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Contact processes – and, more generally, interacting particle processes – can serve as models for a

large variety of statistical problems, especially if we allow some simple modifications that do not

essentially complicate the mathematical treatment of these processes. In a forthcoming paper (Fiocco

and van Zwet 2003) we shall begin a statistical study of the supercritical contact process �f0gt that

starts with a single infected site at the origin and is conditioned on survival. There we shall consider

the simplest statistical problem imaginable, that is, to find an estimator of the parameter of the process

based on observing the set of infected sites at a single time t. We shall show that this estimator is

consistent as t ! 1 and establish its limit distribution after proper normalization. First, however, we

must push some known properties of the contact process a little further. The present paper is devoted

to these matters. In particular, we study the convex hull of the set of infected sites for the conditional

�f0gt process as well as its spatial correlation. We find that under some restrictions this correlation

decays faster than any negative power of the distance.

Keywords: contact process; coupling; decaying correlations; moment inequality; shape theorem;

supercritical

1. Introduction

The contact process was introduced and studied by Harris (1974). It is a simple model for

the spread of an infection or – more generally – of a biological population on the lattice

Zd . At each time t > 0, each site can be in one of two possible states: infected or healthy.

The state of the site x 2 Zd at time t will be indicated by a random variable � t(x), given by

� t(x) ¼
1 if x is infected,

0 if x is healthy:

�
(1:1)

The function � t : Z
d ! f0, 1g gives the state of the process at time t. It is a f0, 1g-valued

random field over Zd.

The evolution of this random field in time is described by the following dynamics. A

healthy site is infected at rate º by each of its 2d immediate neighbours which is itself

infected; an infected site recovers at rate 1. Given the configuration � t at time t, the

processes involved are independent until a change occurs.
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It is sometimes convenient to represent the state of the contact process at time t by the

set of infected sites rather than by the function � t : Z
d ! f0, 1g. Usually this set is also

denoted by � t. Thus, by an abuse of notation,

� t ¼ fx 2 Zd : � t(x) ¼ 1g:

It remains to specify the initial state of the process at time t ¼ 0. If this is deterministic

it will be given by the set A � Zd of infected sites at time t ¼ 0, and we denote this

contact process by f�A
t : t > 0g. For example, f�Zd

t : t > 0g or f�f0gt : t > 0g will denote

the process starting with every site infected, or with infection only at the origin. Obviously

�A
0 ¼ A for any A. The initial set of infected sites A may also be chosen at random

according to a probability measure Æ, and in this case we indicate the contact process

interchangeably by f�A
t : t > 0g or f�Æt : t > 0g. If we do not wish to specify the initial

state of the process at all, we simply write f� t : t > 0g.
The probability distribution of the state of the processes �A

t and �Æt at time t will be

denoted by �A
t and �Æt , respectively. Obviously, �Æ0 ¼ Æ. Probability measures on the state

space H ¼ f0, 1gZd

, such as �A
t and �Æt , are defined on the � -algebra B generated by the

‘rectangles’ f� 2 H : �(x) ¼ 1g. This is also the � -algebra of Borel sets if we equip the

state space H ¼ f0, 1gZd

with the product topology. Notice that this ensures that any

function g : H ! R1 depending only on a finite number of coordinates of �(x) is

continuous. For a rigorous construction of the contact process we refer the reader to Liggett

(1985).

When considering the contact process, the first question that comes to mind is whether

the distribution �A
t of �A

t will converge weakly to a limit measure �A as t ! 1. Since we

employ the product topology on the state space H ,

�A
t !

w
�A , �A

t fB � Zd : B � Fg!w �AfB � Zd : B � Fg

for every finite set F � Zd . In terms of functions � ¼ I B, the set fB � Zd : B � Fg
corresponds to the cylinder set f� 2 f0, 1gZd

: �(x) ¼ 1, x 2 Fg. Thus weak convergence is

equivalent to convergence in distribution of the finite-dimensional projections

f�A
t (x) : x 2 Fg.
To address the convergence of �A

t , we appeal to Part I, Section 2 of Liggett (1999). First

of all, there exists a critical value ºd such that for º < ºd, the contact process dies out with

probability 1, regardless of its initial state at time t ¼ 0 (subcritical case). In the

supercritical case when º . ºd , the contact process �A
t survives forever with positive

probability for every non-empty set A � Zd . It survives forever with probability 1 if A is

infinite. It is easy to show that the distribution �Z
d

t of the process �Z
d

t which starts with all

sites infected, converges weakly to the so-called upper invariant measure 	 ¼ 	º. Here

‘invariant’ refers to the fact that the contact process f�	t : t > 0g with 	 as initial measure

is stationary; in particular, the distribution �	t of �	t is independent of t. Also, both

f�Zd

t : t > 0g and f�	t : t > 0g are spatially translation-invariant in the sense that the

distribution of fc� � t: t > 0g is independent of the shift c 2 Zd . Here fcg � � t ¼
fcþ x : x 2 � tg is the Minkowski sum. Finally, for º . ºd, 	º assigns probability 0 to the

empty set.
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For a general non-empty initial state A the convergence issue is decided by the complete

convergence theorem. Define the random hitting time

�A ¼ inf ft : �A
t ¼ ˘g, A � Zd , (1:2)

with the convention that �A ¼ 1 if �A
t 6¼ ˘ for all t > 0. Let �˘ be the distribution on H

that assigns probability 1 to the empty set.

Theorem 1.1. Let A � Zd and º . ºd . Then, as t ! 1,

�A
t !

w
P(�A , 1)�˘ þ P(�A ¼ 1)	º: (1:3)

Thus, given that the process �A
t survives, it tends in distribution to 	 ¼ 	º, the weight

assigned to 	 being the probability of survival starting from A. For a proof, see Liggett (1999,

p. 55).

If º . ºd and A ¼ Zd, the process �Z
d

t survives forever with probability 1 and converges

exponentially to the limit process, that is, for positive C and ª and all t > 0,

0 < P(�Z
d

t (x) ¼ 1)� P(�	(x) ¼ 1) < C e�ª t (1:4)

(Liggett 1999, p. 57).

A second major result concerning the contact process is the so-called shape theorem. To

formulate this result we first have to describe the graphical representation of contact

processes due to Harris (1978). This is a particular coupling of all contact processes of a

given dimension d and with a given value of º, but with every possible initial state A or

initial distribution Æ. Consider space-time Zd 3 [0, 1). For every site x 2 Zd we define on

the line x3 [0, 1) a Poisson process with rate 1; for every ordered pair (x, y) of

neighbouring sites in Zd we define a Poisson process with rate º. All of these Poisson

processes are independent.

We now draw a picture of Zd 3 [0, 1) where, for each site x 2 Zd , we remove the

points of the corresponding Poisson process with rate 1 from the line x3 [0, 1); for each

ordered pair of neighbouring sites (x, y) we draw an arrow going perpendicularly from the

line x3 [0, 1) to the line y3 [0, 1) at the points of the Poisson process with rate º
corresponding to the pair (x, y). Let us say that for x9, x 2 Zd and t > 0, there exists an

active path from (x9, 0) to (x, t) if one can travel from site x9 at time 0 to site x at time t

along unbroken segments of lines z3 [0, 1) in the direction of increasing time, as well as

along arrows. Clearly the active paths represent the paths along which the infection can

travel from site x9 to site x between times 0 and t. For any set A � Zd , define �A
t to be the

set of all sites x for which there exists an active path from (x9, 0) to (x, t) for some site

x9 2 A. Clearly f�A
t : t > 0g is distributed as a contact process with initial set A. By

choosing the initial set at random with distribution Æ, we define f�Æt : t > 0g. The obvious

beauty of this construction is that for two initial sets of infected points A � B, we have

�A
t � �B

t for all t. Unless indicated otherwise, we shall assume that all contact processes

are coupled according to the graphical construction.

The contact process has the property of self-duality. If, in the graphical representation,
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time is run backwards and all arrows representing infection of one site by another are

reversed, then the new graphical representation has precisely the same probabilistic structure

as the original one. In particular,

P(�A
t \ B 6¼ ˘) ¼ P(�B

t \ A 6¼ ˘), for all A, B � Zd and t > 0: (1:5)

With A ¼ f0g and B ¼ Zd this yields

P(�f0g . t) ¼ P(�Z
d

t (0) ¼ 1)

which, letting t ! 1 in the supercritical case, reduces to

P(�f0g ¼ 1) ¼ P(�	t (0) ¼ 1):

Combining this with (1.4), we see that if º . ºd , then

P(t , �f0g , 1) < C e�ª t (1:6)

(cf. Liggett 1999, p. 57).

Let k 	 k denote the L1 norm on Rd and define

Ht ¼ y 2 Rd : 9 x 2
[

0<s< t

�f0gs with kx� yk < 1
2

( )
(1:7)

and

Kt ¼ fy 2 Rd : 9 x 2 Zd with kx� yk < 1
2
and �f0gt (x) ¼ �Z

d

t (x)g: (1:8)

Ht and Kt are the unions of the unit cubes centred respectively at sites that were infected at

some time prior to t, or where the two processes �f0gt and �Z
d

t are equal at time t. Recalling

that �f0gt and �Z
d

t are defined by the graphical construction, we can now formulate the shape

theorem (cf. Durrett 1991; Bezuidenhout and Grimmett 1990).

Theorem 1.2. There exists a bounded convex subset U of Rd with the origin as an interior

point such that, for any E 2 (0, 1),

(1� E)tU � Ht \ Kt � Ht � (1þ E)tU , (1:9)

eventually almost surely on the event f�f0g ¼ 1g where �f0gt survives forever.

Having described these well-known facts concerning the contact process, we now list the

main results of the present paper. At this point we should stress once more that we shall

only be concerned with the supercritical case, that is to say, in the rest of this paper we

shall tacitly assume that º . ºd . First, we strengthen the lower inclusion in Theorem 1.2

as follows.

Theorem 1.3. For any E 2 (0, 1) and r . 0, there exists a positive number Ar,E such that, for

every t . 0,

P((1� E)tU � Ht \ Ktj�f0g ¼ 1) > 1� Ar,E t
�r: (1:10)
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For a proof we refer to Theorem 4.2.1 in Fiocco (1997). Bounds for such exceptional

probabilities for the contact process are typically exponential, that is, of the form A e�ª t

rather than Ar t
�r for any r . 0, and one may conjecture that this is also true in Theorem 1.3.

If true, this would still be a highly technical matter to prove and for our purposes it would not

make any difference.

For the upper inclusion in Theorem 1.2 a much cruder probability bound will suffice. Let

Bx,r ¼ fy 2 Rd : jy� xj < rg denote the L1 ball with radius r and centred at x. Then there

exist positive numbers c, C and ª such that, for all t > 0,

P(Ht � Bf0,ctg) > 1� C e�ª t: (1:11)

This follows immediately by comparing the contact process with Richardson’s growth process

and applying the result of Durrett (1988, Chapter 1).

For our purposes, Theorems 1.2 and 1.3 have two drawbacks. The first is that in

statistical applications the set U – and sometimes also the time t – are unknown and the

experimenter only observes the set �f0gt . It is therefore of interest to show that on

f�f0g ¼ 1g the convex hull C(�f0gt ) of the set of infected sites has the same asymptotic

shape tU as Ht \ Kt and Ht.

Theorem 1.4. For every E 2 (0, 1),

(1� E)tU � C(�f0gt ) � (1þ E)tU , (1:12)

eventually a.s. on the set f�f0g ¼ 1g.

We can also obtain a probability bound for C(�f0gt ) corresponding to Theorem 1.3 for

Ht \ Kt.

Theorem 1.5. For any 0 , E , 1 and r . 0, there exists a positive number Ar,E such that, for

every t . 0,

P((1� E)tU � C(�f0gt )j�f0g ¼ 1) > 1� Ar,E t
�r:

A second problem with Theorems 1.2 and 1.3 is that for large t, these results allow us to

approximate the conditional distribution of �f0gt \ (1� E)tU given f�f0g ¼ 1g by that of

�Z
d

t \ (1� E)tU given f�f0g ¼ 1g. The latter distribution, however, is hardly more

manageable than the former. However, it is easy to show that for large t it can be

approximated in turn by the unconditional distribution of �Z
d

t \ (1� E)tU . Let �
Zd

t denote

the process �Z
d

t conditioned on f�f0g ¼ 1g. The following theorem asserts that we can

couple the processes �Z
d

t and �Z
d

t in such a way that they coincide on tU except on a set of

exponentially small probability. We shall not explicitly describe this coupling, other than to

note that it is not in accordance with the graphical representation as on that probability

space the process �Z
d

t is defined only on the subset f�f0g ¼ 1g, whereas �Z
d

t is defined on

the entire space.
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Theorem 1.6. There exist a coupling (c�
Zd

t , c�
Zd

t ) of (�Z
d

t , �
Zd

t ) and positive constants C and

ª such that, for all t . 0,

P c�
Zd

t \ tU ¼ c�
Zd

t \ tU
� �

> 1� C e�ª t:

Before formulating our results concerning the decaying correlations we need to introduce

some notation. Recall that H ¼ f0, 1gZd

denotes the state space for the contact process. For

f : H ! R and x 2 Zd, define

˜ f (x) ¼ supfj f (�)� f (
)j : �, 
 2 H and �(y) ¼ 
(y) for all y 6¼ xg,

jjj f jjj ¼
X
x2Zd

˜ f (x): (1:13)

For R1, R2 � Zd, let d(R1, R2) denote the L1 distance of R1 and R2:

d(R1, R2) ¼ inf
x2R1, y2R2

jx� yj ¼ inf
x2R1, y2R2

Xd
i¼1

jxi � yij:

Let

DR ¼ f f : H ! R, jjj f jjj , 1, f (�) depends on � only through � \ Rg, (1:14)

that is to say, DR is the class of functions f with jjj f jjj , 1 such that f (�) depends on � only

through �(x) with x 2 R.

First, we show that the correlations between the states of sites for the process �Z
d

t decay

exponentially fast in the distance between them. This follows easily from known results.

Theorem 1.7. There exist positive numbers ª and C such that, for every R1, R2 � Zd,

f 2 DR1 , g 2 DR2 , and t > 0,

jcov f (�Z
d

t ), g(�Z
d

t )
� �

j < Cjjj f jjj:jjjgjjje�ªd(R1,R2): (1:15)

Let �
f0g
t denote the process �f0gt conditioned on f�f0g ¼ 1g. Our final result deals with

decaying correlations for this process.

Theorem 1.8. For every E 2 (0, 1) and r . 0 there exist a positive number Ar,E, as well as

positive constants C and ª, such that, for all t . 0 and all f and g satisfying f 2 DR1 with

R1 � (1� E)tU \ Zd , and g 2 DR2 with R2 � Zd ,

jcov f (�
f0g
t ), g(�

f0g
t )

� �
j < jjj f jjj 	 jjjgjjj C e�ªd(R1,R2) þ Ar,E t

�r
� �

: (1:16)

It is perhaps of interest to compare Theorems 1.7 and 1.8. The term of order t�r in

(1.16) originates from Theorem 1.3 and can probably be shown to be exponentially small.

This is relatively unimportant for our purposes. It is more interesting that a term depending

on t occurs in Theorem 1.8 at all. But, in view of the tools at our disposal, this is to be
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expected. If d(R1, R2) is of larger order than t, then at least one of the two sets R1 or R2

would be far outside the set tU and there would be no correlation unless Ht were to extend

far beyond tU . All we know about this possibility is that it can occur with probability

O(e�ª t) by (1.11). It is therefore hardly surprising that the covariance bound in (1.16)

should depend on t in that case.

For technical reasons these results will be proved in a different order than they are

presented above. In Section 2 we consider the graphical representation a little more

formally and compare a number of different processes in preparation for the proofs of

Theorems 1.6, 1.7 and 1.8. These proofs are then given in Section 3. In Section 4 we prove

a moment inequality which is needed in the next section as well as in Fiocco and van Zwet

(2003). Theorems 1.4 and 1.5 concerning the behaviour of C(�f0gt ) are proved in Section 5.

In Fiocco and van Zwet (2003) these probabilistic results will be used for a study of the

estimation problem for the parameter º of the supercritical contact process �f0gt . Based on

an observation of �f0gt at a single unknown time t, we obtain an estimator º̂º tf0g of º which

is strongly consistent and asymptotically normal as t ! 1. To establish these facts, we

shall need a law of large numbers and a central limit theorem for º̂ºf0gt , and the results of

the present paper will be needed to obtain these.

2. Comparison of processes

In this section we compare several processes, all of which are defined through the graphical

representation. We begin by considering this representation somewhat more formally. The

Poisson processes that underlie this construction serve only to define a Markov process

f
 t : t > 0g, with state space f0, 1gZ2d

, given by


 t(x9, x) ¼
1 if there is an active path from (x9, 0) to (x, t),

0 otherwise,

�
for every pair x9, x 2 Zd and t > 0. This process evolves according to the following

dynamics: for every x 2 Zd, 
 t(x9, x) becomes 0 simultaneously for all x9 2 Zd at rate 1, and

for every ordered pair of neighbouring sites x and y, 
 t(x9, y) becomes 1 for every x9 with


 t(x9, x) ¼ 1 at rate º. The 
 t process is all we need to describe the graphical construction,

and contact processes are now defined as functions of 
 t by

�A
t (x) ¼ max

x92A

 t(x9, x): (2:1)

There is a partial ordering on the states of 
 t defined by 
 < 
9 if and only if


(x9, x) < 
9(x9, x) for all x9, x 2 Zd . A real-valued function f of 
 is said to be non-

decreasing if f (
) < f (
9) whenever 
 < 
9. Since the process 
 t can only jump between

comparable states, it is easy to check the assumptions of Theorem 2.14 of Chapter II in

Liggett (1985) and establish that, for every t > 0, the distribution of 
 t has positive

correlations, that is,

cov( f (
 t), g(
 t)) > 0 (2:2)
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if f and g are non-decreasing and continuous. Obviously g(
 t) ¼ P(�f0g ¼ 1j
 t) ¼
P(�f0g ¼ 1j�f0gt ) is a non-decreasing function of 
 t which is continuous if the set �f0gt is

restricted to an arbitrarily large ball centred at the origin. In view of the shape theorem, this

implies that we may apply (2.2) to obtain

E f (
 t)1f�f0g¼1g ¼ E( f (
 t)P(�
f0g ¼ 1j
 t)) > E f (
 t)P(�

f0g ¼ 1)

if f is non-decreasing and continuous.

A real-valued function f on the state space of the contact process (the subsets of Zd) is

called non-decreasing if it respects the partial ordering of inclusion, that is, if � � �9 (or

equivalently � < �9) implies f (�) < f (�9). By (2.1) a non-decreasing continuous function of

a contact process is also a non-decreasing continuous function of 
 t, and hence we have

proved the intuitively obvious fact that for the processes defined by the graphical

construction,

E( f (�A
t )j�f0g ¼ 1) > E f (�A

t ) (2:3)

if f is a real-valued, non-decreasing and continuous function of �A
t . In other words, the

unconditional process �A
t is stochastically smaller than the conditional process �A

t given

f�f0g ¼ 1g.
For two configurations �, � 2 H ¼ f0, 1gZd

and f : H ! R1 we find by changing one

coordinate at a time that

j f (�)� f (�)j <
X
x2Zd

˜ f (x)I�(x) 6¼�(x),

with ˜ f as in (1.13). Now let � and � be random elements of H and suppose that � < � (or

equivalently � � �) a.s. If f 2 DR for some R � Z d , then

Ej f (�)� f (�)j <
X
x2R

˜ f (x)[P(�(x) 6¼ �(x)] (2:4)

¼ jjj f jjjsup
x2R

P(�(x) ¼ 1)� P(�(x) ¼ 1)½ 
,

where DR and jjj f jjj are defined in (1.14) and (1.13). If we assume only that � is stochastically

smaller than �(�<
st �), then there exists a coupling (c�, c�) of (�, �), such that c� < c�, a.s.

(Liggett 1999, p. 6). Then, for f 2 DR, (2.4) implies

jE f (�)� E f (�)j ¼ jE f (c�)� E f (c�)j < Ej f (c�)� f (c�)j (2:5)

< jjj f jjjsup
x2R

P(�(x) ¼ 1)� P(�(x) ¼ 1)½ 
:

Let us introduce a number of processes, all defined through the graphical representation.

So far we have encountered the processes f�A
t : t > 0g for all A � Zd , in particular �f0gt

and �Z
d

t . We shall also have to consider the process f�9t : t > sg ¼ f�Zd

t�s : t > sg which

starts at time s in the graphical representation with all sites infected. For A � Zd, let �
A

t

denote a process which is distributed as �A
t conditioned on f�f0g ¼ 1g. It is defined
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through the graphical representation by restricting �A
t to the set where f�f0g ¼ 1g and

dividing all probabilities by P(f�f0g ¼ 1g) . 0. By (2.3) we have �A
t <

st
�A
t .

For fixed s . 0, we next define ~�� t by

~�� t ¼
�
f0g
t for t 2 [0, s],

�
�
f0g
s
t for t . s:

(

Thus ~�� t starts out as �f0gt conditioned on f�f0g ¼ 1g up to time s, and after this time this

condition is dropped and if �f0gs ¼ A, the process continues as f�A
t�s : t > sg: By (2.3) we

have ~�� t <
st
�f0gt .

Finally, we shall have to consider a further modification of ~�� t for any given t . s. Let

Bfx,c( t�s)g ¼ fz 2 Rd : jz� xj < c(t � s)g denote the L1 ball with centre x and radius

c(t � s) in Rd , where c is the constant occurring in (1.11). In the graphical representation

we have ~�� t(x) ¼ 1 if a site in ~��s at time s is connected to site x at time t by an active path.

We now construct ��t by defining ��t (x) for each x 2 Zd in the same way as ~�� t(x), but now

ignoring all infections of sites in Bfx,c( t�s)g by sites outside Bfx,c( t�s)g at any time in the

interval [s, t]. To put it another way, ��t (x) is determined by a contact process restricted to

the set Bfx,c( t�s)g, which starts at time s with the set of infected sites �f0gs \ Bfx,c( t�s)g. In
the graphical representation we obviously have ��t < ~�� t a.s., and we can only have

��t (x) , ~�� t(x) if for the ~�� t process there is an active path from a site in (s, e��s) to (t, x) that

is not entirely contained in Bfx,c( t�s)g during the time interval [s, t].

We now wish to compare these processes. To compare �f0gt and �Z
d

t we merely note that

�f0gt < �Z
d

t a.s. and hence Theorem 1.3 asserts the existence of a constant Ar,E for every

positive r and E, such that, for every x 2 (1� E)tU and t . 0,

0 < P �
Zd

t (x) ¼ 1
� �

� P �
f0g
t (x) ¼ 1

� �
< Ar,E t

�r: (2:6)

We have already noted that �Z
d

t <
st
�
Zd

t . On the one hand (1.4) ensures that, for 0 , s , t,

P �Z
d

t (x) ¼ 1j�f0g . s
� �

< P �Z
d

t�s(x) ¼ 1
� �

< P(�	(x) ¼ 1)þ C e�ª( t�s)

< P �Z
d

t (x) ¼ 1
� �

þ C e�ª( t�s);

on the other hand (1.6) implies

P �Z
d

t (x) ¼ 1j�f0g . s
� �

> P �Z
d

t (x) ¼ 1 ^ �f0g ¼ 1)=P(�f0g . s
� �

¼ P �
Zd

t (x) ¼ 1
� �

P �f0g ¼ 1
� �

=P �f0g . s
� �

> P �
Zd

t (x) ¼ 1
� �

� C9 e�ªs,

with C9 ¼ C=P(�f0g ¼ 1) , 1. Combining these facts for s ¼ t=2, we find, for all x 2 Zd ,
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0 < P �
Zd

t (x) ¼ 1
� �

� P �Z
d

t (x) ¼ 1
� �

< (C þ C9)e�ª t=2: (2:7)

Note that the same argument yields P(�Z
d

t�s(x) ¼ 1) < P(�Z
d

t (x) ¼ 1)þ C e�ª( t�s) and, as

�Z
d

t < �Z
d

t�s ¼ �9t a.s., we find that, for 0 , s , t and x 2 Zd,

0 < P �9t(x) ¼ 1ð Þ � P �Z
d

t (x) ¼ 1
� �

< C e�ª( t�s): (2:8)

We pointed out earlier that ~�� t <
st
�
f0g
t . The two processes are defined on the set f�f0g . sg

and are equal on f�f0g ¼ 1g. Hence, again by (1.6),

0 < P(�
f0g
t (x) ¼ 1)� P(~�� t(x) ¼ 1) < P(s , �f0g , 1)=P(�f0g . s) (2:9)

< C e�ªs=P(�f0g ¼ 1) ¼ C9 e�ªs,

for C9 as above, 0 , s , t and x 2 Zd .

It remains to compare ~�� t and ��t . We have already noted that ��t < ~�� t a.s., and that

��t (x) , ~�� t(x) implies that for the ~�� t-process there is an active path from a site in (s, ~��s) to
(t, x) that is not entirely contained in Bfx,c( t�s)g during the time interval [s, t]. Reversing

time and the direction of infection arrows, the self-duality of the graphical construction and

(1.11) yield

P(��t (x) 6¼ ~�� t(x)) < P �fxg > t � s,
\

0<u< t�s

�fxgu 6� Bfx,c( t�s)g

 !

¼ P
\

0<u< t�s

�
f0g
u 6� Bf0,c( t�s)g

 !
< P(Ht�s 6� Bf0,c( t�s)g) < C e�ª( t�s):

It follows that

0 < P(~�� t(x) ¼ 1)� P(��t (x) ¼ 1) < C e�ª( t�s): (2:10)

3. Proof of Theorems 1.6–1.8

We are now in a position to prove Theorems 1.6, 1.7 and 1.8.

Proof of Theorem 1.6. Since �Z
d

t <
st
�
Zd

t , there exists a coupling (c�
Zd

t , c�
Zd

t ) such that

c�Z
d

t < c�Z
d

t a.s. The cardinality of tU \ Zd is at most ctd for some constant c . 0 and

hence, by (2.7),

P c�
Zd

t \ tU 6¼ c�
Zd

t \ tU
� �

< ctd sup
x2 tU

P(c�
Zd

t (x) ¼ 1)� P(c�
Zd

t (x) ¼ 1)
h i

< ctd c9 e�ª9 t=2 < C e�ª t,

for appropriate positive c9, ª9, C and ª. This proves the theorem. h
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Proof of Theorem 1.7. We note that �	 <
st
�Z

d

t and hence, by (2.5) and (1.4),

jE f (�Zd

t )� E f (�	)j < jjj f jjjsup
x2R

[P(�Z
d

t (x) ¼ 1)� P(�	(x) ¼ 1)]

< Cjjj f jjje�ª t:

Now (1.15) follows by applying Theorem 4.20 in Chapter 1 of Liggett (1985). h

Proof of Theorem 1.8. Let E 2 (0, 1), r . 0, f 2 DR1 and g 2 DR2, with R1 �
(1� E)tU \ Zd and R2 � Zd . Write d� ¼ d(R1, R2) and choose s 2 (0, t) with

t � s <
d�
3c

, (3:1)

where c is the constant occurring in (1.11). It follows that the L1 ball Bfx,c( t�s)g in the

definition of ��t is contained in Bfx,d�=3g. The construction of ��t therefore implies that,

conditional on ~��s, f (��t ) depends only on those Poisson processes in the graphical

representation associated with sites or pairs of neighbouring sites in R1 � Bf0,d�=3g. The same

is true for g(��t ) and R2 � Bf0,d�=3g. As d(R1, R2) ¼ d�, R1 � Bf0,d�=3g and R2 � Bf0,d�=3g are
disjoint and hence f (��t ) and g(��

t
) are conditionally independent given ~��s.

Without loss of generality, we replace g and f by g � g(�) and f � f (�) for some fixed

� 2 H . The effect of this is that kgk < jjjgjjj, k f k < jjj f jjj, and hence jjj fgjjj < k f k 	 jjjgjjj þ
kgk 	 jjj f jjj < 2jjj f jjj 	 jjjgjjj. As ��t <

st �f0g
t

, (2.5), (2.9) and (2.10) imply that there exist C . 0

and ª . 0 such that

jE f (�
f0g
t )g(�

f0g
t )� E f (��t )g(�

�
t )j < Cjjj f jjj 	 jjjgjjj e�ªs þ e�ª( t�s)

� �
: (3:2)

The conditional independence of f (��t ) and g(��t ) yields

E f (��t )g(�
�
t )j~��s

h i
¼ E f (��t )j~��s

h i
	 E g(��t )j~��s
h i

: (3:3)

We have

E E f (��t )j~��s
h i

:E g(��t )j~��s
h i� �

¼ E E f (�9t)j~��s
h i

:E g(��t )j~��s
h i� �

þ E E f (��t )� f (�9t)j~��s
h i

:E g(��t )j~��s
h i� �

, (3:4)

where we recall that �9t starts at time s in the graphical representation with all sites infected

and is therefore independent of ~��s ¼ �f0gs . Hence the first term on the right in (3.4) equals

E f (�9t)E E g(��t )j~��s
h i� �

¼ E f (�9t)Eg(�
�
t ): (3:5)

The second term is bounded in absolute value by jjjgjjj 	 Ej f (��t )� f (�9tj. Since ��t < ~�� t < �9t
a.s. for 0 , s , t and f 2 DR1 with R1 � (1� E)tU \ Zd , (2.4) ensures that this is bounded

in turn by
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jjj f jjj 	 jjjgjjj 	 sup
x2R1

P(�9t(x) ¼ 1)� P(��t (x) ¼ 1)

 �

< jjj f jjj 	 jjjgjjj 	 sup
x2R1

P(~�� t(x) ¼ 1)� P(��t (x) ¼ 1)
h i

þ P(�
f0g
t (x) ¼ 1)� P(~�� t(x) ¼ 1)

h in
þ P(�

Zd

t (x) ¼ 1)� P(�
f0g
t (x) ¼ 1)

h i
� P(�

Zd

t (x) ¼ 1)� P(�Z
d

t (x) ¼ 1)
h i

þ P(�9t(x) ¼ 1)� P(�Z
d

t (x) ¼ 1)
h io

,

which by (2.6)–(2.10) is bounded by jjj f jjj 	 jjjgjjj 	 [C(e�ªs þ e�ª( t�s))þ Ar,E t
�r]. Hence, by

(3.2)–(3.5),

jE f (�f0gt )g(�
f0g
t )� E f (�9t)Eg(�

�
t )j < jjj f jjj 	 jjjgjjj 	 [C(e�ªs þ e�ª( t�s))þ Ar,E t

�r] (3:6)

for appropriate positive C, ª and Ar,E.

Because R1 � (1� E)tU , (2.5)–(2.8) yield

jE f (�9t)� E f (�
f0g
t )j < jE f (�Z

d

t )� E f (�
f0g
t )j þ jE f (�Zd

t )� E f (�
Zd

t )j

þ jE f (�9t)� E f (�Z
d

t )j < jjj f jjj 	 [C e�ª( t�s) þ Ar,s t
�r],

and by (2.5), (2.9) and (2.10),

jEg(��t )� Eg(�
f0g
t )j < jjjgjjj 	 C(e�ªs þ e�ª( t�s)):

Combining this and (3.6), we find that

jcov f (�
f0g
t ), g(�

f0g
t )

� �
j < jjj f jjj 	 jjjgjjj 	 [C(e�ªs þ e�ª( t�s))þ Ar,E t

�r],

for appropriate positive C, ª and Ar,E. Choosing (t � s) ¼ d�=(3c) ^ (t=2), we arrive at

jcov f (�
f0g
t ), g(�

f0g
t )

� �
j < jjj f jjj 	 jjjgjjj 	 [C e�ªd� þ Ar,E t

�r],

for positive C, ª and Ar,E. h

4. A moment inequality

In this section we prove an inequality for the central moments of certain functions of �Z
d

t

that will be needed in Section 5 as well as in Fiocco and van Zwet (2003). For A � Zd,

define the total number of infected sites in the set A at time t as

nZ
d

t (A) ¼
X
x2A

�Z
d

t (x): (4:1)

The cardinality of a set A � Zd will be denoted by jAj.
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Lemma 4.1. For any k ¼ 1, 2, . . . , there exists a number Ck . 0 such that, for every A � Zd

and t > 0,

�2k ¼ E nZ
d

t (A)� EnZ
d

t (A)
� �

2k < Ck jAjk : (4:2)

Proof. Given any x1, x2, . . . , x2k 2 Zd, let R ¼ max j d(xj, fx1, . . . , xj�1, xjþ1, . . . , x2kg) and
write �2k as

�2k ¼ E
X
x2A

(�Z
d

t (x)� E�Z
d

t (x))

 !2k

¼
X
x12A

. . .
X
x2 k2A

E
Y2k
i¼1

(�Z
d

t (xi)� E�Z
d

t (xi)):

For every j ¼ 1, 2, . . . , 2k, we have������������ Y2k
i¼1,i6¼ j

�Z
d

t (xi)� E�Z
d

t (xi)
� ������������� < 2k,

�������������Zd

t (xj)� E�Z
d

t (xj)

������������ ¼ 1,

and hence Theorem 1.7 and the definition of R imply that

�2k ¼ 2Ck
X
x12A

. . .
X
x2 k2A

e�ªR:

Notice that the distance d(xj, fx1, . . . , xj�1, xjþ1, . . . , x2kg) ¼ 0 unless xj occurs only once

in the sequence x1, . . . , x2k .
Let mj denote the number of sites that occur j times in the sequence of sites x1, . . . , x2k .

Define, for m1, . . . , m2k with
P2k

i¼1 jm j ¼ 2k and r > 0, Fm1,...,m2 k
(r) as the number of

sequences x1, . . . , x2k 2 A with given m1, . . . , m2k and R , r. Then Fm1,...,m2 k
(0) ¼ 0 and,

for r . 0,

Fm1,...,m2 k
(r) <

C9k jAjm2þm3þ...jAjm1=2 rdm1=2 if m1 even,

C9k jAjm2þm3þ...jAj(m1�1)=2 rd(m1þ1)=2 if m1 odd,

�
where d is the dimension of the contact process and C9k is an appropriate positive constant.

This bound for Fm1,...,m2 k
(r) is computed by noting that the m2 þ m3 þ . . . sites which occur

more than once can be chosen anywhere in A without contributing to R, which accounts for

the factor jAjm2þm3þ.... The m1 sites which occur only once, however, have to be chosen

within a distance r from another member of x1, . . . , x2k , and this gives rise to a factor

jAjm1=2 rdm1=2 or jAj(m1�1)=2 rd(m1þ1)=2 for even or odd m1, respectively. Finally, the

combinatorics of the situation refers to ordering 2k sites and can therefore be bounded by C9k.

If m1 is odd, then m3 þ m4 þ . . . . 0 as
P

j jm j ¼ 2k and, as a result,

m1 � 1

2
þ m2 þ m3 þ . . . < k � 1,

while if m1 is even,

m1

2
þ m2 þ m3 þ . . . < k:
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Hence, if we define Fm(r) as the number of sequences x1, . . . , x2k 2 A with m1 ¼ m and

R , r, then

Fm(r) <:
C 0k jAjk rdm=2 if m even,

C 0k jAjk�1 rd(mþ1)=2 if m odd:

�
For r . 0, let F(r) be the number of sequences x1, . . . , x2k 2 A with R , r, so that

F(r) ¼
X2k
m¼0

Fm(r):

Summing the terms with even or odd values of m separately we obtain, for r . 0,

F(r) ¼
Xk
s¼0

F2s(r)þ
Xk
s¼1

F2s�1(r) < C999k jAjk rdk ,

where C999k is an appropriately chosen constant. As F(0) ¼ 0,

�2k < 2Ck
X
x12A

. . .
X
x2 k2A

e�ªR

< 2Ck
X1
r¼0

e�ªr(F(r þ 1)� F(r)) < Ck jAjk

for an appropriate Ck . 0. h

A more general version of Lemma 4.1 may be formulated as follows. Let g : H ! R

satisfy g 2 DBf0, rg, where Bf0,rg is an L1 ball centred at the origin with radius r. Hence g(�)
depends on � only through �(x) with x in a fixed set Bf0,rg � Rd . For a 2 Zd, let a� denote

a shifted version of � with a�(x) ¼ �(aþ x) for all x 2 Zd , and define ga : H ! R by

ga(�) ¼ g(a�) for � 2 H. Note that ga 2 DBfa, rg . Lemma 4.1 can now easily be generalized

as follows.

Theorem 4.1. For any k ¼ 1, 2, . . . and r . 0, there exists a number Ck,r . 0 such that, for

every A � Zd, g 2 DBf0, rg and t > 0,

E
X
a2A

(ga(�
Zd

t )� Ega(�
Zd

t ))

 !2k

< Ck,rjjjgjjj2k jAjk : (4:3)

Proof. Without loss of generality we may replace g by g � g(
) and ga by ga � ga(
) for
some fixed 
 2 H, so that kgak ¼ kgk < jjjgjjj ¼ jjjgajjj. Then, for some ck,r . 0,
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������������ Y2k
i¼1,i6¼ j

gai (�
Zd

t )� Egai (�
Zd

t )
� ������������� < ck,rjjjgjjj2k�1,

������������ ga j
(�Z

d

t )� Ega j
(�Z

d

t )
� ������������� ¼ jjjgjjj,

for some ck,r . 0. Using the fact that d(Bfa,rg, Bfb,rg) > d(a, b)� 2r, the proof goes

through the same counting argument employed to prove Lemma 4.1. h

Recall the definition of the random hitting time for the process �A
t ,

�A ¼ infft : �A
t ¼ ˘g, A � Zd :

We shall need the following corollary.

Corollary 4.1. For any r . 0 there exists a number Cr . 0 such that, for every A � Zd and

t > 0,

P(nZ
d

t (A)) < 1
2
EnZ

d

t (A)) < CrjAj�r, (4:4)

P(�A , 1) < CrjAj�r: (4:5)

Proof. It is obviously enough to prove the corollary for integer k ¼ 1, 2, . . . instead of real

r . 0. Applying the self-duality property (1.5) for B ¼ Zd, we find

P(�A < t) ¼ P(�Z
d

t \ A ¼ ˘) ¼ P(nZ
d

t (A) ¼ 0):

Since the process �Z
d

t is translation-invariant, the graphical construction yields

EnZ
d

t (A) ¼
X
x2A

E�Z
d

t (0) ¼ jAjE�Zd

t (0) > jAjE�	(0),

where the right-hand side is independent of t. Therefore for every t > 0 and k ¼ 1, 2, . . . ,

P(�A < t) ¼ P nZ
d

t (A) ¼ 0
� �

< P nZ
d

t (A) < 1
2
EnZ

d

t (A)
� �

< P jnZd

t (A)� EnZ
d

t (A)j > 1
2
EnZ

d

t (A)
� �

<
22k�2k

[EnZ
d

t (A)]2k
<

22k�2k
[E�	(0)]2k jAj2k < Ck jAj�k

by Lemma 4.1. This implies that

P(�A , 1) < Ck jAj�k

because the bound does not depend on t. h
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We note that (4.5) may be improved by a more delicate argument to yield

P(�A , 1) < C e�ªjAj (4:6)

for positive C and ª (cf. Liggett 1999, p. 57).

5. The asymptotic shape of the convex hull

In this section we prove a shape theorem for the convex hull C(�f0gt ) of the set of infected

sites �f0gt , as well as a corresponding probability bound (cf. Theorems 1.4 and 1.5).

Definition 5.1. A convex polytope is a set which is the convex hull of a finite number of

points.

Lemma 5.1. For every 0 , E , 1
2
, there exists a convex polytope P � Rd such that

(1� 2E)U � P � 1� 3E
2

� �
U : (5:1)

Proof. By Theorem 33 in Chapter 4 of Eggleston (1958) we have, for every � . 0, a

convex polytope P containing (1� 2E)U and contained in a �-neighbourhood
fx : d(x, (1� 2E)U ) < �g of (1� 2E)U . Here d is L1 distance. Since 0 is an interior point

of U , this �-neighbourhood of (1� 2E)U is contained in (1� 3E=2)U for sufficiently small

�. h

Let x1, x2, . . . , xk be the extreme points of a convex polytope P satisfying (5.1). For

each of these points xi we define a set

Ai ¼ fx : 9 � . 0, xi � �(x� xi) 2 Pg \ (1� E)U : (5:2)

The set Ai is the intersection of (1� E)U and the exterior cone of P at xi, and as

P � (1� 3E=2)U , we see that Ai contains an open set in Rd . For any B � Rd, let C(B)
denote the convex hull of B. We have:

Lemma 5.2. If x9i 2 Ai, for i ¼ 1, . . . , k, then

P � C(fx91, . . . , x9kg): (5:3)

Proof. Suppose that for some m ¼ 1, 2, . . . , k, P � C(fx91, . . . , x9m�1, xm, . . . , xkg), where
the latter set is interpreted as C(fx1, . . . , xkg) for m ¼ 1. As xm 2 Am,

xm � �(x9m � xm) 2 P � C(fx91, . . . , x9m�1, xm . . . , xkg),
or equivalently,

xm ¼ �

(1þ �� ºm)
x9m þ

Xm�1

j¼1

º j

1þ �� ºm

x9j þ
Xk
j¼mþ1

º j

1þ �� ºm

xj,
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for some � . 0, º j > 0 for each j, and
Pk

j¼1º j ¼ 1. This implies that xm 2
C(fx91, . . . , x9m, xmþ1, . . . , xkg) and as a result P � C(fx91, . . . , x9m, xmþ1, . . . , xkg). Induction
yields P � C(fx91, . . . , x9kg). h

Proof of Theorem 1.4. On the set where �f0gt survives forever, Ht � (1þ E)tU eventually a:s:
by Theorem 1.2. Since U is convex, this implies that C(Ht) � (1þ E)tU . In view of the

definition of Ht in (1.7), �f0gt � Ht and hence C(�f0gt ) � C(Ht). Combining these inclusions

we arrive at

C(�f0gt ) � C(Ht) � (1þ E)tU (5:4)

eventually a.s. on the set where �f0gt survives forever. This establishes the almost sure upper

bound for C(�f0gt ) in (1.12).

To obtain the lower bound in (1.12), we begin by noting that (4.4) ensures that, for every

r . 0 and i ¼ 1, 2, . . . , k,

P(nZ
d

t (tAi) <
1
2
EnZ

d

t (tAi)) < CrjtAij�r
D < Cr,E t

�dr:

Here

jAjD ¼ jA \ Zd j

denotes the discrete cardinality of a set A � Rd and the final inequality follows from the fact

that for fixed E, A1, . . . , Ak are fixed subsets of Rd with non-empty interiors. In view of the

graphical representation, we have for i ¼ 1, . . . , k and t > mE,

1
2
EnZ

d

t (tAi) >
1
2
En	t (tAi) ¼ 1

2
jtAijDE�	(0) > cE t

d :

It follows that, for t > mE,

P(nZ
d

t (tAi) < cE t
d) < Cr,E t

�dr (5:5)

for appropriately chosen positive cE and Cr,E and integer mE . 0. Hence, for m > mE,

P(nZ
d

t (tAi) ¼ 0 for some t 2 [m, mþ 1))

< Cr,Em
�dr þ P(nZ

d

t (tAi) ¼ 0 for some t 2 [m, mþ 1)jnZd

m (mAi) . cEm
d):

The latter conditional probability is bounded by the probability that the maximum of

[cEm
d]þ 1 independent standard exponential waiting times does not exceed 1, which is

O(m�dr) as m ! 1 for any r . 0. As a result we have, for m ¼ mE, mEþ1, . . . ,

P(nZ
d

t (tAi) ¼ 0 for some t 2 [m, mþ 1)) < C9r,Em
�dr,

and, choosing r > 2=d, we see that the Borel–Cantelli lemma implies that, for i ¼ 1, . . . , k,

nZ
d

t (tAi) 6¼ 0 eventually a:s: (5:6)

Obviously this also holds for i ¼ 1, 2, . . . , k simultaneously.
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By (5.2), tAi � (1� E)tU for i ¼ 1, . . . , k, and hence Theorem 1.2 implies that on the

set f�f0g ¼ 1g, �f0gt (x) ¼ �Z
d

t (x) eventually a.s., for all x 2 tAi for i ¼ 1, . . . , k. Hence,

(5.6) ensures that on the set where �f0gt survives forever,

n
f0g
t (tAi) 6¼ 0 for i ¼ 1, . . . , k, eventually a:s: (5:7)

If n
f0g
t (tAi) 6¼ 0 for i ¼ 1, . . . , k, then each of the sets tAi contains a point of �f0gt , and by

(5.1)–(5.3) this implies that

(1� 2E)tU � tP � C(�f0gt ): (5:8)

In view of (5.7), (5.8) holds eventually a.s. on the set where �f0gt survives forever. Since E is
arbitrary, the theorem is proved. h

Proof of Theorem 1.5. In the proof of Theorem 1.4 we note that (2.3) and (5.5) imply that

P(nZ
d

t (tAi) ¼ 0j�f0g ¼ 1) < P(nZ
d

t (tAi) ¼ 0) < Cr,E t
�dr:

Invoking Theorem 1.3, we arrive at

P(n
f0g
t (tAi) 6¼ 0 for i ¼ 1, . . . , kj�f0g ¼ 1) > 1� Cr,Ek t

�dr � Ar,E t
�r:

By the argument leading to (5.8) we obtain a probability bound for C(�f0gt ), which is the

statement of Theorem 1.5. h
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