f

" # P p
i¼1Ł

i�1
Qi

j¼1 F�1(R
(n)
t� j=(nþ 1))2

1þ Ł
P p

i¼1Ł
i�1
Qi

j¼1 F�1(R
(n)
t�1=(nþ 1))2

,

where

ł (n)
f :¼ 1

n

Xn

t¼1

ł f F�1 R
(n)
t

nþ 1

 ! !
,

and p is suitably large.
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