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We derive a dimension-free Hanson–Wright inequality for quadratic forms of independent sub-gaussian random
variables in a separable Hilbert space. Our inequality is an infinite-dimensional generalization of the classical
Hanson–Wright inequality for finite-dimensional Euclidean random vectors. We illustrate an application to the
generalized K-means clustering problem for non-Euclidean data. Specifically, we establish the exponential rate
of convergence for a semidefinite relaxation of the generalized K-means, which together with a simple rounding
algorithm imply the exact recovery of the true clustering structure.
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1. Introduction

The Hanson–Wright inequality is a fundamental tool for studying the concentration phenomenon for
quadratic forms in sub-gaussian random variables [12,31]. Recently, it has triggered a wide range of
statistical applications such as semidefinite programming (SDP) relaxations for K-means clustering
[10,21] and Gaussian approximation bounds for high-dimensional U -statistics (of order two) [5]. Clas-
sical form of the Hanson–Wright inequality bounds the tail probability for the quadratic form of a
finite-dimensional random vector in a Euclidean space. Below is a version that is frequently cited in
literature (cf. Theorem 1.1 in [22]).

Theorem 1.1 (Hanson–Wright inequality for quadratic forms of independent sub-gaussian ran-
dom variables in R). Let X = (X1, . . . ,Xn) ∈ Rn be a random vector with independent components
Xi such that E[Xi] = 0 and ‖Xi‖ψ2 := supq≥1 q−1/2(E|Xi |q)1/q ≤ L. Let A be an n× n matrix. Then
there exists a universal constant C > 0 such that for every t > 0,

P
(∣∣XT AX−E

[
XT AX

]∣∣≥ t
)≤ 2 exp

[
−C min

(
t2

L4‖A‖2
HS

,
t

L2‖A‖op

)]
, (1.1)

where ‖A‖HS = (
∑n

i,j=1 a2
ij )

1/2 is the Hilbert–Schmidt (i.e., Frobenius) norm of A and ‖A‖op =
max{x∈Rn:‖x‖2=1} ‖Ax‖2 is the �2→ �2 operator (i.e., spectral) norm of A.

There are some variants of the finite-dimensional Hanson–Wright inequality. Sharp upper and lower
tail inequalities for quadratic forms of independent Gaussian random variables are derived in [16].
[9] and [3] derive the Hanson–Wright inequality for zero-diagonal matrix A with independent Bernoulli
and centered sub-Gaussian random variables, respectively. [14] establishes an upper tail inequality for
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positive semidefinite quadratic forms in a sub-Gaussian random vector with dependent components.
[29] proves a dimension-dependent concentration inequality for a centered random vector under the
convex concentration property. [1] further improves the inequality of [29] by removing the dimension
dependence in R

n.
In this paper, we first derive an infinite-dimensional analog of the Hanson–Wright inequality (1.1)

for sub-Gaussian random variables taking values in a Hilbert space, which can be seen as a unified gen-
eralization of the aforementioned papers in finite dimensions. Motivation of deriving the dimension-
free Hanson–Wright inequality stems from the generalized K-means clustering for non-Euclidean data
with non-linear features, which covers the functional data clustering and kernel clustering as special
examples. It is well known that the (classical) Euclidean distance based K-means clustering is com-
putationally NP-hard in the worst case. Various SDP relaxations in literature (cf. [6,10,17,19,21]) aim
to provide exact and partial recovery of the true clustering structure. However, it remains a challeng-
ing task to provide strong statistical guarantees for computationally tractable (i.e., polynomial-time)
algorithms to cluster non-Euclidean data taking values in a general Hilbert space with non-linear fea-
tures. As we shall see in Section 3, the Hilbert space version of the Hanson–Wright inequality offers a
powerful tool to establish the exponential rate of convergence for an SDP relaxation of the generalized
K-means. This partial recovery bound implies the exact recovery of the generalized K-means cluster-
ing via a simple rounding algorithm. In contrast to the heuristic greedy algorithms often employed in
the kernel clustering setting (cf. [24]), our result provides a principled SDP relaxed kernel clustering
algorithm with exact recovery guarantees.

2. Hanson–Wright inequality in Hilbert spaces

To state the Hanson–Wright inequality in a general Hilbert space, we first need to properly specify the
sub-Gaussian random variables therein.

2.1. Sub-Gaussian random variables in Hilbert spaces

Let H be a real separable Hilbert space and B(H) be the class of bounded linear operators � :H→H.
If the operator � ∈ B(H) is positive definite (i.e., it is self-adjoint �∗ = � and 〈�z, z〉 ≥ 0 for all
z ∈H), then there is a unique positive definite (and thus self-adjoint) square root operator �1/2 ∈ B(H)

satisfying �1/2�1/2 =� (cf. Theorem 3.4.3 in [13]).

Definition 2.1 (Trace class of linear operators on a separable Hilbert space). Let � ∈ B(H). Then
� is trace class if

‖�‖tr :=
∞∑

j=1

〈(
�∗�

)1/2
ej , ej

〉
<∞,

where (ej )
∞
j=1 is a complete orthonormal system (CONS) of H. In this case, ‖�‖tr is the trace norm

of �.

Note that the trace norm does not depend on the choice of the CONS. A self-adjoint and positive
definite trace class linear operator � is compact and it plays a similar role as a covariance matrix,
where the trace norm is simply the trace of the covariance matrix. In particular, if � is positive definite
trace class, then ‖�‖tr =∑∞j=1〈�ej , ej 〉 =∑∞j=1 ‖�1/2ej‖2. Let (�,B,P) be a probability space.
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Definition 2.2 (Hilbert space valued sub-gaussian random variable). Let Z be a random variable
in H and � : H→ H be a positive definite trace class linear operator. Then Z is sub-Gaussian with
respect to � (denote as Z ∼ sub-gaussian(�)) if there exists an α ≥ 0 such that for all z ∈H,

E
[
e〈z,Z−E[Z]〉

]≤ eα2〈�z,z〉/2, (2.1)

where the expectation E[Z] = ∫
�

ZdP is defined as a Bochner integral (cf. Chapter 2.6 in [13]). More-
over, if Z ∼ sub-gaussian(�) with mean μ = E[Z], then the ψ2 (or sub-Gaussian) norm of Z with
respect to � is defined as

‖Z‖ψ2,�
= inf

{
α ≥ 0 : E[e〈z,Z−μ〉]≤ eα2〈�z,z〉/2,∀z ∈H}.

Note that Definition 2.2 corresponds to the R-sub-Gaussianity in [11], and it is an infinite-
dimensional analog of the sub-Gaussian random vectors in R

p (see, for example, [28] and [14]). Un-
surprisingly, the Gaussian random variables in H is a special case of sub-gaussian random variables
in H.

Definition 2.3 (Hilbert space valued Gaussian random variable). A random variable Z in H is
Gaussian with respect to � and with mean μ= E[Z] (denote as Z ∼N(μ,�)) if for all z ∈H,

E
[
e〈z,Z−μ〉]= e〈�z,z〉/2. (2.2)

Lemma 2.4. If Z ∼ N(μ,�), then ‖Z‖ψ2,� = 1 and � = �, where � := E[(Z − μ)⊗ (Z − μ)] is
the covariance operator of Z. More generally, if Z ∼ sub-gaussian(�) with mean μ = E[Z], then
� � 4‖Z‖2

ψ2,�
�, that is, (4‖Z‖2

ψ2,�
�−�) is positive semidefinite.

For a, b ∈H, the tensor product a⊗ b :H→H is a linear operator defined as (a⊗ b)z= 〈b, z〉a for
all z ∈H. Lemma 2.4 is proved in Appendix A.2.

Notation. We shall use c, c0, c1,C,C0,C1, . . . to denote positive and finite universal constants,
whose values may vary from place to place. For a, b ∈ R, denote a ∨ b = max(a, b) and a ∧ b =
min(a, b). For � ∈ B(H), the operator norm ‖�‖op of � is defined as the square root of the
largest eigenvalue of �∗�. If

∑∞
j=1 ‖�ej‖2 <∞, then � is a Hilbert–Schmidt (HS) operator and

‖�‖HS = (
∑∞

j=1 ‖�ej‖2)1/2. For a matrix Z ∈Rm×n, |Z|1 =∑m
i=1

∑n
j=1 |Zij |.

2.2. Hanson–Wright inequality in Hilbert spaces

Throughout Section 2.2, we assume that H is a real separable Hilbert space and � ∈ B(H) is a positive
definite trace class operator on H. First, we present a Hanson–Wright inequality with zero diagonal in
Proposition 2.5.

Proposition 2.5 (Hanson–Wright inequality for quadratic forms of sub-gaussian random vari-
ables in Hilbert spaces: zero diagonal). Let Xi, i = 1, . . . , n, be a sequence of independent centered
sub-gaussian(�) random variables in H and Li = ‖Xi‖ψ2,� . Let A = (aij )

n
i,j=1 be an n× n matrix

and S =∑1≤i �=j≤n aij 〈Xi,Xj 〉. Then there exists a universal constant C > 0 such that for any t > 0,

P(S ≥ t)≤ exp

[
−C min

(
t2

L4‖�‖2
HS‖A‖2

HS

,
t

L2‖�‖op‖A‖op

)]
, (2.3)

where L=max1≤i≤n Li .



Hanson–Wright inequality in Hilbert spaces 589

Remark 2.1. Proposition 2.5 is a dimension-free version of the Hanson–Wright inequality with a
zero diagonal weighting matrix for independent sub-Gaussian random variables in R [22]. Specifi-
cally, Theorem 1.1 (i.e., Theorem 1.1 in [22]) is a special case of Proposition 2.5 with H = R and
〈Xi,Xj 〉 = XiXj . In this case, we may take � = 1 and thus ‖�‖op = ‖�‖HS = 1. Different from
Theorem 1.1, Proposition 2.5 is also able to capture the (component-wise) dependency encoded in �

for general Hilbert spaces, thus covering certain quadratic forms in a finite-dimensional sub-Gaussian
random vector with dependent components. We emphasize that, although our general proof strategy of
decoupling the off-diagonal dependence is based on that of Theorem 1.1 in [22], a key step in our proof
to remove the dependency in the Hilbert space valued sub-Gaussian random variables is diagonalizing
the operator � (together with the decoupling). Such diagonalization procedure allows us to perform
the calculations in an isometric �2 space of H, where linear operators can be conveniently represented
by (infinite-dimensional) matrices. This turns out to be the crux to obtain the trade-off between ‖�‖HS
and ‖�‖op in the tail probability bound for the off-diagonal sum S.

Our next result is an upper tail inequality (i.e., one-sided Hanson–Wright inequality) with non-
negative diagonal weights in Theorem 2.6 below.

Theorem 2.6 (Upper tail inequality for quadratic forms of sub-Gaussian random variables in
Hilbert spaces: non-negative diagonal). Let Xi, i = 1, . . . , n, be a sequence of independent centered
sub-gaussian(�) random variables in H and Li = ‖Xi‖ψ2,� . Let A = (aij )

n
i,j=1 be an n× n matrix

such that aii ≥ 0, and Q=∑n
i,j=1 aij 〈Xi,Xj 〉. Then there exists a universal constant C > 0 such that

for any t > 0,

P

(
Q≥

n∑
i=1

aiiL
2
i ‖�‖tr + t

)
≤ 2 exp

[
−C min

(
t2

L4‖�‖2
HS‖A‖2

HS

,
t

L2‖�‖op‖A‖op

)]
, (2.4)

where L=max1≤i≤n Li .

Both Proposition 2.5 and Theorem 2.6 allow Xi, i = 1, . . . , n, to have different covariance operators
�i , provided that �i � 4‖Xi‖2

ψ2,�
� (cf. Lemma 2.4).

Remark 2.2 (Connections to the existing upper tail inequality in finite-dimensional Euclidean
spaces). First, we mention that the upper tail probability bound (2.4) (also cf. Lemma A.2) is sharper
than the one-dimensional Bernstein’s inequality for the non-negatively weighted diagonal sum of
squared norm of independent sub-Gaussian random variables in H. Indeed, if we simply apply Bern-
stein’s inequality (cf. Theorem 2.8.1 in [28]) for the real-valued sub-exponential random variables
‖Xi‖2 (cf. Lemma A.4), then the diagonal sum in Q has the following probability bound: for any
t > 0,

P

(∣∣∣∣∣
n∑

i=1

aii

(‖Xi‖2 −E‖Xi‖2)∣∣∣∣∣≥ t

)

≤ 2 exp

[
−C min

(
t2

L4‖�‖2
tr
∑n

i=1 a2
ii

,
t

L2‖�‖tr max1≤i≤n |aii |
)]

. (2.5)

Note that the right-hand side of (2.5) is controlled by one parameter ‖�‖tr, which is strictly less sharp
than (2.4) since ‖�‖op ≤ ‖�‖tr and ‖�‖2

HS ≤ ‖�‖op‖�‖tr ≤ ‖�‖2
tr. For instance, if Xi ∈ Rp , then � is

often the p × p covariance matrix of Xi . In the special case for � = Ip , then ‖�‖op = 1, ‖�‖HS =
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p1/2, and ‖�‖tr = p. Therefore, direct application of the diagonal sum bound (2.5) does not yield the
probability bound in Proposition 2.5. In particular, for the generalized K-means clustering problem,
this implies that a much more restrictive lower bound condition on the signal-to-noise ratio is required
for exact recovery of the true clustering structure for high-dimensional data (more details can be found
in the discussion after Theorem 3.3).

Second, for non-negative diagonal weights, Theorem 2.6 is an infinite-dimensional (and thus
dimension-free) generalization of the tail inequality for quadratic forms a sub-gaussian random vector
with dependent components in R

p [14]. In particular, if X = (X1, . . . ,Xp) is a centered sub-Gaussian

random vector in R
p (i.e., there exists a σ ≥ 0 such that E[ezT X] ≤ e‖z‖2

2σ
2/2 for all z ∈ R

p), then
Theorem 2.1 in [14] states that: for any positive semidefinite matrix � and t > 0,

P
(
XT �X ≥ σ 2(‖�‖tr + 2‖�‖HS

√
t + 2‖�‖opt

))≤ e−t .

The last inequality is a special case (up to a universal constant) of (2.4) with n = 1, A = 1, H =
R

p , �−1/2X ∼ sub-gaussian(σ 2Ip), and L2 = σ 2. In addition, we note that the positive semidefinite
condition is not needed in our Theorem 2.6. Instead, only a weaker condition on the non-negativity of
the diagonal entries in the weighting matrix is required.

There are two limitations of Theorem 2.6. First, Q is typically not centered at
∑n

i=1 aiiL
2
i ‖�‖tr. For

the generalized K-means application in Section 3, this means that consistency of solutions of the SDP
relaxation (3.3) cannot be attained unless

∑n
i=1 aiiL

2
i ‖�‖tr tends to E[Q]. Second, the non-negativity

condition on the diagonal weights aii ≥ 0 in Theorem 2.6 is not entirely innocuous for obtaining a
concentration inequality for Q (i.e., two-sided Hanson–Wright inequality). Without imposing addi-
tional assumptions, we cannot expect a lower tail bound for sub-Gaussian random variables even in
R

n [1]. To simultaneously fix these two issues and obtain a concentration inequality for Q−E[Q], we
make the following Bernstein-type assumption on the squared norm, in addition to the assumption that
X1, . . . ,Xn are independent sub-gaussian(�) with mean zero.

Assumption 2.7 (Bernstein condition on the squared norm). There exists a universal constant C > 0
such that

E
∣∣‖Xi‖2 −E‖Xi‖2

∣∣k ≤ Ck!Lk−2
i ‖�‖k−2

op ‖�i‖2
HS ∀k = 3,4, . . . , (2.6)

where �i = E[Xi ⊗Xi] is the covariance operator of Xi, i = 1, . . . , n.

Remark 2.3 (Comments on Assumption 2.7). Since ‖�i‖tr = E‖Xi‖2, Assumption 2.7 is a mild
condition on the sub-exponential tail behavior of ‖Xi‖2 − ‖�i‖tr. For H = R, (2.6) is an automatic
consequence of the sub-Gaussianality (2.1). For H = R

p , if X = �1/2Z, where Z = (Z1, . . . ,Zp)T

has independent components Zj with bounded sub-Gaussian norms, then

E
[‖X‖2 −E‖X‖2]2 = E

[
ZT �Z− tr(�)

]2 � ‖�‖2
HS.

Such linear transformation of an independent random vector in R
p with sub-Gaussian components is

a popular statistical model for the K-means clustering [10,21]. For the general Hilbert space H, it is
easy to verify that Gaussian random variable Z ∼ N(0,�) in H satisfies (2.6). Comparing with the
“centering” term

∑n
i=1 aiiL

2
i ‖�‖tr in (2.4), we shall see that the correct centering terms E‖Xi‖2 in

(2.6) together with the parameters (Li‖�‖op,‖�i‖HS) are crucial to yield a concentration inequality
for Q−E[Q]. By Lemma 2.4, we know that 4L2

i ‖�‖tr ≥ ‖�i‖tr for any Xi ∼ sub-gaussian(�). In fact,
even in R, it is easy to construct a random variable X ∼ sub-gaussian(γ 2) such that γ 2� σ 2 where
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σ 2 = Var(X) (cf. Examples 4.1 and 4.2 in [5]). In particular, here we give a counterexample in R (so
that Li = 1). Let Yn follow a mixture of Gaussian distributions Fn = (1− εn)N(0,1)+ εnN(0, a2

n),
where an > 1 and εn = a−4

n . Then we have σ 2
n :=Var(Yn)= 1−a−4

n +a−2
n and Yn ∼ sub-gaussian(γ 2

n ),
where γ 2

n = Ca2
n for some sufficiently large constant C > 0. Thus if an→∞ as n→∞, then σ 2

n � 1
and

E
∣∣Y 2

n −EY 2
n

∣∣k � a2k−4
n E|Z|2k = a2k−4

n (2k − 1)!! ≤ 4k!(2a2
n

)k−2 � k!(γ 2
n

)k−2(
σ 2

n

)2
,

where Z ∼N(0,1). Hence, (Yn)n=1,2,... is a sub-Gaussian random variable satisfying Assumption 2.7
and σ 2

n � γ 2
n , provided that an→∞ as n→∞.

Now we are ready to state the Hanson–Wright inequality for the general case.

Theorem 2.8 (Hanson–Wright inequality for quadratic forms of sub-Gaussian random variables
in Hilbert spaces: general version). Let Xi, i = 1, . . . , n, be a sequence of independent centered
sub-gaussian(�) random variables in H and Li = ‖Xi‖ψ2,� . Let A = (aij )

n
i,j=1 be an n× n matrix

and Q=∑n
i,j=1 aij 〈Xi,Xj 〉. If in addition Assumption 2.7 holds, then there exists a universal constant

C > 0 such that for any t > 0,

P
(∣∣Q−E[Q]∣∣≥ t

)≤ 2 exp

[
−C min

(
t2

L4‖�‖2
HS‖A‖2

HS

,
t

L2‖�‖op‖A‖op

)]
, (2.7)

where L=max1≤i≤n Li .

[29] and [1] derive Hanson–Wright inequalities under the convex concentration property of a finite-
dimensional random vector, which is difficult to verify in general. In contrast, our Theorem 2.8 holds
under more transparent conditions (i.e., the sub-Gaussian and Bernstein-type assumptions). Note that
Theorem 2.8 can be seen as a unified generalization of the finite-dimensional Hanson–Wright inequal-
ity to Hilbert spaces for both independent sub-Gaussian random variables in R [22] and a sub-Gaussian
random vector with dependent components in R

p [14].

3. K-means clustering in Hilbert spaces and its semidefinite
relaxation

In this section, we apply the Hanson–Wright inequality in Section 2.2 (i.e., Theorem 2.8) to the clus-
tering problem of n data points into K clusters such that K ≤ n. Let X1, . . . ,Xn be a sequence of
independent random variables taking values in a measurable space (X,X ) on (�,B,P). Suppose
that there exists a clustering structure G∗1, . . . ,G∗K (i.e., a partition on [n] := {1, . . . , n} satisfying⋃K

k=1 G∗k = {1, . . . , n} and G∗k ∩G∗m = ∅ if 1 ≤ k �= m ≤ K) on the n data points with Xi ∼ Pk for
i ∈G∗k , where P1, . . . ,PK are distinct distributions on (X,X ). We emphasize that X does not need to be
a Euclidean space. Our goal is to develop a statistically correct and computationally tractable algorithm
for recovering the true clustering structure based on the similarity of the observations X1, . . . ,Xn.

3.1. K-means in Hilbert spaces: 0–1 integer program formulation

Perhaps one of the most widely used clustering methods is the Euclidean distance-based K-means
clustering, due to the existence of computationally efficient heuristic algorithms (such as Lloyd’s algo-
rithm [18]). This is a particularly attractive feature for large datasets. Given a sequence of observations
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X1, . . . ,Xn ∈ Rp (i.e., X= R
p), the (classical) K-means clustering method minimizes the total intra-

cluster squared Euclidean distances

min
G1,...,GK

K∑
k=1

1

|Gk|
∑

i,j∈Gk

‖Xi −Xj‖2

over all possible partitions on [n], where |Gk| is the cardinality of Gk . Dropping the sum of squared
norms

∑n
i=1 ‖Xi‖2, we see that the K-means clustering is equivalent to the maximization of the total

intra-cluster correlations

max
G1,...,GK

K∑
k=1

1

|Gk|
∑

i,j∈Gk

XT
i Xj .

Here, XT
i Xj can be viewed as a similarity measure specified by the Euclidean space inner product

aij = 〈Xi,Xj 〉Rp . In general, if space X is a Hilbert space H, then it is natural to generalize this pro-
cedure by replacing 〈·, ·〉Rp with the inner product 〈·, ·〉H associated with H, yielding aij = 〈Xi,Xj 〉H.
Henceforth, we will refer to such a K-means that uses the inner product in a Hilbert space as a gener-
alized K-means.

Example 3.1 (Functional data clustering). In many applications, data to be clustered are recorded
as curves, surfaces or other things varying over a continuum, such as a time interval and a space span.
The random variable underlying data is naturally modelled as a stochastic process X = {X(t) : t ∈ T }
in Hilbert space (H, 〈·, ·〉H), where the sequence of observations X1, . . . ,Xn ∈ H is an i.i.d. sample
of random variables drawn from the same distribution as X. In clustering problems, the law of X is
often assumed to be a mixture distribution over H, with each mixture component as a cluster. When
T = [0,1] is the unit interval, we can choose H as the L2 function space L

2[0,1] = {f : [0,1] →
R : ‖f ‖2

L2 =
∫ 1

0 |f (t)|2 dt <∞} with L
2-inner product 〈f,g〉L2 = ∫ 1

0 f (t)g(t) dt for f,g ∈ L2[0,1].
Suppose we have prior information that the observations {Xi} are smooth functions, then we can choose
a stronger norm to capture the similarity in the (higher-order) derivatives. For example, in [15,25] and
[7], H are recommended as the Sobolev space with some order k ∈ {1,2} as Sk[0,1] = {f : [0,1]→R :
‖f (k)‖2

L2 =
∫ 1

0 |f (k)(t)|2 dt <∞} equipped with inner product 〈f,g〉Sk =∑k
j=0〈f (j), g(j)〉L2 , where

f (k) denotes the kth derivative of a function f ∈ S
k[0,1]. As we will see in Section 3.4, a higher

smoothness order k in the generalized K-means generally leads to larger separations among cluster
centers (between cluster variation) without significantly increasing fluctuations within clusters (within
cluster variation), thereby increasing the clustering signal-to-noise ratio (see Theorem 3.3 for a precise
definition).

Example 3.2 (Kernel clustering). In pattern recognition and natural language processing, it is of-
ten crucial to capture the non-linear similarity for non-Euclidean data (such as images and words).
A widely used approach is the kernel method [23], where the similarity aij between Xi and Xj is char-
acterized by a nonlinear positive semi-definite kernel function ρ :X×X→R through aij = ρ(Xi,Xj ).
Commonly used kernel functions include polynomial kernels ρ(x, y) = (〈x, y〉 + c)r for some posi-
tive integer order r and radial basis function (RBF) kernel ρ(x, y)= exp{−‖x − y‖2/(2h2)} for some
bandwidth parameter h > 0, where x, y ∈ Rp are the Euclidean embeddings of the original observa-
tions (image pixel level vectorizations or word embeddings). According to the celebrated Mercer’s
theorem, kernel clustering can also be viewed as K-means in a high-dimensional feature space: there
always exists a Hilbert space (feature space) H equipped with inner product 〈·, ·〉H and a feature map
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φ :X→H, such that

ρ(x, y)= 〈φ(x),φ(y)
〉
H
∀x, y ∈X.

More details about a construction of the feature map can be found in Section A.1. From this iden-
tity, kernel K-means that uses a nonlinear similarity measure aij = ρ(Xi,Xj ) can be cast into the
framework of K-means in Hilbert spaces by identifying Xi as φ(Xi). On the other hand, explicit rep-
resentations for the feature map φ and the Hilbert space H are not necessary in order to implement
the kernel K-means, which is one of the main practical attractiveness of the method. By choosing a
proper kernel ρ, we may capture the non-linear similarity in non-Euclidean spaces through implicitly
mapping the original data space X into a “high-dimensional” feature space, in which linear bound-
aries can be drawn to separate the data points. For example, the polynomial kernel maps into the space
spanned by the products of all monomials up to degree r . In particular, clusters with centers (expec-
tations under Pj ’s) that are overlapped in the original Euclidean space may have separated centers
(expectations under φ#(Pj )’s, where φ#(μ) denotes the push forward of measure μ defined through
(φ#(μ))(B)= μ(φ−1(B)) for every measurable subset B ⊂H) in the feature space.

For a general inner product 〈·, ·〉H, quadratic sample complexity is needed for the generalized K-
means to compute the similarity matrix A [8]. Observe that, for every partition G1, . . . ,GK , there is a
one-to-one n×K assignment matrix H = (hik) ∈ {0,1}n×K such that hij = 1 if i ∈Gk and hij = 0 if
i /∈Gk . Thus, the K-means clustering problem can be written as a 0-1 integer program:

max
{〈

A,HBHT
〉 :H ∈ {0,1}n×K,H1K = 1n

}
, (3.1)

where 1n denotes the n× 1 vector of all ones, aij = 〈Xi,Xj 〉H, and B = diag(|G1|−1, . . . , |GK |−1).
The generalized K-means clustering problem (3.1) is typically computationally intractable, namely

polynomial-time algorithms with exact solutions only exist in certain cases [24]. For instance, the
(classical) K-means clustering is a worst-case NP-hard integer programming problem with a non-
linear objective function [19]. Exact and partial recovery properties of various SDP relaxations for the
K-means [6,10,17,19,21] are studied in literature. However, it remains a challenging task to provide
statistical guarantees for the generalized K-means clustering to capture the non-linear features of non-
Euclidean data taking values in a general Hilbert space.

3.2. SDP relaxation for K-means in Hilbert spaces

We consider the SDP relaxations for the generalized K-means clustering. Note that every partition
G1, . . . ,GK of [n] can be represented by a partition function σ : [n] → [K] via Gk = σ−1(k), k =
1, . . . , n. If we change the variable Z = HBHT in the 0-1 integer program formulation (3.1) of the
generalized K-means, then Z satisfies the following properties:

ZT =Z, Z � 0, tr(Z)=
K∑

k=1

|Gk|bkk, (Z1n)i =
K∑

k=1

|Gk|bσ(i)k, i = 1, . . . , n. (3.2)

For the generalized K-means B = diag(|G1|−1, . . . , |GK |−1), the last constraint in (3.2) reduces to
Z1n = 1n, which does not depend on the partition function σ . Thus, we can relax the generalized
K-means clustering to the SDP problem:

Ẑ = argmax
{〈A,Z〉 : Z ∈ C

}
with C = {ZT =Z,Z � 0, tr(Z)=K,Z1n = 1n,Z ≥ 0

}
, (3.3)
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where Z � 0 means that Z is positive semidefinite and Z ≥ 0 means that all entries of Z are non-
negative. We shall use Ẑ to estimate the true “membership matrix” Z∗, where

Z∗ij =
{

1/nk if i, j ∈G∗k,
0 otherwise,

(3.4)

where nk = |G∗k |. Note that Z∗ ∈ C is a projection matrix such that Z∗Z∗ = Z∗. If X1, . . . ,Xn ∈ Rp

(i.e., X= R
p) and aij = XT

i Xj is the Euclidean space inner product, then (3.3) is the SDP proposed
in [19]. Observe that the SDP relaxation (3.3) does not require the knowledge of the cluster sizes other
than the number of clusters K . Thus, it can handle the general case for unequal cluster sizes.

3.3. Rate of convergence of SDP for K-means in Hilbert spaces

Now we are in the position to state the rate of convergence for the SDP relaxation (3.3) for the gener-
alized K-means clustering. For simplicity, we assume that the trace norms of the covariance operators
for the K-cluster distributions P1, . . . ,PK are equal. If the trace norms are not all equal, then a similar
de-biased SDP in [4] can be considered. Denote the minimum cluster size as n=min1≤k≤K nk .

Theorem 3.3 (Exponential rate of convergence of SDP for generalized K-means). Let X1, . . . ,Xn

be a sample of independent random variables in Hilbert space H such that Xi ∼ Pk for i ∈ G∗k . Let
〈·, ·〉H and ‖ · ‖H be the associated inner product and Hilbert norm with H, and μk = EXi , �k =
E[(Xi −μk)⊗ (Xi −μk)] be the covariance operator of Xi, i ∈G∗k . Suppose that H is separable, and
Xi ∼ sub-gaussian(�k) for i ∈G∗k such that ‖Xi‖ψ2,�k

≤ L and Assumption 2.7 holds with �i = �i

therein being equal to �k . In addition, assume (�k)
K
k=1 to be positive definite trace class, and ‖�1‖tr =

· · · = ‖�K‖tr. Define

SNR2 = 2

L2‖�‖op
∧ n4

L4‖�‖2
HS

with = min
1≤i �=j≤K

‖μi −μj‖H

as the squared signal-to-noise ratio, and suppose � � �k for all k = 1, . . . ,K . Then there exist uni-
versal constants c0, c

′
0, c,C1,C2 > 0 such that as long as SNR2 ≥ c0n/n and n2K ≥ c′0n, it holds

that ∣∣Ẑ −Z∗
∣∣
1 ≤ C1 exp

(−C2SNR2) (3.5)

with probability at least 1− c/n2.

This theorem characterizes the hardness of clustering through the squared signal-to-noise ratio SNR2

that depends on the ratio of squared between-cluster separation rate 2 to within-clustering variation
L2‖�‖op or L2‖�‖HS. We postpone its proof to Section 4.2. It turns out that both terms in SNR2 are
necessary depending on different regimes of parameters  and �. For the optimality of the exponent
SNR2 in the convergence rate for Euclidean space clustering, namely H=R

p , we refer to Section 3.3
of [10] for a detailed discussion. In particular, if we instead use the weaker version of the concentration
inequality (2.5), then an extra p factor will appear in the denominator of each term in SNR2, which is
clearly suboptimal.

Our proof is based on the inequality 〈A,Z∗〉 ≤ 〈A, Ẑ〉, which is true due to the optimality of Ẑ and
the feasibility of Z∗. In particular, in the analysis of 〈A, Ẑ − Z∗〉 by decomposing the similarity ma-
trix A as a sum of its expectation and random fluctuations, one remainder term caused by the random
fluctuations involves a quadratic form over Hilbert space H as the Q in Theorem 2.8. In particular, we
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prove a uniform version of the Hanson–Wright inequality that leads to the exponential convergence
rate (3.5) in Theorem 3.3 by combining our Theorem 2.8 with a careful union bound technique devel-
oped in [6] that utilizes the geometric structure of A and improves upon a naive union bound argument
via covering.

Theorem 3.3 provides a partial recovery bound for clustering. Next, we show that exact recovery
can be achieved by properly rounding the SDP solution Ẑ. More specifically, we consider the rounding
algorithm that proceeds as follows: 1. let j1 = 1 and Ĝ1 be the set of all indices i such that Ẑj1i ≥
1
2 Ẑj1j1 ; 2. let j2 be the smallest index in [n] \ Ĝ1 and Ĝ2 be the set of all indices i such that Ẑj2i ≥
1
2 Ẑj2j2 ; . . . , end until the remainder index set [n] \⋃K̂

k=1 Ĝk becomes empty for some K̂ ≥ 1. Thanks
to Theorem 3.3, exact recovery of the true clustering structure is an immediate consequence when
SNR2 � max{n/n, logn}.

Corollary 3.4 (Exact recovery of SDP for generalized K-means). In the setting of Theorem 3.3,
suppose SNR2 ≥ c1 max{n/n, logn} and n2K ≥ c2n for some universal constants c1, c2 > 0, then

P
(
K̂ =K and Ĝk =G∗k,∀k = 1, . . . ,K

)≥ 1−Cn−2

for some universal constant C > 0.

3.4. Implications in functional data clustering

In this subsection, we discuss the consequence of applying Theorem 3.3 to Example 3.1. For simplicity,
we assume that for each k = 1, . . . ,K , the sampling measure Pk is a Gaussian process (GP) over Hilbert
space L

2[0,1] with inner product 〈·, ·〉L2 . In particular, we use Theorem 3.3 to study and compare the
uses of different inner products (such as Sobolev inner products with different orders) in constructing
the similarity matrix A in the generalized K-means for functional data clustering.

Recall the definition of a Gaussian random variable in a Hilbert space in Definition 2.3. When the
Hilbert space is a function space, the law N(μ,�) of a GP is completely determined by its mean func-
tion μ : [0,1] → R ∈ L2[0,1] and covariance function � : [0,1]2→ L

2[0,1], where μ(t)= E[X(t)]
and �(t, t ′) = E[(X(t) − μ(t))(X(t ′) − μ(t ′))] for any GP realization X = {X(t) : t ∈ [0,1]}. The
covariance function � can be identified with the covariance operator through

�f (t)=
∫ 1

0
�
(
t, t ′

)
f
(
t ′
)
dt ′ for all f ∈ L2[0,1] and t ∈ [0,1].

Suppose now we have another Hilbert space H
′ ⊂ H, such as the Sobolev space S

k[0,1] for some
k ≥ 1, such that the second moment of ‖X−μ‖H′ is still bounded relative to the stronger norm ‖ · ‖H′
associated with H

′, that is E[‖X−μ‖2
H′ ]<∞. This implies X−μ ∈H′ almost surely, and 〈h,X−μ〉H′

is Gaussian for all h ∈H′. As a consequence, X − μ remains a Gaussian random variable in the new
Hilbert space H

′ [26], as long as E[‖X−μ‖2
H′ ]<∞. Here μ may or may not belong to H

′ depending
on whether ‖μ‖H′ is finite or infinite. We use �′ to denote its covariance operator as a Gaussian random
variable in H

′. In cases where � has rapid eigenvalue decay (polynomial or exponential), the operator
and the Hilbert–Schmidt norms of � and �′ will be dominated by their respective top eigenvalues,
henceforth comparable in magnitudes.

Returning to the functional data clustering, we assume Xi ∼ N(μk,�k) for i ∈ G∗k as Gaussian
random variables in H. Consider two choices aij = 〈Xi,Xj 〉H and a′ij = 〈Xi,Xj 〉H′ for constructing
the similarity matrix A in the SDP for the generalized K-means clustering. From our previous discus-
sion, we know that Xi − μk remains Gaussian in H

′ as long as E[‖Xi − μk‖2
H′ ]<∞. We use �′k to
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denote the covariance operator of Xi − μk as a Gaussian random variable in H
′. We can then apply

Theorem 3.3 with Hilbert space H and H
′ to obtain the signal-to-noise ratios under these two choices,

SNR2 = 2

L2‖�‖op
∧ n4

L4‖�‖2
HS

with = min
1≤i �=j≤K

‖μi −μj‖H and

(
SNR′

)2 = (′)2

L2‖�′‖op
∧ n(′)4

L4‖�′‖2
HS

with ′ = min
1≤i �=j≤K

‖μi −μj‖H′ ,

where � � �k and �′ � �′k for each k. The denominators of SNR2 and (SNR′)2 are comparable
when � and �′ have rapid eigenvalue decay, while the signal strength ′ can be much larger than ,
making the overall (SNR′)2 larger as well. For functional data with H = L

2[0,1], faster eigenvalue
decay in the covariance operator corresponds to a higher smoothness order of the sample path. For
example, if γ1 ≥ γ2 ≥ . . . are ordered eigenvalues of � with γj ≈ j−2β−1 for j = 1,2, . . . and some
β > 0, then sample paths from N(0,�) are at least β times differentiable [20] almost surely. If we
choose H

′ to be S
k[0,1] for any 0 ≤ k ≤ �β�, where �β� denotes the largest integer smaller than β ,

then E[‖Xi −μk‖2
H′ ]<∞. On the other hand side, ′ can be much larger than  when the difference

{μi −μj : 1≤ i �= j ≤K} has smoothness order (characterized via the decay rate of coefficients with
respect to eigenfunctions {ei} of �) lower than k. In such scenarios, using the inner product induced
by a stronger norm in constructing the similarity matrix A may increase the signal-to-noise ratio and
reduce the SDP error |Ẑ −Z∗|1.

4. Proof of main results

4.1. Proof of main results in Section 2.2

In this subsection, we prove Proposition 2.5, Theorem 2.6, and 2.8.

Proof of Proposition 2.5. By Markov’s inequality, we have for any λ > 0 and t > 0,

P(S ≥ t)≤ e−λt
E
[
eλS

]
.

Step 1: decoupling. Let δ1, . . . , δn ∈ {0,1} be i.i.d. symmetric Bernoulli random variables (i.e.,
P(δi = 0)= P(δi = 1)= 1/2) that are independent of X1, . . . ,Xn. Since

E
[
δi(1− δj )

]= {0 if i = j,

1/4 if i �= j,

we have S = 4Eδ[Sδ], where Sδ =∑n
i,j=1 δi(1−δj )aij 〈Xi,Xj 〉 and Eδ[·] is the expectation taken with

respect to the random variables δi . Below, EX[·] is similarly defined. By Jensen’s inequality, we get

E
[
eλS

]≤EX,δ

[
e4λSδ

]
.

Let �δ = {i ∈ [n] : δi = 1}. Then we can write

Sδ =
∑
i∈�δ

∑
j∈�c

δ

aij 〈Xi,Xj 〉 =
∑
j∈�c

δ

〈∑
i∈�δ

aijXi,Xj

〉
.
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Taking the expectation with respect to (Xj )j∈�c
δ

(i.e., conditioning on (δi)i=1,...,n and (Xi)i∈�δ ), it
follows from the assumption Xi are independent sub-gaussian(�) with mean zero that

E(Xj )j∈�c
δ

[
e4λSδ

]≤ e8λ2σ 2
δ ,

where σ 2
δ =

∑
j∈�c

δ
L2

j 〈�(
∑

i∈�δ
aijXi), (

∑
i∈�δ

aijXi)〉. Thus we get

EX

[
e4λSδ

]≤ EX

[
e8λ2σ 2

δ
]
.

Step 2: reduction to Gaussian random variables. For j = 1, . . . , n, let gj be independent
N(0,16L2

j�) random variables in H that are independent of X1, . . . ,Xn and δ1, . . . , δn. Define

T :=
∑
j∈�c

δ

〈
gj ,

∑
i∈�δ

aijXi

〉
.

Then, by the definition of Gaussian random variables in H, we have

Eg

[
eλT

]= ∏
j∈�c

δ

Eg

[
e
〈gj ,λ

∑
i∈�δ

aij Xi 〉]
= exp

(
8λ2

∑
j∈�c

δ

L2
j

〈
�

(∑
i∈�δ

aijXi

)
,

(∑
i∈�δ

aijXi

)〉)
= exp

(
8λ2σ 2

δ

)
.

So it follows that

EX

[
e4λSδ

]≤ EX,g

[
eλT

]
.

Since T =∑i∈�δ
〈∑j∈�c

δ
aij gj ,Xi〉, we have

E(Xi)i∈�δ

[
eλT

]≤ exp

(
λ2

2

∑
i∈�δ

L2
i

〈
�

(∑
j∈�c

δ

aij gj

)
,

(∑
j∈�c

δ

aij gj

)〉)
,

which implies that

EX

[
e4λSδ

]≤ Eg

[
exp

(
λ2τ 2

δ /2
)]

, (4.1)

where τ 2
δ =

∑
i∈�δ

L2
i 〈�(

∑
j∈�c

δ
aij gj ), (

∑
j∈�c

δ
aij gj )〉.

Step 3: diagonalization. Since � ∈ B(H) is trace class (thus compact) and positive definite, it follows
from Theorem 4.2.4 in [13] that the eigendecomposition of � is given by

� =
∞∑

k=1

γk(ek ⊗ ek),

where γk ≥ 0 are eigenvalues of � and (ek)
∞
k=1 are eigenfunctions forming a CONS of Im(�);

namely �h =∑∞k=1 γk〈h, ek〉ek for every h ∈ H. Here, ⊗ denotes the tensor product and Im(�)

denotes the closure of the image of �. In addition, there exists a unique positive definite square
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root operator �1/2 ∈ B(H) such that �1/2�1/2 = � (cf. Theorem 3.4.3 in [13]). Then we have
�1/2gj =∑∞k=1 γ

1/2
k 〈gj , ek〉ek and

τ 2
δ =

∑
i∈�δ

L2
i

〈
�1/2

(∑
j∈�c

δ

aij gj

)
,�1/2

(∑
j∈�c

δ

aij gj

)〉
=
∑
i∈�δ

L2
i

∥∥∥∥�1/2
(∑

j∈�c
δ

aij gj

)∥∥∥∥2

=
∑
i∈�δ

L2
i

∥∥∥∥∑
j∈�c

δ

aij�
1/2gj

∥∥∥∥2

=
∑
i∈�δ

L2
i

∥∥∥∥∥
∞∑

k=1

γ
1/2
k

(∑
j∈�c

δ

aij 〈gj , ek〉
)

ek

∥∥∥∥∥
2

=
∞∑

k=1

γk

∑
i∈�δ

(∑
j∈�c

δ

Liaij 〈gj , ek〉
)2

,

where the last step follows from Parseval’s identity. Note that∥∥�1/2ek

∥∥2 = 〈�ek, ek〉 = 〈γkek, ek〉 = γk.

Thus for any λ ∈R,

Eeλ〈gj ,ek〉 = e
8L2

j λ2〈�ek,ek〉 = e
8L2

j λ2‖�1/2ek‖2 = e
8L2

j λ2γk ,

which implies that Gjk := 〈gj , ek〉, j = 1, . . . , n, are independent N(0,16L2
j γk) random variables.

Now let f = (
√

γ1f
T
1 ,
√

γ2f
T
2 , . . . )T , where fk = (G1k, . . . ,Gnk)

T for k = 1,2, . . . . Then f ∼
N(0, �̃), where �̃ = (�̃km)∞k,m=1 with �̃km = diag(Ekm,11, . . . ,Ekm,nn) and Ekm,jj = √γkγm×
E[GjkGjm]. Note that

E[GjkGjm] = E
[〈〈gj , ek〉gj , em

〉]= 〈(E〈gj ⊗ gj 〉
)
ek, em

〉
= 16L2

j 〈�ek, em〉 = 16L2
j 〈γkek, em〉 = 16L2

j γk1(k =m).

Thus �̃km is an n× n matrix of all zeros if k �=m, and �̃kk = 16γ 2
k diag(L2

1, . . . ,L
2
n).

Step 4: bound the eigenvalues. Let Pδ : Rn → R
n be the restriction matrix such that Pδ,ii = 1 if

i ∈ �δ and Pδ,ij = 0 otherwise. Let further Rδ = diag(PδÃ(In − Pδ),PδÃ(In − Pδ), . . . ) and Z =
(Z1,Z2, . . . )

T , where Ã = (̃aij )
n
i,j=1 with ãij = Liaij and Zi are i.i.d. standard Gaussian random

variables in R. By the rotational invariance of Gaussian distributions, we have

τ 2
δ = ‖Rδf ‖2 d= ∥∥Rδ�̃

1/2Z
∥∥2 =ZT �̃1/2RT

δ Rδ�̃
1/2Z

d=
∞∑

k=1

s2
kZ2

k ,

where (s2
k )∞k=1 are the eigenvalues of �̃1/2RT

δ Rδ�̃
1/2. So it follows that

max
k

s2
k ≤ ‖Rδ‖2

op‖�̃‖op ≤ ‖Ã‖2
op‖�̃‖op ≤L2‖A‖2

op‖�̃‖op,

where

‖�̃‖op ≤ 16
(

max
1≤j≤n

‖Xj‖2
ψ2

)(
max

k
γ 2
k

)
≤ 16L2‖�‖2

op.
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In addition, we also have

∑
k

s2
k = tr

(
�̃1/2RT

δ Rδ�̃
1/2)= tr

(
Rδ�̃RT

δ

)= ∞∑
k=1

tr
([

PδÃ(In − Pδ)
]
�̃kk

[
PδÃ(In − Pδ)

]T )
≤
∞∑

k=1

16L2γ 2
k

∥∥PδÃ(In − Pδ)
∥∥2

HS ≤
∞∑

k=1

16L2γ 2
k ‖Ã‖2

HS ≤ 16L4‖�‖2
HS‖A‖2

HS.

Invoking (4.1), we get

EX

[
e4λSδ

]≤ ∞∏
k=1

EZ

[
exp

(
λ2s2

kZ2
k/2

)]
.

Since Z2
k are i.i.d. χ2

1 random variables with the moment generating function E[etZ2
k ] = (1− 2t)−1/2

for t < 1/2, we have

EX

[
e4λSδ

]≤ ∞∏
k=1

1√
1− λ2s2

k

if max
k

λ2s2
k < 1.

Using (1− z)−1/2 ≤ ez for z ∈ [0,1/2], we get that if 16L4‖A‖2
op‖�‖2

opλ
2 < 1, then

EX

[
e4λSδ

]≤ exp

(
λ2
∞∑

k=1

s2
k

)
≤ exp

(
16λ2L4‖�‖2

HS‖A‖2
HS

)
.

Note that the last inequality is uniform in δ. Taking expectation with respect to δ, we obtain that

EX

[
eλS

]≤ EX,δ

[
e4λSδ

]≤ exp
(
16λ2L4‖�‖2

HS‖A‖2
HS

)
,

whenever 0 < λ < (4L2‖A‖op‖�‖op)
−1.

Step 5: conclusion. Now we have

P(S ≥ t)≤ exp
(−λt + 16λ2L4‖�‖2

HS‖A‖2
HS

)
for 0 < λ≤ (8L2‖A‖op‖�‖op

)−1
.

Optimizing in λ, we deduce that there exists a universal constant C > 0 such that

P(S ≥ t)≤ exp

[
−C min

(
t2

L4‖�‖2
HS‖A‖2

HS

,
t

L2‖�‖op‖A‖op

)]
,

as desired in (2.3). �

Proof of Theorem 2.6. Decompose Q =∑n
i=1 aii‖Xi‖2 + S, where S =∑1≤i �=j≤n aij 〈Xi,Xj 〉. In

view of the off-diagonal sum bound for S in Proposition 2.5, it suffices to show the following inequality
for the diagonal sum: for any t > 0,

P

(
n∑

i=1

aii‖Xi‖2 ≥
n∑

i=1

aiiL
2
i ‖�‖tr + t

)

≤ exp

[
−C min

(
t2

L4‖�‖2
HS

∑n
i=1 a2

ii

,
t

L2‖�‖op max1≤i≤n aii

)]
, (4.2)
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since
∑n

i=1 a2
ii ≤ ‖A‖2

HS and a :=max1≤i≤n aii ≤ ‖A‖op. By Markov’s inequality and Lemma A.3, we
have for any λ > 0 and t > 0,

P

(
n∑

i=1

aii

(‖Xi‖2 −L2
i ‖�‖tr

)≥ t

)
≤ e−λt

n∏
i=1

E
[
eλaii (‖Xi‖2−L2

i ‖�‖tr)
]

≤ e−λt
n∏

i=1

e2λ2a2
iiL

4
i ‖�‖2

HS

≤ exp

(
−λt + 2λ2

(
n∑

i=1

a2
ii

)
L4‖�‖2

HS

)

holds for all 0≤ λ < (4L2‖�‖opa)−1. Choosing

λ= t

4(
∑n

i=1 a2
ii )L

4‖�‖2
HS

∧ 1

8aL2‖�‖op
,

we get (4.2). �

Proof of Theorem 2.8. Under Assumption 2.7, we have the following standard moment generating
function bound

E
[
eλ(‖Xi‖2−E‖Xi‖2)

]≤ e
Cλ2‖�‖2HS

2 ∀|λ|< 1

2‖�‖op
.

See, for example, Chapter 2 in [30]. Then we have for any λ > 0 and t > 0,

P

(
n∑

i=1

aii

(‖Xi‖2 −E‖Xi‖2)≥ t

)
≤ exp

(
−λt +Cλ2

(
n∑

i=1

a2
ii

)
‖�‖2

HS

)
∀|λ|< 1

2a‖�‖op
,

where a :=max1≤i≤n |aii |. Note that
∑n

i=1 a2
ii ≤ ‖A‖2

HS and a ≤ ‖A‖op. Optimizing over λ and com-
bining with Proposition 2.5, we get

P
(
Q−E[Q] ≥ t

)≤ 2 exp

[
−C min

(
t2

L4‖�‖2
HS‖A‖2

HS

,
t

L2‖�‖op‖A‖op

)]
.

Applying the same argument by replacing Q with −Q, we obtain (2.7) with constant 4, which can be
reduced to 2 by adjusting the value of constant C. �

4.2. Proof of main results in Section 3

In this subsection, we prove Theorem 3.3 and Corollary 3.4.

Theorem 3.3. Recall that C = {Zn×n : ZT = Z,Z � 0, tr(Z) = K,Z1n = 1n,Z ≥ 0} is the SDP
constraint set for the generalized K-means in (3.3). For i ∈G∗k , let μk = E[Xi] and δi =Xi −μk . For
notation simplicity, we will omit in the proof the subscript H in the Hilbert space inner product 〈·, ·〉H
and norm ‖ · ‖H.
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Step 1: a generic bound. For any Z ∈ C , consider 〈A,Z −Z∗〉 =∑n
i,j=1 aij (Zij −Z∗ij ). Note that

if i ∈G∗k and j ∈G∗m, then

aij = 〈μk + δi,μm + δj 〉 = 〈μk,μm〉 + 〈μk, δj 〉 + 〈δi,μm〉 + 〈δi, δj 〉
= 〈μk,μm〉 + 〈μk −μm, δj − δi〉 + 〈μk, δi〉 + 〈δj ,μm〉 + 〈δi, δj 〉

= −1

2
‖μk −μm‖2 + 1

2

(‖μk‖2 + ‖μm‖2)+ 〈μk −μm, δj − δi〉 + 〈μk, δi〉 + 〈δj ,μm〉 + 〈δi, δj 〉.

Since
∑n

j=1 Zij = (Z1n)i = 1 for all Z ∈ C and Z∗ is feasible for C , we have

n∑
i,j=1

K∑
k,m=1

‖μk‖21
(
i ∈G∗k, j ∈G∗m

)(
Zij −Z∗ij

)= n∑
i=1

K∑
k=1

‖μk‖21
(
i ∈G∗k

) n∑
j=1

(
Zij −Z∗ij

)= 0

and

n∑
i,j=1

K∑
k,m=1

〈μk, δi〉1
(
i ∈G∗k, j ∈G∗m

)(
Zij −Z∗ij

)= n∑
i=1

K∑
k=1

〈μk, δi〉1
(
i ∈G∗k

) n∑
j=1

(
Zij −Z∗ij

)= 0.

Then by the symmetry of Z (i.e., ZT =Z), we have〈
A,Z −Z∗

〉= 〈T1 + T2 + T3 + T4,Z −Z∗
〉
,

where for i ∈G∗k and j ∈G∗m,

T1,ij =−1

2
‖μk −μm‖2, T2,ij = 〈μk −μm, δj − δi〉,

T3,ij = 〈δi, δj 〉 −E〈δi, δj 〉, T4,ij = E〈δi, δj 〉.
Observe that 〈

T1,Z −Z∗
〉=−1

2

∑
1≤k �=m≤K

‖μk −μm‖2
∑

i∈G∗k ,j∈G∗m

(
Zij −Z∗ij

)
(4.3)

=−1

2

∑
1≤k �=m≤K

‖μk −μm‖2|ZG∗kG∗m |1, (4.4)

where the last step follows from Z ≥ 0 and Z∗ij = 0 if i ∈G∗k, j ∈G∗m for k �= m. Here, |ZG∗kG∗m |1 =∑
i∈G∗k ,j∈G∗m |Zij |. By definition, we have 〈A,Z∗〉 ≤ 〈A, Ẑ〉, which implies that 0 ≤ 〈A, Ẑ − Z∗〉.

Thus, we have

0≤ 1

2

∑
1≤k �=m≤K

‖μk −μm‖2|ẐG∗kG∗m |1 =
〈
T1,Z

∗ − Ẑ
〉≤ 〈T2 + T3 + T4, Ẑ −Z∗

〉
. (4.5)

Let =min1≤k �=m≤K ‖μk −μm‖. By (A.5) and (A.3) in Lemma A.6, we have

∣∣Ẑ−Z∗
∣∣
1 ≤

2n

n

∣∣Z∗ −Z∗Ẑ
∣∣
1 =

4n

n

∑
1≤k �=m≤K

|ẐG∗kG∗m |1,



602 X. Chen and Y. Yang

where n=min1≤k≤K nk . Then we get

∣∣Ẑ −Z∗
∣∣
1 ≤

8n

2n

〈
T2 + T3 + T4, Ẑ −Z∗

〉
. (4.6)

Step 2: bound 〈T4, Ẑ −Z∗〉. Since δ1, . . . , δn are independent with mean zero, we have

〈
T4, Ẑ −Z∗

〉= n∑
i=1

E‖δi‖2(Ẑii −Z∗ii
)
.

Since E‖δi‖2 = ‖E[δi ⊗ δi]‖tr = ‖�k‖tr if i ∈ G∗k , and ‖�k‖tr, k = 1, . . . ,K are all equal, it follows
that 〈

T4, Ẑ −Z∗
〉= ‖�1‖trtr

(
Ẑ −Z∗

)= 0,

where the last step is due to tr(Ẑ)= tr(Z∗)=K since both Ẑ,Z∗ ∈ C .
Step 3: bound 〈T2, Ẑ −Z∗〉. Consider

〈
T2, Ẑ −Z∗

〉= ∑
1≤k �=m≤K

n∑
i,j=1

〈μk −μm, δj − δi〉1
(
i ∈G∗k, j ∈G∗m

)(
Ẑij −Z∗ij

)
=

∑
1≤k �=m≤K

∑
i∈G∗k ,j∈G∗m

〈μk −μm, δj − δi〉Ẑij

= 2
∑

1≤k �=m≤K

∑
i∈G∗k ,j∈G∗m

〈μk −μm, δi〉Ẑij

= 2
∑

1≤k �=m≤K

∑
i∈G∗k
〈μk −μm, δi〉|ẐiG∗m |1,

where the third equality is due to symmetry. For each k �= m, let ε
(k,m)
i = 〈μk − μm, δi〉 and sk,m =∑

i∈G∗k |ẐiG∗m |1. Since |ẐiG∗m |1 ≤ 1, by Lemma A.5,

∑
i∈G∗k
〈μk −μm, δi〉|ẐiG∗m |1 ≤

sk,m∑
i=1

ε
(k,m)
(i) ,

where ε
(k,m)
(1) ≥ · · · ≥ ε

(k,m)
(n) are the order statistics of ε

(k,m)
1 , . . . , ε

(k,m)
n . Note that (ε

(k,m)
i )ni=1 are i.i.d.

mean-zero sub-Gaussian random variables in R with respect to τ 2
k,m := L2〈�(μk − μm),μk − μm〉

(recall that � ��k for all k = 1, . . . ,K). Thus, for any s = 1, . . . , n, we have
∑s

i=1 ε
(k,m)
i is a mean-

zero sub-Gaussian random variable with respect to sτ 2
k,m. By the union bound, we get for all t > 0,

P

(
s∑

i=1

ε
(k,m)
(i) ≥ t

)
≤
(

n

s

)
exp

(
− t2

2sτ 2
k,m

)
≤
(

en

s

)s

exp

(
− t2

2sτ 2
k,m

)
.
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Now it follows that

P

(
∃1≤ k �=m≤K such that

sk,m∑
i=1

ε
(k,m)
(i) ≥C1τk,msk,m

√
log

(
nK

sk,m

))

≤
∑

1≤k �=m≤K

∑
1≤s≤n

P

(
s∑

i=1

ε
(k,m)
(i) ≥ C1τk,ms

√
log

(
nK

s

))

≤
∑

1≤k �=m≤K

n∑
s=1

(
en

s

)s

exp

(
−C2

1

2
s log

(
nK

s

))

≤K2
n∑

s=1

exp

(
−C2s log

(
nK

s

))
≤ C3K

2

(nK)2
= C3

n2
.

Thus we have P(G1)≥ 1−C3n
−2, where

G1 =
{sk,m∑

i=1

ε
(k,m)
(i) ≤ C1τk,msk,m

√
log

(
nK

sk,m

)
,∀1≤ k �=m≤K

}
.

By the Cauchy-Schwarz inequality,

〈
T2, Ẑ −Z∗

〉≤ 2C1

∑
1≤k �=m≤K

τk,msk,m

√
log

(
nK

sk,m

)

≤ 2C1

√ ∑
1≤k �=m≤K

τ 2
k,msk,m

√√√√ ∑
1≤k �=m≤K

sk,m log

(
nK

sk,m

)

on the event G1. Since sk,m = |ẐG∗kG∗m |1 and

τk,m ≤ L
∥∥�1/2(μk −μm)

∥∥≤ L
∥∥�1/2

∥∥
op‖μk −μm‖ = L‖�‖1/2

op ‖μk −μm‖,
it follows from the first equality in (4.5) that∑

1≤k �=m≤K

τ 2
k,msk,m ≤

∑
1≤k �=m≤K

L2‖�‖op‖μk −μm‖2|ẐG∗kG∗m |1 = 2L2‖�‖op
〈
T1,Z

∗ − Ẑ
〉
.

By (A.3) in Lemma A.6, S := |Z∗(Ẑ − Z∗)|1 = 2
∑

1≤k �=m≤K sk,m. Then it follows from Jensen’s
inequality that ∑

1≤k �=m≤K

sk,m log

(
nK

sk,m

)
≤ S

2
log

(
2nK3

S

)
.

Thus, we get

〈
T2, Ẑ −Z∗

〉≤ 2C1L

√
‖�‖op

〈
T1,Z∗ − Ẑ

〉√
S log

(
2nK3

S

)
(4.7)

on the event G1.
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Step 4: bound 〈T3, Ẑ −Z∗〉. Decompose〈
T3, Ẑ−Z∗

〉= 〈(I −Z∗
)
T3
(
I −Z∗

)
, Ẑ−Z∗

〉+ 〈Z∗T3, Ẑ−Z∗
〉+ 〈T3Z

∗, Ẑ−Z∗
〉− 〈Z∗T3Z

∗, Ẑ−Z∗
〉
.

Note that 〈(
I −Z∗

)
T3
(
I −Z∗

)
, Ẑ −Z∗

〉=(1)

〈
T3,

(
I −Z∗

)(
Ẑ −Z∗

)(
I −Z∗

)〉
=(2)

〈
T3,

(
I −Z∗

)
Ẑ
(
I −Z∗

)〉
≤(3) ‖T3‖op

∥∥(I −Z∗
)
Ẑ
(
I −Z∗

)∥∥
tr

≤(4) ‖T3‖op
|Z∗ −Z∗Ẑ|1

2n
,

where (1) follows from the symmetry of Z∗, (2) from the idempotence of Z∗ (recall that Z∗ is a
projection matrix such that Z∗Z∗ =Z∗), (3) from the duality of the operator and trace norms, and (4)

from (A.4) in Lemma A.6. Let Sn−1 be the (compact) unit sphere in R
n and N be a 1/4-net for Sn−1.

By Lemmas 5.2 and 5.4 in [27], we have |N | ≤ 9n and ‖T3‖op ≤ 2 maxx∈N xT T3x. Thus, by the union
bound, we have for any t > 0,

P
(‖T3‖op ≥ t

)≤∑
x∈N

P
(
xT T3x ≥ t/2

)
. (4.8)

Fix an x ∈N . Note that ‖xxT ‖2
HS = ‖x‖4

2 = 1 and ‖xxT ‖op ≤ 1. Since � ��k for all k = 1, . . . ,K ,
we have δi ∼ sub-gaussian(�) such that E[δi] = 0 and ‖δi‖ψ2,� ≤ L. By Theorem 2.8 with A= xxT ,
we get for all t > 0,

P
(
xT T3x ≥ t/2

)= P

(
n∑

i,j=1

xixjT3,ij ≥ t/2

)
≤ 2 exp

[
−C min

(
t2

L4‖�‖2
HS

,
t

L2‖�‖op

)]
.

Combining the last inequality with (4.8), we obtain that with probability at least 1− cn−2,

‖T3‖op ≤ C5L
2(√n‖�‖HS + n‖�‖op

)
.

Then,

〈(
I −Z∗

)
T3
(
I −Z∗

)
, Ẑ −Z∗

〉≤C5L
2
√

n‖�‖HS + n‖�‖op

2n

∣∣Z∗ −Z∗Ẑ
∣∣
1

≤(1) C5
2

2

(
c−1

0 + c
−1/2
0

)∣∣Z∗ −Z∗Ẑ
∣∣
1

=(2) C5
2

2

(
c−1

0 + c
−1/2
0

)
2

∑
1≤k �=m≤K

|ẐG∗kG∗m |1

≤(3) 2C5
(
c−1

0 + c
−1/2
0

)〈
T1,Z

∗ − Ẑ
〉

≤(4)

1

2

〈
T1,Z

∗ − Ẑ
〉
,
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where (1) follows from the definition of SNR2 and the condition that SNR2 ≥ c0n/n, (2) from (A.3)
in Lemma A.6, (3) from the definition of 2 and (4.5), and (4) from choosing c0 sufficiently large.

Next, we consider 〈Z∗T3, Ẑ −Z∗〉 = 〈Z∗T3,Z
∗Ẑ−Z∗〉. By (3.4), we have

〈
Z∗T3,Z

∗Ẑ −Z∗
〉= n∑

i,j=1

(
Z∗T3

)
ij

(
Z∗Ẑ−Z∗

)
ij

=
K∑

k,m=1

∑
i∈G∗k

∑
j∈G∗m

(
n∑

�=1

Z∗i�T3,�j

)(
n∑

�=1

Z∗i�Ẑ�j −Z∗ij

)

=
K∑

k,m=1

∑
i∈G∗k

∑
j∈G∗m

(
1

nk

∑
�∈G∗k

T3,�j

)
1

nk

(∑
�∈G∗k

Ẑ�j − 1(k =m)

)

=
K∑

k,m=1

∑
j∈G∗m

(
(−1)1(k=m)

nk

∑
�∈G∗k

T3,�j

)
︸ ︷︷ ︸

=:Bkj

∣∣(Z∗ −Z∗Ẑ
)
G∗kj

∣∣
1︸ ︷︷ ︸

=:βkj

.

Note that βkj ∈ [0,1]. By Lemma A.5, we have

〈
Z∗T3,Z

∗Ẑ −Z∗
〉≤ K∑

k,m=1

bkm∑
j=1

B
(k,m)
(j) ,

where bkm =∑j∈G∗m βkj = |(Z∗ −Z∗Ẑ)G∗kG∗m |1 and B
(k,m)
(1)

≥ B
(k,m)
(2)

≥ · · · is the ordered sequence of
(Bkj )j∈G∗m . Now fix a (k,m). For any E ⊂G∗m with 1≤ q := |E| ≤ nm , we can write

∑
j∈E

Bkj =
n∑

j,�=1

d
(k,m)
�j

(〈δ�, δj 〉 −E〈δ�, δj 〉
)
,

where D(k,m) = (d
(k,m)
�j )n�,j=1 and d

(k,m)
�j =−n−1

m 1(j ∈E)1(� ∈G∗k). By Theorem 2.8 (one-sided ver-
sion) and the union bound, we have t > 0,

P

(
q∑

j=1

B
(k,m)
(j) ≥ t

)
≤
(

nm

q

)
exp

[
−C min

(
t2

L4‖�‖2
HS‖D(k,m)‖2

HS

,
t

L2‖�‖op‖D(k,m)‖op

)]
.

Since ‖D(k,m)‖HS = ‖D(k,m)‖op =√q/nm, we deduce that

P

(
∃1≤ k,m≤K such that

bkm∑
i=1

B
(k,m)
(j)

≥ C6L
2
(
‖�‖HS

bkm√
nm

√
log

nmK

bkm

+ ‖�‖op
b

3/2
km√
nm

log
nmK

bkm

))

≤
K∑

k,m=1

∑
1≤q≤nm

P

(
q∑

j=1

B
(k,m)
(j) ≥ C6L

2
(
‖�‖HS

q√
nm

√
log

nmK

q
+ ‖�‖op

q3/2

√
nm

log
nmK

q

))
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≤
K∑

k,m=1

nm∑
q=1

(
enm

q

)q

exp

(
−C2

6q log

(
nmK

q

))

≤K2 min
m

nm∑
q=1

exp

(
−C7q log

(
nmK

q

))
≤ C8K

2

(nK)4
≤ C8

c′0
2
n2

,

where the last inequality is due to n2K ≥ c′0n. Thus, we obtain that with probability at least 1−C8/n2

that

〈
Z∗T3, Ẑ −Z∗

〉≤ C6L
2

K∑
k,m=1

(
‖�‖HS

bkm√
nm

√
log

nmK

bkm

+ ‖�‖op
b

3/2
km√
nm

log
nmK

bkm

)
.

Recall that
∑K

k,m=1 bkm = |Z∗ −Z∗Ẑ|1 = S. Since functions x−1/2 logx and x−1/2√logx are mono-
tonically decreasing for x ≥ e2, we obtain from Jensen’s inequality that

〈
Z∗T3, Ẑ −Z∗

〉≤ C6L
2 S√

n

(
‖�‖HS

√
log

nK3

S
+ ‖�‖op

√
S log

nK3

S

)
.

By the cyclic invariance of trace and the symmetry of T3 and Ẑ − Z∗, the same bound holds for
〈T3Z

∗, Ẑ−Z∗〉 = 〈Z∗T3, Ẑ−Z∗〉. In addition, the term 〈Z∗T3Z
∗, Ẑ−Z∗〉 = 〈Z∗T3,Z

∗(Ẑ−Z∗)Z∗〉
can be handled in the same way as 〈Z∗T3, Ẑ−Z∗〉, by noticing that |Z∗(Ẑ−Z∗)Z∗|1 = |Z∗(Ẑ−Z∗)|1
according to Lemma A.6.

Put all pieces together, we obtain that with probability at least 1− c/n2 that

〈
T3, Ẑ −Z∗

〉≤ 1

2

〈
T1,Z

∗ − Ẑ
〉+ 3C6L

2S
1√
n

(
‖�‖HS

√
log

nK3

S
+ ‖�‖op

√
S log

nK3

S

)
.

Step 5: conclude. Now we combine the bounds in Step 1 – 4 to obtain that

1

2

〈
T1,Z

∗ − Ẑ
〉≤ 2C1L

√〈
T1,Z∗ − Ẑ

〉√‖�‖opS log

(
2nK3

S

)

+ 3C6L
2S

1√
n

(
‖�‖HS

√
log

nK3

S
+ ‖�‖op

√
S log

nK3

S

)
, (4.9)

holds with probability at least 1− c/n2, where recall that S = |Z∗ − Z∗Ẑ|1. According to equation
(4.5) in Step 1 and equation (A.5) in Lemma A.6, we have 〈T1,Z

∗ − Ẑ〉 ≥2S/4≥ 0. Then solution

of the quadratic inequality (4.9) for
√
〈T1,Z∗ − Ẑ〉 implies

2 ≤ C9L
2‖�‖op log

(
2nK3

S

)
+C9L

2 1√
n

(
‖�‖HS

√
log

nK3

S
+ ‖�‖op

√
S log

nK3

S

)
. (4.10)
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This inequality combined with S ≤ |Z∗ − Ẑ|1 due to (A.5) and the trivial upper bound |Z∗ − Ẑ|1 ≤ 2n

imply

2 ≤ 3C9L
2‖�‖op

√
n

n
log

(
2nK3

S

)
+C9L

2 1√
n
‖�‖HS

√
log

nK3

S
.

As a consequence, we have

S ≤ 2nK3 exp

(
−C10

(√
n

n

2

L2‖�‖op
∧ n4

L4‖�‖2
HS

))
≤ 2nK3 exp(−C11

√
n/n)≤ n,

where we have used in the second last step our condition that SNR2 ≥ c0n/n ≥ c0K for sufficiently
large constant c0. Now combining the preceding display with inequality (4.10), we obtain

2 ≤ 3C9L
2‖�‖op log

(
2nK3

S

)
+C9L

2 1√
n
‖�‖HS

√
log

nK3

S
.

Finally, this inequality combined with equation (A.5) in Lemma A.6 implies the desired bound

∣∣Ẑ −Z∗
∣∣
1 ≤

2n

n
S ≤ C12n

2K3/n exp
(−C10SNR2)≤ C12 exp

(−C13SNR2),
where the last step is due to the lower bound condition SNR2 ≥ c0n/n. �

Proof of Corollary 3.4. For easy presentation, we consider the equal-size clusters case where n1 =
· · · = nK = n and G∗k = {(k − 1)n, (k − 1)n+ 1, . . . , kn} for k = 1, . . . ,K by reordering the indices.
Under this setup, we have

Z∗ij =
{

1/n if i, j ∈G∗k,
0 otherwise.

Take c1 large enough so that the upper bound in Theorem 3.3 satisfies C1 exp(−C2SNR2)≤ 1
3n

. We use

induction to prove that Ĝk =G∗k at each step for each k = 1, . . . ,K , which also implies K̂ =K . In fact,

at k = 1, since maxi |Ẑ1i −Z∗1i | ≤ |Ẑ −Z∗|1 ≤ 1
3n

, we must have Ẑ1i ∈ [ 2
3n

, 4
3n
] for i ∈G∗1 and Ẑ1i ≤

1
3n

for i /∈G∗1 according to the definition of Z∗. This implies Ĝ1 =G∗1 according to the choice of Ĝ1

in the algorithm. Similarly, assume Ĝl =G∗l for all l ≤ k, then [n] \⋃k
l=1 Ĝl = {kn+1, kn+2, . . . , n}

and jk+1 = kn+ 1 by definition. Then the fact that maxi |Ẑjk+1i − Z∗jk+1i
| ≤ |Ẑ − Z∗| ≤ 1

3n
and the

definition of Z∗ imply Ẑjk+1i ∈ [ 2
3n

, 4
3n
] for i ∈ G∗k+1 and Ẑ1i ≤ 1

3n
for i /∈ G∗k+1. Consequently, we

must have Ĝk+1 =G∗k+1 according to the choice of Ĝk+1 in the algorithm. This completes the proof
by induction. �

Appendix: Auxiliary results

In this section, we collect and prove all auxiliary results in the paper.
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A.1. Feature maps in reproducing kernel Hilbert spaces

In this subsection, we provide a concrete construction of the feature map in kernel clustering. To this
end, we invoke the theory of reproducing kernel Hilbert space (RKHS). For a detailed survey of lin-
ear operators on Hilbert spaces with statistical applications, we refer to the text [13] as an excellent
monograph.

Let the bivariate function ρ : X × X→ R be a symmetric and positive definite kernel; namely,∑m
i,j=1 cicjρ(xi, xj )≥ 0 for all m≥ 1, x1, . . . , xm ∈X, and c1, . . . , cm ∈R. By the Moore–Aronszajn

theorem (cf. Theorem 2.7.4 in [13]), there exists a unique Hilbert space H := H(ρ) of real-valued
functions on X with ρ as its reproducing kernel, that is,

(i) for every x ∈X, ρ(·, x) ∈H;
(ii) for every f ∈H and x ∈X, f (x)= 〈f,ρ(·, x)〉, where 〈·, ·〉 is the inner product of H.

Property (i) defines a feature map φ : X→ H via x �→ ρ(·, x), which is known in literature as the
RKHS map [2]. Property (ii) shows that ρ satisfies the reproducing kernel property for all functions in
the Hilbert space H. Thus H is the RKHS associated with ρ. It is immediate from these two properties
that

ρ(x, y)= 〈ρ(·, y), ρ(·, x)
〉= 〈φ(x),φ(y)

〉 ∀x, y ∈X.

Then the similarity matrix A is chosen aij = ρ(Xi,Xj )= 〈φ(Xi),φ(Xj )〉. Statistical properties of the
SDP solution Ẑ for (3.3) rely on the distribution of the feature vectors φ(Xi) in H, which is a special
case of Theorem 3.3.

A.2. Auxiliary proofs and lemmas

In this subsection, we provide additional proofs of the technical results used in the paper.

Proof of Lemma 2.4. Without loss of generality, we may assume μ= 0. Suppose that Z ∼N(0,�).
Then ‖Z‖ψ2,� = 1 is obvious from Definition 2.2 and 2.3. Let M(t)= E[et〈z,Z〉], t ∈R, be the moment
generating function of 〈z,Z〉. Then Taylor’s expansion yields that

d2M(t)

dt2

∣∣∣∣
t=0
= E〈z,Z〉2 = E

〈
z, 〈z,Z〉Z〉= E

〈
z, (Z⊗Z)z

〉= 〈z,E(Z⊗Z)z
〉= 〈z,�z〉.

On the other hand, since Z ∼N(0,�), we have

d2M(t)

dt2
= (1+ t2)〈�z, z〉et2〈�z,z〉/2.

Thus it follows that 〈
(� − �)z, z

〉= 0 for all z ∈H,

which implies that � = �. Suppose that Z ∼ sub-gaussian(�). By Markov’s inequality and Defini-
tion 2.2, we have

P
(〈z,Z〉 ≥ t

)≤ inf
λ>0

e−λt
E
[
eλ〈z,Z〉]≤ inf

λ>0
e−λt+ α2λ2

2 〈�z,z〉 = e
− t2

2α2〈�z,z〉 ,
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where α2 = ‖Z‖2
ψ2.�

. Then

〈�z, z〉 = E〈z,Z〉2 =
∫ ∞

0
P
(∣∣〈z,Z〉∣∣≥√t

)
dt ≤ 2

∫ ∞
0

e
− t

2α2〈�z,z〉 dt = 4α2〈�z, z〉.

Thus it is immediate that 〈(4α2� −�)z, z〉 ≥ 0 for all z ∈H, i.e., � � 4‖Z‖2
ψ2,�

�. �

Lemma A.1 (Moment generating function bound for squared norm of a sub-gaussian random
variable in R

n). Let � be an n× n positive semidefinite matrix and X be a random variable in R
n

such that E[X] = 0 and E[ezT X] ≤ ezT �z/2 for all z ∈Rn. Let Z ∼N(0,�). Then,

E
[
e

t‖X‖22
2
]≤ E

[
e

t‖Z‖22
2
] ∀0≤ t < ‖�‖−1

op .

Proof. The case for t = 0 is obvious. Without loss of generality, we may assume � is (strictly) positive
definite since otherwise we can consider �+δIn for δ > 0 and then let δ→ 0. Consider t ∈ (0,‖�‖−1

op ).
Denote the determinant of � as |�|. Observe that

A := 1

(2π)n/2|�|1/2

∫
Rn

e−
‖z‖22

2t E
[
ezT X

]
dz

=(1) E

[
1

(2π)n/2|�|1/2

∫
Rn

e−
‖z−tX‖22

2t dze
t‖X‖22

2

]

=(2) E
[
e

t‖X‖22
2
] 1

(2π)n/2|�|1/2

∫
Rn

e−
‖z‖22

2t dz

=(3) E
[
e

t‖X‖22
2
] 1

|t−1�|1/2
,

where (1) follows from Fubini’s theorem, (2) from the translational invariance of the Gaussian density
integral, and (3) from that the integration of the standard Gaussian distribution N(0, In) equals to one.
Thus, we get

E
[
e

t‖X‖22
2
]= ∣∣t−1�

∣∣1/2
A.

Since E[ezT X] ≤ ezT �z/2 for all z ∈Rn, we have for t ∈ (0,‖�‖−1
op ),

A≤ 1

(2π)n/2|�|1/2

∫
Rn

e−
zT z
2t e

zT �z
2 dz

= 1

(2π)n/2|�|1/2

∫
Rn

e−
1
2 zT (t−1In−�)z dz

= 1

|�|1/2|t−1In − �|1/2

[
1

(2π)n/2|(t−1In − �)−1|1/2

∫
Rn

e−
1
2 zT (t−1In−�)z dz

]
= 1

|�|1/2|t−1In − �|1/2
.

Then we have

E
[
e

t‖X‖22
2
]≤ |t−1�|1/2

|�|1/2|t−1In − �|1/2
= 1

|In − t�|1/2
∀0≤ t < ‖�‖−1

op .
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On the other hand, for Z ∼N(0,�), similar calculations show that

E
[
e

s‖Z‖22
2
]= 1

(2π)n/2|�|1/2

∫
Rn

e−
1
2 zT �−1ze

s
2 zT z dz

= 1

(2π)n/2|�|1/2

∫
Rn

e−
1
2 zT (�−1−sIn)z dz

= |�
−1(In − s�)|−1/2

|�|1/2
= 1

|In − s�|1/2
∀s < ‖�‖−1

op ,

from which Lemma A.1 is immediate. �

Lemma A.2 (Upper bound for squared norm of a sub-gaussian random variable in R
n). In the

setting of Lemma A.1, we have

E
[
e

t
2 (‖X‖2

2−tr(�))
]≤ e

t2
2 ‖�‖2

HS ∀0≤ t <
(
2‖�‖op

)−1
. (A.1)

Consequently, we have for any u > 0,

P
(‖X‖2

2 − tr(�)≥ u
)≤ exp

[
−1

8
min

(
u2

‖�‖2
HS

,
u

‖�‖op

)]
. (A.2)

Proof. Let Z ∼N(0,�). By the calculations in Lemma A.1, we have for all t < ‖�‖−1
op ,

E
[
e

t
2 (‖Z‖2

2−tr(�))
]= e− t

2 tr(�)

|In − t�|1/2
=

n∏
i=1

e−tγi/2

√
1− tγi

,

where (γi)
n
i=1 are eigenvalues of �. Using the inequality

e−t

√
1− 2t

≤ e2t2 ∀|t |< 1/4,

we have

E
[
e

t
2 (‖Z‖2

2−tr(�))
]≤ n∏

i=1

e
t2γ 2

i
2 = e

t2‖�‖2HS
2 ∀|t |< (

2‖�‖op
)−1

.

Combining the last inequality with Lemma A.1, we get (A.1). By Markov’s inequality, we have for any
u > 0 and 0≤ t < (2‖�‖op)

−1,

P
(‖X‖2

2 − tr(�)≥ u
)≤ e−

tu
2 + t2

2 ‖�‖2
HS .

Choosing t = t∗ := u

2‖�‖2
HS
∧ 1

2‖�‖op
, we get

P
(‖X‖2

2 − tr(�)≥ u
)≤ exp

(
−ut∗

4

)
= exp

[
−1

8
min

(
u2

‖�‖2
HS

,
u

‖�‖op

)]
. �
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Lemma A.3 (Moment generating function bound for centered squared norm of a sub-gaussian
random variable in H). Let � ∈ B(H) be a positive definite trace class operator on H. Let X be a
centered sub-gaussian random variable in H with respect to � and L= ‖X‖ψ2 . Then,

E
[
e

t
2 (‖X‖2−L2‖�‖tr)

]≤ e
t2L4

2 ‖�‖2
HS ∀0≤ t <

1

2L2‖�‖op
.

Proof. The proof is a standard approximation argument combined with Lemma A.2. Let (ek)
∞
k=1

be a CONS of H. By Parseval’s identity, ‖X‖2 =∑∞k=1〈X,ek〉2, where convergence of the sum is
made in the �2 sense. Let K > 0 be a finite integer. Put XK = (〈X,e1〉, . . . , 〈X,eK 〉)T . Then XK ∼
sub-gaussian(L2�K) is a mean-zero random variable in R

n with �K,jk = 〈�ej , ek〉 for j, k = 1, . . . ,K .
Since ‖�K‖op ≤ ‖�‖op, it follows from Lemma A.2 that

E
[
e

t
2 (‖XK‖2−L2‖�K‖tr)

]≤ e
t2L4

2 ‖�K‖2
HS ∀0≤ t <

1

L2‖�‖op
.

Letting K→∞, we have ‖XK‖2
2↗ ‖X‖2, tr(�K)= ‖�K‖tr↗ ‖�‖tr, and ‖�K‖2

HS↗ ‖�‖2
HS. Then

Lemma A.3 follows from the monotone convergence theorem. �

Lemma A.4 (Squared norm of a sub-Gaussian random variable in H is sub-exponential). Let
� ∈ B(H) be a positive definite trace class operator on H and X be a centered sub-gaussian(�) random
variable in H. Then there exists a universal constant C > 0 such that

‖‖X‖2‖ψ1 ≤ C‖X‖2
ψ2
‖�‖tr.

Thus ‖X‖2 is a sub-exponential random variable in R.

Proof. Let (ek)
∞
k=1 be a CONS of H. By Parseval’s identity, ‖X‖2 =∑∞k=1〈X,ek〉2. Since ‖ · ‖ψ1 for

real-valued random variables is a norm, we have by triangle inequality that

∥∥‖X‖2
∥∥

ψ1
≤
∞∑

k=1

∥∥〈X,ek〉2
∥∥

ψ1
=
∞∑

k=1

∥∥〈X,ek〉
∥∥2

ψ2
,

where the last step follows from Lemma 2.7.6 in [28]. Since X ∼ sub-gaussian(�) with mean zero, we
have for any λ > 0,

E
[
eλ〈X,ek〉]≤ e

λ2
2 ‖X‖2

ψ2
〈�ek,ek〉,

which implies that there exists a universal constant C > 0 such that∥∥〈X,ek〉
∥∥

ψ2
≤ C‖X‖ψ2

√〈�ek, ek〉.
Then ∥∥‖X‖2

∥∥
ψ1
≤
∞∑

k=1

C2‖X‖2
ψ2
〈�ek, ek〉 = C2‖X‖2

ψ2
‖�‖tr. �

Let r be a non-negative integer and 0≤ f < 1. For s = r + f ≥ 0, we define the (generalized) sum

s∑
i=1

ai :=
r∑

i=1

ai + f ar+1.
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Lemma A.5 (Monotone rearrangement). For any a1, . . . , an ∈R and b1, . . . , bn ∈ [0,1], we have

n∑
i=1

aibi ≤
s∑

i=1

a(i),

where a(1) ≥ · · · ≥ a(n) and s =∑n
i=1 bi .

By definition, we clearly have
∑s

i=1 ai ≤ max{∑r
i=1 ai,

∑r+1
i=1 ai}, and for 0 ≤ s ≤ 1,

∑s
i=1 sa1 ≤

sa(1). Moreover, Lemma A.5 is tighter than the classical inequality
∑n

i=1 aibi ≤ |a|∞|b|1 because
a(i) ≤ |a|∞. Using the order statistics structure, we are able to obtain the exponential decay of error
result in the K-means SDP clustering problem in Section 3.3.

Proof of Lemma A.5. Write s = r + f , where r is a non-negative integer and f ∈ [0,1). Let X be
a random variable taking values in {a1, . . . , an} with the probability mass function P(X = ai)= bi/s.
Let Y be another random variable taking values in {a(1), . . . , a(n)} = {a1, . . . , an} with the probability
mass function P(Y = a(j))= 1/s for 1≤ j ≤ r , P(Y = a(r+1))= f/s, and P(Y = a(j))= 0 for r+2≤
j ≤ n. Since bi ∈ [0,1], we can always shift a non-negative proportion of mass from X to Y . Thus, we
have E[X] ≤ E[Y ] and the lemma follows. �

Lemma A.6. Let Z∗ be defined in (3.4). Then for any Z ∈ C defined in (3.3), we have∣∣Z∗ −Z∗ZZ∗
∣∣
1 =

∣∣Z∗ −Z∗Z
∣∣
1 = 2

∑
1≤k �=m≤K

|ZG∗kG∗m |1, (A.3)

∥∥(I −Z∗
)
Z
(
I −Z∗

)∥∥
tr ≤
|Z∗ −Z∗Z|1

2n
, (A.4)

∣∣Z∗ −Z∗Z
∣∣
1 ≤

∣∣Z∗ −Z
∣∣
1 ≤

2n

n

∣∣Z∗ −Z∗Z
∣∣
1. (A.5)

Proof. See Lemma 1 in [10]. �
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